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The existence of quark matter inside the cores of heavy neutron stars is a possibility which can be probed
with modern astrophysical observations. We use a vector and axial-vector meson extended quark-meson
model to describe quark matter in the core of neutron stars. We discover that an additional parameter
constraint is necessary in the quark model to ensure chiral restoration at high densities. By investigating
hybrid star sequences with various parameter sets, we show that low sigma meson masses are needed to
fulfill the upper radius constraints and that the maximum mass of stable hybrid stars is only slightly
dependent on the parameters of the crossover-type phase transition. Using this observation and results from
recent astrophysical measurements, a constraint of 2.5 < gV < 4.3 is set for the constituent quark–vector
meson coupling. The effect of a nonzero bag constant is also investigated, and we observe that its effect is
small for values adopted in previous works.
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I. INTRODUCTION

The theory of strong interaction, QCD, is notoriously
difficult to tackle, especially at high but not very high
densities or temperatures (around the chiral phase boun-
dary). Although lattice Monte Carlo calculations in the last
decades achieved immense progress by solving QCD at low
densities and revealing the nature of strongly interacting
matter [1,2], the sign problem hinders their application at
high densities [3]. On the other hand, perturbative methods
only become reliable at very high energies, not relevant for
most physical scenarios involving dense nuclear matter [4].
From the experimental side, ALICE at CERN [5] and
PHENIX and STAR at RHIC [6,7] also managed to explore
QCD at low density and high temperature. Up to this day,
experimental data at high densities are scarce and have
rather bad statistics [7,8]; however, multiple experimental
facilities that are under construction are designed to explore
this region with higher precision in the near future [9,10].
One possibility to explore this area is the usage of

effective theories, which can be applied at finite density and
provide important insight about certain aspects of strongly
interacting matter. In our approach, the underlying principle

of constructing such a model is to require that the
Lagrangian—involving composite particles (mesons and
constituent quarks) instead of the fundamental quarks and
gluons—has the same global symmetries as QCD itself.
One group of these models consists of chiral effective field
theories, which are designed to describe chiral restoration at
high temperatures and densities and are expected to be
reliable in the vicinity of chiral phase transition.
Recent studies, based on astrophysical measurements in

the last few years, argue that deconfined quark matter might
also exist inside the core of neutron stars (NSs) and in dense
stellar remnants (see, e.g., Refs. [11,12]). The emergence of
increasingly robust predictions were made possible by
major advances in the observation of NSs in the previous
decade, which have already put multiple constraints on the
equation of state (EoS) of dense strongly interacting matter.
These constraints stem from a variety of astrophysical
observations, ranging from the discovery of NSs with
masses of 2 M⊙ [13–16], through gravitational-wave
measurements of the inspirals of NS-NS systems
[17,18], to the x-ray pulse-profile measurements of pulsars
with NICER [19–22] together with qualitative improve-
ments in x-ray radius measurements (see, e.g., Ref. [23]).
The chiral mean field model is based on a Yukawa-type
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obeying chiral symmetry [24–29]. The chiral quark-meson
model uses the linear sigma model and has been extended
by implementing vector meson exchange and a vacuum
term [30,31]. As it turned out, both additions to the linear
sigma model have a significant impact on the properties of
compact star configurations. The quark-meson model has
been also investigated for compact stars by going beyond
mean-field using renormalization for the quark part [32]
and by adopting the functional renormalization group
method [33,34]. Confronting recent astrophysical data on
NSs with chiral models for quark matter has been also
performed within a nonlocal Nambu-Jona-Lasinio model
[35–37] and a unified quark-meson-nucleon model [38].
It is still uncertain what kind of matter exists in the core

of NSs. At very large chemical potentials, the ground state
of the strongly interacting matter is in some color super-
conducting state [39]; however, the critical density of the
transition from ordinary to superconducting matter is not
known yet. Furthermore, it is also unknown whether by
increasing baryon/quark density the hadronic matter trans-
forms first to ordinary or to superconducting quark matter.
In this paper, we consider the situation where in the center
of the compact stars ordinary quark matter exists, and the
superconducting phase appears at higher densities than
could be reached in NS cores. The description of quark
matter in connection with NSs has been investigated using
various chiral approaches. Specifically, the role of diquark
condensate, which accounts for the color superconductiv-
ity, is investigated thoroughly in Refs. [40–42], while a
more recent work on the subject is Ref. [43].
In this paper, we use a vector and axial-vector meson

extended linear sigmamodel (eLSM)with constituent quarks
(or quark-meson model) at zero temperature and finite quark
(or baryon) chemical potential to describe the properties of
hybrid stars. The advantage of this model—altogether with
the parametrization procedure and the approximations that
were used—is that it reproduces the meson spectrum (and
also various decay widths) quitewell at T ¼ μq ¼ 0 [44] and

moreover its finite temperature version also agrees well with
various lattice results [45]. Since we think that parametriza-
tion plays a crucial role—i.e., depending on the starting
position of the parameter space, the system shows very
different behavior at finite T and/or μq—in the description
of properties at finite densities, we investigate the conse-
quences of the asymptotic behavior of the systemof equations
on the parametrization. It turns out that the system does not
behave as expected with every parametrization.
Using two different hadronic models at low densities,

we construct hybrid star EoSs, which fulfill all the current
expectations coming from astrophysical measurements,
providing some of the parameters, like the gV vector
coupling, are set properly.
The paper is organized as follows. Section II is devoted

to the introduction of the model, setup of the β-equilibrium
and charge neutrality conditions, calculation of the pressure
and field equations, and the parametrization procedure.
In Sec. III, the hadronic EoSs and interpolation methods
(between the hadronic and the quark EoSs) are demonstrated
together with a brief summary on compact star observables.
Section IV contains our results, where the EoSs, the M − R
curves, the tidal deformabilities (Λ), and their dependence on
various parameters are analyzed. Finally, we summarize the
implications of our work in Sec. V. Some additional details
can be found in Appendixes A and B.

