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Polarization measurements of thermal radiation from magnetic white dwarf (MWD) stars have been
proposed as a probe of axion-photon mixing. The radiation leaving the surface of the MWD is unpolarized,
but if low-mass axions exist then photons polarized parallel to the direction of the MWD’s magnetic field
may convert into axions, which induces a linear polarization dependent on the strength of the axion-photon
coupling gaγγ . We model this process by using the formalism of axion-photon mixing in the presence of
strong-field vacuum birefringence to show that of all stellar types MWDs are the most promising targets for
axion-induced polarization searches. We then consider linear polarization data from multiple MWDs,
including SDSS J135141 and Grwþ 70°8247, to show that after rigorously accounting for astrophysical
uncertainties the axion-photon coupling is constrained to jgaγγj ≲ 5.4 × 10−12 GeV−1 at 95% confidence

for axion masses ma ≲ 3 × 10−7 eV. This upper limit puts in tension the previously-suggested explanation
of the anomalous transparency of the Universe to TeV gamma-rays in terms of axions. We identify MWD
targets for which future data and modeling efforts could further improve the sensitivity to axions.
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I. INTRODUCTION

Ultralight axion-like particles are hypothetical exten-
sions of the Standard Model that could be remnants of new
physics at energies well above those that may be probed by
collider experiments [1–3]. For example, in string theory
compactifications it is common to find a spectrum of
ultralight axions [4,5]. At low energies the axions interact
with the Standard Model through dimension-5 operators
suppressed by the high scale fa ≳ 107 GeV [6]. In par-
ticular, an axion a may interact with electromagnetism
through the Lagrangian term L ¼ gaγγaE ·B, where E and
B are the electric and magnetic fields, respectively, and
gaγγ ∝ 1=fa is the coupling constant. In this work, we
set some of the strongest constraints to-date on gaγγ for
low-mass axions using white dwarf (WD) polarization
measurements.
Axions are notoriously difficult to probe experimentally

due to their feeble interactions with the Standard Model.
The most powerful approach at present to probe ultralight

axions purely in the laboratory is that employed by light
shining through walls experiments, which leverage the fact
that photons and axions mix in the presence of strong
magnetic fields; the ALPS [7] experiment has constrained
jgaγγj≲ 5 × 10−8 GeV−1 at 95% confidence for axion
masses ma ≲ few × 10−4 eV. The upcoming experiment
ALPS-II [8] may reach sensitivity to jgaγγj ≲ 2 ×
10−11 GeV−1 for a comparable mass range. Going to lower
coupling values, however, requires making use of astro-
physical axion sources in order to access strong magnetic
fields, longer distances, and higher luminosities. For
example, the CAST [9] experiment (see Fig. 1) has set
strong constraints on gaγγ by looking for axions produced in
the Sun and then converting to X-rays in the magnetic field
of their detector, and the followup project IAXO [10] may
be able to cover significant unexplored parameter space
(jgaγγj≲ 4 × 10−12 GeV−1 for ma ≲ 5 × 10−3 eV). Purely
astrophysical probes currently set the strongest constraints
on gaγγ at ultralow axion masses. Observations of horizon-
tal branch (HB) star cooling [11] constrain gaγγ at a level
comparable to CAST (jgaγγj ≲ 6.6 × 10−11 GeV−1, as illus-
trated in Fig. 1, for axion masses less than the keV scale).
The nonobservation of gamma-rays from SN1987A—
which would be produced from Primakoff production
in the supernova core and converted to photons
in the Galactic magnetic fields—leads to the limit
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jgaγγj≲ 5.3 × 10−12 GeV−1 for ma ≲ 4.4 × 10−10 eV [12]
(but see [13]). The nonobservation of X-rays from super
star clusters, which may arise from axion production in the
stellar cores and conversion in Galactic magnetic fields,
leads to the limit jgaγγj ≲ 3.6 × 10−12 GeV−1 for ma ≲ 5 ×
10−11 eV [14]. Reference [15] claims to constrain jgaγγj ≲
8 × 10−13 GeV−1 for ma ≲ 10−12 eV using searches for
x-ray spectral irregularities from the active galactic nucleus
NGC 1275, though the magnetic field models in that work,
and thus the resulting limits, are subject to debate [16,17].
There are a number of astrophysical anomalies that favor

axions at jgaγγj below current constraints. For example, the
unexplained transparency of the Universe to TeV gamma-
rays may be explained by the existence of axions with
gaγγ ∼ 10−12 − 10−10 GeV−1 and ma ∼ 10−9 − 10−8 eV
(see Fig. 1) [29–34] (but see [35,36]). The high-energy
gamma-rays would convert to axions in the magnetic fields
surrounding the active galactic nuclei sources and then
reconvert to photons closer to Earth in the intergalactic
magnetic fields, effectively reducing the attenuation of
gamma-rays caused by pair-production off of the extra-
galactic background light. The gamma-ray transparency
anomalies are constrained in-part by searches for spectral

irregularities from gamma-ray sources with the H.E.S.S
[21] and Fermi-LAT [19,20] telescopes (but see [16]).
Magnetic WDs (MWDs) are natural targets for axion

searches because of their large magnetic field strengths,
which can reach up to ∼109 G at the surface.
Reference [18] recently constrained the coupling combi-
nation jgaγγgaeej, with gaee the axion-electron coupling,
using a ChandraX-ray observation of the MWDRE J0317-
853. Axions would be produced from electron bremsstrah-
lung within the MWD cores and then converted to x-rays in
the magnetosphere. Depending on the relation between gaee
and gaγγ the constraint on gaγγ alone could vary from
jgaγγj≲ few × 10−13 GeV−1 to jgaγγj≲ 4.4 × 10−11 GeV−1

for ma ≲ 5 × 10−6 eV; the most conservative constraint
from that work is illustrated in Fig. 1. (See [37–40] for
similar searches using neutron stars (NSs) as targets.) Note
that WD cooling provides one of the most sensitive probes
of the axion-electron coupling alone, since the axions
produced by bremsstrahlung within the stellar cores pro-
vide an additional pathway for the WDs to cool [41].
References [42,43] were the first to propose using MWD

polarization measurements to constrain gaγγ . The basic idea
behind this proposal, which is the central focus of this
work, is illustrated in Fig. 2. The MWD radiates thermally
at its surface temperature. The thermal radiation is unpo-
larized, but it may effectively acquire a linear polarization
when traversing the magnetosphere because photons polar-
ized parallel to the transverse magnetic fields may convert
to axions, which are unobserved, while the orthogonal
polarization direction is unaffected. Reference [43] claimed
that MWD linear polarization measurements of the
MWDs PG 1031þ 234 and Sloan Digital Sky Survey
(SDSS) J234605þ 38533 may be used to constrain
jgaγγj≲ ð5 − 9Þ × 10−13 GeV−1 for ma ≲ few × 10−7 eV.
Here we critically reassess the upper limits from these
MWDs and show that, while strong, the upper limits on gaγγ
from these MWDs are around an order of magnitude
weaker than claimed in [43], when accounting for astro-
physical uncertainties on the magnetic field and its

FIG. 1. Constraints on the axion-photon coupling gaγγ arise
from searches for axion-induced X-rays from super star clusters
[14] and a nearby MWD [18] in addition to gamma-rays from
SN1987A [12], searches for spectral irregularities with Fermi-
LAT [19,20] and H.E.S.S. [21], the CAST axion helioscope [9],
HB star cooling [11], and constraints from SHAFT [22],
ABRACADABRA [23,24], ADMX [25,26], and RBFþ UF
[27,28] that are contingent on the axion being dark matter.
The fiducial 95% upper limit from this work from the non-
observation of linear polarization from SDSS J135141 is com-
puted assuming the most conservative (at 1σ) magnetic field
strength, MWD radius, and orientation. The shaded orange region
shows how the limits change when considering astrophysical
uncertainties; the dominant uncertainty is the inclination angle.
The limit found using the best-fit astrophysical parameters for the
MWD is also indicated.

FIG. 2. The MWD emits thermal, unpolarized light, but this
light may acquire a linear polarization when traversing the
magnetosphere by photon-to-axion conversion. Photons polar-
ized along the direction of the transverse magnetic field may
convert to axions, while those polarized in the orthogonal
direction are unaffected. Note that the conversion process may
take place well away from the MWD surface.
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geometry. Additionally, we identify two other MWDs—
SDSS J135141.13þ 541947.4 (hereafter SDSS J135141)
and Grw 70°8247—whose linear polarization measure-
ments lead to strong constraints on gaγγ . The upper limits on
gaγγ from this work represent the strongest to-date for
few × 10−9 eV≲ma ≲ 10−6 eV. We show that the axion-
induced polarization signal is determined only by the
magnetic field strength and geometry far away from the
MWD surface, outside of the atmosphere, where the free-
electron plasma does not play an important role.
In contrast, the astrophysical polarization originates in

the atmosphere from the scattering of starlight by bound
and free electrons. Through a simplified radiative transfer
analysis, we estimate the effect of the astrophysical
polarization following standard MWD polarization model-
ing techniques. In particular, we extend a first-order linear
Zeeman approximation of the bound-free cross section at
low (B ≪ 100 MG) magnetic fields to the regime where
the Zeeman and Coulomb interactions are comparable
(100 MG≲ B≲ 5000 MG). This is because the exact
cross sections have not yet been computed. On the other
hand, we exactly account for the quadratic Zeeman shifting
of hydrogen bound-state energy levels and for the quan-
tization of free electrons into Landau levels. We find a
strong frequency dependence in the astrophysical polari-
zation that allows the astrophysical polarization to be
distinguished from the relatively frequency-independent
axion-induced polarization. Lastly, we identify future
MWD targets whose polarization observations could
further constrain gaγγ or lead to evidence for axions at
currently unprobed coupling strengths. We begin, in Sec. II,
by outlining the formalism for how to compute the axion-
induced polarization signal.

II. AXION-INDUCED POLARIZATION

In this section we outline the formalism for computing
polarization signals from astrophysical sources due to
axion-photon mixing. While we ultimately focus on
MWDs in this work, we begin with a more general survey
of possible astrophysical targets. The basic idea behind this
work is to focus on sources where the initial electromag-
netic emission is known to be unpolarized but where the
radiation must traverse regions of large magnetic field
strengths before reaching Earth. Since photons polarized
along the directions of the transverse magnetic fields may
convert to axions, the presence of axions in the spectrum of
nature will effectively induce a level of linear polarization
whose degree depends on the strength of the axion-photon
coupling. This process is illustrated for MWDs in Fig. 2,
where the relevant magnetic field is that directly surround-
ing the MWD.
The idea of searching for axion-induced polarization

signals has been discussed in three main contexts: MWDs
[42,43], NSs [42,44], and quasars [45–52]. In the first two

cases the star is the source of both the initially-unpolarized
photons and the strong magnetic fields. In the latter case,
the magnetic fields are much weaker but they act over
larger distances. In this section we focus on polarization
signals of the former type, where the star provides both the
source of photons and magnetic fields, but first we briefly
discuss the results of the quasar searches. Reference [50]
claims to constrain jgaγγj≲ few × 10−13 GeV−1 for ma ≲
few × 10−14 eV in order to not overproduce the measured
optical polarization signals from distant quasars; this upper
limit would be the most stringent to date on low mass
axions. However, the results in [50] are dependent on the
strength of the assumed magnetic fields and plasma density
profiles over distances ∼20 Mpc away from the sources.
Reference [50] assumed supercluster magnetic fields
∼2 μG in strength and coherent over ∼100 kpc distances
within 20 Mpc of the quasars. On the other hand,
simulations of supercluster magnetic fields [53–57] find
that the fields are filamentary and typically orders of
magnitude smaller than those assumed in [50] at such
large distances away from the clusters. The field strengths
increase in the clusters themselves, but so too does the free-
electron density, which suppresses photon-to-axion con-
version. At present it seems likely that our knowledge of
the supercluster-scale magnetic fields and plasma density
profiles are not robust enough to claim a bound on gaγγ ,
which is why we focus on stellar sources for which the
magnetic field profiles may be measured more precisely
using e.g., the Zeeman effect and for which, as we will
show, knowledge of the free-electron density is not
necessary.

