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This paper examines the general relativistic model of a geometrically thick configuration of an accretion
disk around an electrically charged black hole in an accelerated motion, as described by the C-metric
family. We aim to study effects of the spacetime background on the magnetized version of the thick disk
model via the sequences of figures of equilibrium. While maintaining the assumption of non-self-
gravitating (test) fluid, we newly explore the influence of the strength of the large-scale magnetic field with
field lines organised over the length scale of the black-hole horizon. We systematically analyze the
dependence on a very broad parameter space of the adopted scenario. We demonstrate that the Cmetric can,
in principle, be distinguished from Kerr black-hole metric by resolving specific (albeit rather fine) features
of the torus, such as the location of its center, inner, and outer rims, and the overall shape. The analytical
setup can serve as a test bed for numerical simulations.
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I. INTRODUCTION

Black holes are the most extreme astrophysical sources of
the gravitational field in our Universe: they create an event
horizon, hide a singularity, accrete and eject matter from
their vicinity, exhibit frame-dragging effects that act on the
surrounding particles and fields, produce gravitational
waves by violent collisions, etc., (see, e.g., Refs. [1–4]).
An outstanding series of available observations leads to a
general agreement that the properties of many astrophysical
objects could be best explained in the framework of the
black-hole accretion disk scenario [5,6].
One of the theoretical models of accretion disks is the

picture of a geometrically thick fluid configuration tori in a
stationary, axially symmetrical structure and no magnetic
field. This scheme was first introduced in seminal works of
the early 1970s [7–14]. This model provides a general
method to build figures of equilibrium of the perfect fluid
orbiting around an isolated, stationary symmetric black
hole. Self-gravity of the fluid was neglected. Later, by
confirming the decisive role of magnetic fields for the fluid
effective viscosity [15], Komissarov proposed an analytical
version of the magnetized black-hole torus [16]. The latter
work imposes various assumptions, such as the constant
specific angular momentum distribution and a strictly

toroidal magnetic field configuration; nonetheless, it can
serve as a very useful setup for numerical tests of numerical
Magnetohydrodynamics (MHD) schemes [17]. There are
also studies that consider different assumptions in the setup
[18–21].
The above-mentioned approaches consider accretion

onto a nonrotating (Schwarzschild) or rotating (Kerr) black
hole in the center of the torus. In the present work, we focus
on the thick disk model in the spacetime of a spinning
charged accelerating black hole described by a generalized
family of the C metric [22,23]. The C metric describes the
spacetime of two black holes of equal mass and opposite
electric charge. The two black holes undergo acceleration
that is directed away at a constant rate. The origin of
acceleration can be interpreted as due to a cosmic string that
causes a conical singularity and pulls the black holes away
from each other. Despite that the presence of singularity
complicates the global interpretation, the C metric can be
employed as a toy model to study the effects of an
accelerated black hole onto surrounding test matter within
a limited region. Indeed, the origin of this acceleration
which is the conical singularity can be replaced, for
example, by a magnetic flux tube [24].
Originally, the C metric belongs to a large class of exact

solutions discovered by Levi-Civita [25]. By means of a
series of different, rather cumbersome transformations of
the Plebański-Demiański class of electrovaccuum space-
times [26], one could obtain the spinning, charged C
metric. Furthermore, Hong and Teo expressed the metric
in a factorized version that is easier to work and can be
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presented in Boyer-Lindquist–type coordinates [27,28]. In
fact, the maximal analytical extension of the line element
describes two causally disconnected black holes accelerat-
ing in the opposite directions [29].
In this paper, we investigate this background with the

aim of studying the properties of magnetized tori and the
morphology of the equipotential surfaces.
In this paper, we investigate the background spacetime

of the C metric with the aim of studying the properties of
magnetized tori and the morphology of the equipotential
surfaces. There are different motivations to consider this
research. First of all, this is an exact solution to Einstein’s
field equation, which is worth understanding for its own
sake. Besides, most of the works in the astrophysics area
have been done by assuming the Schwarzschild or Kerr
metrics are the best description of astrophysical compact
objects in the relativistic astrophysics area. Second,
astrophysical observations may not all fit within the
general theory of relativity by employing just to a
restricted family of Kerr spacetime [30–32]. It appears
entirely natural to explore departures due to small electric
charge and translatory motion of an accelerated
black hole.
The C metric allows for electric charge and acceleration

