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It is known that the large-scale structure mapped by a galaxy redshift survey is subject to distortions by
galaxies’ peculiar velocities. Besides the signatures generated in common N-point statistics, such as the
anisotropy in the galaxy two-point correlation function, the peculiar velocities also induce distinct features
in large-scale structures morphological properties, which are fully described by four Minkowski
functionals (MFs), i.e., the volume, surface area, integrated mean curvature, and Euler characteristic
(or genus). In this work, by using large suite ofN-body simulations, we present and analyze these important
features in the MFs of large-scale structure on both (quasi)linear and nonlinear scales, with a focus on the
latter. We also find the MFs can give competitive constraints on cosmological parameters compared to
the power spectrum, probably due to the nonlinear information contained. For a galaxy number density
similar to the DESI BGS galaxies, the constraint on σ8 from the MFs with one smoothing scale can be better
by ∼50% than from the power spectrum. These findings are important for the cosmological applications
of MFs of large-scale structure, and probably open up a new avenue for studying the peculiar velocity
field itself.
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I. INTRODUCTION

The Universe’s large-scale structure contains a wealth of
information about its origin and development, including the
initial conditions (see e.g., [1,2]) the forms and amounts
of the constituent energy components (see e.g., [3,4]),
the laws of gravity (see e.g., [5,6]), etc., and has been
extensively used to probe these questions that are clearly of
fundamental importance to cosmology. Galaxy redshift
surveys, which map the three-dimensional distribution
of galaxies, provide a most direct way to measure the
Universe’s large-scale structure, therefore are actively
pursued by the community, such as the SDSS [7],
WiggleZ [8], PFS [9], DESI [10], and CSST [11,12].
However, the large-scale structure mapped by galaxy

redshift surveys is obscured by galaxies’ peculiar velocities
(see [13] for a review), in addition to other systematic
effects such as galaxy bias and the Alcock-Paczynski effect
[14]. The line-of-sight (LOS) component of the velocity
other than the Hubble flow introduces a correction to a
galaxy’s distance from us which is interpreted from its
redshift. Thus, on large scales, an overdense region tends
to be squashed along the LOS, known as the Kaiser’s

effect [15], while on small scales, it tends to be elongated
along the LOS, known as the fingers-of-God (FOG) effect
[16]. On the other hand, this “redshift distortion” to the
measured large-scale structure provides a unique way to
probe the peculiar velocity field, which is applicable even at
high redshifts as opposed to direct measurements of the
velocity field, (see e.g., [17,18]). For example, the galaxy
correlation function, which is no longer isotropic in redshift
space, contains important two-point statistics for the
velocity field from which we have constructed the most
widely used method of measuring the growth rate of
structure (see e.g., [19,20]).
Peculiar velocities principally affect all statistical proper-

ties of galaxy distribution in the 3D redshift space. Besides
the well-studied two-point statistics which is sufficient to
describe the field on linear scales, (N > 2)-point statistics
are also essential to describe the field on nonlinear scales
where the field is no longer Gaussian. Generally speaking,
analysis with these N-point statistics with N > 2 are
complicated or even infeasible at the moment (see e.g.,
[21–23]), so alternatives such as the morphorlogical
descriptors of Minkowski functionals (MFs) [24–27] have
been proposed.
According to Hadwiger’s theorem [28,29], for a spatial

pattern in 3D, its morphorlogical properties are completely
described by four MFs, i.e., the volume, surface area,
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integrated mean curvature, and Euler characteristic (or
genus). Compared to the N-pt statistics, the MFs are more
intuitive; they are easy to measure and principally contain all
orders of statistics simultaneously [25,30]. Their application
in studies of large-scale structure dates back to the 1990s
[25]. Over the years, they have been applied with real
surveys [31–34] to, e.g., test the Gaussianity of primordial
fluctuations (with SDSS [32]) and construct standard rulers
(with WiggleZ [33]). Recently, they are newly proposed to
probe theories of gravity [35], mass of neutrinos [36,37], etc.
In this work, we study how peculiar velocities affect