A. Analytic aspects of axion-induced polarization

Consider an unpolarized monochromatic beam of pho-
tons with frequency ω propagating through a medium with
magnetic field profile BðsÞ and plasma-frequency profile
ωplðsÞ, with s the distance along the propagation direction.
The plasma frequency is sourced by free electrons for our
purposes. We will track the Stokes parameters, which in
terms of the complex electric field E are defined by

I ¼ jE1j2 þ jE2j2; Q ¼ jE1j2 − jE2j2
U ¼ 2ReðE1E2�Þ; V ¼ −2ImðE1E2�Þ; ð1Þ

with x1 − x2 the transverse directions to the propagation
direction x3. The linear polarization fraction is conven-
tionally defined by

Lp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2

p
I

; ð2Þ

while the circular polarization fraction, which we will
discuss less in this work, is Cp ≡ V=I. The linear polari-
zation is also specified by an angle in the x1 − x2 plane χ,
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with tan 2χ ¼ U=Q. Note that we are interested in time-
averaged quantities. Thus, implicitly when we write quan-
tities like I andQwe are referring to hIi and hQi, where the
brackets refer to time averages over intervals much longer
than 2π=ω.
As a first example let us consider the simple case of a

static magnetic fieldB ¼ B0x2 extending over a length L in
the x3 direction, such that s ∈ ð0; LÞ. We also take
ωplðsÞ ¼ ωpl to be independent of distance. The point of
this exercise is to gain familiarity with how competing
effects contribute to Lp before turning to the case of interest
of conversion in stellar magnetospheres. Under the
assumption that the photon wavelength is much smaller
than the length L (2π=ω ≪ L), one may use a WKB
approximation (see, e.g., [58]) to reduce the second-
order axion-photon mixing equations to first-order mixing
equations:

�
i∂s þ

�Δjj þ Δpl ΔB

ΔB Δa

���
A2

a

�
¼ 0; ð3Þ

with A2 ¼ E2=ðiωÞ the corresponding component of the
vector potential in Weyl gauge (A0 ¼ 0), Δa ¼ −m2

a=ω,
Δpl ¼ −ω2

pl=ω, ΔB ¼ gaγγB0=2, and Δjj ¼ ð7=2Þωξ, with
ξ ¼ ðαEM=45πÞðB=BcritÞ2, arising from the nonlinear
Euler-Heisenberg Lagrangian in strong-field quantum
electrodynamics, with Bcrit ¼ m2

e=e ≈ 4.41 × 1013 G [59].
Throughout this work we are interested in the weak

mixing regime where the photon-to-axion conversion
probabilities (pγ→a) and axion-to-photon probabilities
(pa→γ) are much less than unity, so that we may work to
leading nontrivial order in gaγγ . We may then solve (3) in
perturbation theory, treating the ΔB mixing term as a
perturbation, since without this term the mixing
matrix in (3) is diagonal. We consider the initial state,
at s ¼ 0, to be specified by the vector potential A ¼
ðA= ffiffiffi

2
p Þða1x̂1 þ a2x̂2Þ for an arbitrary real A, where a1 and

a2 are complex random variables that obey the relations:
ha1a1�i ¼ ha2a2�i ¼ 1, with ha1a1i¼ha2a2i¼ha1a2i¼
ha1a2�i¼0. Referring to (1), and recalling that all such
quantities are subject to expectation values h…i, we see that
at s ¼ 0 we have I ¼ A2, whileQ ¼ U ¼ V ¼ 0, implying
that the initial state is unpolarized. The perturbative
solution to the equations of motion at s > 0 is then, up
to unimportant phases and to second-order in perturbation
theory,

AðsÞ ¼ Affiffiffi
2

p
�
a1x̂1 þ a2x̂2

�
1 −

Z
s

0

dsΔB

×
Z

s0

0

ds00ΔBe
−i
R

s00
0

ds000Δtr

��
; ð4Þ

where in general (4) would hold even if the mixing
terms were s-dependent, though they are not in this

simple example. Note that we have defined Δtr ≡ Δjjþ
Δpl − Δa. Performing the integration in (4) out to s ¼ Lwe
find that

I ¼ A2

�
1 −

Δ2
B½1 − cosðLΔtrÞ�

Δ2
tr

�
;

Lp ¼ Δ2
B

Δ2
tr
½1 − cosðLΔtrÞ�;

Cp ¼ 0; ð5Þ

to leading nontrivial order in ΔB, with the polarization
angle χ ¼ 0. Note that by the same logic the axion-to-
photon conversion probability, for a pure initial axion state,
is given by

pa→γ ¼
����
Z

L

0

ds0ΔBe
−i
R

s0
0

ds00Δtr

����2

¼ 2
Δ2

B

Δ2
tr
½1 − cosðLΔtrÞ�; ð6Þ

such that we may infer, at least for this example, that Lp ¼
pa→γ=2 to leading order in ΔB. This should not be
surprising in light of the physical picture of the underlying
mechanism that produces the linear polarization.
The photons polarized in the x̂1 direction are unaffected
by the axion. However, those in the x̂2 direction have
a probability to convert to axions, pγ→a, which is equal to
pa→γ . The photon survival probability is then
pγ→γ ¼ 1 − pa→γ . Then, referring to (1) and (2), it is clear
that Lp ¼ pa→γ=2.
There are a few interesting points to be made about the

expression for Lp. If jLΔtrj ≪ 1 then Lp ≈ 1
2
Δ2

BL
2; the

quadratic growth of Lp with L is related to the fact that the
axion and photon remain in-phase during the mixing. As
jLΔtrj becomes comparable to and greater than unity we
begin to notice the different dispersion relations between
the axion and photon over the distance L. The difference of
dispersion relations suppresses mixing. Indeed, one sur-
prising aspect of (5) is that if we assume jΔjjj ≫ jΔaj; jΔplj
and LjΔjjj ≫ 1, which would be the case appropriate for
photons propagating over a large distance through a
strongly magnetized region with low plasma density and
an ultralight axion in the spectrum, then the dependence of
Lp on B0 is Lp ∝ 1=B2

0. This is surprising because it
suggests that when the Euler-Heisenberg term dominates
Δtr, strong magnetic fields actually suppress mixing com-
pared to weaker magnetic fields.
Let us now generalize the example above to consider

dipole magnetic fields. This is instructive because
the magnetic fields surrounding many stars, such as the
MWDs that are the main topic of this work but also the
fields surrounding NSs and to a large extent main sequence
stars as well, may be described—at least to first
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approximation—by dipole fields. Indeed, at distances far
away from the star the field should approach that of a
dipole, since the higher multipole field components fall off
faster with distance. Let us assume that the star has a radius
Rstar such that unpolarized emission radiates from the
surface and then propagates to infinity. For the purpose
of this example we will assume that BðsÞ ¼ B0x̂2½Rstar=
ðRstar þ sÞ�3, and we will compute Lp with s → ∞. This

magnetic field profile is that seen by radial emission at the
magnetic equator, where BðsÞ remains perpendicular to
the propagation direction for all s. Moreover, we will make
the assumption for this example that jΔjjj dominates Δtr,
which is the case appropriate for low-mass axions and low
plasma densities. In this case we may use (4) to compute, to
leading nontrivial order in ΔB,

Lp ≈ 1.4 × 10−4
�

gaγγ
10−12 GeV−1

�
2
�

B0

100 MG

�
2=5

�
1 eV
ω

�
4=5

�
Rstar

0.01 R⊙

�
6=5

×
AbsfRe½ð−1Þ2=5e−i 710Rstarξ0ωðΓð4

5
Þ − Γð4

5
;− 7

10
iRstarξ0ωÞÞ�g

0.022
; ð7Þ

with ξ0 denoting the value at the surface such that

Rstarξ0ω ≈ 9 × 10−3
�

Rstar

0.01R⊙

��
ω

1 eV

��
B0

100 MG

�
2

: ð8Þ

Note that when Rstarξ0ω ≪ 1, which is a limit applicable to
many MWD in this work, we may expand (7) to write

Lp ≈ 1.4 × 10−4
�

gaγγ
10−12 GeV−1

�
2
�

B0

100 MG

�
2

×

�
Rstar

0.01 R⊙

�
2

; Rstarξ0ω ≪ 1: ð9Þ

On the other hand, when Rstarξ0ω ≫ 1, the term appearing
in the second line of (7) oscillates, with a typical magnitude
around unity. That is, at very large magnetic field values,
when the Euler-Heisenberg term dominates, Lp ∝ B2=5

0 ,
while in the low-field limit the polarization scales more
rapidly with magnetic field as Lp ∝ B2

0.
There are a number of important points to be made

regarding the formulas (7) and (9). The MWDs in this work
will have field values ≲1000 MG, and we will typically be
considering energies ω ∼ eV; thus, except in extreme
cases—such as high energies and high field values—the
Euler-Heisenberg term will not significantly affect Lp. On
the other hand, consider the searches in [18,60] for hard
X-rays arising from axion production in the cores of
MWDs and converting to photons in the magnetospheres.
In those works the typical axion energies are ω ∼ keV, and
thus we see that for the same MWDs the Euler-Heisenberg
term is important to accurately describe the axion-to-
photon conversion at those energies. On the other hand,
consider an optical polarization signal arising from
a strongly magnetic NS, with Rstar ∼ 10 km, ω ∼ eV, and
B0 ∼ 1014 G. Since Rstarξ0ω ≫ 1 in that case we may infer
that Lp ≈ 5 × 10−5ðgaγγ=10−12 GeV−1Þ2. Additionally, NS
surface temperatures are typically much larger than an eV,

with ω ∼ 100 eV being a more appropriate reference
energy, which further suppresses Lp. We thus arrive at
the surprising conclusion that despite their lower magnetic
field values, MWDs are more powerful probes of ultralight
axions, with polarization probes, than NSs because the
Euler-Heisenberg term suppresses axion-photon mixing in
NS magnetospheres.
We may also use (9) to verify that MWDs are more

efficient at producing linear polarization than noncompact
stars. The Sun, for example, has a dipole magnetic
field strength B0 ∼ 10 G. Thus, for unpolarized emission
emanating from the nonactive Sun we expect
Lp ∼ 10−14ðgaγγ=10−12 GeV−1Þ2. Note that one of the most
magnetized noncompact stars is HD 215441, which
hosts a dipole magnetic field of strength ∼30 kG and a
radius ∼2 R⊙ [61]. The axion-induced linear polarization
fraction from this star would be Lp ∼ 5 × 10−7