parameters. In fact, even if astrophysical black holes are
assumed to be neutralized by their environment, a tiny net
equilibrium charge may remain [33,34]. Besides, consid-
ering the acceleration parameter in this setup may provide
first steps to a (semi)analytical description of stellar-mass
black holes that have received recoil velocity at their
formations. In fact, there is a widespread agreement that
the birth kicks of black holes are necessary to explain the
large distances above the Galactic plane achieved by some
binaries [35] and caused the black hole to accelerate within
a local cosmological medium.
In this perspective, the family of the C metric could be a

hypothetical candidate for objects that exist in nature. To
investigate this question, the study of its fingerprint in the
observational data can be a proper first step along with
analytical analysis. On the other hand, it seems the only
source of information that we have in the strong gravity
regime is coming from its environment, like from the
shadow or accretion disks, especially with the advent of
horizon-scale observations of astrophysical black holes.
There is a vast amount of literature on the lensing in this
metric (see, e.g., Refs. [36–39]) and its radiative nature
[40,41]. To our knowledge, the influence of generalized
C-metric parameters on accretion disks has not yet been
properly examined.
The organization of the paper is as follows: the spacetime

is briefly explained in Sec. II. The relativistic magnetized
tori are presented in Sec. III. The results and discussion are
presented in Sec. IV, and the conclusions are summarized in
Sec. V. In this paper, the geometrized units where c ¼ 1,
and G ¼ 1, also the signature ð−þþþÞ are used.

II. SPINNING CHARGED C-METRIC

The family of the C metric has accelerating nature and is
considered as describing accelerating black holes [29]. The
spinning charged C metric in Boyer-Lindquist–type coor-
dinates [28] reads as

ds2 ¼ 1

Ω2

�
−
f
Σ

�
dt − asin2θ

dφ
K

�
2

þ Σ
f
dr2

þ Σr2
dθ2

g
þ gsin2θ

Σr2

�
adt − ðr2 þ a2Þ dφ

K

�
2
�
; ð1Þ

with the metric functions

Ω ¼ 1þ αr cos θ; ð2Þ

fðrÞ ¼ ð1 − α2r2Þ
�
1 −

2m
r

þ e2 þ a2

r2

�
; ð3Þ

gðθÞ ¼ ðe2 þ a2Þα2 cos2 θ þ 2mα cos θ þ 1; ð4Þ

Σðr; θÞ ¼ a2

r2
cos2 θ þ 1; ð5Þ

ξ ¼ α2ðe2 þ a2Þ þ 1; ð6Þ

K ¼ ξþ 2mα; ð7Þ

where t ∈ ð−∞;þ∞Þ, θ ∈ ð0; πÞ, r ∈ ð0;þ∞Þ. The metric
has four independent parameters: the mass m, the electric
charge e, the rotation a, and the so-called acceleration
parameter α.
In this metric, r ¼ 0 is the curvature singularity, and

there is also a conical singularity on the θ axis. In fact, the
conical deficit is associated with the presence of a cosmic
string. Since the deficits along both axes θ ¼ 0 and θ ¼ 2π
are not the same, this imbalance tension is the origin of the
driven acceleration. However, the parameterK in the metric
regulates the distribution of tensions along either axis and
allows φ to be 2π-periodic. It is also worth mentioning that
a negative deficit is also possible; however, theoretically,
this would be sourced by a negative energy object.
Almost all analysis considering the family of the C

metric revolves around the coordinate ranges, which are
dictated by the metric functions and their root configura-
tions. First of all, the conformal factor Ω determines the
location of the boundary

rb ¼ −
1

α cos θ
: ð8Þ

In addition, the roots of metric function fðrÞ correspond to
horizons. Thus, fðrÞ should have at least one root for r ∈
ð0; 1αÞ to have a black hole in the spacetime. In general,
mostly with nonvanishing charge e, generic configurations
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have different distinct horizons. In fact, they happen to be
in a pair where they are known as inner and outer horizons.
Like the regular Reissner-Nordstroem solution, they typ-
ically approach one another and vanish for relatively high
charge. Furthermore, when the acceleration horizon is
present, there is a second outer acceleration horizon, and
both intersect with the boundary. In general, the pairs of
horizons separated the spacetime into different regions
which share the same signature. For astrophysics point of
view, we are interested in studying the accretion disk in the
outer communication region between the outer horizon and
the acceleration horizon. In Fig. 1, the places of the inner
and outer horizons are presented for the chosen parameters.
As we see, by increasing e, the places of horizons become
closer to each other and to the black hole. However, since
the accelerating horizon depends on α, the valid region
becomes wider. The same behavior is expected for increas-
ing a, as the metric function fðrÞ is symmetric in
parameters e and a.
Finally, from the analyzing the θ coordinate, the metric

function gðθÞ should have positive roots in ½0; π�.
Therefore, it is required to have

e2 þ a2 ≤ m2; ð9Þ

and the following condition should be fulfilled:

