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Neutron star mergers are very violent events involving extreme physical processes: dynamic, strong-field
gravity; large magnetic field; very hot, dense matter; and the copious production of neutrinos. Accurate
modeling of such a system and its associated multimessenger signals, such as gravitational waves, short
gamma ray bursts, and kilonova, requires the inclusion of all these processes and is increasingly important
in light of advancements in multimessenger astronomy generally, and in gravitational wave astronomy in
particular (such as the development of third-generation detectors). Several general relativistic codes have
been incorporating some of these elements with different levels of realism. Here, we extend our code
MHDuet, which can perform large eddy simulations of magnetohydrodynamics to help capture the magnetic
field amplification during the merger, and to allow for realistic equations of state and neutrino cooling via a
leakage scheme. We perform several tests involving isolated and binary neutron stars demonstrating the
accuracy of the code.

DOI: 10.1103/PhysRevD.105.103020

I. INTRODUCTION

An era of multimessenger astronomy combining gravi-
tational waves and electromagnetic observations started
with the event GW170817 [1,2], consistent with the merger
of two neutron stars. The understanding of this event arises
not only from the gravitational wave signature, but also
from observations across nearly every band of the electro-
magnetic spectrum, some of which have continued years
later [3]. Crucially much of the science extracted, such as
constraints on the high density nuclear equation of state
(EoS), the association between short gamma ray bursts and
neutron star mergers, and the connection between ejecta
and kilonovae properties, depends on comparisons to
simulations (see, e.g., Refs. [4–7] and references within).
Development of third generation gravitational wave detec-
tors such as the Einstein Telescope and Cosmic Explorer
promises to extend the usable bandwidth to observe the
high frequency merger where the detailed high density
physics affecting the structure of the stars may be better
revealed [8,9].
In order to interpret these observations, accurate numeri-

cal simulations are necessary that incorporate general
relativistic effects with key physical ingredients such as
magnetic field, microphysical, realistic equation of state
describing high-density matter, and neutrino emission
and transport occurring during and after the merger.
In particular, the effects of magnetic field and neutrinos

are crucial to model the most important electromagnetic
counterparts. First, these two effects largely determine the
amount and composition of the material ejected long after
the merger (i.e., secular ejecta), which is responsible for
part of the kilonova emission. Second, a large-scale
magnetic field is believed to be necessary for the formation
of a relativistic jet [10–12], associated with a short gamma
ray burst. In this scenario, neutrino annihilation might play
an important role by clearing the polluting baryons near the
spin axis (e.g., Ref. [13]).
The relativity community has created a number of fully

relativistic numerical codes that can evolve the coalescence
of neutron stars, some of which adopt realistic equations of
state, magnetization, and an approximation for neutrino
transport, with notable recent advances (see, for example,
Refs. [14,15]). Of these codes, only a few can simulate the
merger of magnetized neutron stars with neutrinos and a
realistic EoS. Those that can generally use a simplified
approximate neutrino scheme called leakage [16–19] (but
more recently also with the M1 formalism [20], although
with a simplified temperature-dependent EoS). Here, we
extend our code, MHDuet, to allow for tabulated EoS with a
leakage scheme to model the neutrinos. We also make this
code publicly available, which can be downloaded from the
webpage mhduet.liu.edu.
To this end, we report on simulations and tests of

MHDuet, which can now evolve the merger of magnetized
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neutron stars along with neutrino cooling using realistic,
temperature-dependent, tabulated equations of state. To be
more specific, this code leverages the recently developed
large eddy simulation (LES) techniques [21–25] to study
the growth of the magnetic field during and after the
neutron star merger. A new method of computing the
optical depth, extending the method first introduced in
Ref. [16] (hereafter referred to as Paper I), is also
presented.
We begin by describing the equations that are solved in

Sec. II, including the formalism of the Einstein equations,
the general-relativistic magnetohydrodynamic system, the
neutrino leakage scheme, and the LES methodology. We
follow this with details about how these equations are
solved numerically in Sec. III. This section also includes
a description of the recovery of the primitive fields for
the tabulated equation of state and an explanation of our
novel method of solving for the optical depth. We present
tests and results with the code in Sec. IV, and conclude
in Sec. V.

II. EVOLUTION SYSTEM

We present details of the latest version of the publicly
available MHDuet code, which has previously been used to
study phase transitions occurring in merging binaries [26]
and, separately, magnetized mergers using the LES
techniques [21–25]. Here we merge these efforts and
extend the code to adopt realistic, finite temperature,
tabulated equations of state along with neutrino cooling
via the leakage scheme previously implemented in our
other code, HAD [16,17,27]. We once again present the
Einstein and fluid equations for completeness and to
define our notation, and we follow this with the new
details about the code extensions. Further details about
the code can be found in Refs. [28–30]. Other versions of
MHDuet have been used to study the coalescence of boson
stars [31–33], as well as neutron stars in alternative
gravity theories [34].

A. Covariant formulation

The covariant system of equations employed to model a
self-gravitating magnetized fluid includes the Einstein
equation, in which the spacetime is fully described by
the Einstein tensor,Gab, coupled to the stress-energy tensor
of the matter, which can be separated into perfect fluid Tab

and neutrino radiation Trad
ab components.1 The dynamics of

the matter is described by conservation laws for the stress-
energy tensor of the matter, the baryonic and lepton
number, and the Maxwell equation for the Faraday tensor

�Fab (i.e., the dual of the Maxwell tensor in the ideal
magnetohydrodynamics (MHD) case), namely

Gab ¼ 8πðTab þ Trad
ab Þ; ð1Þ

∇aTa
b ¼ Sb; ð2Þ

∇aðρuaÞ ¼ 0; ð3Þ

∇aðYeρuaÞ ¼ ρR; ð4Þ

∇a
�Fab ¼ 0: ð5Þ

Here, ρ is the rest-mass density, ua is the four-velocity of
the fluid, and Ye is the electron fraction, the ratio of
electrons to baryons. In the absence of lepton source terms,
Eq. (4) follows closely the conservation law for the rest
mass density; i.e., Ye is a mass scalar. The sources Sa ≡
−∇cTrad

ca and R are the radiation four-force density and
lepton sources, which are determined here via the leakage
scheme. Note that we have adopted geometrized units
where G ¼ c ¼ M⊙ ¼ 1.

1. Einstein equations

We solve the Einstein equations by adopting a 3þ 1
decomposition in terms of a spacelike foliation. The
hypersurfaces that constitute this foliation are labeled by
a time coordinate t with unit normal na and endowed
with spatial coordinates xi. We express the spacetime
metric as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð6Þ

where α is the lapse function, βi is the shift vector, γij is the
induced 3-metric on each spatial slice, and

ffiffiffi
γ

p
is the square

root of its determinant.
In this work, we use the covariant conformal Z4

formulation of the evolution equations [31,35]. Further
details on the final set of evolution equations for the
spacetime fields, together with the gauge conditions setting
the choice of coordinates, can be found in Ref. [28].
In summary, we perform a conformal decomposition and
define the following fields:

γij ≡ 1

χ
γ̃ij; Ãij ≡ χ

�
Kij −

1

3
γijtrK

�
; ð7Þ

Γ̂i ≡ Γ̃i þ 2

χ
Zi; K̂ ≡ K − 2Θ ð8Þ

with Γ̃i ≡ γ̃ijγ̃kl∂lγ̃jk. With these definitions, the evolution
equations can be written as