II. VECTOR MESON EXTENDED
LINEAR SIGMA MODEL

The Lagrangian of the model is a version of the three
flavored vector and axial-vector meson extended linear
sigma model introduced in Ref. [44], in which it was
thoroughly investigated at zero temperature. A slightly
modified version of that model was used for finite temper-
ature investigations in Ref. [45]. Here, we use the latter with
an additional vector and axial-vector Yukawa-type term.
Consequently, the total Lagrangian of the model reads as

L ¼ Tr½ðDμMÞ†ðDμMÞ� −m2
0TrðM†MÞ − λ1½TrðM†MÞ�2 − λ2TrðM†MÞ2 þ c1ðdetM þ detM†Þ þ Tr½HðM þM†Þ�

−
1

4
TrðL2

μν þ R2
μνÞ þ Tr

��
m2

1

2
þ Δ

�
ðL2

μ þ R2
μÞ
�
þ i

g2
2
ðTrfLμν½Lμ; Lν�g þ TrfRμν½Rμ; Rν�gÞ

þ h1
2
TrðM†MÞTrðL2

μ þ R2
μÞ þ h2TrðjLμMj2 þ jMRμj2Þ þ 2h3TrðLμMRμM†Þ þ Ψ̄½iγμDμ −M�Ψ

− gVΨ̄
�
γμVμ þ gA

gV
γ5γμAμ

�
Ψ; ð1Þ

where, as it is described in detail in Ref. [45],
M ¼ MS þMPS, Lμ ¼ Vμ þ Aμ, Rμ ¼ Vμ − Aμ, and
MS;MPS; Vμ; Aμ stand for the scalar, the pseudoscalar,
the vector, and the axial vector nonets, respectively, while
Ψ ¼ ðqu; qd; qsÞT stands for the constituent quark fields.

Some comments are in order. There are two new unknown
parameters. One is the gV vector coupling, which has a
direct impact on the value of the maximal mass on the
M − R curve of compact stars. Although the gA axial
coupling (or the gA=gV ratio) is also unknown, it will
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not appear in any of the following expressions; thus, its
value is irrelevant for the current investigation. In Ref. [45],
we also introduced Polyakov-loop variables, which vanish
at zero temperature; thus, they will not be present in the
equations relevant for compact stars, but since in the
parametrization the pseudocritical temperature is used, it
still affects the parameter set.
As a standard procedure for theories with spontaneous

symmetry breaking, nonzero vacuum expectation values
(VEVs) are assumed for the nonstrange and strange
isoscalar fields σN and σS and for the temporal component
of the three vector fields: the charge neutral ρμ0, ω

μ, andΦμ.
These expectation values are denoted as follows:

hσNi≡ ϕN; hσSi≡ ϕS;

hρ00i≡ vρ; hω0i≡ vω; hΦ0i≡ vΦ: ð2Þ

It should be noted that we neglect here the small effect of
isospin breaking, which would require the introduction of a
nonzero expectation value for the scalar a00 field.
Hereafter, the fields are shifted with their nonzero

expectation values, which subsequently results in the
tree-level expressions for the meson and constituent quark
masses and the tree-level decay widths. Moreover, the
nonzero vector VEVs shift the μu, μd, and μs quark
chemical potentials of the constituent quark fields, sub-
sequently leading to the following effective quark chemical
potentials for the different flavors:

μ̃u ¼ μu −
1

2
gVðvω þ vρÞ;

μ̃d ¼ μd −
1

2
gVðvω − vρÞ;

μ̃s ¼ μs −
1ffiffiffi
2

p gVvΦ: ð3Þ

These shifts stem from the vector Yukawa term, which is
the last term of the Lagrangian [Eq. (1)].

A. β equilibrium and charge neutrality

We add a free electron gas to our system with some μe
electron chemical potential and assume β equilibrium,
which is

μd ¼ μs ¼ μu þ μe

after neutrinos have left the system. Thus, using

μq ≡ 1

3
μB ¼ 1

3
ðμu þ μd þ μsÞ ð4Þ

for the quark chemical potential, the chemical potentials for
the different flavors are given by

μu ¼ μq −
2

3
μe;

μd ¼ μq þ
1

3
μe;

μs ¼ μq þ
1

3
μe: ð5Þ

Charge neutrality is also applied and can be written as

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0; ð6Þ

where nu=d=s and ne are the number densities for the u, d, s
quarks and the electron, respectively. They can be calcu-
lated as

nf ¼
∂p
∂μf ; f ∈ ðu; d; sÞ; ne ¼

∂p
∂μe ; ð7Þ

where p is the pressure.
Finally, the effective quark chemical potentials for the

different flavors can be written as

μ̃u ¼ μq −
2

3
μe −

1

2
gVðvω þ vρÞ;

μ̃d ¼ μq þ
1

3
μe −

1

2
gVðvω − vρÞ;

μ̃s ¼ μq þ
1

3
μe −

1ffiffiffi
2

p gVvΦ: ð8Þ

It should be noted here that, while μu=d=s play the role of the
usual chemical potentials, in the calculation of the grand
potential (or the pressure) the μ̃u=d=s effective chemical
potentials appear.

B. Pressure and the field equations

The pressure is given by

pðμf; μeÞ ¼ Ω0 −ΩðT ¼ 0; μf; μeÞ; ð9Þ

where Ω is the grand potential. The grand potential is
calculated in a hybrid approximation used in Ref. [45] at
zero temperature with additional vector condensates intro-
duced above. In this hybrid approach, we consider only
quark fluctuations, while all the mesons are at tree level.
The grand potential consist of the terms

Ωtot ¼ UmesonðϕN;ϕS; vρ; vω; vΦÞ þΩvac
q̄q þΩmat

q̄q ðμfÞ þΩel;

ð10Þ

where Umeson stands for the tree-level meson potential,
Ωvac

q̄q and Ωmat
q̄q stand for the vacuum and matter part of the
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one-loop constituent quark contributions, andΩel stands for
the electron contribution. Its explicit form can be found in
Eq. (A1) of Appendix A. The field equations are the
stationary points of the grand potential, i.e.,

∂Ωtot

∂ϕN
¼ ∂Ωtot

∂ϕS
¼ ∂Ωtot

∂vω ¼ ∂Ωtot

∂vρ ¼ ∂Ωtot

∂vΦ ¼ 0: ð11Þ

These are five coupled equations for the μq (or μB)
dependence of the scalar and vector condensates. There
is another unknown, the μe electron chemical potential,
which is determined through the charge neutrality con-
dition, which is also coupled to the preceding five equa-
tions. The explicit form of the system of six equations that
needs to be solved reads as