2mα ≤
�
2

ffiffiffiffiffiffiffiffiffiffi
ξ − 1

p
ξ > 2;

ξ 0 < ξ ≤ 2.
ð10Þ

Figures 2 and 3 show different parametric setups. The
hatched parts are the excluded regions by Eq. (10) for
chosen parameters. We see that this condition acts as an
upper bound on the rotation or the acceleration for
relatively small parameters. Figure 4 shows the metric
function gðθÞ for chosen parameters. As it has shown, the
forbidden region is the hatched part, which shrinks as a
and e increase since gðθÞ is also symmetric with respect to
a and e.

Before we describe the construction of the relativistic
thick disk model, we briefly discuss the modified von
Zeipel radius (or radius of gyration) as an important
concept of the thick disk model [42]. This radius

FIG. 1. Places of horizons as a function of rotation parameter a,
for different charge parameter e.

FIG. 3. Allowed parametric regions for the spinning charged C
metric as a function of a. The regions marked out with hatching
correspond to the forbidden regions. The first one represents the
result fore ¼ 0, and the secondone represents the result for e ¼ 0.7.

FIG. 2. Allowed parametric regions for the spinning charged C
metric as a function of e. The regions marked out with hatching
correspond to the forbidden regions. The first one represents the
result fora ¼ 0, and the secondone represents the result fora ¼ 0.5.
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determines surfaces of constant R, which for an axisym-
metric and the stationary metric is defined as

R ¼ g2φφ
g2tφ − gttgφφ

; ð11Þ

with respect to the stationary observers, and known as von
Zeipel cylinders [43,44]. In Fig. 5, we see the effect of
parameters on this radius for different sets of α, e, and a in
this spacetime. In brief, this radius helps to analyze circular
particles motion and provides an intuitive image of them in
this spacetime; besides, this radius is related to the inertial
forces. In this concept using the von Zeipel theorem, we can
conclude that for a constant angular momentum distribu-
tion the surfaces of constant R and constant Ω coincide.
This model is summarized in the next section.

III. RELATIVISTIC THICK DISK MODEL

The relativistic thick disk model considers perfect fluid
equilibria of matter with the barotropic equation of state
orbiting in the azimuthal direction. This equlibrium tori can
study objects with sufficient radial pressure gradients,
which tends to enlarge the vertical size of the disk.
Additionally, it models the radiatively inefficient and
non-self-gravitating accretion disks without accretion flow
analytically based on Boyer’s condition [45]. Within the

assumption of this model, the 4-velocity and stress-energy
tensor are determined by

uμ ¼ ðut; 0; 0; uφÞ; ð12Þ

Tμ
ν ¼ wuνuμ þ δμνp; ð13Þ

where the dissipation processes are neglected [46]. Here, w
is the enthalpy, and p is the pressure. The relativistic Euler
equation by considering the projection of conservation of
stress-energy tensor into the plane normal to the 4-velocity
is written as [47]

Z
p

pin

dp
w

¼ − ln jutj þ ln jðutÞinj þ
Z

l

lin

Ωdl
1 − Ωl

; ð14Þ

where l ¼ − uφ
ut
, Ω ¼ uφ

ut , aand the subscript in refers to the
inner edge of the disk. The integrability condition exhibits
Ω ¼ ΩðlÞ, and this relation fulfills the relativistic von
Zeipel theorem for a toroidal magnetic field [48]. This
theorem states that the surfaces of constant pressure
coincide with the surfaces of the constant enthalpy if
and only if surfaces of constant Ω and constant l coincide.
In other words, the surfaces “R ¼ const.” coincide with the
surfaces “Ω ¼ const.,” as mentioned earlier.