1It is standard to describe photons or neutrinos as radiation
fields because the components of the stress-energy tensor can be
written in terms of the radiation specific intensity, Ia, which
follows the Boltzmann equation for radiation transport.
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∂tγ̃ij ¼ βk∂kγ̃ij þ γ̃ik∂jβ
k þ γ̃kj∂iβ

k −
2

3
γ̃ij∂kβ

k − 2α

�
Ãij −

1

3
γ̃ijÃ

�
−
α

3
κcγ̃ij ln γ̃; ð9Þ

∂tÃij ¼ βk∂kÃij þ Ãik∂jβ
k þ Ãkj∂iβ

k −
2

3
Ãij∂kβ

k −
α

3
κcγ̃ijÃ

þ χ½αðð3ÞRij þDiZj þDjZi − 8πGSijÞ −DiDjα�TF þ αðK̂Ãij − 2ÃikÃ
k
jÞ; ð10Þ

∂tχ ¼ βk∂kχ þ
2

3
χ½αðK̂ þ 2ΘÞ − ∂kβ

k�; ð11Þ

∂tK̂ ¼ βk∂kK̂ −DiDiαþ α

�
1

3
ðK̂ þ 2ΘÞ2 þ ÃijÃ

ij þ 4πGðτ þ SÞ þ κzΘ
�
þ 2Zi∂iα; ð12Þ

∂tΘ ¼ βk∂kΘþ α

2

�
ð3ÞRþ 2DiZi þ 2

3
K̂2 þ 2

3
Θ
�
K̂ − 2Θ

�
− ÃijÃ

ij

�
− Zi∂iα − α½8πGτ þ 2κzΘ�; ð13Þ

∂tΓ̂i ¼ βj∂jΓ̂i − Γ̂j∂jβ
i þ 2

3
Γ̂i∂jβ

j þ γ̃jk∂j∂kβ
i þ 1

3
γ̃ij∂j∂kβ

k − 2Ãij∂jα

þ 2α

�
Γ̃i

jkÃ
jk −

3

2χ
Ãij∂jχ −

2

3
γ̃ij∂jK̂ − 8πGγ̃ijSi

�
þ 2α

�
−γ̃ij

�
1

3
∂jΘþΘ

α
∂jα

�
−
1

χ
Zi

�
κz þ

2

3
ðK̂þ 2ΘÞ

��
; ð14Þ

where the expression ½� � ��TF indicates the traceless part
with respect to the metric γ̃ij and ðκc; κzÞ are damping
parameters to dynamically control the conformal and the
physical constraints, respectively. The Ricci terms and the
Laplacian operator can be written as

ð3ÞRij þ 2DðiZjÞ ¼ ð3ÞR̂ij þ R̂χ
ij; ð15Þ

χR̂χ
ij ¼

1

2
∂i∂jχ −

1

2
Γ̃k
ij∂kχ −

1

4χ
∂iχ∂jχ þ

2

χ
Zkγ̃kði∂jÞχ

þ 1

2
γ̃ij

�
γ̃km

�
∂k∂mχ −

3

2χ
∂kχ∂mχ

�
− Γ̂k∂kχ

�
;

ð16Þ

R̂ij ¼ −
1

2
γ̃mn∂m∂nγ̃ij þ γ̃kði∂jÞΓ̂k þ Γ̂kΓ̃ðijÞk

þ γ̃mnðΓ̃k
miΓ̃jkn þ Γ̃k

mjΓ̃ikn þ Γ̃k
miΓ̃knjÞ; ð17Þ

DiDiα ¼ χγ̃ij∂i∂jα − χΓ̃k∂kα −
1

2
γ̃ij∂iα∂jχ: ð18Þ

The matter terms can be written in terms of the stress-
energy tensor and the conformal metric as

U ¼ nanbTab; Si ¼ −naTa
i ; Sij ¼ Tij:

We use the Bona-Masso slicing conditions with a
simplified version of the Gamma-freezing shift condition
[36,37], namely

∂tα ¼ βi∂iα − 2αfαðαÞK̂; ð19Þ

∂tβ
i ¼ βj∂jβ

i þ 3

4
fβðαÞΓ̂i − ηβi; ð20Þ

where η is a damping parameter for the shift and the
gauge functions fαðαÞ; fβðαÞ can be chosen freely.
Currently, we use 1þ log slicing with the standard shift
function, namely fα ¼ fβ ¼ 1. Typical values of the damp-
ing parameters are η ≈ 2=M and κc ≈ 1=M. For black holes,
κz ≈ 1=M, whereas neutron stars require smaller val-
ues κz ≈ 0.1=M.

2. General relativistic magnetohydrodynamic
equations

The state of a perfect fluid, in the ideal MHD limit, can be
described by the primitive fields ðρ; ϵ; Ye; p; vi; BiÞ, where
we recall that ρ is the rest mass density, ϵ the internal energy,
Ye the electron fraction, p the pressure given by the EoS, vi

the fluid velocity, andBi themagnetic field. The evolution of
this magnetized perfect fluid follows a system of conserva-
tion laws for the energy andmomentum densities, and for the
total number of baryons and leptons. In order to capture
properly the weak solutions of the nonlinear equations in the
presence of shocks, it is important towrite this system in local
conservation law form.
Therefore, the general relativistic magnetohydrodynam-

ics (GRMHD) equations for a magnetized, nonviscous, and
perfectly conducting fluid [17] provide a set of evolution
equations for the conserved variables

ffiffiffi
γ

p fD;DY; τ; Si; Big,
which depend on the primitive fields as follows:
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D ¼ ρW; ð21Þ

DY ¼ ρWYe; ð22Þ

Si ¼ ðhW2 þ B2Þvi − ðBkvkÞBi; ð23Þ

τ ¼ hW2 − pþ B2 −
1

2

�
ðBkvkÞ2 þ

B2

W2

�
− ρW; ð24Þ

where we have defined τ≡U −D as the energy density
without the rest-mass contribution, h≡ ρð1þ ϵÞ þ P as
the total enthalpy, and W ≡ ð1 − viviÞ−1=2 as the Lorentz
factor. Notice that the magnetic field is simultaneously a
primitive and a conserved variable.
The evolution equations for these conserved fields can be

written as

∂tð
ffiffiffi
γ

p
DÞ þ ∂k½

ffiffiffi
γ

p ð−βk þ αvkÞD� ¼ 0; ð25Þ

∂tð
ffiffiffi
γ

p
DYÞ þ ∂k½

ffiffiffi
γ

p ð−βk þ αvkÞDY � ¼
α

W
ffiffiffi
γ

p
DR; ð26Þ

∂tð
ffiffiffi
γ

p
τÞ þ ∂k½

ffiffiffi
γ

p ð−βkτ þ αðSk −DvkÞÞ� ¼ ffiffiffi
γ

p ½αSijKij − Sj∂jα�;
∂tð ffiffiffi

γ
p

SiÞ þ ∂k½ ffiffiffi
γ

p ð−βkSi þ αSkiÞ� ¼ ffiffiffi
γ

p ½αΓj
ikS

k
j þ Sj∂iβ

j − ðτ þDÞ∂iα�;
∂tð ffiffiffi

γ
p

BiÞ þ ∂k½ ffiffiffi
γ

p fBiðαvk − βkÞ − Bkðαvi − βiÞ þ αγkiϕg� ¼ ffiffiffi
γ

p
ϕ½γik∂kα − αγjkΓi

jk�; ð27Þ

∂tð ffiffiffi
γ

p
ϕÞ þ ∂k½ ffiffiffi

γ
p ð−βkϕþ αc2hB

kÞ� ¼ ffiffiffi
γ

p ½c2hBk∂kα − αϕtrK − ακϕ�; ð28Þ

where the fluxes of the momentum density are

Sij ¼
1

2
ðviSj þ vjSiÞ þ γijp −

1

2W2
½2BiBj − γijB2�

−
1

2
ðBkvkÞ½Bivj þ Bjvi − γijðBmvmÞ�: ð29Þ

Following Paper I, we use hyperbolic divergence cleaning
with the supplemental scalar field ϕ. The EoS closes this
system of equations. Because the fluxes above are func-
tions of the primitive fields, one needs to calculate them
before computing the right-hand sides above. In Sec. III B
we detail how we solve for the primitive fields with a
realistic equation of state p ¼ pðρ; T; Ye; Þ along with the
definitions Eqs. (21)–(24).

B. Neutrino cooling via leakage

The violent merger of a neutron star in a binary leads to
high temperatures and various nuclear processes which can
produce copious neutrinos and affect the composition of the
matter. We adopt a neutrino leakage scheme which seeks to
account for changes to the electron fraction and energy
losses due to the emission of neutrinos, following the
implementation in HAD as described in Paper I. This
scheme was based on the open-source neutrino leakage
scheme from Ref. [38] and available at www.stellarcollap-
se.org. Note that, since the dynamical timescale for the
postmerger of binary neutron star systems is relatively
short, radiation momentum transport and diffusion effects
are expected to be subleading and are neglected in this
approach.