ðgaγγ=10−12 GeV−1Þ2, which is still subdominant compared
to the MWD expectation.
Indeed, we may make a general argument that, at least

for ω ∼ eV, strongly-magnetic MWDs are the optimal
targets for axion-induced linear polarization searches.
Stellar evolution approximately conserves magnetic flux
across a surface far away from the star, such that the dipole
field strength Bf in a final stellar evolution stage is related
to the initial field strength Bi by Bf ≈ BiðRi=RfÞ2, where Ri

(Rf) is the initial (final) stellar radius. Note that with this
approximation we may re-scale the magnetic field of HD
215441 down to WD-radii stars (Rstar ≈ 0.01 R⊙) to
estimate that the most strongly magnetized MWDs should
have field strengths B ∼ 1000 MG, which is approximately
correct. Similarly, using this argument we may correctly
infer that NSs can reach magnetic field values ∼1015 G.
Using the flux conservation argument and assuming that
we remain in the limit where we may neglect the
Euler-Heisenberg term, we may relate the final-stage
axion-induced polarization fraction Lf

p to the initial-stage
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polarization fraction Li
p: L

f
p ≈ Li

pðRi=RfÞ2. This estimate
suggests that more compact stars, such as MWDs, will
be more efficient at producing axion-induced linear polari-
zation than less compact stars. On the other hand, this
argument stops being true as soon as the Euler-Heisenberg
term becomes important: at that point, the larger-radius star
will produce a larger Lp. As strongly-magnetic MWDs may
achieve Rstarξ0ω ∼ 1, we see that these are thus the optimal
targets for axion-induced polarization studies. For this
reason, we will focus on these targets in this work.
So far we have neglected the possible effects of

nonzero Δpl. We now justify this approximation for
MWD magnetospheres. The free electron density in the
interstellar medium away from the Galactic Center may be
as much as ne ∼ 10−1=cm3, though in the outer parts of the
Galaxy near the MWDs that are studied in this work
it is typically lower [62]. The plasma frequency associated
with a free electron density ne ¼ 10−1=cm3 is
ωpl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παEMne=me

p
≈ 10−11 eV, with me the electron

mass. Referring back to e.g., (5), the relevant dimensionless
quantity to compute to assess the importance of the plasma
mass term is jRstarΔplj ≈ 4 × 10−9 for the above ne esti-
mate, ω ¼ 1 eV, and Rstar ¼ 0.01 R⊙ appropriate for a
WD. Note that the plasma mass term would be important
for jRstarΔplj≳ 1. Thus, even accounting for a significantly
enhanced interstellar free-electron density near the MWD,
it is unlikely that the Δpl term would be important at optical
frequencies. On the other hand, within the MWD atmos-
phere the free-electron density may be significantly higher,
perhaps as high as ne ≈ 1017=cm3 [43]. However, the
MWD atmosphere is expected to have a density profile
that falls exponentially with a characteristic scale height
∼100 m. Considering that a typical WD radius is
∼7 × 106 m, we see that the atmosphere only extends
nontrivially over a very small fraction of the stellar radius
away from the surface. The photon-to-axion conversion
takes place continuously over a characteristic distance of
order the MWD radius away from the stellar surface. Thus,
the effect of the atmosphere on the axion-induced con-
tribution to Lp is negligible. More precisely, the effect of
the atmosphere on the conversion probability is suppressed
by the ratio of the MWD atmosphere thickness to the MWD
radius; this ratio is 10−5.
In contrast to the axion-induced polarization signal, the

standard astrophysical contributions to Lp and Cp arise
solely within the atmosphere from anisotropic cyclotron
absorption and bound-free transitions [63,64]. In general,
the degree of polarization is proportional to the optical
depth of the atmosphere [63], so that the generation of
astrophysical linear polarization is dominantly localized to
within a characteristic scale height from the surface of
the MWD. We discuss the astrophysical contributions to
the linear polarization in Sec. II C, as they are a possible
confounding background for the axion search.

Faraday rotation within the MWD magnetosphere and in
the interstellar medium could in principle reduce the linear
polarization fraction, though we estimate numerically that
Faraday rotation is small (rotation angles up to ∼10−10) for
nearby MWDs with B≲ 103 MG and free electron den-
sities of order those in the interstellar medium.
Returning to the axion-induced polarization signal, in the

limit where we may neglect the Euler-Heisenberg term, we
may also integrate (3) for a dipole magnetic field including
the Δa term, but neglecting Δpl for the reasons given above.
In this case, we find

Lp ≈ 2 × 10−8
�

gaγγ
10−12 GeV−1

�
2
�

B0

100 MG

�
2

×

�
ω

1 eV

�
2
�
10−5 eV

ma

�
4

; ð10Þ

which is valid for jr0Δaj ≫ 1. Interestingly, Lp is inde-
pendent of Rstar in the high axion mass limit. Nevertheless,
the transition from the low mass to high mass region is
dependent on Rstar, and in practice, the large-mass con-
dition jr0Δaj ≫ 1 is satisfied for

ma ≫ 1.7 × 10−7 eV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω

1 eV

��
0.01 R⊙

Rstar

�s
: ð11Þ

Thus, we expect that MWD polarization studies to be
insensitive to the axion mass for ma ≲ 10−7 eV, while for
masses much larger than this the sensitivity to gaγγ should
drop off quadratically with increasingma. Next, we present
the generalized mixing equations for nonradial trajectories
including the Euler-Heisenberg Lagrangian.

B. General axion-photon mixing equations

In this work we numerically solve the axion-photon
mixing equations including the Euler-Heisenberg terms and
also integrating over emission across the surface of the
MWD. That is, we assume that the MWD surfaces are
isothermal (but see [65], which would introduce Oð10%Þ
corrections to our results), such that the emission we see on
Earth originates from across the full Earth-facing hemi-
sphere of the MWD. However, this means that photons that
originate from across this surface that reach Earth will
generically travel along nonradial trajectories, and this
requires us to generalize the mixing equations in (3) to
include mixing of the axion with both transverse modes:2

64i∂s þ

0
B@

Δ11 Δ12 ΔB1

Δ12 Δ22 ΔB2

ΔB1
ΔB2

Δa

1
CA
3
75
0
B@

A1

A2

a

1
CA ¼ 0: ð12Þ

Above, we assume that the photon travels along a straight
trajectory in the direction ŝ, with coordinate s, with x̂1 and
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x̂2 spanning the transverse directions. We also neglect
plasma terms because, as discussed above, they play a
subdominant role. The terms appearing in the mixing
Hamiltonian in (12) arise from axion-photon mixing, the
Euler-Heisenberg Lagrangian, and the axion mass, and
those that differ from the terms in (3) are defined by [58]

Δ11 ¼
2αEMω

45π

�
7

4

ðB1

BcritÞ
2

þ ðB2

BcritÞ
2
�

Δ22 ¼
2αEMω

45π

�
7

4

�
B2

Bcrit

�
2

þ
�

B1

Bcrit

�
2
�

Δ12 ¼
3

4

2αEMω

45π

�
B1B2

B2
crit

�
; ΔBi

¼ 1

2
gaγγBi; ð13Þ

with i ¼ 1, 2 in the last line. Above, B1 and B2 are the
magnetic field values in the transverse directions, and they
are generically functions of s.
When applying the formalism above to predict the axion-

induced Lp from a MWD, we begin by discretizing the
surface of the hemisphere of the Earth-facing MWD. We
consider initially unpolarized emission from each surface
element propagating in the x̂3 direction, with the final A1

and A2 being the appropriate sum of the contributions from
the different surface elements. This is accomplished by
letting the initial vector potential of each surface element i
be labeled as Ai ¼ ðAi=

ffiffiffi
2

p Þðai1x̂1 þ ai2x̂2Þ, where the ai1
and ai2 are uncorrelated random variables such that
hai1aj1�i ¼ δij with all other correlators vanishing. We
adjust the normalization parameter Ai such that
Ai ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.7þ 0.3 cos θi

p
, with θi being the angle between

the normal vector to the sphere at pixel i and the x̂3 axis.
This scaling reproduces the limb darkening law for the
intensity adopted in [66], who confirmed this scaling
through radiative transfer calculations.

1. Magnetic white dwarf magnetic field models

The magnetic field profile around a compact star will
generically approach that of a dipole configuration far away
from the stellar surface, since higher-harmonic contribu-
tions to the vacuum solutions to the Maxwell equations fall
off faster with radius. In this work, we will consider both
pure dipole profiles and profiles containing higher har-
monic modes, which have been fit to luminosity and
circular polarization data from specific MWDs. The dipole
solution may be written as

BðrÞ ¼ Bp

2

�
Rstar

r

�
3

½3r̂ðm̂ · r̂Þ − m̂�; ð14Þ

where m̂ points along the polarization axis in the direction
of the magnetic north pole and r̂ is the position unit vector,
with distance r from the center of the star. The field strength
Bp is the polar value at the surface of the star.

The general solution to the Maxwell equations in
vacuum may be written in terms of spherical harmonics;
the associated magnetic scalar potential ψ , defined such
that B ¼ −∇ψ , is given by

ψ ¼ −Rstar

X∞
l¼1

Xl
m¼0

�
Rstar

r

�
lþ1

½gml cosmϕ

þhml sinmϕ�Pm
l ðcos θÞ; ð15Þ

where the coefficient gml and hml have dimensions of
magnetic field strength. The angle θ is the angle away
from the polarization axis m̂, such that m̂ · r̂ ¼ cos θ, and
the angle ϕ is the rotation angle about m̂. The Pm

l are the
associated Legendre polynomials. Note that the terms in
(15) at l ¼ 1 are simply those in (14) for the dipole
configuration. Reference [67] provides a fit of the harmonic
solution in (15) to MWD circular polarization and spectra
data for Grwþ 70°8247 up through l ≤ 4; we will make
use of this fit later in this work.
It is convenient to define an inclination angle i that is the

angle between the magnetic axis m̂ and the direction
toward Earth. For definiteness, throughout this work
we define the coordinate system centered at the MWD
center with ẑ pointing toward the Earth and with
m̂ ¼ cos iẑþ sin iŷ. Note that for a dipole field configu-
ration the linear polarization must vanish as i → 0, since in
this limit there is no preferred direction for the linear
polarization to point.