FIG. 4. Plots of metric function gðθÞ. The red line corresponds to gðθÞ ¼ 0, and the hatched region shows gðθÞ < 0.
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In what follows, we continue with the generalization of
the thick disk model by considering the magnetic field that
has been developed by Komissarov [16].

A. Magnetized version

The dynamical evolution of the disk model in the
presence of magnetic field is governed by the following
conservation laws [46,49]:

∇νTνμ ¼ 0; ð15Þ

∇νðρuνÞ ¼ 0; ð16Þ
∇νðbνuμ − bμuνÞ ¼ 0; ð17Þ

which are the energy-momentum conservation, baryon con-
servation, and induction equation, respectively. Here, ρ is the
mass density, bμ are the components of magnetic field and
they are given by magnetic pressure in the fluid frame as
jbj2 ¼ 2pm [46,49]. The total energy-momentum tensor is
given by

Tνμ ¼ ðwþ jbj2Þuνuμ þ
�
pgas þ

1

2
jbj2

�
gνμ − bνbμ; ð18Þ

where pgas is the gas pressure, and as mentioned, the
dissipation processes are negligible. By assuming the model
is axisymmetric and stationary,

ur ¼ uθ ¼ br ¼ bθ ¼ 0: ð19Þ

Equation (14) is generalized to

Z
p

0

dp
w

þ
Z

p̃m

0

dp̃m

w̃
¼ − ln jutj − ln jðutÞinj þ

Z
l

lin

Ωdl
1 −Ωl

;

ð20Þ

where p̃m ¼ Lpm and w̃ ¼ Lw, with L ¼ g2tφ − gttgφφ. To
solve this equation, we assume the relations [16]

p ¼ Kwκ; p̃m ¼ Kmw̃η; ð21Þ

where K, Km, κ, and η are constants. Further, p̃m can be
rewritten in terms of the magnetic pressure as
pm ¼ KmLη−1wη. Equation (20) allows that on the surface
of the disk and its inner edge the pressures vanish by choosing
the integration constant. Thus, Eq. (20) is integrable,

W −Win þ
κ

κ − 1

p
w
þ η

η − 1

pm

w
¼

Z
l

lin

Ωdl
1 −Ωl

; ð22Þ

where W ¼ ln jutj. This equation implies Ω ¼ ΩðlÞ [47];
therefore, by choosing Ω ¼ ΩðlÞ, equipotential surfaces W
and pressure p will be determined. In addition, to fix the
geometry of the equipotential surfaces, it is required to choose

FIG. 5. Von Zeipel cylinders with respect to the stationary observers. The plots show poloidal sections across the constantR surfaces,
where the circular timelike motion of the fluid is possible. Colors correspond to different values of the radius, as listed on the color bar to
the right of each panel. Selected contours are indicated with black lines.
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angular momentum distribution l. In this work, we
consider the constant angular momentum l0, while choosing
the constant distribution profile causes the right-hand
side of Eq. (22) to vanish, and by specifying Win, one
can obtain the solutions. Finally, the total potential is
given by

Wðr; θÞ ¼ 1

2
ln

���� L
gφφ þ 2l0gtφ þ l2

0gtt

����: ð23Þ

However, l0 should be chosen in the interval between the
marginally stable orbit lms and themarginally boundorbit lmb,
to constructing a finite-size disk [47]; hence,

�
Win ≤ Wcusp if jlmsj < jl0j < jlmbj;
Win < 0 if jl0j ≥ jlmbj:

ð24Þ

The cusp point is defined as the circle in the equatorial plane
on which the pressure gradient vanishes and the specific
angular momentum of the disk equals the Keplerian angular
momentum. Besides, the pressure at the center of the disk,
denoted by index c, is determined by

pc ¼ wcðWin −WcÞ
�

κ

κ − 1
þ η

βcðη − 1Þ
�

−1
; ð25Þ

the center of the disk is the placewherewe have themaximum
pressure. Here, β ¼ p=pm is the magnetization parameter.
Thevariables of themodel are thenut,uφ,bt,bφ,W,w,p, and
pm. Furthermore,Win andWc are computed from l0, and by
using the equation of state one can find K and Km, then the
solution is obtained utilizing Eqs. (22) and (23).
In what follows, we present the thick disk model in this

spacetime; however, because of the conical deficit, the disk
does not lie on the equatorial plane, and finding conditions
of existence of equipotential surfaces is a rather a chal-
lenging task.