We introduce a term representing the loss of energy
in the fluid rest frame, Q, and another term which
represents changes in the lepton number, R. We express
the source term for the energy and momentum in an
arbitrary frame as

Sa ¼ Qua: ð30Þ

Since R is the source term for a scalar quantity, it is the
same in all frames. These terms couple to the rest of the
system as shown above in Eqs. (1)–(5).
Since the effect of neutrino pressure is small in the

conditions relevant for neutron stars (NS) mergers and
difficult to accurately capture with a neutrino leakage
scheme, we ignore its contribution in the fluid rest frame.
For instance, Ref. [39] found that, although at rest-mass
densities of ρ ≈ 1012 gcm−3 and temperatures T ≈
10 MeV the contribution of the neutrino pressure could
be roughly 10% of the fluid pressure, the neutrino
pressure for densities close to nuclear saturation density
(i.e., such as found in the remnant) becomes less
than 1%, smaller than the typical uncertainties of the
nuclear EOSs at such densities. Now, by computing the
normal and perpendicular projections with respect to
the unit normal na we obtain S ≡ naSa ¼ −QW and
⊥bcSc ¼ ðgbc þ nbncÞSc ¼ QWvb, in terms of which the
modified GRMHD equations become

∂tð ffiffiffi
γ

p
DYÞ þ � � � ¼ α

ffiffiffi
γ

p
ρR; ð31Þ

∂tð ffiffiffi
γ

p
τÞ þ � � � ¼ � � � þ α

ffiffiffi
γ

p
QW; ð32Þ
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∂tð
ffiffiffi
γ

p
SiÞ þ � � � ¼ � � � þ α

ffiffiffi
γ

p
QWvi: ð33Þ

Neutrino interaction rates depend sensitively on the
matter temperature and composition. Therefore, in order
to model the effect of neutrinos with reasonable accuracy,
we require an equation of state beyond that of a polytrope
or an ideal gas. We use publicly available EoS tables from
www.stellarcollapse.org described in O’Connor and Ott
(2010) [38]. We have rewritten some of the library routines
for searching the table to make them faster and more robust.
In this paper we use the Lattimer-Swesty (LS) [40] EoS
with K ¼ 220 MeV and the H. Shen (HS) [41] for the
single neutron star simulations, and the HS EoS for the
neutron star binary. These are chosen to match those used in
Paper I for comparison, not for any particular physical
relevance.
We consider three species of neutrinos, represented here

by the following: νe for electron neutrinos, ν̄e for electron
antineutrinos, and νx for both tau and muon neutrinos and
their respective antineutrinos. Our aim will be to compute,
for each neutrino species, the neutrino emission rate per
baryon, Rν, and the neutrino luminosity per baryon, Qν.
The net emission and luminosity rates can be computed as

R ¼ Rν̄e − Rνe ; Q ¼ −ðQνe þQν̄e þQνxÞ: ð34Þ

As discussed in Refs. [42,43], the dominant emission
processes are those that

(i) produce electron flavor neutrinos and antineutrinos:
charged-current, electron, and positron capture re-
actions eþ þ n → pþ ν̄e, e− þ p → nþ νe,

(ii) produce all flavors of neutrinos: electron-positron
pair-annihilation eþ þ e− → ν̄i þ νi and plasmon
decay γ → ν̄i þ νi.

In order to compute the emission coefficients, we assume
that the neutrinos are in thermal equilibrium with the
surrounding matter, such that their energy spectrum is
described by a Fermi-Dirac distribution for ultrarelativistic
particles at the temperature of the matter.
At large optical depths, the equilibrium timescales

are much shorter than either the neutrino diffusion or
the hydrodynamic timescales. Therefore, neutrinos are
assumed to be at their equilibrium abundances, and the
rates of energy loss and lepton loss are taken to proceed at
the diffusion timescale. In particular, in the optically thick
regime, we set the energy loss rate as Qν ¼ Qdiff

ν while the
lepton loss rate becomes R ¼ Rdiff

ν . While the equilibrium
abundances can be calculated easily, the calculation of the
diffusion timescale is more involved as it requires the
knowledge of nonlocal optical depths. The computation of
these optical depths lies at the core of the leakage strategy
and, because our problems of interest generally lack
specific symmetries, we refine the method introduced in
Ref. [16] as discussed in Sec. III C. We refer the reader to

Ref. [38] for full details about the calculation of the local
opacity and diffusion timescale.
At small optical depths, the leakage scheme relies on

calculating the emission rate of energy (Qfree
ν ) and lepton

number (Rfree
ν ) directly from the rates of relevant processes.

To achieve an efficient incorporation of neutrino effects in
all optical depths, we interpolate between the treatments
described above for optically thin and optically thick
regimes. In our implementation, we interpolate the energy
and lepton number emission rates between these two
regimes via the following formula:

Xeff ¼
XdiffXfree

Xdiff þ Xfree
; ð35Þ

where X is either Qν or Rν.

C. Large eddy simulation

Large eddy simulation is a popular approach to modeling
turbulent flows that has been adopted in numerical rela-
tivity specifically for resolving the magnetic field growth
via the Kelvin-Helmholtz instability (and possibly other
MHD processes) during the merger of a binary neutron
star system. The general idea is that the numerical simu-
lation resolves large scale features, whereas the effect of
the smaller scales can be captured by a sub-grid-scale
(SGS) model.
The concept and the mathematical foundations behind

the explicit LES techniques with a gradient SGS model
have been extensively discussed in our previous papers
(and references within) in the context of Newtonian [44]
and relativistic MHD [21,22], to which we refer for details
and further references. In brief, the space discretization in
any numerical simulation can be seen as a filtering of the
continuous solution, with an implicit kernel (numerical-
method-dependent) having the size of the numerical grid
Δx. The evolved numerical values of the fields can then
be interpreted formally as weighted averages (or filtered)
over the numerical cell. Seen in this way, the subgrid
deviations of the field values from their averages causes a
loss of information at small scales, for those terms which
are nonlinear functions of the evolved variables. SGS terms
obtained from the gradient model are added to the equa-
tions in order to partially compensate such loss.
Beginning with the equations of motion for the MHD

quantities expressed in Eqs. (25)–(28), one would normally
adopt a new notion for the corresponding filtered values of
these conserved values. However, here we retain the same
letters for each quantity where each implicitly represents
the corresponding filtered value (i.e., simply resolved by
the discretized equations, as in any simulation) within the
LES approach. We also introduce here the contributions,
τkN; τ

k
Ny
; τkiT ; τ

ki
M, to the equations of motion from the SGS

model, which represent the effects of the small and
unresolved scales.
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The filtered GRMHD equations can be written as
follows:

∂tð ffiffiffi
γ

p
DÞ þ ∂k½−βk ffiffiffi

γ
p

Dþ α
ffiffiffi
γ

p ðDvk − τkNÞ� ¼ 0;

∂tð ffiffiffi
γ

p
DYÞ þ ∂k½−βk ffiffiffi

γ
p

DY þ α
ffiffiffi
γ

p ðDYvk − τkNY
Þ� ¼ � � � ;

∂tð
ffiffiffi
γ

p
SiÞ þ ∂k½−βk

ffiffiffi
γ

p
Si þ α

ffiffiffi
γ

p ðSki − γijτ
jk
T Þ� ¼ � � � ;

∂tð
ffiffiffi
γ

p
τÞ þ ∂k½−βk

ffiffiffi
γ

p
τ þ α

ffiffiffi
γ

p ðSk −Dvk þ τkNÞ� ¼ � � � ;
∂tð

ffiffiffi
γ

p
BiÞ þ ∂k½

ffiffiffi
γ

p ð−βkBi þ βiBkÞ
þ α

ffiffiffi
γ

p ðγkiϕþ Bivk − Bkvi − τkiMÞ� ¼ � � � ;
∂tð

ffiffiffi
γ

p
ϕÞ þ ∂k½−βk

ffiffiffi
γ

p
ϕþ αc2h

ffiffiffi
γ

p
Bk� ¼ � � � ; ð36Þ

where the fluxes and sources can be read easily from the
standard GRMHD equations, Eqs. (25)–(28). The filtering
procedure introduces additional (subfiltered-scale) flux
terms, which can be computed using the gradient SGS
model, namely

τkN ¼ −CNξHk
N; τkNY

¼ −CNξHk
NY
;

τkiT ¼ −CTξHki
T ; τkiM ¼ −CMξHki

M: ð37Þ

The expressions of the H tensors have been obtained
explicitly for the special [21] and general relativistic [22]
cases, considering an EoS depending on p ¼ pðρ; ϵÞ.
Here we have extended the equations to include the
additional variables Ye and DY and a general EoS
p ¼ pðρ; ϵ; YeÞ. Details of the derivation can be found
in Appendix A.
The coefficient ξ ¼ γ1=3Δx2=24 has the proportionality

to the spatial grid squared, which is typical of SGS
models and ensures by construction the convergence to
the continuous limit (vanishing SGS terms for an infinite
resolution). Importantly, for each equation there is a
coefficient Ci, which is meant to be of order one for a
low-dissipation numerical scheme having a mathemati-
cally ideal Gaussian filter kernel and neglecting higher-
order corrections. However, finite-difference numerical
methods dealing with shocks are usually more dissipative
(and dispersive), and so larger values of Ci might be
required [22,23].
We introduce auxiliary variables Ψ̃, in terms of

which we write the H tensors. The explicit relations are
given by

Ψk
v ¼

2

Φ
f∇ðv · BÞ ·∇Bk −∇Φ ·∇vk þ Bk

E
½Φ∇Bj · ∇vj þ Bj∇Bj ·∇ðv · BÞ − Bj∇vj · ∇Φ�g;