C. Astrophysical contributions to the linear polarization

Astrophysical mechanisms exist within the MWD
atmospheres for polarizing the outgoing radiation. Like
the axion mechanism that is the focus of this work, the
astrophysical mechanisms also rely on the polarizing
effects of the magnetic field. Here, we overview the
calculation of the astrophysical polarization, as astrophysi-
cal emission serves as a background contribution in the
axion searches that we discuss later in this work. As we will
see one crucial difference between the two sources of linear
polarization is that the astrophysical mechanisms lead to
strong wavelength dependence of the polarization fraction,
while the axion-induced polarization depends less strongly
on wavelength. This difference helps constrain the axion-
induced linear polarization fraction even in the presence of
an unconstrained astrophysical polarization fraction, which
in principle could partially interfere with the axion signal at
certain wavelengths.
In what follows we assume that the MWD atmosphere is

composed primarily of hydrogen, which is the case for the
MWDs we consider in this work. The bound electrons in
the MWD atmosphere can be considered in the Paschen-
Back regime, where the Hamiltonian is given by
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H ¼ p2

2me
−
αEM
r

þ 1

2
ΩCLz þ

1

8
meΩ2

Cr
2 sin2 θ; ð16Þ

with the third term accounting for the linear Zeeman
effect and the fourth term the quadratic Zeeman effect.
The electron mass is me, the cyclotron frequency is
Ωc ¼ eB=me, r is the atomic radial distance, and θ ¼ 0
points along the magnetic field. At the fields under
consideration B≳ 100 MG, the quadratic Zeeman effect
is important or dominant. However, in this work we use an
approximation for fields B≲ 100 MG to model the astro-
physical linear polarization, given by Ref. [63] and
Ref. [68]. The reason is that the bound-free transition
cross sections have not yet been computed with sufficient
resolution for the modeling of MWD polarization at high
field values. Recent advances in solving the Hamiltonian of
(16) have led to numerical cross sections for a limited
number of these transitions, but they were not reported on a
fine enough grid of magnetic fields strengths for astro-
physical modeling [69–71].
Here, we first describe the generation of polarization for

low fields, where the quadratic Zeeman effect is negligible.
There are two main astrophysical processes that contribute
to continuum linear and circular polarization of MWD
starlight: (1) the ionization of a bound electron in a
hydrogen atom (bound-free polarization) and (2) the
absorption of a photon by an ionized electron (free-free
polarization) [63]. Bound-bound transitions of the hydro-
gen atom can produce localized features in the MWD
spectra, and the observation of these features are used to
estimate the surface magnetic fields of MWD, as the bound
state energies of the hydrogen atom have been solved.
Bound-bound transitions can also contribute to the polari-
zation continuum, but these effects are washed-out by the
large variation in the field on the MWD surface. We discuss
the bound-bound transitions further in the context of SDSS
J135141 in Sec. III A 1.
The MWD starlight is produced unpolarized deep within

the atmosphere as blackbody radiation. The polarization is
generated as the light propagates through the thin atmos-
phere and ionizes bound electrons and scatters on free
electrons. Because the atmosphere is thin compared to the
coherence length of the magnetosphere, to a good approxi-
mation the magnetic field is constant throughout the
atmosphere at a given point on the surface of the MWD.
This surface magnetic field preferentially selects a direction
for the absorption to occur, which polarizes the blackbody
radiation. The bound-free transitions must satisfy the dipole
selection rules q ¼ 0;�1, where q is the difference
between the initial and final magnetic quantum numbers,
mi and mf, respectively, of the transition. The transitions
with q ¼ �1 preferentially absorb photons polarized
perpendicular to the magnetic field and therefore polarizes
the starlight parallel to the magnetic field. On the other
hand, the transitions with q ¼ 0 preferentially absorb

photons of the opposite polarization, so that these tran-
sitions polarize the starlight perpendicular to the magnetic
field. To determine the overall effect of bound-free
absorption, there is a competition between these two terms.
Over the majority of the photon energy range, the
q ¼ �1 transitions are stronger such that the starlight is
polarized parallel to the magnetic field. Only for photon
energies near the hydrogen absorption edges does the
polarization flip so that the linear polarization points
perpendicular to the magnetic field. Finally, for free-free
absorption, light is preferentially absorbed in the
plane perpendicular to the magnetic field because the
cyclotron motion of the free electrons restricts them to
this plane, and therefore this absorption polarizes the light
parallel to the magnetic field. If the axion-induced polari-
zation is perpendicular to the astrophysical polarization
direction then the two signals may partially destructively
interfere.
Quantitatively, the effect of the bound-free and free-free

absorption may be captured though the transfer equation
describing the evolution of the photon polarization state
matrix (effectively a photon density matrix),

F ¼
�
E1

E2

�
ðE�

1 E�
2 Þ ¼

1

2
Sμσμ; ð17Þ

where Sμ ¼ ðI; Q;U; VÞ and σμ ¼ ð1; σz; σx; σyÞ are the
Stokes and Pauli vectors, respectively. In the anisotropic
atmospheric plasma of the MWD, the transfer equations
take the form [63],

dF
ds

¼ −
1

2
ðTF þ FT†Þ þ E; ð18Þ

where the transfer matrix T ¼ K − 2iR describes absorp-
tion (K) and refraction (R), while E describes emission.
Equation (18) can be solved analytically under the approxi-
mation that the initially unpolarized blackbody radiation
emanating from the MWD experiences a constant magnetic
field while traversing the thin, cold, atmosphere. As shown
in [63], under these assumptions, the solution to (18) as
expressed in terms of the final polarization state of starlight
leaving the MWD atmosphere of thickness δs is given in
terms of the Stokes parameters by [63]

I ¼ 1 −
δs
2
trðKÞ; Q ¼ −

δs
2
trðσzKÞ;

U ¼ −
δs
2
trðσxKÞ; V ¼ −

δs
2
trðσyKÞ: ð19Þ

For dipole transitions like bound-free and cyclotron
absorption, K is diagonal in the complex spherical basis
with matrix elements

KqðωÞ ¼ nσqðωÞ; ð20Þ
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where n is the number density of the absorbing species and
σq the associated frequency-dependent cross section, with
ω the radiation frequency.
The astrophysical linear polarization follows from (19)

and (20) and is given by

Lp;astro ¼
jQj
I

¼ δs
4
j2K0 −Kþ −K−j sin2 θ; ð21Þ

since U ¼ 0 in this basis. As in (16), θ is the angle between
the surface magnetic field and the light propagation
direction, and K in general includes bound-bound,
bound-free, and free-free absorption contributions,
although we do not consider bound-bound transitions.
Note that (21) holds for any MWD magnetic field

strength. However, for MWDs with high fields where
the linear Zeeman effect breaks down (B≳ 100 MG),
the bound-free absorption cross section become difficult
to calculate. In this work we use an approximation that is
common in the literature. For bound-free collisions where
the quadratic Zeeman effect is unimportant (B≲ 100 MG),
Kq can be calculated analytically under the approximation
that the wave function of the bound electron is unaffected
by the perturbing external magnetic field while its energy
shifts linearly by miΩC. Under these approximations, the
bound-free absorption cross section was derived first
in [63].
We use the improved approximation [68] that accounts

for the energies of the hydrogen absorption edges ϵnlmq as a
function of magnetic field, ϵnlmq ≡ EnlmðBÞ þ ΘðmfΩCÞ
for Θ the Heaviside step function. The first term accounts
for the fact that the bound state energies of hydrogen in the
quadratic Zeeman regime depend on all three quantum
numbers fn; l; mg and the magnetic field strength B,
because the Hamiltonian of (16) breaks spherical sym-
metry. These bound state energies EnlmðBÞ are tabulated in
[72]. We also account for the quantization of the free
electrons into Landau levels, which yields the second term.
Then the bound-free absorption coefficients are given by

Kq;bfðωÞ ¼ nH
ω

ω − qΩC

Xn≤4
nlm

exp

�
−EnlmðBÞ

T

�

×

�
σbfn ðω − qΩCÞ; ω ≥ ϵnlmq

0; ω < ϵnlmq
: ð22Þ

We weight the states with the Boltzmann factor, under the
assumption of the fixed surface temperature T ¼ 15000 K,
appropriate for the MWDs we consider in this work.
σbfn ðωÞ ∝ n−5ω−3 is the cross section for a photon of energy
ω to ionize an electron of principal quantum number n at
zero magnetic field. The dependence on ω − qΩC is
derived in the linear Zeeman regime. For the optical spectra
we consider in this work, we only need to consider n ≤ 4.

The free-free absorption matrix is proportional to the
cyclotron absorption cross section

Kq;ffðωÞ ¼
�
neσff q ¼ þ1

0 q ≠ þ1
; ð23Þ

where ne the number density of free electrons. We take the
cyclotron absorption cross section σff as given in [63]. Only
the q ¼ 1 component is nonzero due to selection rules
that enforce energy and angular momentum conservation
along B [73], and this cross section is strongly peaked
around ω ¼ ΩC.
At low magnetic fields B≲ 100 MG, the cyclotron

frequency is much smaller than the optical frequencies,
so that we do not need to consider cyclotron absorption
contributions to the atmospheric opacity. Thus, only the
bound-free absorption cross section (22) contributes to the
polarization. Furthermore, the hydrogen absorption edges
are close to their zero-field values 13.6 eV=n2. Then,
for energies far away from the absorption edges (21)
reduces to [63]

Lp;astroðωÞ ∝
Ω2

C

ω5
sin2 θ: ð24Þ

The proportionality constant of (24) depends on the line-of-
sight integrated bound electron density in the MWD
atmosphere. Since ΩC ∝ B, we see that in this regime
the astrophysical linear polarization scales as the transverse
magnetic field strength squared like that induced by the
axion. However, the astrophysical polarization points
parallel to the magnetic field while the axion-induced
polarization points perpendicular to the field, which means
that the two contributions may partially cancel each other
depending on their relative magnitudes.
By contrast, even at low magnetic fields, the linear

polarization displays strong localized features near the
absorption edges. The linear polarization becomes much
larger in magnitude and switches direction blueward of the
edge so that it points perpendicular to the magnetic field, in
the same direction as the axion-induced polarization.
However, in this work we consider MWDs with large

magnetic fields B≳ 100 MG. In this case, the cyclotron
frequency enters the optical, so that we must include the
cyclotron absorption contribution to the linear polarization.
The bound-free absorption also becomes more complex
than at lower fields. The absorption edges cover nearly the
entire optical spectrum. Furthermore, the hydrogen bound
state energies depend strongly on the magnetic field
strength, and the magnetic field strength on the surface
of the MWD may span more than a factor of two, which
additionally broadens the absorption edge features. Under
the approximation used in this work (22), which assumes
the bound-free cross section is simply that at zero-field
shifted by qΩC, we find that most of the linear polarization
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spectrum is dominated by the absorption edge features
rather than by the simple power law scaling of (24). The
exact cross sections have been previously computed
numerically for a limited number of transitions [69–71].
In these results there are additional oscillatory features near
Landau thresholds, where the photon energy matches the
energy difference between a Rydberg bound state and a
Landau level. We thus expect that the eventual incorpo-
ration of the numerical cross sections into MWD linear
polarization calculations will introduce additional features
in the spectra due to these resonances, although these
features will be smeared out due to the range of field
strengths on the MWD surface.
At still higher magnetic fields B≳ 5000 MG, the sit-

uation becomes less complicated. The quadratic Zeeman
term dominates the Coulomb term in (16). The approxi-
mation that the Coulomb field is a perturbation on the
background magnetic field becomes more appropriate, and
in this limit, we find, following [74], that σbf scales as ω−3

away from absorption edges as in the low-field case.
Despite the uncertainties described above, essentially

any energy dependence in the astrophysical polarization is
sufficient to distinguish it from the axion-induced polari-
zation for the purpose of setting an upper limit on the axion-
induced polarization contribution, which is approximately
energy independent, given spectropolarimetric data. As
discussed further in Sec. III A 2, this is because given some
amount of energy dependence in the astrophysical back-
ground, the axion and astrophysical contributions would
not completely destructively interfere across the full analy-
sis energy range. On the other hand, in order to claim
evidence for an axion signal, the astrophysical linear
polarization signal should be better understood in the
high-field regime. This is because without a full under-
standing of how the astrophysical polarization emerges in
the high field regime, one cannot be confident that a
putative signal arises from axions and not the imprecisely
known astrophysical polarization mechanisms.