the morphological properties of large-scale structure as
observed in redshift space. This is important both for the
proposed applications of MFs and for studies of the
peculiar velocity field itself. Almost all previous works
focus on linear scales (studying the Kaiser’s effect) without
interpreting the morphological differences between redshift
and real spaces [38–40]. In this work, we focus on a
comprehensive interpretation of the morphological
differences between redshift and real spaces. As an attempt
to extract the important information on nonlinear structure
formation, we go to the nonlinear scales by utilizing a large
suite of N-body simulations. We also evaluate the cosmo-
logical constraints from the MFs and compare them with
the traditional two-point statistics of the power spectrum.

II. CALCULATIONS OF THE MINKOWSKI
FUNCTIONALS

In this work, we use the Quijote simulations [41] for our
analysis of the MFs. The Quijote simulations are a large
suite of N-body simulations generated for quantifying the
information content of cosmological observables and train-
ing machine learning algorithms. The suite contains 44100
simulations spanning more than 7000 cosmological models
in the fΩm;Ωb; h; ns; σ8;Mν; wg hyperplane. We use the
subset of the Quijote simulations for the fiducial cosmol-
ogy;Ωm ¼ 0.3175,Ωb ¼ 0.049, h ¼ 0.6711, ns ¼ 0.9624,
σ8 ¼ 0.834, Mν ¼ 0.0, w ¼ −1. The initial conditions are
generated using second-order Lagrangian perturbation
theory at redshift z ¼ 127. Then they follow the gravita-
tional evolution of 5123 dark matter particles in a cubic
box with volume 1 h−3 Gpc3 to z ¼ 0 using the Gadget-III
code [42].
We use 300 simulations to estimate the theoretical means

of the MFs in real and redshift spaces, from which we
derive the morphological differences caused by the peculiar
velocities, and estimate the errors or covariance matrix. To
forecast cosmological constraints from the MFs, we use the
Fisher matrix technique [43,44]. We assume a Gaussian
likelihood L, with

−2 lnL ¼ ½μ − μ̄ðθÞ�TC−1½μ − μ̄ðθÞ�; ð1Þ

where μ represents the data vector of MFs (for some
assumed observation), μ̄ is the theoretical mean for μ for a

cosmological model with parameters specified by θ which
we calculate from simulations, and C is the covariance
matrix. From the definition of the Fisher matrix,

Fαβ ≡ −
�∂2 lnL
∂θα∂θβ

�
; ð2Þ

where the angular bracket denotes the average over many
realizations of the data, we obtain the following expression
for Fαβ,

Fαβ ¼
∂μT
∂θα C

−1 ∂μ
∂θβ ; ð3Þ

where we have assumed a parameter-independent covari-
ance matrix. For the estimation of the derivative, we use ten
simulations for each parameter varied above or below its
fiducial value. For C−1, we multiply the inverse of the
estimated covariance matrix by a factor of ðn − p − 2Þ=
ðn − 1Þ [45], where n is the number of samples and p is the
number of observables, to account for the bias in the inverse
of the covariance matrix due to limited number of samples
in its estimation. With this correction, we verified the
numbers of simulations used to compute the derivatives
and covariance matrix, give convergent parameter con-
straints. Specifically, when we increase n to 5000, the
constraints differ by ∼10%. In the following, for cosmo-
logical constraints, we quote our most accurate estimation
with n ¼ 5000.
When measuring the MFs, we adopt the common choice

for the spatial pattern of large-scale structure as the
excursion sets of the density field, i.e., regions with density
above a given threshold. We construct the density field
from the spatial distribution of dark matter particles using
the cloud-in-cell mass assignment scheme. To obtain a
particle’s position in redshift space s⃗, we adopt the distant-
observer approximation such that s⃗ ¼ r⃗þ ð1þ zÞv⃗k=HðzÞ,
where r⃗ is the position in real space, z is the redshift, v⃗k is
the LOS component of the peculiar velocity, and HðzÞ is
the Hubble parameter. The dark matter density field
is smoothed with a Gaussian window function with width
RG. We then measure the MFs for the smoothed field as a
function of the density contrast δð≡ρ=ρ̄ − 1Þ used to
specify the excursion sets. We find both the integral and
differential methods of measuring the MFs numerically as
developed in [26] give consistent results. In the following,
we simply show our results obtained with the integral
method.