Ψki
M ¼ 4

Φ
½Φ∇B½i ·∇vk� þ B½i∇Bk� · ∇ðv · BÞ − B½i∇vk� · ∇Φ�;

ΨΦ ¼ Φ
Φ − E2

f∇Bj · ∇Bj −∇Ej · ∇Ej − B½ivk�Ψki
Mg; ΨA ¼ W2

�
p
dp
dϵ

þ ρ2
dp
dρ

�
;

Hp ¼
EW2ðΦ − E2Þ

ðρE −ΨAÞðΦ − E2ÞW2 þΨAΦ

�
ρ

�
∇ dp
dρ

· ∇ρþ∇ dp
dϵ

·∇ϵ

�
− 2

dp
dϵ

∇ρ ·∇ϵ

−
�
E
dp
dϵ

−ΨA

��
W2

4
∇W−2 ·∇W−2 þ∇W−2 ·∇ðln ρÞ

�
−

2

W2

dp
dϵ

½∇Bj ·∇Bj −W4∇W−2 · ∇h�

−
�
E
dp
dϵ

þ ΨA

�
½vjΨj

v þ∇vj · ∇vj þW2∇W−2 · ∇W−2� þ ΨΦ

EΦ

��
E
dp
dϵ

þ ΨA

�
ðΦ − E2Þ −ΨAΦ

W2

��

þ∇ dp
dYe

· ∇Ye −
2

D
dp
dYe

∇Ye · ∇D; ð38Þ

HΦ ¼ ΨΦ þ Φ
Φ − E2

Hp; Hk
v ≔ Ψk

v −
�
vk þ v · B

E
Bk

�
HΦ

Φ
; ð39Þ

Hk
N ¼ 2∇D ·∇vk þDHk

v; Hk
NY

¼ 2∇DY ·∇vk þDYHk
v; ð40Þ

Hki
M ¼ 2B½iHk�

v þ 4∇B½i ·∇vk� → Hi
E ¼ 1

2
ϵijkH

jk
M; ð41Þ

Hki
T ¼ 2½∇E · ∇ðvkviÞ þ EðvðkHiÞ

v þ∇vk · ∇viÞ þ vkviHp� − 2½∇Bk · ∇Bi þ∇Ek ·∇Ei þ EðkHiÞ
E �

þ ðγki − vkviÞ½Hp þ∇Bj ·∇Bj þ∇Ej · ∇Ej þ EjH
j
E�; ð42Þ
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where E ¼ hW2, Φ ¼ E þ B2, and Ei ¼ −ϵijkvjBk. The
two gradients ∇ (on each term) symbolize spatial partial
derivatives ∂i (and ∂j), with “·” indicating contraction
among them with the spatial metric γij. Note that, in order
to compute the gradient SGS terms, we need values of the
following derivatives of the pressure ðdp=dρ; dp=dϵ;
dp=dYeÞ. These derivatives can be computed analytically
for a hybrid EoS, but only numerically for tabulated EoSs
(see the discussion in Appendix A).

III. NUMERICAL IMPLEMENTATION

A. Evolution scheme

The publicly available code MHDuet is generated by the
open-source platform SIMFLOWNY [45–47] to run under the
SAMRAI infrastructure [48,49], which provides paralle-
lization and adaptive mesh refinement. The code has
been extensively tested for different scenarios [22,28–30],
including basic tests of MHD and general relativity (GR)
with several numerical schemes. As a default, we use
fourth-order-accurate operators for the spatial derivatives in
the SGS terms and in the Einstein equations (the latter are
supplemented with sixth-order Kreiss-Oliger dissipation); a
high-resolution shock-capturing (HRSC) method for the
fluid, based on the Lax-Friedrich flux splitting formula [50]
and the fifth-order reconstruction method MP5 [51]; a
fourth-order Runge-Kutta (RK) scheme satisfying the
Courant time restriction Δt ≤ 0.4Δx (where Δx is the grid
spacing); and an efficient and accurate treatment of the
refinement boundaries when subcycling in time [52,53]. A
description of the numerical methods implemented can be
found in Appendix B, with further details on the adaptive
mesh refinement (AMR) techniques in Refs. [28,29].
Without extensive testing, we note that when calculating
the leakage quantities in our problems, the code only runs
about 7% slower than without leakage. The addition of LES
slows the code only about 5% more.

B. Realistic, temperature-dependent
equation of state

High-resolution shock-capturing schemes integrate the
fluid equations in conservation form for the conservative
fields fD;DY; τ; Si; Big, while the fluid equations are
written in a mixture of conserved and primitive variables
fρ; ϵ; Ye; p; vi; Big (i.e., the magnetic field is both a
conserved and a primitive field). It is well known that
the calculation of primitive variables from conserved
variables for relativistic fluids requires solving a transcen-
dental set of equations, which are only closed once an EoS
is provided. Realistic EoSs are usually derived from nuclear
physics numerical calculations, such that the pressure is
commonly given as p ¼ pðρ; T; YeÞ in tabulated form.
Note that, since the internal energy appears in our evolution
equations, it needs to be calculated separately from the
pressure also using the EoS table, namely ϵ ¼ ϵðρ; T; YeÞ.

The dominant energy condition places constraints on the
allowed values of the conserved variables

D ≥ 0; S2 ≤ ðDþ τÞ2; DY ≥ 0: ð43Þ

These constraints may be violated during the evolution due
to numerical error, and they are enforced before solving for
the primitive variables. A minimum allowable value of the
conserved density,Dvac, is chosen, and if D falls below this
value, we set vi ¼ 0 andD → Dvac at that point. We choose
Dvac as low as possible for the magnetized neutron star
binary, which is about 9 orders of magnitude smaller than
the initial central density of the stars. If the second
inequality is violated, then the magnitude of Si is rescaled
to satisfy the inequality. Finally, DY is required to satisfy
the constraint on D, and the computed value of Ye must be
in the equation of state table. We try to invert the equations
using a fast three-dimensional (3D) solver [54]. If it fails,
we use instead the more robust one-dimensional (1D)
solver described in Ref. [17]. We summarize these two
solvers below, and further details can be found, for
instance, in Ref. [55].

1. Fast 3D solver

Solvers for two or three variables can be faster in general
than solving for only one, since there are fewer implicit
calls to the table. We use the 3D solver for the field
z≡ hW2,2 as described in Refs. [54,55], given by the
following equations (i.e., the definition of τ, S2, and z) to be
satisfied for the variables fW; z; Tg, namely

�
τ þD − z − B2 þ ðBiSiÞ2

2z2
þ P

�
W2 −

B2

2
¼ 0; ð44Þ

�
ðzþB2Þ2−S2 −

ð2zþB2Þ
z2

ðBiSiÞ2
�
W2− ðzþB2Þ2 ¼ 0;

ð45Þ

z −DW − PW2

DW
− ϵðρ; T; YeÞ ¼ 0: ð46Þ

Note that ρ ¼ D=W, Ye ¼ DY=D [see Eqs. (21) and (22)],
and that p and ϵðρ; T; YeÞ are computed using the EoS. A
multidimensional Newton-Raphson solver requires the
Jacobian of these equations, which can be computed
analytically or numerically. Since this scheme also employs
the temperature directly as an unknown, it does not require
any inversions with the EoS. Once the system has been
solved with a 3D NR scheme, one recovers the final
primitives as

2Note that here h is the total enthalpy and not the specific one
used in many works, as, for instance, in Ref. [55].
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vi ¼ γijSj
zþ B2

þ ðBjSjÞBi

zðzþ B2Þ ; ð47Þ

ϵ ¼ ϵðρ; T; YeÞ: ð48Þ

Because of numerical error, either a solution to these
equations may fall outside the physical range for the
primitive variables or a real solution for z may not exist.
The solutions for ρ, T, and Ye are, at a minimum, restricted
to values in the EoS table, and they are reset to new values
(the minimum allowed value plus 10%) if necessary. A
failure of the recovery is reported when a real solution for
the primitive variables is not found (or it does not exist).
Such a failure occurs very rarely and may be remedied by
slightly increasing the density floorDvac, or trying the more
robust 1D solved described below.