IV. RESULTS AND DISCUSSION

In this section, we analyze the impact of the different
parameters of the model on the morphology of the
equipotential surfaces.
We start by examining the possibility of having solutions

for this disk’s model rely on the variation of the parameters.
To have better insight into the role of acceleration param-
eter, first we consider the nonspinning case. Figure 6 shows
the regions where we may have a disk in the nonspinning
charged setup.
In the panel, the intersection of the dashed curve with the

white and the dark-blue areas shows the possible places for
choosing the center of the disk and the cusp point,
respectively. As we see, the acceleration parameter α plays

FIG. 6. Possible region for having the thick disk model. The dashed curves show when ∂rW ¼ 0 and ∂θW ¼ 0. The dark blue region
shows the area where the conditions for a maximum ofWðr; θÞ are fulfilled. The white area depicts where the conditions for a minimum
of Wðr; θÞ are fulfilled.
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a crucial role in the existence of solutions. As a result, as α
even slightly increases, almost the possibility of having
solutions decreases dramatically. Therefore, we can build
this disk’smodel only for relatively small acceleration.On the
other hand, the charge parameter e has an imperceptible
impact and positively contributes to having solutions.
Especially, the charge’s effect manifests clearly when α is
relatively large. For example,with a comparison in the second
row for relatively large α and vanishing e, we do not have a
solution, while by increasing e, we obtain solutions.
Figure 6 also shows that the distance between the center

and the cusp point changes as a monotonic decreasing
function of α. This leads to the larger disk structure for
smaller rotation parameters a. In conclusion, as α increases
with a moderate rate, the disk structure becomes smaller,
and finally it vanishes. Besides, the deeper analysis of the
panel manifests the possibility of the existence of two cusps
for some choices of parameters.
In Fig. 7, by using Fig. 6, we choose a solution

possessing an inner cusp, a center, and an outer cusp to
construct the largest possible model. In Fig. 7, one can
clearly see that for vanishing rotation in the first column
there is the possibility of having an inner cusp and an outer

cusp specified by the red curves. In addition, by increasing
charge, the closed equipotential surfaces also become
larger, as predicted by Fig. 6.
In columns 2 and 3 of Fig. 7, we also consider the

rotation parameter a for comparison. In general, the deepest
analysis reveals that the effect of the rotation parameter a
on having solutions is not strong compared to α as we see in
Fig. 6 but is stronger than the effect of the charge parameter
e. In fact, parameter a, like α, has a negative effect on
having solutions, and for relatively higher acceleration and
rotation parameters, we do not find any disk structure,
unless we add a relatively high charge as far as it is
possible.
In Fig. 6, we see the distance between the center, and the

cusp point is a monotonic increasing function of e, while it
is a monotonic decreasing function of a. Therefore, the
larger disk structure for bigger charge values e and smaller
rotation parameters a is predicted. In other words, contrary
to e, by increasing a and α, the center and the cusp’s
locations approach one another, and gradually we lose
solutions.
Furthermore, in the second and third columns of Fig. 7

by considering rotation, the possibility of having the inner

FIG. 7. Contour map of the equipotential surfaces. The red lines show the equipotential corresponding to the inner and outer cusps.
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cusp is strongly reduced, while increasing the possibility
of the outer cusp, in fact, leads matter to flow
outward.
In addition, by increasing α and e, we obtain closed

equipotential surfaces more oriented away from the hori-
zontal axis. Of course, the effect of α is more decisive than
e in this behavior; namely, as α even slightly increases, the
disk deviates from the horizontal axis noticeably, which can
be seen more clearly in Figs. 8 and 9.
In general, as e increases, we expect the matter to be

concentrated closer to the inner edge of the disk since the
slope to reach the cusp is steeper. On the contrary,
the higher values of α and amore spread the matter through
the disk because the value of the equipotential surface at the
center and at the cusp becomes closer as a increases.
In Fig. 8, we examine the effect of the magnetization

parameter βc and the dependency of the disk structure and
its orientation on the parameter e in the vicinity of the
compact object for a fixed value of acceleration parameter α
and vanishing rotation. In the first column we chose high
magnetized model, and in the second row, we chose a
relatively high charged one. In fact, comparing columns
shows that the magnetization parameter does not influence
the disk’s geometry; however, it changes the distribution of
matter inside the disk and shifts the location of the rest-
mass density maximum, which is pointed out as the dashed
lines in Fig. 8. In addition, comparing rows shows that we