∂Ωtot

∂ϕN
¼ m2

0ϕN þ λ1ðϕ2
N þ ϕ2

SÞϕN þ 1

2
λ2ϕ

3
N −

c1ffiffiffi
2

p ϕNϕS − hN −
1

2
ðh1 þ h2 þ h3ÞϕNðv2ω þ v2ρÞ −

1

2
h1ϕNv2Φ

−
3gF
8π2

m3
u

�
1þ 4 log

mu

M0

�
þ 3gF

4π2
X

f∈ðu;dÞ
m3

f

h
γf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2f − 1

q
− log

�
γf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2f − 1

q �i
¼ 0 ð12Þ

∂Ωtot

∂ϕS
¼ m2

0ϕS þ λ1ðϕ2
N þ ϕ2

SÞϕS þ λ2ϕ
3
S −

c1
2

ffiffiffi
2

p ϕ2
N − hS −

1

2
h1ϕSðv2ω þ v2ρÞ −

1

2
ðh1 þ 2h2 þ 2h3ÞϕSv2Φ

−
3gF

8
ffiffiffi
2

p
π2

m3
s

�
1þ 4 log

mu

M0

�
þ 3gF
2

ffiffiffi
2

p
π2

m3
s

h
γs

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2s − 1

q
− log

�
γs þ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2s − 1

q �i
¼ 0 ð13Þ

∂Ωtot

∂vω ¼ −m2
ρvω þ m3

u

2π2
gV

X
f∈ðu;dÞ

sgnðμ̃fÞðγ2f − 1Þ32 ¼ 0 ð14Þ

∂Ωtot

∂vρ ¼ −m2
ρvρ þ

m3
u

2π2
gV ½sgnðμ̃uÞðγ2u − 1Þ32 − sgnðμ̃dÞðγ2d − 1Þ32� ¼ 0 ð15Þ

∂Ωtot

∂vΦ ¼ −m2
ΦvΦ þ m3

sffiffiffi
2

p
π2

gVsgnðμ̃sÞðγ2s − 1Þ32 ¼ 0 ð16Þ

2sgnðμ̃uÞðμ̃2u −m2
uÞ32 − sgnðμ̃dÞðμ̃2d −m2

dÞ
3
2 − sgnðμ̃sÞðμ̃2s −m2

sÞ32 − sgnðμeÞðμ2e −m2
eÞ32 ¼ 0; ð17Þ

where γf is defined in Eq. (A4), while the mρ ¼ mω, and
mΦ masses are given in Eqs. (A2) and (A3). It should be

noted that each term that contains
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2f − 1

q
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2f −m2

f

q
is

only present if μ̃f > mf.

C. Model parameters and asymptotic behavior
of the equations

To solve our system of equations [Eqs. (12)–(17)] at
finite μq, the parameters of the model should be determined
first. The 15 unknown parameters arem0, λ1, λ2, c1,m1, g1,
g2, h1, h2, h3, δS, ϕN , ϕS, gF, and gV . As described in detail
in Sec. IV. of [45], we calculate meson masses and decay
widths at μq ¼ T ¼ 0 and compare them to their exper-
imental value—taken from the (Particle Data Group) PDG
[46]—through a χ2 fit. Moreover, we also calculate the
pseudocritical temperature Tc at μq ¼ 0 and compare to the
value 150 MeV, which was taken from the lattice [47,48]. It
should be noted that lately the value for Tc was updated to

156.5� 1.5 MeV [49]; however, from the perspective of
the current investigation, this difference of ∼7 MeV is
negligible. Since in the current approximation we use tree-
level vector and axial-vector masses, the gV vector coupling
does not appear in any of the expressions; thus, it remains a
free parameter. It should be noted, however, that if we
include fermionic fluctuations in the curvature masses of
the vectors and axial-vectors gV will also be fixed through
the χ2 minimization [50].
During the investigation of different parameter sets, we

noticed some unusual behavior of the ϕN=S scalar conden-
sates as a function of μq, namely, for large μq values ϕN=S

started to increase substantially, as shown in Fig. 1. This
behavior would mean the recurrence of chiral symmetry
breaking for large μq, which seems unphysical. It should be
emphasized here that this behavior is due to the introduction
of nonzero vector condensates, and therefore in previous
investigations [44,45,50], this problem did not occur.
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In other words, with the introduction of vector condensates,

it is necessary to change the model parameters.
To avoid this unwanted behavior, we investigated the

asymptotic solution for large μq and demanded the dis-
appearance of the ϕN=S condensates at these asymptotic
values. Thus, more explicitly, it is assumed that for large μq

ϕN ∼ μ−αq ; ϕS ∼ μ−βq ;

vω ∼ μkq; vρ ∼ μlq; vΦ ∼ μnq;

with α; β; k; l; n ≥ 0: ð18Þ

It is also assumed that μ̃u=d=s > 0. With these assumptions
in leading order,

sgnðμ̃fÞm3
fðγ2u − 1Þ32 ≈ μ̃3f;

m2
ω=ρ=Φ ≈m2

1:

Consequently, Eqs. (14)–(17) will have the forms—
neglecting the electron’s mass as well,

m2
1vω ≈

gV
2π2

ðμ̃3u þ μ̃3dÞ; ð19Þ

m2
1vρ ≈

gV
2π2

ðμ̃3u − μ̃3dÞ; ð20Þ

m2
1vΦ ≈

gVffiffiffi
2

p
π2

μ̃3s ; ð21Þ

μ3e ≈ 2μ̃3u − μ̃3d − μ̃3s : ð22Þ

Rearranging Eq. (21) and substituting Eqs. (8) for μ̃s, it can
be written that

gVffiffiffi
2

p
π2

�
μq þ

1

3
μe −

1ffiffiffi
2

p gVvΦ

�
3

−m2
1vΦ ≈ 0; ð23Þ

where the first part of the left-hand side is a third-order
polynomial in vΦ that scales with ∼μ3nq ; thus, the second
term m2