2. Robust 1D solver

We write the transcendental equations in terms of
the rescaled variable x≡ hW2=ðρWÞ where h is the total
enthalpy and Ye is calculated from the conserved fields
DY=D. Following Ref. [39], we rescale the conserved fields
in order to get order-unity quantities, namely

q≡ τ=D; r≡ S2=D2; s≡ B2=D; t≡ BiSi=D3=2:

ð49Þ

Using data from the previous time step to calculate an
initial guess for x, we iteratively solve these equations for x
within the bounds

1þ q − s < x < 2þ 2q − s; ð50Þ

so that the final procedure can be written as follows:
(1) From the equation for SiSi, calculate an approximate

Lorentz factor W, namely

W−2 ¼ 1 −
x2rþ ð2xþ sÞt2

x2ðxþ sÞ2 :

(2) From the definition of D, calculate ρ ¼ D=W.
(3) From the definition of τ in Eq. (22) and the total

enthalpy, calculate

ϵ¼−1þ x
W

ð1−W2ÞþW

�
1þq− sþ t2

2x2
þ s
2W2

�
:

(4) Using this expression for ϵ, find the corresponding
temperature by looking up in the EoS table T ¼
Tðρ; ϵ; YeÞ and then the pressure P ¼ Pðρ; T; YeÞ.

(5) Update the guess for x by solving the equation
fðxÞ ¼ 0 using Brent’s method, where fðxÞ arises

from the definition of the unknown x

fðxÞ ¼ x −
�
1þ ϵþ Pðρ; T; YeÞ

ρ

�
W:

The root of fðxÞ ¼ 0 from Step 5 becomes the new guess
for x, and this process is repeated iteratively until the
solution for x converges to a specified tolerance, which is
ensured if there is a physical solution within the bounds.
Once the solution has been found, the velocity components
are obtained from Eq. (47) by setting z ¼ xρW. One
advantage of this algorithm is that fðxÞ is a function of
a single variable, and, in contrast to a multiple variable
search for a root, robust methods can be used to find any
root that can be bracketed.

C. Solving the eikonal equation

The usual approach to calculating the optical depth
at a given point is to consider some small number of
possible directions in which to integrate the opacity of the
fluid, usually considering radial rays. In general, the
existent algorithms necessarily involve global integrations
that bring with them complexities due to multiple reso-
lutions (from the AMR) and patches (from the domain
decomposition).
In Ref. [16], we introduced a more local approach that is

independent of the particular symmetries of the problem,
where the optical depth at any given point is simply the sum
of the depth incurred to get to a neighboring point plus
the minimum depth among its neighbors. One can justify
such an approach by arguing that neutrinos will explore
all pathways out of the star, not just straight paths. This
approach is also iterative since changes elsewhere do not
immediately affect other areas, as would happen with a
global integration. Physically one expects changes at the
surface to take some time to propagate throughout the star.
However, as noted in Ref. [38], because the depth depends
on the opacity which itself depends on the depth, one
expects to iterate in any case.
Alternatively, the shortest distance from any point to the

zero distance curve can be computed by solving the eikonal
equation describing the motion of wave fronts in optics,
namely

j∇τνj ¼ κν; ð51Þ

where τν is the optical depth for some species of neutrino
and κν its corresponding opacity. In Minkowski spacetime,
the eikonal equation takes the form

j∇uðx⃗Þjflat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂xuÞ2 þ ð∂yuÞ2 þ ð∂zuÞ2

q
¼ fðx⃗Þ ð52Þ

for scalar functions uðx⃗Þ and fðx⃗Þ, and gives the minimal
path line integral from the point x⃗ to the zero level set,
which can be located at infinity, namely
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uðx⃗Þ ¼ min
over different paths

�Z
∞

x⃗
fð⃗lÞdl

�
: ð53Þ

The simple algorithm from Ref. [16] explained above
can be expressed as

Unþ1 ¼ minðdUn
i�1;j�1;k�1Þ þ ΔxF; ð54Þ

where U ¼ Ui;j;k ≈ uðx⃗Þ and F ¼ Fi;j;k ≈ fðx⃗Þ at the grid
point, where d is the normalized distance from the point
xi;j;k to the minimum neighbor xi�1;j�1;k�1 (i.e., d takes

values among 1,
ffiffiffi
2

p
, or

ffiffiffi
3

p
, depending on whether the

point is immediately adjacent, diagonally along a plane
parallel to a coordinate axis, or diagonally along a plane at
45° from a coordinate axis, respectively).
Here we instead adopt a more formal approach, follow-

ing Refs. [56,57]. Adopting a first-order approximation to
the partial derivatives, we write Eq. (52) in N-dimensions as

XN
S¼1

�
U −US

Δx

�
2

¼ F2 ð55Þ

using again thatU ≈ uðx⃗Þ andF ≈ fðx⃗Þ at the grid point and
with US the minimum value of u of the two neighboring
values in the xS direction. In particular, US ranges over the
following quantities:

UX ≡minðUiþ1;j;k; Ui−1;j;kÞ; ð56Þ

UY ≡minðUi;jþ1;k; Ui;j−1;kÞ; ð57Þ

UZ ≡minðUi;j;kþ1; Ui;j;k−1Þ: ð58Þ

The solution of this quadratic equation is given by

U¼ 1

N

XN
S¼1

USþ
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�XN
S¼1

US

�2

−N

�XN
S¼1

U2
S −Δx2F2

�vuut :

ð59Þ

If the discriminant in the square root is negative, then the
various permutations of the lower-dimensional values
ðUXY;UYZ; UZXÞ are computed, and the solution for Unþ1

is then chosen as the minimum of these as detailed in the
following algorithm:
(1) Calculate the minimums ðUX;UY;UZÞ.
(2) Calculate the discriminant for the 3D problem

DXYZ ¼ ðUX þUY þUZÞ2
− 3ðU2

X þ U2
Y þ U2

Z − Δx2F2Þ: ð60Þ

(3) Calculate the solution

Unþ1 ¼
� ðUXþUYþUZÞ

3
þ

ffiffiffiffiffiffiffiffi
DXYZ

p
3

if DXYZ ≥ 0

minðUXY;UYZ; UZXÞ otherwise
;

where the two-dimensional values are computed as
follows:

UXY ¼
� ðUXþUY Þ

2
þ

ffiffiffiffiffiffi
DXY

p
2

if jUX−UY j≤ΔxF
minðUX;UYÞþΔxF otherwise

;

UYZ¼
� ðUYþUZÞ

2
þ

ffiffiffiffiffiffi
DYZ

p
2

if jUY −UZj≤ΔxF
minðUY;UZÞþΔxF otherwise

;

UZX¼
� ðUZþUXÞ

2
þ

ffiffiffiffiffiffi
DZX

p
2

if jUZ−UXj≤ΔxF
minðUZ;UXÞþΔxF otherwise

;

where

DXY ¼ ðUX þ UYÞ2 − 2ðU2
X þ U2

Y − Δx2F2Þ;
DYZ ¼ ðUY þUZÞ2 − 2ðU2

Y þ U2
Z − Δx2F2Þ;

DZX ¼ ðUZ þUXÞ2 − 2ðU2
Z þU2

X − Δx2F2Þ:

The generalization to a curved background can be
performed easily considering the generalized eikonal equa-
tion

j∇uðx⃗Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijð∇iuÞð∇juÞ

q
¼ fðx⃗Þ; ð61Þ

which can be solved by assuming a conformally flat metric
γij ¼ χηij, namely

j∇uðx⃗Þjflat ¼ χ−1=2fðx⃗Þ ¼ ð ffiffiffi
γ

p Þ1=3fðx⃗Þ; ð62Þ

Notice that the same factor can be obtained when comput-
ing the minimal distance Eq. (53), by using the line
element ds2 ¼ γijdxidxj ≈ χ−1dx2.

IV. RESULTS

Here we present a few tests of the code in various
scenarios, followed by a study of a binary neutron star
merger.

A. Tests of the optical depth

We present here a test of our new method for solving the
eikonal equation, Eq. (52), as described in Sec. III C. In
particular, we choose an analytic form of the solution,
uðx; y; zÞ, so that we know in closed form the analytic
source, fðx⃗Þ. In terms of real constants a and b, these two
functions are
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uðx; y; zÞ ¼ exp ð−r2Þ; r2 ¼ x2

a
þ y2

b
þ z2

b
; ð63Þ

fðx; y; zÞ ¼ 2

ab
exp ð−r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x2 þ a2y2 þ a2z2

q
: ð64Þ

Given this function fðx; y; zÞ, we test the algorithm by
comparing the numerical solution, obtained by relaxation
after approximately 20 iterations, with the closed form
of Eq. (63).