III. RESULTS

To find out the important morphological differences in
large-scale structure caused by peculiar velocities, we
measure and compare the MFs in real and redshift spaces
at z ¼ 0 from the Quijote simulations for the fiducial
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model. We choose RG ¼ 4 h−1Mpc, which suppresses shot
noise while keeping most of the information of large-scale
structure simultaneously. We also measure the MFs with
RG ¼ 10 h−1Mpc for a comparison of the (quasi)linear and
nonlinear scales.
We denote the four MFs as Vi with i ¼ 0, 1, 2, 3. In

sequence, they represent the excursion sets’ volume frac-
tion, and surface area, integrated mean curvature, Euler
characteristic per unit volume, see e.g., [26] for exact
prefactors in the definitions. In Fig. 1, we show the
measured MFs in real and redshift spaces in the left panel
and their differences ΔVi in the right panel. We display the
results for the interval of δ ∈ ½−1; 4�, where the main
features induced by peculiar velocities are captured while
the signal-to-noise ratio for individual MFs remains sig-
nificant. Note error bars here are estimated using the real-
space MFs measured from 300 simulations with volume
1 h−3Gpc3. Since the error bars are so small, in the right
panel of Fig. 1 we enlarge them by a factor of ten for easier
visualization.
At each smoothing scale, we find the curves of MFs in

both real and redshift spaces share similar trends as a
Gaussian random field, which have been well studied in
the literature, see e.g., [26]. However, deviations from the

Gaussian case due to nonlinear gravitational evolution are
stronger in redshift space than in real space, consistent with
the bigger root-mean-square of the density in redshift
space. While when comparing the two choices for RG,
we find both Vi and ΔVi have different amplitudes except
for the normalized volume fraction with i ¼ 0, with smaller
amplitudes for larger RG. This is because smoothing erases
structures with scales smaller than RG. A larger RG erases
more structures, thus Vi and ΔVi have smaller amplitudes.
We also notice that the curves for the two choices of RG
have similar trends except for ΔV2 and ΔV3 in the high-
density threshold regions. The difference is probably due to
the FOG effect which is important on nonlinear scale (high-
density threshold regions), thus disappearing with large RG,
but shows up only when RG is small enough. In the
following, we focus on discussions of the ΔVis with
RG ¼ 4 h−1Mpc.
V0 is the volume fraction occupied by regions whose

densities are above a density threshold specified by δ. We
find that the values of V0 are larger when δ≳ 0 and smaller
when δ≲ 0 in redshift space. That is, the volume fraction
with density above an overdensity threshold becomes
larger, while above an underdensity threshold becomes
smaller. The latter is equivalent to that the volume fraction

FIG. 1. Left: The MFs of large-scale structure in real (labeled by “R”) and redshift spaces (labeled by “Z”) measured with RG ¼
4 h−1 Mpc and at z ¼ 0 from the Quijote simulations for the fiducial model. δ is the density contrast used to define the excursion sets.
The MFs for a larger smoothing scale RG¼ 10 h−1 Mpc are also shown, for comparison. Right: Differences in the MFs between redshift
and real spaces. Error bars are estimated using 300 simulations with volume 1 h−3 Gpc3, and have been enlarged ten times here for ease
of visualization.
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with density below an underdensity threshold becomes
larger. This is consistent with a larger standard deviation of
the density field in redshift space due to the Kaiser effect,
which is ∼2% larger according to our measurement from
simulations. For underdense thresholds, our result indicates
that the total volume of voids is larger in redshift space; that
is, voids are more abundant and/or larger, consistent with
findings of [46,47].
V1 is the surface area of the excursion sets or area of the