III. UPPER LIMITS ON gaγγ FROM MAGNETIC
WHITE DWARFS

In this section we apply the formalism developed in the
previous section to set upper limits on jgaγγj from linear
polarization data toward the MWDs SDSS J135141
(Sec. III A) and GRWþ 70°8247 (Sec. III B). These
MWDs are unique in that they have strong but well-
characterized magnetic field profiles in addition to dedi-
cated linear polarization data. We discuss additional
MWDs that are promising but have somewhat incomplete
data at present in Sec. III C.

A. SDSS J135141

The MWD SDSS J135141 has one of the largest
magnetic fields of all known MWDs. Reference [75]

measured the polar magnetic field strength in the context
of the dipole model to be Bp ¼ 761.0� 56.4 MG, with an
inclination angle i ¼ 74.2°� 21.7°.1 In the below analysis
we consider the dipole model, and we compute the 95%
upper limit on jgaγγj considering the range of allowable
magnetic field parameters. In particular, we take our
fiducial limit to be the weakest one across the range of
allowable magnetic field parameters, allowing the param-
eters to vary within their 1σ ranges, while we calculate the
95% confidence level statistical upper limit on the data
itself.

1. Absorption lines and magnetic field model

In this section we overview the determination of the
SDSS J135141 magnetic field strength. To date, this
determination has been made only through spectra rather
than polarimetry, although the addition of polarimetery
would be beneficial to further constraining the magnetic
field profile on the surface. The spectrum of a MWD is that
of a thermal distribution at the temperature of the MWD
surface, but with absorption features at wavelengths at
which bound-bound transitions occur in the atmosphere.
The transition wavelengths are very strongly dependent on
the local magnetic field; therefore, the absorption lines are
broadened by the range of magnetic field strengths on the
MWD surface. In many cases the features are entirely
washed out because the transition wavelengths are highly
dependent on the local magnetic field, but a few transitions
are nearly stationary because they encounter local extrema.
The primary method for determining the magnetic field
strength of MWDs is to search for these stationary features
in the spectrum. The bound-bound transitions and dipole
transition strengths of the hydrogen atom in a strong
magnetic field are given in Ref. [76].
In Fig. 3 we show the wavelength dependence as a

function of magnetic field for the stationary bound-bound
3d−1 − 2p0 transition in the upper panel. The transition is
nearly stationary around across the full range of field
strengths present on the surface of SDSS J135141, assum-
ing the 761 MG dipolar field. In the middle panel, we show
the expected line templates for two cases (i) the best-fit
dipolar field of 761 MG [75] and inclination angle
i ¼ 74.2°, and (ii) a dipolar field of 400 MG with best-
fitting i for that field strength. To compute these templates,
we histogram the wavelengths of the transition on the
visible hemisphere of the MWD and weight each contri-
bution by the dipole transition strength. We also incorpo-
rate the limb darkening law mentioned previously from
Ref. [66], which weights the intensities between pixels on
the sphere such that I ∝ 0.7þ 0.3 cos θ, with θ the angle of
the normal to the x̂3 axis that points toward Earth. Note that
due to the symmetry present in a dipole field, it is only the

1Note that Ref. [75] also considered an offset dipole model, but
we do not consider this model here.
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limb darkening rule that changes the spectral shape of the
template with inclination angle i. The template is then
convoluted with a Gaussian that has standard deviation
σstark. This broadening is due to the Stark effect, accounting
for the electric field that is also present on the MWD
surface, and is the dominant broadening effect for these
lines. We treat σstark as a nuisance parameter that is
determined by maximum likelihood estimation.
For the 761 MG case, the absorption line appears at

approximately the same location across the entire hemi-
sphere, so that the resulting feature is highly localized
around 8530 Å. On the other hand, if the MWD had a lower
field strength of 400 MG, the feature would be significantly
broadened because the transition is not stationary at those
field strengths, and additionally the feature would appear at
shorter wavelengths∼8200–8600 Å. In the lower panel, we
fit expected flux models for each case to the SDSS data
[75]. The models are a power law background with free
index and normalization with the multiplicative absorption
template as shown in the middle panel. For the 761 MG
case, we see that the model prefers an absorption line,
indicating that the 761 MG dipole is a reasonable fit to the
data. On the other hand, for the 400 MG case, the fit finds
no evidence for a line. Following a similar procedure SDSS
J135141 was determined to have a 761.0� 56.4 MG field
[75], although that work fit to the broad-band flux spectra
over a much larger wavelength range encompassing many
absorption lines. In fact, Ref. [75] did not include the
wavelength range shown in Fig. 3 in their fit; the fact that
their best-fit model from lower wavelengths also explains
the 3d−1 − 2s0 absorption line feature provides nontrivial

evidence that the magnetic fields on the surface of the
MWD are ∼400−700 MG.

2. Polarization data

The linear polarization of SDSS J135141 was measured
in 2007 by [77] using the Special Astrophysical Observatory
(SAO) 6-m telescope with the Spectral Camera with Optical
Reducer for Photometric and Interferometrical Observations
(SCORPIO) focal reducer [78]. Across the wavelength
range 4000 Å to 6500 Å the linear polarization fraction
was measured to be Lp ¼ 0.62%� 0.4%. The uncertainty
on Lp is dominated by the systematic uncertainty, arising
from effects such as scattered light and ghosts [78], though
the exact systematic uncertainty accounting that goes into
the Lp measurement is not detailed in [77]. The linear
polarization fraction data from [77] is reproduced in Fig. 4.
An upper limit on the average axion-induced polariza-

tion fraction over the wavelength range Lp;axion may be
estimated by the requirement that axions not overproduce

FIG. 3. Top: the wavelength of the 3d−1 − 2p0 absorption line
as a function of magnetic field. The red shaded region indicates
the range of field strengths present on the surface, assuming the
best-fit dipole field of 761 MG from [75]. Middle: in solid black
is the 3d−1 − 2p0 line template for a 761 MG dipolar field; in
dashed black for 400 MG. Bottom: the flux of SDSS J135141 as
measured by SDSS DR7 (gray). In solid black is the best fit
spectrum assuming a 761 MG dipole field. In dashed black is the
best fit spectrum assuming a 400 MG dipole field.

FIG. 4. The linear polarization data as a function of wavelength
toward the MWD SDSS J135141 as observed by [77] with the
SAO 6-m telescope. We use a Gaussian likelihood to fit a model
to the data with three components: (i) the axion signal, (ii) the
astrophysical background, and (iii) an instrumental systematic
contribution. We assume that the axion signal and the instru-
mental systematic are wavelength-independent, while the astro-
physical background depends on wavelength as described in
Sec. III A 2. The axion signal and the instrumental systematic
contributions would be completely degenerate, given that the
systematic normalization parameter can take either sign, but
for the prior on the systematic nuisance parameter. The best fit
model, along with the axion contribution to that model, are
illustrated, along with the best-fit statistical uncertainties on the
data; the statistical uncertainty is treated as a hyperparameter that
is determined by maximum likelihood estimation. The red band
illustrates the allowed axion contribution at 1σ confidence. At the
best-fit point the astrophysical normalization is zero. Still, we
illustrate the astrophysical linear polarization model, with an
arbitrary normalization.
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the observed polarization, which at 95% confidence and
assuming Wilks’ theorem implies Lp;axion ≲ 0.62%þffiffiffiffiffiffiffiffiffi
2.71

p
× 0.4% ≈ 1.28% [79]. This upper limit is very close

to that we will derive below making use of the wavelength
dependent data and incorporating the astrophysical back-
ground model. This point illustrates that the astrophysical
polarization contribution is not a limiting background for
constraining the axion-induced polarization, at least for this
example. This is fundamentally because the astrophysical
background and the axion signal are polarized in the same
direction over the wavelength range relevant for this search.
Our polarization upper limit is also consistent with that
found in [80], who performed spectropolarimetric obser-
vations of the MWD using the Steward Observatory 2.3 m
telescope in 1993 and state that the linear polarization of
SDSS J135141 in the wavelength range 4100 Å to 7280 Å
was found to be less than 1%, though the confidence level
of that statement is not given in [80].
To analyze the wavelength dependent data, we adopt a

Gaussian likelihood function that incorporates the system-
atic uncertainty in a straightforward way, though the
following analysis could likely be improved in the future
with a better understanding of the origin of the systematic
uncertainty. The likelihood we adopt is given by

pðdjM; θÞ ¼
�Y

i

1

σ
e
−ðdi−LpðθÞÞ2

2σ2

�
e
−A2sys
2σ2sys: ; ð25Þ

where we leave off unimportant numerical normalization
factors and where i labels the wavelength bins (there
are 83 different wavelength bins, as illustrated in Fig. 4).
The data d, with entries di, are the observed polarization
values, while the model M has parameters θ ¼ fAaxion;
Aastro; Asys; σg. The signal parameter Aaxion controls the
normalization of the axion-induced polarization and, physi-
cally, is a proxy for gaγγ, at fixed ma. The parameter Aastro

controls the amplitude of the unknown astrophysical back-
ground. The instrumental (e.g., systematic) contribution to
the polarization is characterized by the nuisance parameter
Asys. The parameter σ may be interpreted as the uncorre-
lated statistical uncertainty on the linear polarization data.
We treat σ as a hyperparameter that is determined by
maximum likelihood estimation.
Both the astrophysical and axion contributions to the

polarization in principle have nontrivial wavelength
dependence; in the axion case, the wavelength dependence
is found by numerically solving the axion-photon mixing
equations, while for the astrophysical contribution we use
(21). For all of the magnetic field models, only bound-free
absorption contributes, as the cyclotron wavelength is not
in the wavelength range of the data. We compute the Stokes
parameters by averaging them over ∼105 points on the
MWD surface in each wavelength bin. The full list of
absorption edges and associated wavelength ranges that

contribute to features in the astrophysical linear polariza-
tion model are given in Table I. Accounting for the
uncertainty on the magnetic field strength and orientation,
the edges may shift by ∼100 Å. Note that over the range of
magnetic field models and wavelengths analyzed, the axion
and astrophysical model contributions to the linear polari-
zation point in the same direction.
Asys is given a zero-mean Gaussian prior distribution in