have a larger oriented disk for larger values of e.
Moreover, the matter is more concentrated in the inner
part of the disk, as was predicted in the previous Figs. 6
and 7.
In Figs. 9 and 10, we focus more on the impact of only

one parameter α and a on the disk structure, respectively.
Figure 9 presents the profound impact of α on the geometry
and orientation of the disk for a fixed value of e and the
magnetization parameter for the vanishing rotation. In fact,
according to the last row of Fig. 6, the possibility of having
solutions for relatively larger values of α depends on having
large values for e, so the effect of higher α on the disk
could be neutralized only partially with the higher charge
values.
Figure 10 shows the dependency of the disk structure on

the parameter a for the fixed parameters α, e, and βc. As
expected, increasing a changes the disk size and the
distribution of matter inside the disk. Furthermore, we
do not have an inner cusp for any value of rotation
parameters. In addition, increasing α and a shifts the disk
farther away from the compact object, contrary to an
increase in e.
As a final point, it is worth mentioning that, because of

the asymmetry with respect to the equatorial plane, the
accretion disks in this spacetime, in general, are likely to be
unstable even to axis-symmetric instabilities, which is the
subject of the following work.

FIG. 8. Contour map of the rest-mass density of magnetized disk. The dashed lines point the center of the disk located at rc ¼ 7.5.
Column 1 shows highly magnetized disk, and column 2 depicts the low-magnetized one.
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V. CONCLUSION

In this paper, we analyzed equilibrium sequences of
magnetized, non-self-gravitating disks around a spinning
charged accelerating black hole. This solution is described
via the generalized C-metric family, which is briefly
explained in Sec. II. In this procedure, we considered
the approach of Komissarov [16] to attach a dynamically
toroidal magnetic field to the model.
More precisely, we have analyzed the influence of the

magnetization parameter βc, charge e, rotation a, and in

particular accelerating parameter α on the structure of the
magnetized thick disk model. On one hand, we have shown
that changing the magnetization parameter βc has a
noticeable effect on the location and amplitude of the
rest-mass density maximum, also distributing the matter
inside the disk. The effect of the magnetization parameter is
in complete agreement with previous studies using this
model e.g., [16]. Furthermore, in this case, the range of
isodensity contours increases, which is compatible with the
increase of rest-mass density in the inner part of the disk.

FIG. 9. Contour map of the rest-mass density of highly magnetized disc. The dashed lines point the center of the disk located
at rc ¼ 6.5.

FIG. 10. Contour map of the rest-mass density of highly magnetized disk for various spin values. The dashed lines point the center of
the disk. Those solutions have the same parameters (α, L, and e) of the nonrotating solution given at the bottom left of the Fig. 8.
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Indeed, this result remains valid for any chosen value of
other parameters.
On the other hand, we have seen the effect of varying the

metric parameters: acceleration α, charge e, and rotation a
on the disk’s geometry, orientation, and its overall shape.
We have also shown that the acceleration parameter plays
a crucial role in the existence and behavior of the solutions
in this setup. In conclusion, we can have the thick disk
solution only for relatively small values of α, and by
increasing α, the disk structure becomes smaller and slowly
oriented away from the horizontal axis and gradually
vanishes. Furthermore, higher values of α shift the disk
farther away from the black hole. Additionally, a has a
similar effect but weaker on the structure; by increasing a,
the disk becomes thinner and smaller and more oriented
concerning the horizontal axis until it vanishes completely.
Contrary to these two parameters, an increase in e increases
the disk size and the possibility of having solutions.
In addition, we have seen that e changes the distribution

of matter inside the disk in the opposite way of α and a.
Besides, increasing α and a shifts the disk farther from the
compact object, contrary to an increase in e. However, we

should emphasize that the strength of the parameters are not
the same; among these three parameters, α has a more
substantial and e has the weaker effect on the disk structure,
in comparison. In general, the impact of the charge
parameter is the inverse of α and a in any aspects regarding
the disk properties.
As a further step of this work, the timelike circular

motion can be studied. The instability of the resulting
solution also deserves a proper analysis. It is also of some
interest to apply these models as the initial conditions in the
numerical simulations and test their ability to account for
observable constraints of astrophysical systems.
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