1vΦ which scales only with ∼μnq can be neglected
compared to that since n ≥ 0. Consequently, the expression
in the parentheses—which is simply μ̃s—is zero in leading
order (μ̃s ≈ 0). Similar arguments lead to μ̃u ≈ 0, μ̃d ≈ 0.
Accordingly, from Eq. (22), we conclude that μe ≈ 0. Thus,
the effective quark chemical potentials for the flavors in
leading order are zero,

μ̃u ≈ 0; μ̃d ≈ 0; μ̃s ≈ 0 μe ≈ 0: ð24Þ

Using Eq. (8) in Eqs. (24) and rearranging for the vector
condensates results in

vω ≈
2

gV
μq ð25Þ

vρ ≈ 0 ð26Þ

vΦ ≈
ffiffiffi
2

p

gV
μq: ð27Þ

Using these approximations in Eq. (12) gives

−hN−
1

2
ðh1þh2þh3ÞϕN

4

g2V
μ2q−

1

2
h1ϕN

2

g2V
μ2q≈0: ð28Þ

Expressing ϕN finally results in

ϕN ¼ −
hNg2V

3h1 þ 2h2 þ 2h3
μ−2q : ð29Þ

Since ϕN > 0, and hN > 0, this implies the following
condition:

3h1 þ 2h2 þ 2h3 < 0: ð30Þ

Investigating the asymptotic behavior of Eq. (13) for ϕS
leads to the same condition. Consequently, the asymptotic
exponents of the condensates are

α ¼ β ¼ 2; k ¼ n ¼ 1; l ¼ 0: ð31Þ

Note that we also checked this numerically with different
parametrizations and found that the condition in (30)
is valid.
It is worth it to note that to reach that conclusion

we assumed in Eq. (18) that k, l, and n exponents are

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

FIG. 1. The dependence of the ϕN=S scalar condensates on the
quark chemical potential with (solid lines) and without (dashed
lines) the asymptotic condition of Eq. (30). The parameter sets
for these results are shown in Table I and in Table IV of
Ref. [45], and gV ¼ 5 in both cases. This shows that a naive
parametrization of the model results in an increase of the scalar
condensates at higher densities and therefore the recurrence of
chiral symmetry breaking.
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all non-negative. Let us now assume, for instance, that,
contrary to that, n < 0. In this case, in μ̃s [Eq. (8)], the vΦ
term could be neglected compared to μq, and we would end
up with m2

1vΦ ≈ gVffiffi
2

p
π2
ðμq þ 1=3μeÞ3, where the left-hand

side tends to zero, while the right-hand side tends to
infinity. Similarly, the assumptions k < 0 or l < 0 would
also result in contradictions.
We should add that, although with this condition the

scalar condensates tend to zero at asymptotically large
densities, they can still show an increase at intermediately
large densities where the asymptotic behavior does not yet
apply. However, this only happens at large densities, which
are not present inside NSs and where our model would
already lose its predictive power.
Returning to the determination of the parameters, we use

the same procedure as described in Ref. [45] with the
additional condition of Eq. (30). The resulting parameter
set is given in Table I.
In this case, the σ (or f0) mass is quite low, namely,

mσ ¼ 290 MeV. We may also study the dependence of our
results on the σ mass, since our fit prefers a rather small
value for that, and experimentally it is not very well defined
either. Indeed, it is a very broad resonance: mf0ð500Þ ¼
400 to 800 MeV, Γf0ð500Þ ¼ 100 to 800 MeV [46]. For any
chosen σ mass, we have to find a parameter set, which
reproduces that value. To achieve this, we have increased
the contribution of the σ mass to the χ2 by a factor of 1000.
This way, by minimizing the χ2, the obtained fit reproduces
the prescribed σ mass with less than 0.2% error. The
resulting parameter sets can be found in Appendix B.

III. COMPACT STARS

A. Hadronic equation of state

To be able to construct the sequence of stable NSs, we
need a reliable equation of state covering many orders of
magnitude in density from subsaturation densities up to
about n ≈ 5–6n0, with n0 being the nuclear saturation
density. Below saturation, nuclear methods such as hadron
resonance gas models [51,52] and chiral effective field
theories [53,54] offer a robust way for describing nuclear
matter. The uncertainties of chiral effective field theories

mainly stem from the truncation of the nuclear Hamiltonian
within the expansion, as well as the regulariztaion scheme
and scale, resulting in the margins of error for the pressure
in state-of-the-art models increasing rapidly above n ≈ 2n0
[55]. Looking at the other side of the density spectrum,
at extremely high densities, we expect QCD to become
asymptotically free, thus enabling the use of perturbative
QCD (pQCD) calculations [56]. However, these methods
are only reliable at densities much higher than the ones
expected to be present in the center of the most massive
NSs. Nevertheless, the EoS of quark matter models should
converge to those obtained from pQCD calculations at
asymptotically high densities.
In the intermediate-density region, therefore, no fully

reliable theory exists, and indeed there is a large selection of
nuclear theories using various approaches that range from
variational methods to relativistic mean field (RMF) theories
[57], which results in a high variation in the calculated
nuclear EoSs. These approaches are all based on extrapo-
lations from experimentally measurable nuclear properties
at saturation. The most important of these quantities are the
binding energy per nucleon (E0 ≈ −16.3 MeV), compress-
ibility (K0 ¼ 240� 20 MeV), symmetry energy (S0 ¼
31.6� 2.7 MeV), and the slope of symmetry energy
(L ¼ 58.9� 16 MeV) [58–61].
We use two RMF models, the Steiner-Fischer-Hempel

(SFHo) model [62] and the density-dependent RMF model
of Typel et al. (DD2) [63,64]. They are both consistent with
the aforementioned nuclear constraints, the only major
difference being the different values for the slope of the
symmetry energy L. This results in the DD2 EoS being
stiffer than the SFHo EoS. Some basic properties of the two
models are included in Table II. We assume NSs have
hadronic crusts described by the EoSs of Baym et al. [65]
and Negele and Vautherin [66].