We set a domain ½−2; 2�3 with one refinement level and a
minimum resolutionΔxmin ¼ 0.04. In Fig. 1, we make such
a comparison for a spherical case with a ¼ b ¼ 0.25 and an
ellipsoidal case with a ¼ 0.25 and b ¼ 0.05. As is clear
from the figure, we find very good agreement between the
numerical and the exact solutions. We also show with
dashed contours at u ¼ ð0.3; 0.6; 0.9Þ the solution obtained
with the algorithm Eq. (54), which was the one used by
HAD in Paper I. Although both of them behave similarly
near the coordinate axes, the new method preserves the
symmetries of the problem much better.

B. Magnetized, neutron star (cold)

We evolve an isolated, magnetized star using the
LS220 EoS and compare the dominant oscillation frequen-
cies with previous work. In particular, we construct a
star of (gravitational) mass 1.72 M⊙ with temperature
T ¼ 0.01 MeV and assume beta-equilibrium to set Ye.
We perturb the star by adding a purely poloidal magnetic
field with maximum magnitude 8 × 1014 G and evolve
with a constant initial temperature of T ¼ 0.05 MeV,
slightly higher than that at which it was constructed
(but still much smaller than its Fermi energy). The star
is evolved within a coarse-level domain spanning
½−150 km; 150 km�3 with four total levels of refinement
achieving the finest level covering the entire star with a grid
spacing of Δxmin ¼ 144 m.
In Fig. 2 we plot changes to the central pressure and

magnetic field along with the associated Fourier power
spectral densities. Despite some initial transient stage, these

FIG. 1. Tests of the eikonal equation. By adopting an explicitly
spherical (top) or ellipsoidal (bottom) source, we compare the
numerically obtained solution with an analytic solution on the
z ¼ 0 plane. Shown in color map is the analytic function
uðx; y; 0Þ of Eq. (62) while the solid contours represent the
numerical solution obtained from solving the flat eikonal equa-
tion, Eq. (52). The numerical solution agrees very well with the
analytic solution and maintains the same symmetry. For com-
parison, we also include the contours (dashed) obtained with the
scheme implemented in HAD from Paper I, which is largely in
agreement despite some irregularities along the diagonals.

FIG. 2. Perturbed, cold star with the LS220 EoS. The top panel
shows the variations in central density, ρ0ðtÞ=ρ0ð0Þ, and in
central magnetic field magnitude, jB0ðtÞj=jB0ð0Þj. The bottom
panel shows the (normalized) power-spectral density of the
quantities in the top panel. The domain of this evolution spans
½−150 km; 150 km�3 with finest resolution Δxmin ¼ 144 m. The
reference frequencies noted in Table I of Paper 1 are shown with
vertical, dashed, gray lines. Comparing to Fig. 4 of Paper I, the
peak frequencies agree quite well.
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central quantities maintain steady average values avoiding
excessive drift. The three dominant oscillation frequencies
agree well with those obtained in Paper I and other works
using nonlinear perturbation theory.

C. Rotating, magnetized neutron star (hot)

We construct a hot, rotating, magnetized star and evolve
with and without neutrino cooling. In particular, we
construct a 2.1 M⊙ star spinning at 730 Hz with an initial
temperature of 12 MeV described by the HS EoS in beta-
equilibrium. The initial strength of the magnetic field at the
center of the star is jB∘j ¼ 1.8 × 1017 G. The computa-
tional grid is identical to that described in the previous
section for the cold star.
In Fig. 3, we plot the maximum density and temperature

versus time for evolutions of this star. Included in the plot is
the result of the standard, unmagnetized evolution along
with those of evolutions including leakage and both

leakage and an initially poloidal magnetic field. As
expected, the maximum density (generally occurring
at the center of the star) hardly depends on effects from
the magnetic field and neutrino cooling. In contrast,
the maximum temperature decreases faster for those runs
including neutrino cooling as would be expected. However,
this cooling is happening far from the central region of the
star where the temperatures for the different runs are nearly
identical. The optical depth decreases toward the surface
(snapshots of the optical depths are shown in Fig. 4),
allowing the neutrinos to escape. The magnetization, even
at this high level, has essentially no effect on the total
neutrino luminosity.
We display snapshots along the equatorial plane at

t ¼ 5.3 ms of the star in Fig. 4. The optical depth and
vertical component of the magnetic field are very circular,
retaining the initial, axisymmetric structure of the star. The
emission rates of the different species of neutrinos are also
shown, with most of the emission occurring near the
surface. These results show that the code maintains the
stable, rotating star with neutrino cooling and magnetiza-
tion present.

D. Binary neutron star merger

We conclude these results with a study of the coales-
cence of a binary neutron star system. In particular, we
choose the same binary studied in Paper I, which uses the
HS tabulated equation of state to enable easy comparison.
We also investigate possible differences in the neutrino
dynamics induced by the strong magnetic field produced
during the merger, whose amplification is better captured
by the LES.
The initial data for the binary is constructed using

the LORENE library, such that each star has baryonic
mass MB ¼ 1.49 M⊙ with a cold temperature of T ¼
0.01 MeV. The binary has initial separation 45 km, total
ADM mass MADM ¼ 2.74 M⊙, and orbital angular veloc-
ityΩ ¼ 1796 rad s−1. The electron fraction is set so that the
stars are initially in β-equilibrium.
An old neutron star binary such as what we model here is

expected to be cold with, at most, a modest magnetic field.
Our choice to set the stars at an initial temperature of
0.01 MeV is consistent with this expectation and near the
minimum temperature present in the EoS tables. Despite
beginning cold, the stars reach much higher temperatures
during merger due to shock heating and other processes.
Similarly, the magnetic field, unless extraordinarily large,
has essentially no effect during the early inspiral. During
merger, however, the magnetic field grows and can have
significant dynamical effects, particularly on ejecta.
Our binary simulations are evolved in a domain spanning

½−768 km; 768 km�3, using adaptive mesh refinement with
the finest grid spacing Δxmin ¼ 187 m covering the regions
with density ρ ≥ 1013 g=cm3. The other refinement meshes
have increasingly larger sizes, but with coarser resolutions

FIG. 3. Hot, rapidly rotating star. A 2.1 M⊙ (baryonic) star
spinning at 730 Hz with an initial temperature of 12 MeV. The
maximum density and maximum temperature are shown for all
evolutions in the top two panels. The total neutrino luminosity for
all species and central magnetic field strength are shown for the
evolutions using leakage and with a magnetic field, respectively.
With the leakage active, the star cools faster, as expected. An
initial magnetization, even very large, has only a very small
effect, also as expected. Snapshots of this star at t ¼ 5.26 ms are
shown in Fig. 4.
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(i.e., by a factor of either 4 or 2, chosen with parameters).
The inspiral proceeds as expected, performing approxi-
mately 3.5 orbits before merger, as shown in the density
snapshots on the equatorial plane displayed in Fig. 5.
Although we compare our results to those obtained in

Paper I, the MHDuet code incorporates LES techniques
with the gradient SGS model (i.e., with all the coef-
ficients set to zero except the one corresponding to the
magnetic field CM ¼ 1=2) to faithfully capture the
amplification of the magnetic field during the merger
with moderately high grid resolutions, which our pre-
vious HAD code did not. We note again that this
comparison will allow us to estimate the effect of
magnetic fields on the neutrino-driven dynamics during
the first milliseconds after the merger.
The dynamics of the magnetic field evolution can be

observed in Fig. 6, where the field intensity and iso-
density contours are displayed in the orbital plane for the
standard simulation (top row) and the one with LES
(bottom row). A thin, rotating shear layer arises at the
time of the merger between the stars, prone to develop
vortices at small scales induced by the Kelvin-Helmholtz
instability. The LES case is able to capture more
faithfully the amplification of the magnetic field, as
observed qualitatively in Fig. 6. A more quantitative

analysis is performed in Fig. 7, which displays the
average magnetic field in the star, defined as

hBi ¼
R jBjdVR

dV
; ð65Þ

where the integration is restricted to regions where the
mass density is above 1013 g=cm3. Clearly in the LES
simulation, the magnetic field gets amplified by almost 2
orders of magnitude with respect to the standard simu-
lation during the first milliseconds after the merger.
Notice that this large difference is reduced at late times,
a result that has been observed previously when using
medium-low resolutions such as the ones considered
here [23,24].
The neutrino emission and transport are dominated by

the matter density, temperature, and electron fraction.
Figure 8 displays the temperature (in MeV) and the electron
fraction, together with the resulting emission rates (in
erg=s=cm3) at the final time of our simulations. We observe
no qualitative differences between the standard simulation
in the top row and the case with LES at the bottom,
indicating that the magnetic field is not affecting signifi-
cantly the dynamics of the neutrinos, except maybe by