isodensity contours. The values of V1 are larger in redshift
space except in the density range −0.4≲ δ≲ 0.7. If one
assumes the excursion sets are all composed of isolated
regions for a high enough density threshold, it is natural
to expect that the change in their surface area follows
that in the volume fraction they occupy. For a low enough
density threshold, e.g., δ≲ −0.4, though one can still
assume the isodensity contours are isolated, their
enclosed regions are no longer the excursion sets but
underdense regions with density below the threshold,
whose volume fraction is therefore 1 − V0. Thus V1

becomes larger when V0 becomes smaller. Besides, these
isolated structures will no longer be statistically spherical
in redshift space; overdense (underdense) regions for
high (low) enough density threshold tend to be squashed
(elongated) along the LOS. This departure from spherical
shape also tends to cause an increase in the surface area.
However, the smaller V1 in redshift space for −0.4≲ δ≲
0.7 indicates deviations from the above perhaps simplest
picture. One possibility is that with these thresholds,
smaller structures merge, resulting in more large (fewer
small) structures. Thus the surface area reduces while the
volume increases. Another possibility is that holes on the
isodensity contours become fewer in redshift space,
leading to a smaller surface area, consistent with changes
in V3 (see below).
V2 is the integration of the mean curvature over the

surface area of the isodensity contours. The sign of V2 is
determined by whether the surface is overall concave or
convex. Since we define the positive direction of the surface
pointing from a lower to a higher-density region, V2 is
negative for low-density thresholds and positive for high-
density thresholds, with the transition taking place at
δ ≃ −0.4. By comparing the curves of V2 in real and
redshift spaces, we find that the absolute value of V2 is
smaller in the redshift space when −0.6≲ δ≲ −0.4 and
δ≳ −0.2, while larger elsewhere. From its definition, V2

can be affected by both changes in the mean curvature and
those in the surface area. To separate the first effect from the
latter, which we have already obtained, we introduce the
ratio of V2 to V1, and focus on discussions of its changes
caused by the redshift space distortions. This is the surface-
area-weighted average of the mean curvature (hereafter,
“average curvature” for short) for the isodensity contours.
In Fig. 2, we plot V2=V1 and the difference in it between
redshift and real spaces.

Before we discuss the difference in V2=V1 caused by the
peculiar velocities, let us first look at this ratio for an
ellipsoid with semiaxes ða; a; λaÞ. When λ is fixed, both V1

and V2 increase with a, but V2=V1 decreases. While when a
is fixed, V2=V1 increases monotonically with jλ − 1j, and
reaches its minimum at λ ¼ 1, see [48] for more details. As
a summary, enlarging structures’ sizes overall leads to
smaller jV2=V1j, while changing their shapes to be non-
spherical leads to larger jV2=V1j.
For RG ¼ 4 h−1 Mpc, we find that the average curva-

ture V2=V1 is smaller in redshift space when δ≳ 0, while
it is larger when δ≲ 0. Considering the sign of V2=V1, we
can deduce jV2=V1j is smaller except in a narrow thresh-
old range −0.2≲ δ≲ 0. Smaller value of jV2=V1j indi-
cates bigger underdense regions (voids) and overdense
regions (halos) in redshift space, consistent with our
findings from the changes in V0. While for −0.2≲ δ≲ 0,
the positive average curvature gets bigger in redshift
space. Isotropic overdense structure in real space is
squashed along the LOS forming an ellipsoid with
λ < 1, which leads to a larger average curvature in
redshift space—just as what we find for −0.2≲ δ≲ 0
in Fig 2.
The Euler characteristic V3 measures the connectedness

of the excursion sets, which equals the number of isolated
structures minus the number of holes per unit volume,
see e.g., [49,50]. With RG ¼ 4 h−1Mpc, the negative V3

for −0.6≲ δ≲ 0.6 indicates the excursion sets are more
connected; that is, there are fewer disjoint regions but more
holes. The positive V3 for higher- or lower-density thresh-
olds indicates the opposite case. We find in redshift space,
the excursion sets are more connected with ΔV3 < 0
for −0.8≲ δ≲ −0.4 and δ≳ 0.4, while less connected