B. Hadron–quark phase transition

Since the hadronic and quark phases are described by
qualitatively different models, we need to match them “by
hand" and find an appropriate interpolation method to fix
the EoS at intermediate densities. One method uses a
simple Maxwell construction, assuming that the hadronic

TABLE II. Nuclear properties of symmetric nuclear matter
described by the SFHo and DD2 RMF models as well as some
properties of NSs described by these models.

Property SFHo DD2

Saturation density, n0 (fm−3) 0.16 0.15
Binding energy per baryon, E0 (MeV) −16.17 −16.02
Compressibility, K0 (MeV) 245.2 242.7
Symmetry energy, S0 (MeV) 31.2 32.73
Slope of symmetry energy, L (MeV) 45.7 57.94
Maximum mass neutron star (M⊙) 2.06 2.42
Radius of M ¼ 1.4 M⊙ neutron star (km) 11.97 13.26

TABLE I. Parameter values for mσ ¼ 290 MeV.

Parameter Value Parameter Value

ϕN (GeV) 0.1290 g1 5.3296
ϕS (GeV) 0.1406 g2 −1.0579
m2

0 (GeV2) −1.2370E−2 h1 5.8467
m2

1 (GeV2Þ 0.5600 h2 −12.3456
λ1 −1.0096 h3 3.5755
λ2 25.7328 gF 4.9571
c1 (GeV) 1.4700 M0 (GeV) 0.3935
δS (GeV2) 0.2305
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and quark models describe strongly interacting matter
correctly below/above the phase transition point, where
pHðμBÞ ¼ pQðμBÞ. This construction results in a first-order
phase transition and is limited to cases where the hadronic
EoS is stiffer than the quark EoS.
Instead of the Maxwell construction, here we use two

methods that interpolate between the hadronic and quark
EoSs on a finite density range and hence result in crossover
phase transitions. The idea of a smooth interpolation can
be supported by the argument that both models lose their
validity in the intermediate density region, and therefore a
strict extrapolation of the two EoSs is generally not justified.
One of these methods interpolates between the pressures,

pðμBÞ, on a finite range of chemical potential (see, e.g.,
Refs. [67,68]). Here, the hadronic EoS is restricted to the
domain below μBL, and the quark EoS is restricted to the
domain above μBU. These chemical potentials correspond
to baryon number densities nL and nU, respectively. In the
intermediate region, a reasonable choice for the interpolat-
ing function is a polynomial that smoothly connects the
two parts,

pðμBÞ ¼
XN
m¼0

Cmμ
m
B ; μBL < μB < μBU; ð32Þ

where Cm are coefficients that we may fix by matching the
pressure and its derivatives at the boundary points. We use a
fifth-order polynomial and match the pressure, the number
density, and the sound speed at both boundary points (this
is equivalent to matching the pressure together with its first
and second derivatives).
The energy density interpolation method, introduced in

Ref. [69], applies a smooth interpolation between the εðnBÞ
curves,

εðnBÞ ¼ εHðnBÞf−ðnBÞ þ εQðnBÞfþðnBÞ; ð33Þ
where f� are hyperbolic tangent interpolating functions,

f�ðnBÞ ¼
1

2

�
1� tanh

�
nB − n̄B

Γ

��
; ð34Þ

with n̄B and Γ parametrizing the center and width of the
phase transition. The pressure can then be calculated from
the thermodynamic relation p ¼ n2B∂ðε=nBÞ=∂nB. This
induces the following expression

pðnBÞ ¼ pHðnBÞf−ðnBÞ þ pQðnBÞfþðρBÞ þ Δp; ð35Þ

with

Δp ¼ nBðpHðnBÞ − pQðnBÞÞgðnBÞ; ð36Þ

gðnBÞ ¼
1

2Γ
cosh−2

�
nB − n̄B

Γ

�
: ð37Þ

Both methods enable us to set the onset and length of the
phase transition, which grants us additional degrees of
freedom compared to a Maxwell construction. On the other
hand, the applicability of these methods is also constrained
to a limited range of parameters, since unphysical EoSs
may also appear, where the sound speed exceeds unity or
the energy density decreases with increasing chemical
potential.
One might argue that with mixing the low- and high-

density EoSs the energy density interpolation does not
fulfill the initial premise of having a simple interpolating
function in the intermediate region where both EoSs are
unreliable. However, other than a philosophical standpoint,
there should be no significant practical difference between
this method and any other concatenation of the two EoSs.
Nevertheless, as will be shown in Sec. IV C, one should be
cautious about using the energy density interpolation and
check for a correct low-density behavior.
Throughout our investigation, we will use the SFHo

EoS together with the energy density interpolation as our
standard choice to construct hybrid stars, although we will
investigate the effect of using different hadronic EoSs and
concatenation methods in Sec. IV C.

C. Compact star observables

NS masses and radii can be obtained from general
relativistic calculations. The line element for a spherically
symmetric configuration can be expressed the following
way:

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdϑ2 þ sin2 ϑdφ2Þ: ð38Þ

Assuming that the matter inside NSs can be considered an
approximately spherically symmetric perfect fluid with
zero temperature, and introducing the variable mðrÞ as

eλðrÞ ¼
�
1 −

2mðrÞ
r

�
−1
; ð39Þ

we can obtain the Tolman-Oppenheimer-Volkoff equations
[70,71]

dmðrÞ
dr

¼ 4πr2εðrÞ; ð40Þ

dpðrÞ
dr

¼ −½εðrÞ þ pðrÞ�mðrÞ þ 4πr3pðrÞ
r2 − 2mðrÞr ; ð41Þ

where pðrÞ is the pressure related to the energy density εðrÞ
by the EoS. Generally, these equations are integrated
numerically, and the boundary conditions εðr ¼ 0Þ ¼ εc,
pðRÞ ¼ 0, and mðRÞ ¼ M determine the total mass (M)
and radius (R) of the NS for a certain central energy density
εc. Varying this energy density creates a sequence of NSs,
and thus we obtain theM − R relation for the specific EoS.
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Ideally, one would measure the masses and radii of NSs and
hence gradually constrain the M − R curve and the nuclear
EoS. Unfortunately, NS radii are extremely difficult to
measure precisely, and up until now, the most accurate
measurements managed to achieve an accuracy of ∼10%,
meaning ∼1–1.5 km. The masses of NSs in binary systems,
however, can be measured with remarkable precision, and
in fact, the most robust constraints originate from the
measurements of the most massive NSs. The most massive
pulsar known so far, PSR J0740þ 6620, has a mass of
2.08� 0.07 M⊙, with a 95.4% lower bound of 1.95 M⊙
[16]. This constraint gives a powerful lower limit on the
stiffness of the EoS.
Gravitational waves (GW) provide an independent way to