(25), with variance σ2sys. This prior breaks the degeneracy
between the axion signal and the contribution from Asys. We
set σsys ¼ 0.4% since this is the uncertainty quoted in [77] on
the average linear polarization over this wavelength range
and since the uncertainty in [77] is systematics dominated.
We fix Aaxion and Aastro to be positive, since as discussed

above these two contributions are polarized in the same
direction for this MWD and wavelength range, while Asys is
allowed to be both positive and negative. This means that,
for example, the axion and systematic contributions may
completely cancel each other, up to the prior contribution
from Asys.
We compute the profile likelihood for Asig, profiling the

likelihood over the nuisance parameters fAastro; Asys; σg for
each fixed value of Asig. We then assume Wilks’ theorem
such that the one-sided 95% upper limit on Asig is defined
through the test statistic t

tðAaxionÞ≡ −2½logpðdjM; fAaxion; Âastro; Âsys; σ̂gÞ
− logpðdjM; θ̂Þ�; ð26Þ

by tðAaxionÞ ≈ 2.71 for Asig > Âsig (see, e.g., [79]). Here,
hatted quantities denote the values that maximize the

TABLE I. The list of absorption edges that contribute to
features in the SDSS J135141 astrophysical linear polarization
model, assuming the fiducial magnetic field model. The first
column shows the initial hydrogen state labeled by the zero-field
quantum numbers nlm; the second column labels the transition
by q, the difference between the initial and final magnetic
quantum numbers. The absorption edge features for each
respective transition appear in the wavelength range listed in
the third column in Å. This wavelength range is equivalent to the
range of ϵnlmq over the magnetic field strengths present on the
surface, 353–705 MG.

nlm q ϵnlmq (Å)

2p1 −1 5860þ
3p−1 0;�1 4630–5290
3p0 0;−1 5800–6270
3p1 0 4630–5270
3d0 0;−1 6090–6730
4d−2 0;�1 5420–6480
4d2 0 5420–6440
4f−2 0;�1 3650–4580
4f2 0 3650–4560
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likelihood. In the first term in (26) the hatted nuisance
parameters are those at fixed values of Aaxion. Performing
this analysis on the data illustrated in Fig. 4 we find
Lp;axion ≲ 1.25%, where Lp;axion is the average axion-
induced polarization over the wavelength range. We adopt
this upper limit for our analysis. Note that the best-fit
astrophysical normalization parameter is in fact zero. In the
case where the axion signal has wavelength dependence
Lp ∝ λ−2, as expected in the large-ma limit, the limit on
Lp;axion is strengthened to Lp;axion ≲ 0.9%. However, even
in the large ma limit we adopt the upper limit of 1.25% to
account for the possibility that the true wavelength depend-
ence of the systematic contribution to the polarization is
more complicated than that assumed here.
In Fig. 4 we illustrate the best-fit model contributions to

the data, along with the inferred statistical uncertainty σ.
The shaded red region shows the allowed values that the
axion contribution to Lp could take at 1σ significance. The
best-fit model (solid black) has clear evidence of mismod-
eling; for example, the model systematically under-predicts
the data at low λ while it overpredicts the data at other
wavelengths. This mismodeling may be from the system-
atic contribution to the linear polarization having more
complicated wavelength dependence than the assumed flat
contribution that we take in our analysis. Still, as the
magnitude of the systematic deviations of the best-fit model
from the data is smaller, by a factor of a few, than our upper
limit on Lp;axion, we hypothesize that a more careful
understanding of the instrumental systematic contributions
to Lp would be unlikely to significantly affect our estimate
of the upper limit. As mentioned previously, the best-fit
astrophysical normalization is zero for polarization from
bound-free absorption, which we expect to dominate in this
wavelength range. We thus conclude that the observed
polarization is likely systematic in nature. For illustration
purposes, we show in Fig. 4 the linear polarization signal
from bound-free emission for the best-fit magnetic field and
inclination angle, with an arbitrary normalization.
A better understanding of the astrophysical background

and systematic contributions would be needed to claim
evidence for an axion signal. For this reason we focus in
this work only on producing upper limits on jgaγγj and not

on looking for evidence for the axion model over the null
hypothesis of astrophysical emission only.

3. WD radius from Gaia photometry

From (9) we see that Lp ∝ R2
star at low axion masses, so

that the limit on gaγγ will scale linearly withRstar. WDs have
radii ∼0.01 R⊙, but as there is scatter from star-to-star it is
important to determine the radii on a per-star basis. We infer
the WD radius from Gaia Early Data Release 3 (EDR3)
photometry [81]. Gaia has measured SDSS J135141’s
apparent magnitudes to be G ¼ 16.4621� 0.0007,
GBP ¼ 16.486� 0.004, GRP ¼ 16.414� 0.005.
To infer the WD radius from these data, we use WD

cooling sequences [82] for WD masses between 0.3 and
1.2 M⊙ in steps of 0.1 M⊙. These sequences provide the
expected EDR3 magnitudes as the WD cools, along with a
WD radius. For each mass, we infer the WD radius for
SDSS J135141 with a joint Gaussian likelihood over the
three bands as a function of age. At a fixed WD mass, we
maximize this likelihood over the WD age. To account for
possible systematic issues, we additionally maximize over
a common uncertainty for G, GBP, and GRP. That is, we
assume that the uncertainties on the magnitudes have a
common systematic component, which is added in quad-
rature with the statistical components and then treated as a
nuisance parameter. We then use the age-radius relation
supplied by the cooling sequence to obtain a radius
estimate. In the left panel of Fig. 5, we show the Gaia
EDR3 data in each of these bands in absolute magnitudes.
We also show the model from the cooling sequence at the
best fit WD mass and age.
The best-fit mass for SDSS J135141 is 0.7 M⊙. Within

the context of this WD model, the expected radius is
0.0111336� 0.0000003 R⊙, where the 1σ error bars are
computed by solving for the ages where the Δχ2 increases
by 1 on either side. The WD radius is not highly dependent
on age; rather, it is more strongly dependent on mass.
Therefore, although the 0.6 and 0.8 M⊙ models are
disfavored by the Gaia data by ∼4σ, to be conservative
we adopt as the radius uncertainties those from assuming
the nearby WD masses provided in the cooling sequences.
(Ideally, we would use cooling sequences at higher mass

FIG. 5. Left: the Gaia EDR3 data set in the three bandpasses (dots), G, GBP, and GRP, for SDSS J135141. The model from cooling
sequences is shown as error bars in each bandpass at the best fit WD mass of 0.7 M⊙ and age. Right: the same as the left panel, but now
for Grwþ 70°8247 at the best fit WD mass of 1.0 M⊙.
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resolution than provided in [82].) Using this procedure we
infer the radius of SDSS J135141 as Rstar ¼ 0.011�
0.001 R⊙. Within the uncertainties the most conservative
low-mass axion limit is then achieved for Rstar ¼ 0.01 R⊙.

4. Predicted axion-induced polarization signal

For simplicity we begin by fixing ma ¼ 0 eV and
considering how the predicted axion-induced polarization
signal varies as a function of the uncertain MWD param-
eters. The goal of this exercise is to understand the
importance of various sources of modeling uncertainty
on the final gaγγ upper limit and to determine the most
conservative set of fiducial model parameters for comput-
ing the upper limit. In performing these calculations we
follow the formalism described in Sec. II B; specifically, we
discretize the surface of the MWD and for each discrete
point we solve the mixing equations in (12) to determine
the linear polarization contribution for initially unpolarized
rays that leave the surface at that point. The final polari-
zation signal is the appropriately weighted sum of polari-
zation vectors across the ensemble of all surface points on
the hemisphere facing Earth. We use 104 points on the
hemisphere in performing our calculations.
In Fig. 6 we show how the axion-induced polarization

faction from SDSS J135141 varies as functions of the
inclination angle i (left panel) and the polar magnetic field

strength Bp (right panel). Note that for this example we
fix Rstar ¼ 0.01 R⊙ and gaγγ ¼ 10−12 GeV−1, though since
Lp ≪ 1 the scaling with gaγγ is simply Lp ∝ g2aγγ. The Lp

are computed averaging over the wavelength range 4000 Å
to 6500 Å in order to match the polarization data from [77].
The right panel shows, as expected, that increasing field
strengths increase the predicted Lp; the scaling is roughly
quadratic over the range shown. Shaded in orange is the 1σ
confidence interval for the polar field strength in the
centered dipole model from [75]. The most conservative
B field strength in this model is, at 1σ, ∼705 MG, as
indicated by the solid vertical orange line. The left panel
fixes the polar field strength at this value and shows how
Lp varies as a function of the inclination angle i.
Unsurprisingly, Lp is minimized for Lp ¼ 0° (or 180°);
the reason, as mentioned previously, is that in these limits
for the dipole model there is no preferred direction for the
linear polarization to point, so it must vanish. Thus, the
most conservative value of i at 1σ is that closest to zero,
which is i ≈ 53°.
Note that the axion-induced Lp may be approximately a

factor of two larger than it is with our fiducial choices, if the
B-field model parameters are in fact at more fortuitous
points in the 1σ parameter space. However, using the most
pessimistic allowed magnetic field parameters produces
more robust upper limits on gaγγ . It is also important to keep

FIG. 6. Left: the axion-induced linear polarization fraction Lp for SDSS J135141 as a function of the inclination of the magnetic
dipole moment relative to the line-of-sight. The polarization fraction vanishes for i ¼ 0° and 180° because in these cases there is no
preferred direction for the linear polarization to point. We highlight in orange the inclination angles preferred at 1σ by the analysis in
[75]. In our fiducial analysis we fix the inclination angle at the value, indicated by vertical orange, within the 1σ band that leads to the
weakest limit. Note that in the figure we also fix the magnetic field at the lowest value allowed at 1σ, and also the polarization fraction is
illustrated for the indicated value of gaγγ . Since Lp ≪ 1, however, the polarization fraction scales approximately quadratically with gaγγ .
Right: as in the left panel, but illustrating the dependence of Lp on the dipole magnetic field strength. Note that the inclination angle is
fixed at the conservative value indicated in the left panel. The shaded orange region is that preferred at 1σ by [75]; in our fiducial analysis
we fix the magnetic field at the value corresponding to the lower edge of this region to be conservative. In both panels that axion mass is
ma ≪ 10−7 eV such that Lp is independent of ma.
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in mind that the Zeeman-split lines observed in the spectra
give a robust indication of the field strengths on the surface
of the MWD on the Earth-facing hemisphere. The ori-
entation information may be extracted more precisely,
however, using circular polarization data, but Ref. [75]
only used spectral data. Thus, the orientation determination
in the context of the inclination angle measured in Ref. [75]
is that needed to get the correct distribution of magnetic
fields strengths on the Earth-facing hemisphere accounting
for the limb darkening. Analyses of the circular polarization
data for this MWD would be useful to better constrain the
magnetic field geometry.
In Fig. 1 we illustrate the 95% upper limit on jgaγγj

determined from the nonobservation of axion-induced
polarization from SDSS J135141. Our fiducial limit is
illustrated in solid red and is that obtained with the most
pessimistic magnetic field model parameters allowed at 1σ
from the fits presented in [75] (i ≈ 53° and Bp ¼ 705 MG).
In shaded orange we assess the systematic uncertainty from
mismodeling the magnetic field by showing the inferred
95% limits over the full allowable 1σ parameter space for
the magnetic field strength and orientation (note that the
MWD radius uncertainty is subdominant). The limit
labeled “best-fit” is that obtained with the best-fit dipole
model parameters in [75]; the most aggressive limit
(labeled optimistic) is found in the offset dipole model
by taking the magnetic field at its largest allowed value
and i ¼ 90°.