FIG. 4. Hot, rapidly rotating star at late time (t ¼ 5.26 ms). From left to right are shown: top: Optical depths for νe, ν̄e, and νx;middle:
The neutrino luminosities Qe, Qa, and Qx; and bottom: The magnetic field components, Bx, By, and Bz. all along the equatorial plane.
The time evolution for this magnetized star with leakage is shown in (red, dotted line) Fig. 3. The contour lines display constant density
surfaces at logðρÞ ¼ ð10.5; 11; 12; 13Þ g=cm3.
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FIG. 5. Binary neutron star with HS EoS. Snapshots of the density at various times t ¼ ð0; 1.92; 3.84; 5.76; 7.68; 9.6;
11.52; 13.44; 18.24Þ ms during the coalescence. Notice that the variations both due to the neutrino dynamics and by the magnetic
field occur only from the merger onward. The contours display constant density surfaces at log ρ ¼ ð10.5; 11; 12; 13Þ g=cm3. The stars
first make contact around the time t ¼ 9.5 ms (i.e., close to the middle-right panel), and the remnant fluid has largely circularized by the
latest time shown (almost 9 ms after merger).

FIG. 6. Binary neutron star with HS EoS. Snapshots of the magnetic field strength, and the same constant density iso-surfaces as in
Fig. 5, after the merger at times t ¼ ð11.52; 13.44; 18.24Þ ms. The top row corresponds to the standard simulation while the bottom row
shows the one with LES. Both simulations incorporate the leakage scheme.
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some small dephasing. Again, a more quantitative analysis
can be performed by computing the luminosity for each
neutrino species, displayed in Fig. 9. These luminosities
similarly show no significant difference between the
standard and the LES cases.

Here, we initialize the stellar field with realistic values
B ≤ 1012 G, which might increase during the merger due to
different MHD processes. On the other hand, in Paper I
(and most work by other authors) a much larger magnetic
field was set at B ≥ 1015 G. Here, the magnetic field grows
to large values, but this growth takes time. In addition, the
magnetic field that develops a few milliseconds after
merger differs significantly. The field of Paper I retains
large scale structure even after merger, but the growth of the
magnetic field here develops via small scale turbulence
with equipartition between toroidal and poloidal compo-
nents. Its lack of significant large scale structure minimizes
many MHD processes such as the magnetorotational
instability (MRI).
Finally, we compare the resulting gravitational waves in

Fig. 10. The gravitational radiation is described in terms of
the Newman-Penrose scalar Ψ4, which can be expanded in
terms of spin-weighted s ¼ −2 spherical harmonics
[58,59], namely

rΨ4ðt; r; θ;ϕÞ ¼
X
l;m

Cl;mðt; rÞY−2
l;mðθ;ϕÞ: ð66Þ

The coefficients Cl;m are extracted from spherical surfaces
at a radius rext ¼ 300 km. Only a small dephasing at late
times between the two simulations can be observed, which
might suggest some non-negligible effects of the magnetic
field braking the remnant.

FIG. 7. Binary neutron star with HS EoS. Average magnetic
field strength as a function of time, starting approximately at
the merger, for the standard simulation and the LES. Clearly, the
magnetic field grows faster and reaches higher values with the
LES, even though these simulations employ only medium
resolution (see, for instance, Fig. 5 in Ref. [24] to see the effect
of the resolution on LES).

FIG. 8. Binary neutron star with HS EoS. Snapshots of the temperature (left), electron fraction (middle), and neutrino emission rates
(right) at the final time of the simulation t ¼ 18.24 ms, approximately 9 ms after the merger. The top row corresponds to the standard
simulation, while the bottom row shows the LES case. Both of them include magnetic field, although with LES it is much stronger.
Notice that the main difference is a small dephasing between these two simulations, possibly due to the stronger magnetic field.
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Because of the importance of the gravitational waveform
and its global nature, we study the convergence of this
signal for three different resolutions. We consider the
standard run discussed above, and run it with a finer grid
and a less resolved grid such that the resolution is decreased
by a factor of 1.25 with each step down in resolution. We
show the dominant mode C2;2 in Fig. 11 along with the

differences between successive resolutions. We also display
the differences in the phase of the signals. By rescaling the
finer difference by the factor expected for third order
convergence, we see that the differences indicate at least
third order convergence, as expected from previous ver-
sions of this code.

V. CONCLUSIONS

Here, we present the results of our extension of the
MHDuet code, an independent implementation of the
fully relativistic magnetohydrodynamics equations [60].
The code is generated by the open-source software
SIMFLOWNY, and runs under the mature SAMRAI infra-
structure, which has been shown to reach exascale for
simple problems. We have added both large eddy simu-
lation methods developed to study the magnetic field

FIG. 9. Binary neutron star with HS EoS. Luminosities of the
different neutrino species as functions of time, starting approx-
imately at the merger for both the standard simulation and the
LES. Again, both of them are for stars with magnetic fields. The
much stronger magnetic field (roughly 2 orders of magnitude
larger) of the LES simulation arising from its amplification during
the turbulent phase of the merger produces only small deviations
in the neutrino dynamics compared to the standard, magnetized
simulation.

FIG. 10. Binary neutron star with HS EoS. Main mode of the
gravitational waveform as a function of the retarded time (i.e.,
subtracting the traveling time of the wave to the surface where it is
computed), starting approximately at the merger, for the standard
simulation and the LES. Again, no significant differences are
observed due to the presence of strong magnetic fields.

FIG. 11. Convergence test of the binary GW signal. The
primary mode C2;2 for three different resolutions of the binary
evolution (top). The medium and low resolutions differ from the
high resolution by factors of 1.25 and ð1.25Þ2. The differences in
the phase of the signals (middle) and the absolute differences
in the signals (bottom), both measures of the error, are shown, as
is the rescaled difference expected between the higher two
resolutions if the code converges to third order. The phase
appears to converge better than third order while the simple
differences in C2;2 appear convergent at third order. The medium
resolution shown here is the run whose results are presented in the
previous figures.
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amplification that occurs in the turbulent merger regime
and a simplified neutrino transport via a leakage scheme.
We present details about the adopted methods as well
as tests of the code. Although simplified, the leakage
scheme will soon be followed by more advanced approx-
imations to model the neutrinos in combination with LES
techniques.
For the sake of completeness, we have summarized the

evolution equations that are solved for the spacetime, the
fluid, and the neutrinos, as well as the modifications needed
for the LES with the sub-grid-scale gradient model. We
have explained in detail the required steps to extend our
formalism to microphysical, tabulated equations of state.
Finally, we have reviewed the leakage scheme and how to
calculate efficiently the optical depth of the neutrinos. In
particular, we present two novel additions in this paper:
(i) the extension of the gradient SGS model to realistic EoS
and (ii) a more formal approximation to resolve the eikonal
equation for the optical depth, which preserves well the
symmetries of the problem.
We have performed several tests of the code, focusing

on the new additions. We have found that the new solver for
the eikonal equation is more accurate along diagonals than
the original naive method. We have reproduced the oscil-
lationmodes of both cold and hot starswith realistic EoS, and
also computed the luminosity of the neutrinos in such a case.
Finally, we have repeated a binary coalescence from Paper I,
including both LES and leakage. Our findings indicate that
the magnetic field does not affect significantly the dynamics
of the neutrinos. Overall, we assess that the code is correct
and agrees with previous results from other codes. The core
of MHDuet, including its treatment of adaptive mesh bounda-
ries, finite difference methods, and general approach to
solving hyperbolic problems, is quite flexible and has already
been applied to other problems such as boson star mergers
[33] and an alternative theory of gravity [34].
As previously mentioned, we plan to extend MHDuet to

account for neutrinos in a more realistic way, using the M1
truncated-moments formalism with the Minerbo closure.
Such an approach provides for neutrino absorptionwhich has
been shown to be important for a proper characterization of
the secular ejecta from neutron star mergers. In addition,
moment methods go much further than the leakage scheme
with actual directional transport and scattering, which
become increasingly important with longer evolutions of
the postmerger.
Further studies with higher resolutions and with a realistic