observe NSs through their inspiral and merger with another
compact object. In the final stages of the inspiral, NSs are
distorted through tidal interactions, and this shifts the phase
of the emitted GW signal. One of the measurable parameters
of NS-NS mergers is the dimensionless quadrupole tidal
deformability parameter Λ ¼ λ=M5, with the λ tidal deform-
ability being related to the l ¼ 2 tidal Love number:

k2 ¼
3

2
λR−5: ð42Þ

Allowing small perturbations on the spherical metric,
one can show that k2 can be expressed the following
way [72–75],

k2 ¼
8

5
ð1 − 2βÞ2β5½2βðyR − 1Þ − yR þ 2�

× f2β½4ðyR þ 1Þβ4 þ ð6yR − 4Þβ3 þ ð26 − 22yRÞβ2
þ 3ð5yR − 8Þβ − 3yR þ 6� þ 3ð1 − 2βÞ2
× ½2βðyR − 1Þ − yR þ 2� ln ð1 − 2βÞg−1; ð43Þ

where β ¼ M=R is the compactness parameter of the NS and
yR ¼ yðRÞ ¼ ½rH0ðrÞ=HðrÞ�r¼R withHðrÞ being a function
related to the quadrupole metric perturbation. yR can be
obtained by solving the following first-order differential
equation

ry0ðrÞ þ yðrÞ2 þ r2QðrÞ
þ yðrÞeλðrÞ½1þ 4πr2ðpðrÞ − εðrÞÞ� ¼ 0; ð44Þ

where

QðrÞ ¼ 4πeλðrÞ
�
5εðrÞ þ 9pðrÞ þ εðrÞ þ pðrÞ

c2sðrÞ
�

− 6
eλðrÞ

r2
− ðν0ðrÞÞ2: ð45Þ

Here, c2s ¼ dp=dε is the sound speed squared, while ν0ðrÞ is
given by

ν0ðrÞ ¼ 2½mðrÞ þ 4πr3pðrÞ�
r2 − 2mðrÞr : ð46Þ

The first analysis of GW170817 performed by the
LIGO-Virgo Collaboration (LVC) inferred a value of
Λ < 800 for 1.4 M⊙ NSs in the low-spin limit [76].
A thorough investigation of this constraint performed by
Annala et al. using a generic family of EoSs found an upper
radius limit of 13.6 km for 1.4 M⊙ NSs [77], while Most
et al. arrived at a radius limit of 13.7 km with higher
statistics [78]. A subsequent study was also performed
by the LVC, in which a combined analysis of tidal
deformabilities and NS radii was performed, utilizing
various assumptions for the EoSs. Here, the values of
Λð1.4 M⊙Þ ¼ 190þ390

−120 and Rð1.4 M⊙Þ ¼ 10.8þ2.0
−1.7 km

were found [79]. An additional assumption of this study
was to use a single EoS to describe both objects, whereas in
Ref. [76], the two EoSs were varied independently. A
similar study, also using a single EoS ansatz, was per-
formed by De et al., who arrived at a slightly higher upper
limit [80] (Λ < 642,Λ < 698 orΛ < 681 depending on the
prior assumption on the component masses). A companion
study of Ref. [79] was also published by the LVC at around
the same time, where an EoS agnostic approach was
applied [81]. In their study, they investigated the effect
of using various waveform templates, and under minimal
assumptions, they found for the upper limit of the tidal
deformability Λð1.4 M⊙Þ < 720 [81].
In this paper, we chose to use the upper limit of

Λð1.4 M⊙Þ < 720. We do so since this result was obtained
by applying minimal prior assumptions and therefore it sets
a conservative upper limit for the tidal deformability. Other,
recent studies also use this constraint (e.g., Ref. [82]).
Reference [83] examines previous studies [79–81,84,85]
and investigates the impact of prior assumptions and argues
that upper and especially lower limits on Λ can be
misleading without a more detailed discussion. Another
reanalysis has also been done by Dietrich et al., which
found similar upper limits for Λ (see Table S2 of Ref. [86]).
The electromagnetic properties of the source of

GW170817 were also used to put constraints on NSs. A
lower radius constraint was inferred by Bauswein et al.
from the absence of prompt collapse during this event [87],
while an upper mass limit of 2.16þ0.17

−0.15 M⊙ was proposed
by Rezzolla et al. using a quasiuniversal relation between
the maximum mass of static and uniformly rotating
NSs [88].
X-ray pulse profile measurements of millisecond pulsars

also provide additional constraints directly on the masses
and radii of pulsars. So far, two pulsars were measured by
the NICER Collaboration, one having a typical mass (PSR
J0030þ 0451) and the most massive known pulsar (PSR
J0740þ 6620) [19–22]. Even though the measurement
errors for these pulsars are sizeable, they still manage to
rule out a number of EoSs; see, e.g., Refs. [82,89].
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Several studies exist that combine these astrophysical
measurements with nuclear physics and heavy-ion data to
give stringent constraints on the nuclear EoS and theM − R
relation of NSs (e.g., Refs. [85,90,91]). In principle, these
constraints should be respected by all EoSs that are allowed
by all these conditions separately.

IV. RESULTS

Solving simultaneously the system of six equations
[Eqs. (12)–(17)] for some parameter set, we get the μq
quark chemical potential dependence of all the conden-
sates. In Fig. 2, the ϕN=S condensates are shown as a
function of μq for different values of the gV vector coupling.
For lower gV values, an unstable part is present, causing a
first-order phase transition, which disappears for larger
vector couplings. If the phase transition is of first order at
T ¼ 0 as a function of μBð¼ 3μqÞ, then there is a critical
end point (CEP) somewhere on the chiral phase boundary
on the T − μB plane. Since, as it is known and will also be
seen here, nonzero vector coupling is needed in order to
fulfill the two solar mass criteria for the MðRÞ curves, it
seems that if gV ≳ 3.1 (for mσ ¼ 290 MeV) in this frame-
work the existence of a CEP is unlikely. This is based
on the observation that if in a linear sigma model the
phase transition is not of first order as a function of μB at
T ¼ 0 then there is no CEP on the T − μB plane (see,
e.g., Ref. [92]).