B. Grw + 70°8247

The MWD Grwþ 70°8247 is thought to have a smaller
magnetic field than SDSS J135141, with typical surface
field values ∼300 MG, but it is an interesting target for
axion-induced polarization searches because: (i) modern
linear polarization data is available [83], and (ii) the
magnetic field profile has been well modelled in the context
of a harmonic expansion out to l ≤ 4 [67]. In particular,
Ref. [83] used the ISIS spectropolarimeter at the William
Herschel Telescope to measure the linear polarization of
Grwþ 70°8247 in 2015 and 2018. The linear polarization
was measured accross two bands: (i) a blue band (B) from
3700 to 5300 Å, and (ii) a red band (R) from 6100 to
6900 Å. The linear polarization Lp was found to be nonzero
at high significance in the B band, at a level ∼3%, but in the
R band the polarization was consistent with zero in both
2015 and 2018. This trend is consistent with that found in
earlier observations of Lp, going back to 1972 [84], where
it is consistently found that the linear polarization is
nonzero for wavelengths shorter than ∼5000 Å and con-
sistent with zero at lower frequencies. Note that an axion-
induced linear polarization signal would be nonzero across
the full wavelength range; thus, we may use the R filter data
to set a constraint on the possible contribution to the linear
polarization from axions.

The R filter linear polarization was measured to be
Lp ¼ 0.24%� 0.08% in 2015 and Lp ¼ 0.44%� 0.14%
in 2017 [83], with uncertainties reflecting photon noise
only. Systematic uncertainties were estimated at
∼0.1–0.2% [83]. Assuming the systematic uncertainty is
correlated and maximal between the two observing dates,
we may combine these results to estimate Lp ¼ 0.29%�
0.07stat%� 0.2sys%. Then, we assume Wilks’ theorem to

estimate Lp ≲ 0.29%� ffiffiffiffiffiffiffiffiffi
2.71

p ð0.07þ 0.2Þ% ≈ 0.73% at
95% confidence. Given that the within the R band there
is no significant evidence for wavelength dependence [83],
we use our intuition from the analysis in Sec. III A 2 to
estimate that the 95% upper limit on the axion-contribution
to Lp, accounting for systematic and astrophysical con-
tributions, will be comparable to the estimate above on the
total linear polarization limit. Thus, below we assume
Lp;axion ≲ 0.73% at 95% confidence.
The MWD Grwþ 70°8247 was the first identified

MWD [84,85] and thus its magnetic field profile is well
studied [67,68,83,84,86–89]. Additionally, the MWD is
known to have a long period, with P≳ 20 yrs [83].
Reference [67] fit a spherical harmonic magnetic field
model including modes with l ≤ 4 to the flux and circular
polarization data from Grwþ 70°8247; the result was a
field profile of comparable magnitude to the dipole profile
but a more nontrivial and twisted spatial distribution.
Interestingly, the dipole and harmonic fits in [67] predict
nearly identical flux spectra, since the Zeeman effect is only
a function of the absolute magnetic field, but the circular
polarization prediction from the harmonic model provides a
significantly improved fit to the polarization data than the
dipole model, since the circular polarization depends on the
orientation of the magnetic field.
The best-fit dipole model from a fit to the flux and

circular polarization data for Grwþ 70°8247 was found in
[67] to have dipole field strength Bp ≈ 347 MG at an
inclination angle i ≈ 56°. By contrast, the best-fit harmonic
model has i ≈ 75.9° and nontrivial gml and hml through
l ¼ 4 that may be found in [67]; for example,
g10 ¼ 183 MG, g20 ¼ −40.58 MG, g30 ¼ 1.39 MG, and
g40 ¼ þ1.45 MG, in the notation of (15).
The Grwþ 70°8247 polarization data may naturally be

explained by cyclotron absorption. Under the best-fit dipole
model, cyclotron absorption will contribute to linear
polarization in the range ∼3090–6170 Å. This range lies
predominantly in the B band. Thus, we expect the linear
polarization to be much larger in the B band than in the R
band, as observed in the data.
Reference [67] found that in detail the dipole model does

not provide a satisfactory fit to the circular polarization
data. The harmonic model provided an improved fit to the
circular polarization data in [67], though we note that the
linear polarization data was not included in their fit. Under
the harmonic model, the cyclotron absorption contributes to
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the linear polarization over the full range of both the B and
R bands, but the bulk of the support is in the B band (we
compute that the mean linear polarization predicted in the B
band is ∼2 times higher than that in the R band in this
model). Therefore, we expect that cyclotron absorption
accounts for the fact that higher linear polarization is
observed in the B band compared to the R band. On the
other hand, note that we do not expect cyclotron absorption
to contribute to the linear polarization of the MWD SDSS
J135141 in the wavelength range of the data, 4000–6500 Å,
because the field is much larger than that of
Grwþ 70°8247. For a dipole field strength of 705 MG,
as in the most conservative case for SDSS J135141,
cyclotron polarization appears only in the wavelength
range ∼1520–3040 Å. For larger polar field strengths,
the cyclotron absorption wavelength range shifts blueward,
so that we do not need to consider cyclotron absorption in
our analysis of SDSS J135141.
It is interesting to compare the predicted axion-induced

polarization signals between the harmonic and dipole
models in order to understand the sensitivity of the
polarization signal to the magnetic field geometry at the
surface of the star. Note, however, that the photon-to-axion
conversion takes place at distances of order multiple Rstar
away from the surface, where the field is dominated by the
dipole contribution since the higher-harmonic terms fall off
faster with distance from the star. We infer Rstar for Grwþ
70°8247 in the same way as we do for SDSS J135141, and
we obtain Rstar ¼ 0.0078� 0.0011 R⊙ corresponding to
Mstar ¼ 1.0 ∓ 0.1; to be conservative, we fix Rstar ¼ 6.7 ×
10−3 R⊙ throughout this analysis. We show the Gaia data
and best-fit cooling sequence model in the right panel
of Fig. 5.
In Fig. 7 we show the predicted axion-induced linear

polarization fraction for gaγγ ¼ 10−12 GeV−1 as a function
of the inclination angle i, with all other parameters of the
dipole and harmonic magnetic field profiles fixed at the
best-fit values provided in [67]. Note that [67] does not
provide uncertainties on the inferred model parameters. As
we observe in the previous section when studying SDSS
J135141, the dominant uncertainty is likely that arising
from the inclination angle. The best-fit inclination angles
quoted in [67] are indicated by solid and dashed vertical
lines for the harmonic and dipole models, respectively. We
estimate an uncertainty on the harmonic-fit inclination
angle i using the difference between the inclination angle
measured from the harmonic fit and the dipole fit. In
particular, we take the uncertainty σi ¼ 40° to be twice the
difference between the best-fit inclination angles measured
between the two different magnetic field profiles. Note that
this choice of uncertainty is somewhat arbitrary, but it
allows us to estimate the possible uncertainty that may arise
from mismodeling in the absence of the actual measure-
ment uncertainties. Additionally, note that in Fig. 7 the
linear polarization is relatively flat as a function of i for the

harmonic fit, except for inclination angles near 0° and 180°
where the dipole and m ¼ 0 modes do not contribute.
Indeed, it is interesting to contrast the harmonic model with
the dipole model; the harmonic model generically predicts
a larger linear polarization fraction, and the polarization
fraction is less sensitive to i in the harmonic case. The latter
point is explained by the fact the dipole model gives rise to
vanishing Lp for magnetic axes aligned with the line of
sight, while the harmonic model does not because it need
not be azimuthally symmetric about the magnetic axis. To
be conservative we compute our upper limits on gaγγ by
fixing i ¼ 36° with the harmonic model, which is the
inclination angle over our uncertainty region that gives rise
to the lowest Lp.
In Fig. 8 we illustrate the 95% upper limit on gaγγ as a

function of the axion mass ma, as in Fig. 1, for the Grwþ
70°8247 analysis. We compute the 95% upper limit under
three assumptions: (i) the harmonic model with i ¼ 36°,
which is our fiducial limit; (ii) the harmonic model at the

FIG. 7. As in the left panel of Fig. 6 but for the MWD
Grwþ 70°8247. As in Fig. 6 we fix gaγγ ¼ 10−12 GeV−1. We
illustrate the dependence of Lp on the inclination angle for both
the dipole fit presented in [67], which has polar field strength
Bp ¼ 347 MG, and for the best-fit harmonic model (out through
l ≤ 4) from [67]. The best-fit inclination angles for both fits are
indicated by the vertical lines (solid for harmonic and dashed for
dipole). Note that the harmonic model does not lead to vanishing
Lp at i ¼ 0° and i ¼ 180° because their magnetic field profile is
not symmetric about the magnetic axis in this case. Reference [67]
does not present uncertainties on their fit parameters, so we
estimate that the leading uncertainty arises from the inclination
angle. We estimate this uncertainty using the difference between
the inclination angles from the dipole and harmonic fits. In
particular, we take the uncertainty on the inclination angle to be
twice the difference between the inclination angles measured
between the dipole and harmonic fits. To be conservative we then,
in our fiducial analysis, fix the inclination angle in the harmonic
model at the indicated value (solid, vertical orange) that leads to
the smallest value of Lp.
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best-fit i ≈ 75.9°, and (ii) the harmonic model with
i ≈ 116°, which is the inclination angle within our 1σ band
that gives rise to the maximal Lp prediction. The shaded
band in Fig. 1 covers this range of possibilities and is an
estimate of the systematic uncertainty from magnetic field
mismodeling.