EoS chosen consistent with the latest observations from
LIGOandVirgo [61] andNICER [62] are needed to study the
subtle effects of the magnetic field and neutrino dynamics on
multimessenger observables. In particular, with initial data
consistent with GW170817, we plan to examine effects from
the magnetic amplification during merger on angular
momentum transfer and secular ejecta during the postmerger.
Although GW170817 was a “golden” event and perhaps
unique, we can hope that similar, close neutron star merger

events will be observed in gravitational and electromagnetic
bands, especially once third generation detectors come
online.
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APPENDIX A: EXTENDING SGS MODEL
TO GENERIC EOS

Here we extend the gradient SGS tensors from
Refs. [21,22], valid for EoS of the form p ¼ pðρ; ϵÞ, in
order to accommodate the additional variables Ye and DY
(primitive and conserved, respectively) required for a general
EoS p ¼ pðρ; ϵ; YeÞ. We follow the same notation as in
Ref. [21], where Ca denotes the set of conserved evolved
variables andPa is the set of primitive fields. Besides the new
SGS tensorHk

NY
, the only other modification of the previous

results arises in the term Hp ≡∇ dp
dCa ·∇Ca from the new

dependence on the pressure, i.e., pðρ; ϵ; YeÞ,
dp
dCa ¼

dp
dρ

dρ
dCa þ

dp
dϵ

dϵ
dCa þ

dp
dYe

dYe

dCa : ðA1Þ

The only nonzero additional elements of the Jacobian
(conserved-to-primitive) dCa=dPb and its inverse3 dPa=dCb

are, respectively,

dDY

dYe
¼ D;

dDY

dPa0 ¼ Ye
dD

dPa0 ;

dYe

dDY
¼ 1

D
;

dYe

dD
¼ −

Ye

D
;

where Pa0 denote the “old” set of primitive variables (i.e.,
excluding Ye) and Ca0 the “old” set of conserved variables
(i.e., excludingDY). Hence,we note that the newvariables are
only partially coupled to the system through the field D. In
particular, we note that dρ=dDY ¼ dϵ=dDY ¼ 0. We can
now compute (A1) and, therefore, obtain the following new
expression for Hp:

3This inversion is the only nontrivial new calculation, per-
formed essentially using Mathematica.
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Hp ¼∇
�
dp
dρ

dρ

dCa0 þ
dp
dϵ

dϵ

dCa0

�
·∇Ca0 þ∇

�
dp
dYe

dYe

dCa

�
·∇Ca

¼Hold
p þ∇

�
1

D
dp
dYe

�
·∇DY −∇

�
Ye

D
dp
dYe

�
·∇D

¼Hold
p þ∇ dp

dYe
·∇Ye−

2

D
dp
dYe

∇Ye ·∇D; ðA2Þ

where Hold was the expression obtained for the EoS
p ¼ pðρ; ϵÞ.

APPENDIX B: NUMERICAL SCHEMES

Here we present an overview of the numerical schemes
(i.e., the time integrator and the spatial discretization
for smooth and for nonsmooth solutions) available in
SIMFLOWNY and their implementation in the SAMRAI

infrastructure.
We employ the method of lines to separate the time from

the space discretization. Within this approach, the time
integration of the equations is performed with the standard
fourth order RK that is written in the standard Butcher form
in Table I.
The spatial discretization of the Einstein equations is

performed using fourth order, centered, finite differences.
For some quantity Ui;j;k defined at a grid point ðxi; yj; zkÞ,
we present the operators used to compute derivatives along
the x-axis with similar expressions for derivatives along the
y- and z-axes. The first order derivative operators can be
written as

∂xUi;j;k ¼
1

12Δx
ðUi−2;j;k − 8Ui−1;j;k

þ 8Uiþ1;j;k − Uiþ2;j;kÞ þOðΔx4Þ: ðB1Þ

The second order derivative is

∂xxUi;j;k ¼
1

12Δx2
ð−Ui−2;j;k þ 16Ui−1;j;k − 30Ui;j;k

þ 16Uiþ1;j;k −Uiþ2;j;kÞ þOðΔx4Þ: ðB2Þ

The second order, mixed derivatives are obtained by
applying the first order derivative operator twice. For
instance, the xy derivative would be just

∂xyUi;j;k ¼ ∂xð∂yUi;j;kÞ ¼ ∂yð∂xUi;j;kÞ: ðB3Þ
We use centered derivative operators for all the derivative

terms except for the advection terms, which are generically
proportional to the shift vector βi. In those cases, we use
one-sided derivative schemes depending on the sign of the
shift, namely

∂xUi;j;k ¼

8>>>>><
>>>>>:

1
12Δx ð−Ui−3;j;k þ 6Ui−2;j;k − 18Ui−1;j;k

þ10Ui;j;k þ 3Uiþ1;j;kÞ if βx < 0;
1

12Δx ðUiþ3;j;k − 6Uiþ2;j;k þ 18Uiþ1;j;k

−10Ui;j;k − 3Ui−1;j;kÞ if βx ≥ 0:

A small amount of artificial dissipation is applied to the
spacetime fields in order to filter the high frequency modes
of the solution which are not truly represented in our
numerical grid (i.e., their wavelength is smaller than the
grid sizeΔx). We use the Kreiss-Oliger dissipation operator
[63] that preserves the accuracy of our fourth-order
operators and takes the form (i.e., for instance, along the
x-direction) (again, written in terms of the x-direction)

Qx
dUi;j;k ¼ σðΔxÞ5ðDxþÞ3ðDx

−Þ3Ui;j;k

¼ σ

64Δx
ðUi−3;j;k − 6Ui−2;j;k þ 15Ui−1;j;k

− 20Ui;j;k þ 15Uiþ1;j;k − 6Uiþ2;j;k þ Uiþ3;j;kÞ;
ðB4Þ

where σ ≥ 0 is the dissipation parameter.
The MHD equations are written in conservation law

form

∂tUþ ∂kFkðUÞ ¼ SðUÞ; ðB5Þ
where U is the vector of evolved fields and FkðUÞ, SðUÞ
their corresponding fluxes and sources, which might be
nonlinear but depend only on the fields and not on their
derivatives. This form of the equation allows us to use
HRSCmethods [64] to deal with the possible appearance of
shocks and to take advantage of the existence of weak
solutions in the equations.
A discrete conservative scheme of Eq. (B5) (i.e., the

change of the cell average is given by the difference in
fluxes across the boundary of the cell) can be obtained by
approximating the derivatives of the fluxes, for instance
along the x-direction, as follows:

∂xF ≈
1

Δx
ðF̂iþ1=2 − F̂i−1=2Þ; ðB6Þ

where the problem consists of finding a nonoscillatory,
high-order approximation to the interface values of F̂iþ1=2.
Thus one can set F̂iþ1=2 ¼ RðF½s�Þ, where RðÞ is a highly
accurate reconstruction scheme providing a stable interface
flux value from pointwise neighboring values, while the

TABLE I. Butcher tableau for the standard explicit fourth order
RK (with four substeps).

0 0 0 0 0
1=2 1=2 0 0 0
1=2 0 1=2 0 0
1 0 0 1 0

1=6 2=6 2=6 1=6
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index [s] spans through the interpolation stencil. The
crucial issue in HRSC methods is how to approximate
the solution of the Riemann problem, by reconstructing the
fluxes at the interfaces with information from the left (L)
and the right (R) states such that no spurious oscillations
appear in the solutions.
We consider the following combination of the fluxes and

the fields, at each grid point xi:

F�
i ¼ 1

2
ðFi � λUiÞ; ðB7Þ

where λ is the maximum propagation speed of the system in
the neighboring points. Then, from the neighboring nodes
fxi−n;…; xiþ1þng (i.e., where n is the width of the stencil),
we reconstruct the fluxes at the left and right of each
interface as

FL
iþ1=2 ¼ RðfFþgÞ; FR

iþ1=2 ¼ RðfF−gÞ: ðB8Þ

The number 2ðnþ 1Þ of such neighbors used in the
reconstruction procedure depends on the order of the
method. SIMFLOWNY already incorporates some com-
monly used reconstructions, such as the piecewise para-
bolic method [65], the weighted essentially nonoscillatory
reconstruction methods [66,67], and the fifth order mon-
otonic-preserving scheme (MP5) [51], as well as other
implementations such as the finite-difference Osher-
Chakravarthy families [68]. We typically use the MP5
scheme in our code MHDuet.
We use a flux formula to compute the final flux at each

interface as

F̂iþ1=2 ¼ FL
iþ1=2 þ FR

iþ1=2: ðB9Þ

Note that this reconstruction method does not require the
characteristic decomposition of the system of equations
(i.e., the full spectrum of characteristic velocities).
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