A. Equation of state with different vector couplings
and compact star properties

Along the solution [of Eqs. (12)–(17)], the pressure p
[Eq. (9)] and its derivatives can be calculated, from which

one can construct the EoS. The EoS, which is the pressure
as the function of the energy density ε, can be seen in Fig. 3
for the SFHo hadronic model, for the pure quark, and for
the hybrid stars for two different values of gV . For the case
gV ¼ 0, the hybrid EoS smoothly connects the hadronic
and quark phases. However, for the case gV ¼ 5, even
though the quark EoS is softer than the hadronic one, an
intermediate region appears where the hybrid EoS becomes
stiffer than both the quark and the hadronic ones. This
results in an increase of the maximum compact star mass
(see Fig. 4). We note that this behavior is not the
consequence of the specific choice for the concatenation
method, since it appears for the pðμÞ interpolation as well
(see the comparison of the concatenation methods in
Sec. IV C). The same results were reported already in
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FIG. 2. The chemical potential dependence of the ϕN (blue) and
ϕS (green) scalar condensates. The parameter set with mσ ¼
290 MeV was used for each curve. Increasingly bright tones
correspond to increasing vector couplings of 0 (solid), 2 (dashed),
4 (dot-dashed), and 6 (dotted).

FIG. 3. Top: the EoS (p as a function of ε) of the SFHo model
(yellow solid line), as well as for quark (solid) and hybrid (dashed)
stars using the eLSM with the parameter set corresponding to
mσ ¼ 290 MeV and vector couplings gV ¼ 0 (green) and gV ¼ 5
(blue). The inset contains the same curves for the nBðμBÞ
dependence, while the circles correspond to the central conditions
inside the maximum mass NSs. For the hybrid EoSs, the energy
density interpolation was used with n̄B ¼ 3.5n0 and Γ ¼ 1.5n0.
Bottom: the speed of sound squared for the same EoSs.
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Ref. [69], while other studies investigating a hadron-
quark continuity also found similar results [93]. Recent
developments regarding the so-called quarkyonic matter,
which unify hadronic and quark matter, produce a similar
stiffening [94,95].
As described in Sec. III C, the EoSs are needed to

calculate the M − R curves and Λ tidal deformability
parameters for a compact star. In Fig. 4, the M − R curves
can be seen for the EoSs of the SFHo model, of the pure
quark model and of hybrid stars with various gV vector
couplings. We see that, while the low-density (low-mass)
behavior of the relations for hybrid stars is determined by
the hadronic EoS, the maximum mass region is charac-
terized by the quark EoS. For gV ¼ 0, where the hybrid EoS
smoothly interpolates between the two phases (see Fig. 3),
the quark and hybrid models describe maximum mass
compact stars with approximately the same masses. For
larger vector couplings, on the other hand, the maximum
mass is greatly increased due to the intermediate stiffening
of the hybrid EoS. The radii of quark stars with larger
vector couplings are also greatly increased, owing to the
absence of the first-order phase transition and an incorrect
low-density behavior—due to the lack of proper degrees of
freedom, i.e., the baryons, at low densities.
In Fig. 5, the tidal deformability parameter versus the

compact star mass can be seen for the same EoSs as in the
case of Fig. 4. Note that the constraint Λð1.4 M⊙Þ < 800

would correspond to the upper radius constraint of Annala
et al. [77] on the M − R plot and would exclude the same
models. Currently the measurements of the tidal deform-
abilities cannot provide stricter constraint on the EoSs than
mass and radius measurements; however, both are expected
to be improved with upcoming measurements. From the
two figures, we can conclude that considering hybrid stars
the vector coupling should be in the following range to
meet all the requirements,

2.5 < gV < 4.3: ð47Þ

This range is valid in case of mσ ¼ 290 MeV and can be
directly seen in Fig. 6, in which the maximum mass of
stable NSs is shown as a function of gV for different mσ.
The lower value of the range is given by the intersection
point of the curve with the 95.4% lower bound from PSR
J0740þ 6620, while the upper one is from the intersection
point of the curve with the top of the light rose-colored
band (titled Rezzola et al.)

B. Dependence on the sigma meson mass

Besides gV , there is another very important parameter,
the mass of the f0 or σ meson, that substantially changes
the behavior of the solution to the field equations and
consequently the behavior of the EoS itself. Its very
important role comes from the fact that the σN nonstrange
and the σS strange scalar fields acquire nonzero conden-
sates—which are the ϕN and ϕS—in the meson sector.
However, it is worth noting that other condensates, like
pion or kaon condensates, are also considered in the
literature; see, e.g., Refs. [96,97], but that is out of the
scope of the current investigation. In Fig. 7, one can see
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FIG. 5. The same curves as in Fig. 4, but for the tidal
deformabilities Λ as function of the compact star masses M.
The red bar corresponds to the region excluded by the constraint
70 < Λð1.4 M⊙Þ < 720 deduced from the measurement of
GW170817 [81].
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FIG. 4. M − R relations for the SFHo model (yellow) and for
different quark (blue) and hybrid (green) EoSs. Increasingly
bright tones correspond to increasing vector couplings of 0
(solid), 2 (dashed), 4 (dot-dashed), and 6 (dotted). The different
shaded areas correspond to the lower and upper radius constraints
of Bauswein et al. [87] and Annala et al. [77], respectively;
different credibility limits of the upper mass constraint of
Rezzolla et al. [88]; and the mass of PSR J0740þ 6620 with
the 95.4% lower bound denoted by the horizontal dot-dashed line
[16]. The yellow shaded area corresponds to the region excluded
by causality. The two NICER measurements are not included in
this figure, since they do not provide additional hard constraints
on the M − R relations.
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the ϕN=S condensates as a function of the μq quark chemical
potential for different values of mσ . As can be seen, the
phase transition is first order only for very low values of
mσ , which is indicated by the slight back bending of the
mσ ¼ 290 MeV curve for ϕN=S. If mσ ≳ 300 MeV, the
transition becomes crossover and the pseudocritical chemi-
cal potential—defined by the inflection point of the ϕNðμqÞ
curve—shifts toward larger values.
The effect of changing mσ for three different gV values