C. Additional MWDs

In this section we comment on additional promising
MWDs where linear polarization data is already available
or where acquiring polarization data should be a priority for
the future. First note that Ref. [43] suggests upper limits on
gaγγ at the level of jgaγγj≲ ð5 − 9Þ × 10−13 GeV−1 using
the linear polarization data from the MWDs PG 1031þ
234 and SDSS J234605þ 38533. We begin by revisiting
these MWDs to assess the robustness of the upper limits
from these stars.
A fit of the centered dipole magnetic field model to the

intensity spectra for the MWD SDSS J234605þ 38533
measured by the SDSS resulted in a polar field strength
Bp ¼ 798� 164 and inclination angle i ¼ 2.5°� 1.1°
[75]. Note, however, that this analysis only consider
intensity spectra and not circular polarization, and so the
orientation angle is only constrained by producing the
correct distribution of surface field strengths not directly by
the orientation of the magnetic field structure. Indeed, in the
context of the offset dipole model a comparable magnetic
field strength was found but for i ¼ 87°� 15° [75].
Ref. [90] measured a linear polarization from SDSS

J234605þ 38533 of Lp ≈ 1.33%, though with no uncer-
tainties quoted, across the wavelength range 4200 Å to
8400 Å using the SPOL instrument on the Steward
Observatory Bok Telescope and the Multiple Mirror
Telescope (MMT) on Mt. Hopkins (see [91] for details).
Without uncertainties on the Lp measurement, it is difficult
to estimate the 95% upper limit on the linear polarization.
For concreteness, let us imagine that the upper limit is Lp ≲
2% over this wavelength range. To set a conservative upper
limit, we take i ¼ 1.4° for the centered dipole with
Bp ¼ 634 MG, since this is the most conservative scenario
consistent within the 1σ uncertainties for Bp and i. We also
fix Rstar ¼ 0.01 R⊙ for definiteness. For ma ≪ 10−6 eV
we find that this then translates into a limit
jgaγγj≲ 2.1 × 10−11 GeV−1, though it is important to
remember that this is an estimate since no rigorous upper
limit on Lp is available. This upper limit is comparable to
the conservative upper limit from Grwþ 70°8247, weaker
than the conservative upper limit from SDSS J135141,
and significantly weaker than the jgaγγj≲ ð5 − 9Þ ×
10−13 GeV−1 upper limit quoted from this MWD and
PG 1031þ 234 in [43]. However, it is possible that the
limit from SDSS J234605þ 38533 could be improved with
a better determination of the magnetic field geometry, since
e.g., the off-set dipole model prefers much larger inclina-
tion angles.
Next, we consider PG 1031þ 234, which was the

second MWD from [43] that led to the proposed upper
limit jgaγγj≲ ð5 − 9Þ × 10−13 GeV−1 for low axion masses.
This MWD is unique relative to the MWDs considered so
far in this work in that it has a period ∼3 hr24 min that
leads to observable oscillations in the polarization and flux
spectra [92,93]. The linear polarization data from [92]
stacked over the rotational phase of the MWD in the band
3200–8600 Å is illustrated in Fig. 9; the left (right) panel
shows the Stokes parameter ratio Q=I (U=I). These ratios
are inferred from the data in [92] using the linear polari-
zation data and the polarization angle. The uncertainties in
Fig. 9 are estimated during the model fitting process, as
described shortly.
The MWD PG 1031þ 234 was modeled in [92] as

having a centered dipole field with a polar field strength
∼500 MG and a small magnetic hot-spot that has a much
larger field strength ∼103 MG. More specifically, Ref. [92]
showed that the following magnetic field model was able to
explain the major features observed in the flux, circular
polarization, and linear polarization data by using radiative
transfer models to estimate to the polarization and absorp-
tion signals at different points on the MWD surface. Their
model included a centered dipole with polar field strength
Bc ≈ 400 MG and magnetic axis inclined by 35° relative to
the rotation axis. The rotation axis is at an inclination angle
of i ¼ 60° relative to the line of sight. The magnetic hot-
spot is modeled by an offset dipole with magnetic axis

FIG. 8. As in Fig. 1 but for the MWD Grwþ 70°8247. We
compute the upper limit on gaγγ using the harmonic magnetic
field model. The orange region arises from varying the inclination
angle over the region shown in Fig. 7; the fiducial upper limit is
that computed with the inclination angle shown in solid vertical in
that figure. The upper limit computed with the best-fit inclination
angle in [67] is also indicated. Note that we fix the MWD radius
at Rstar ¼ 6.7 × 10−3 R⊙, which is the smallest value allowed at
1σ in our analysis, in order to be conservative.
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inclined at 55° relative to the rotation axis, polar surface
field strength of 103 G, and offset zoff ¼ 0.4Rstar along the
magnetic axis. The magnetic hot-spot precedes the centered
dipole by a phase of 120°. In Fig. 9 we adjust the phase
such that zero corresponds to the transit of the centered
dipole. The radiative transfer calculation in [92] using this
model was able to explain the broad features observed
in both the circular and linear polarization data, though
an axion signal would only contribute to the linear
polarization.
We compute the astrophysical contribution to the linear

polarization using a similar method to that in [92]. In
particular, we use the formalism in [63], including both the
bound-free and cyclotron contributions to the polarization,
as cyclotron absorption is expected to contribute in the
wavelength band of the observations. We compute the
astrophysical Stokes parameters averaged over wave-
lengths and over ∼105 points on the observable hemisphere
at a fixed phase. We repeat this process over all of the
rotational phases of the MWD. Note that we assign the
astrophysical model two unconstrained nuisance parame-
ters that independently normalize the amplitudes of the
linear polarization contributions from bound-free and
cyclotron absorption.
We compute the axion-induced linear polarization signal

for the magnetic field model described above assuming
ma ≪ 10−7 eV. The polarization signal is illustrated in
Fig. 9 for the best-fit coupling gaγγ ≈ 7.4 × 10−12 GeV.

In addition to the astrophysical and axion contributions to
the polarization, we separately add in phase-independent
systematic contributions to Q=I and U=I. These contribu-
tions are to allow for instrumental effects that could biasQ=I
orU=I away from zero. We then construct a joint likelihood
over theQ=I andU=I data, with the axion and astrophysical
models contributing to both ratios. Sincewe do not know the
alignment of theMWDon the sky,we allow for an additional
nuisance parameter that rotates the projection of the MWD
on the sky. Note, however, that the astrophysical and axion
contributions rotate by the same amount for a given
orientation. Lastly, we determine the uncertainties on the
data in a data-drivenway by assigning the uncertainties to be
hyperparameter that is treated as a nuisance parameter and
determined by maximum likelihood estimation, as in e.g.,
(25). In total, we thus have our signal parameter gaγγ and six
additional nuisance parameters.
The best fit of the joint signal and background model is

illustrated in Fig. 9, along with the best-fit component
contributions. Note that while the model is able to describe
the broad features in the data, there is clear evidence for
mismodeling across the phase of the MWD. On the other
hand, our goal here is not to derive a precise limit, since for
example we do not account for uncertainties on the
magnetic field model, but rather to illustrate key points
behind the phase-resolved analysis and to roughly estimate
the magnitude of the limit that may emerge from a more
careful analysis.

FIG. 9. The linear polarization data from [92] for PG 1031þ 234 presented as ratios of the Stokes parameters Q (left) and U (right)
relative to the intensity I. We fit a model consisting of an axion, astrophysical, and systematic contributions to the joint Q=I and U=I
data, treating the statistical uncertainty as a nuisance parameter. We display the best-fit joint model, in addition to the best-fit
components. The uncertainties on the data points are the best-fit uncertainties from maximum likelihood estimation of the associated
hyperparameter. The magnetic field model consists of two dipoles, with one being offset, and thus the axion and astrophysical
contributions have varying phase differences over the rotational phase of the MWD. We estimate the constraint jgaγγj ≲ 8.8 ×
10−12 GeV−1 at 95% confidence for ma ≪ 10−7 eV, subject to the caveat that the magnetic field model is fixed at the best-fit model
from [92]. The best-fit axion coupling, corresponding to the illustrated curve, is gaγγ ≈ 7.4 × 10−12 GeV−1.
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Importantly, the Q=I and U=I axion and astrophysical
contributions vary independently over the phase of the
MWD, since they depend differently on the observable
magnetic field geometry. Thus, large cancellations between
the axion and astrophysical contributions are not
possible across all phases and for both Q=I and U=I.
This leads to the result that the 95% upper limit on gaγγ , as
determined from the profile likelihood, is estimated as
jgaγγj≲ 8.8 × 10−12 GeV−1, which is relatively close to the
best-fit axion coupling of gaγγ ≈ 7.4 × 10−12 GeV−1. We
caution, however, that this upper limit should be treated
with caution, since it does not account for uncertainties on
the magnetic field profile and since the fits in Fig. 9 show
evidence for mismodeling. Still, it is striking that our
estimate for the upper limit around an order of magnitude
weaker than the upper limit estimate in [43] for the
same MWD.
The example of PG 1031þ 234 highlights how rota-

tional-phase resolved data may be useful in the context of
the axion-induced linear polarization search. This example
motivates, in particular, a search for axion-induced polari-
zation from the MWD RE J0317-853. This MWD is
rotating quickly with a period ∼725 s [94]. The magnetic
field varies across the surface over the rotation period
between ∼200–800 MG [95]. Moreover, Ref. [95] pre-
sented a model for the magnetic field structure in terms of a
harmonic expansion through l ≤ 3 with a magnetic axis
offset from the rotation axis, which is at a nonzero angle to
the line-of-sight. Unfortunately, no linear polarization data
is available for RE J0317-853 at present, but acquiring such
data and interpreting it in the context of the axion model
should be a priority. We note that [18] recently used X-ray
data from RE J0317-853 to search for axion-induced hard
X-ray signals. A list of MWDs which do not currently have
linear polarization data but with large magnetic fields,
including RE J0317-853, is in Table II. In addition to high-
resolution linear polarization data from the MWDs, circular
polarization data would be useful in order to better
constrain the magnetic geometries of these MWDs using
radiative transfer theory.

IV. DISCUSSION

In this work we model how axions may induce polari-
zation signals in the otherwise unpolarized thermal emis-
sion from MWD surfaces. We show that MWDs are
optimal targets for axion-induced polarization searches
because they have large magnetic fields but not so large
that the Euler-Heisenberg Lagrangian suppresses the pho-
ton-to-axion conversion probability. Larger stars with lower
magnetic field strengths have reduced conversion proba-
bilities because of the axion-to-photon mixing term, while
the more compact NSs, which have stronger magnetic
fields, are in the regime where the Euler-Heisenberg term
suppresses the mixing by modifying the photon dispersion
relation relative to that of the axion. At the same time,
the predicted astrophysical backgrounds to the linear
polarization from MWDs are minimal, relative to e.g.,
those from NSs, and induced by polarization-dependent
radiative transfer processes for initially unpolarized surface
emission propagating through the thin, magnetized MWD
atmospheres.
The axion-induced polarization signal from MWDs was

previously discussed in [42,43], where it was claimed that
linear polarization data from the MWDs SDSS J234605þ
38533 and PG 1031þ 234 may already constrain the
axion-photon coupling to jgaγγj ≲ ð5 − 9Þ × 10−13 GeV−1

for low axion masses ma ≪ 10−7 eV. We provide a simple
formalism for predicting the axion-induced polarization
signal, which only involves the field configuration far away
from the MWD surface, and we show that these
previous limits are likely overstated. However, we present
analyses from two MWDs with dedicated linear
polarization data and well-measured magnetic field distri-
butions: SDSS J135141 and GRWþ 70°8247. The
conservative upper limit from SDSS J135141, which is
jgaγγj≲ 5.4 × 10−12 GeV−1, is the strongest to-date over a
large region of axion masses and strongly disfavors the
axion interpretation of the previously observed gamma-ray
transparency anomalies. Future linear polarization mea-
surements, in conjunction with dedicated modeling efforts
for the magnetic field geometries and astrophysical linear
polarization backgrounds, toward promising targets such as
RE J0317-853 could further strengthen these limits and
perhaps unveil evidence for low-mass axions.
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TABLE II. MWDs without existing linear polarization data but
which would be promising targets for future axion searches, due
to their large magnetic fields. The magnetic fields for these targets
were determined by Refs. [75,96,97].

MWD Name Bp [MG]

RE J0317-853 ∼200–800
SDSS J033320.36þ 000720.6 849� 42
SDSS J002129.00þ 150223.7 531� 64
SDSS J100356.32þ 053825.6 672� 119
HE 1043-0502 ∼820
SDSS J120609.80þ 081323.7 761� 282
ZTF J190132.9þ 145808.7 ∼600–900
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