FIG. 2. Top: Ratio of V2 to V1 in redshift and real spaces as a
function of δ for two smoothing scales RG ¼ 4 h−1 Mpc and
10 h−1 Mpc. Bottom: The difference in this ratio between redshift
and real spaces.
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with ΔV3 > 0 elsewhere. With a larger smoothing scale
RG ¼ 10 h−1Mpc or above, we find ΔV3 > 0 for high-
density thresholds, which is different from the small
smoothing scale results.
From Fig. 1, we can see that the fractional changes in the

MFs induced by peculiar velocities are on the order of∼10%
when RG ¼ 4 h−1Mpc, and judging from the error bars,
they can be detected with significant S=N. Thus, the MFs are
very sensitive to redshift space distortion. They may provide
a promising way to study the peculiar velocity field, which
deserves further explorations in future work. Here, we
perform a more straightforward study of the cosmological
constraints obtainable from the MFs in redshift space, by
using the Fisher matrix technique and the Quijote simulation
data. We choose the matter density parameterΩm and σ8, the
amplitude of the linear density fluctuations on a scale of
8 h−1Mpc, as representatives, which most directly influence
the redshift-space clustering. Our results are shown in
Fig. 3 (red solid contours), where we have chosen RG ¼
4 h−1Mpc and 21 density threshold bins for each order of
the MFs. For comparison, the constraints from the redshift-
space matter power spectrum, specifically the combination
of its monopole, quadrupole, and hexadecapole are also
shown (green solid contours), where we have chosen 21 k
bins up to kmax ¼ 0.5 hMpc−1. As can be seen, in redshift
space, the MFs give relative stronger constraints than the
power spectrum, probably due to the nonlinear statistical
information contained in the MFs.

We note these constraints are estimated for the
simulated dark matter distribution with number density
0.13 h3Mpc−3. This tracer number density clearly sounds
optimistic for current galaxy surveys. For a more realistic
estimation, we use the low-resolution simulations in the
Quijote suite, which have a dark matter density of
0.017 h3 Mpc−3, roughly the expected number density
for the BGS galaxies that the currently ongoing DESI
survey is about to observe [10]. The results are shown as the
red dashed (MFs) and green dashed (power spectrum)
contours in Fig 3. One can see that this reduction of tracer
number density has little impact on the constraints from the
MFs with RG ¼ 4 h−1Mpc, while it does make the con-
straints from the power spectrum a bit worse, indicating
shot noise is subdominant on the involved scales. For σ8,
we find the constraint from the MFs is now better by ∼50%
than that from the power spectrum.

IV. CONCLUSIONS

Using large suite of N-body simulations, we have
studied the peculiar velocity induced features in the four
MFs of large-scale structure. With a focus on nonlinear
scale, we present detailed interpretation for the morpho-
logical changes of large-scale structure in redshift space.
With the Quijote simulations, we perform a Fisher matrix
analysis for the cosmological constraints from the MFs,
and compare with those from the power spectrum in
redshift space, and find the MFs can give overall better
constraints. Specifically, for galaxy number density sim-
ilar to the DESI BGS galaxies, we find the constraint from
the MFs on σ8 is better by ∼50% than from the power
spectrum. We find this number density is sufficient for the
constraints from the MFs to be converged regarding shot
noise. Note that these calculations are performed for
simulated cubic boxes with periodic boundary conditions.
When applied to real surveys, the irregular survey mask
and nonperiodic boundary should be taken into account
(see e.g., [33,51] for how to measure the MFs with survey
masks). We also notice other systematic effects, e.g., the
bias and pixelization effects, might change the morpho-
logical features induced by peculiar velocities, and leave a
quantitive analysis for future work. This work highlights
and paves the way for the applications of MFs of large-
scale structure in real galaxy surveys, which we are
currently pursuing.
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