can be seen in Fig. 8. It can be observed that generally the

largermσ and gV are, the larger the compact star masses and
radii are. However, the value of mσ moderately modifies
the slope of the M − R curve in the midmass region. For a
given gV value, the change in the value of the maximum
mass is about 15%–17% for the total range of the σ mass
studied here. On the other hand, if for a fixedmσ we change
gV from 1 to 5, we get an approximately 40% change in the
maximum mass.
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FIG. 7. The chemical potential dependence of the ϕN (blue
solid) and ϕS (green dotted) scalar condensates. Increasingly
bright tones correspond to parameter sets with increasing sigma
meson masses with gV ¼ 3 for each curve. For larger mσ masses,
the first-order phase transition [indicated by the slight back
bending of the ϕðμqÞ curves] disappears, and formσ ¼ 700 MeV,
the vacuum expectation value of ϕN becomes larger than the
value of ϕS.
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FIG. 6. The maximum mass of stable NS sequences as a
function of the vector coupling gV , for different sigma masses.
The parameters of the concatenation are n̄ ¼ 3.5n0 and
Γ ¼ 1.5n0. For higher sigma masses, this results in EoSs that
violate either thermodynamic stability or causality.
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FIG. 8. M − R relations of hybrid stars for different vector
couplings and sigma meson masses, using the SFHo hadronic
EoS and the energy density interpolation with n̄B ¼ 3.5n0 and
Γ ¼ 2n0. Increasingly bright tones correspond to the five param-
eter sets with increasing mσ (the same as in Fig. 7), while the
different types of lines correspond to different vector couplings
of 1 (solid), 3 (dashed), and 5 (dot-dashed). The curves for
mσ ¼ 700 MeV with gV ¼ 1 and 3 are omitted, since the hybrid
EoSs produced with these parameters are not stable.
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FIG. 9. M − R relations of hybrid stars with the SFHo (green)
and the DD2 (blue) hadronic EoSs and the energy density
interpolation method with different values for n̄B (solid) and
for Γ (dashed). Brighter tones correspond to larger values in both
cases. gV ¼ 3 for each curve. For the DD2 case, only the M − R
curves of stable EoSs are included.
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C. Dependence on hadronic EoS and concatenation
method and the role of the bag constant

We also investigated the effects of changing the hadronic
EoS and the method of concatenation. In Fig. 9, theM − R
curves are shown for different n̄B and Γ values with the
SFHo and DD2 hadronic models. Even though the radii of
hybrid stars are dependent on the choice of the phase
transition parameters and the hadronic EoS, the maximum
mass allowed by the different models is encompassed
within a small range.
As it is discussed in Sec. III B, two different kinds of

interpolation were used in our investigations, one that
interpolates between the energy densities as a function

of the baryon density and another one that uses the pressure
as a function of the baryochemical potential. The com-
parison of the two approaches can be seen in Fig. 10 for
given values of gV and mσ . The εðnÞ (dashed) and the pðμÞ
(dotted) interpolations both show similar features with
stiffenings in the intermediate-density region, although
this starts at lower densities for the pðμÞ case. Even if
the two kinds of interpolation methods use very different
functions—a polynomial and a tangent hyperbolic—we see
similar behavior in the intermediate region. It is also worth
noting that, even though the EoSs look similar, more
pronounced difference in the speed of sound are apparent
for the two different interpolation methods.
In Fig. 11, the effect of the different interpolation

methods are shown for the two types of hadronic EoSs,
the SFHo, and the DD2. In both cases, there is a slight
change in the values of the maximal mass that happens
oppositely for the two hadronic EoSs. In the middle-mass
range, there is also a slight change in the radii, which act in
the same way for the two hadronic curves by increasing the
radius, which shows a smaller effect for the case of DD2.
With the current observations, neither of the scenarios
depicted here can be excluded.
Finally, we have also investigated the role of the bag

constant B in the current framework. We have taken
different values for B1=4 from 0 to 110 MeV (similarly
to Ref. [32]). The bag constant represents a vacuum
contribution, and it is simply an additional constant for
the pressure and the energy density.
In Fig. 12, the effect of a nonzero B term can be seen for

the two kinds of interpolation methods. In the upper panel,
the M − R relations for the εðnÞ concatenation are shown
for two gV and four B1=4 values. As B1=4 increases, the low
mass NSs will develop small radii—as if they were pure

FIG. 10. Top: hybrid EoSs produced by the two concatenation
methods using the SFHo model (yellow solid line) and the eLSM
with the parameter set corresponding to mσ ¼ 290 MeV and
gV ¼ 3 (green solid line). The black crosses correspond to nL ≡
nB;HðμBLÞ and nU ≡ nB;QðμBUÞ, while the circles correspond to
the central conditions inside the maximum mass NSs. The
parameters of the two types of interpolation methods were
chosen so that both arrive to the hadronic and quark EoSs at
approximately the same densities. Bottom: the speed of sound
squared for the same EoSs.
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FIG. 11. M − R relations of hybrid stars for different concat-
enations as well as for the SFHo (yellow) and DD2 (blue)
hadronic EoSs. The parameters for the εðnÞ (dashed) and pðμÞ
(dotted) concatenations are the same as in Fig. 10.
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quark stars—due to an incorrect low-density behavior. This
happens because in case of the εðnÞ concatenation the onset
of the phase transition does not have a strict starting point
and therefore the quarklike behavior can dominate at low
densities as well in some cases. Owing to this erroneous
behavior, it is advisable to only apply this method with due
caution. This behavior cannot be observed in case of the
pðμBÞ concatenation in the lower panel of Fig. 12. Also,
besides this change, the effect of the bag constant is not so
dramatic in our case. In Fig. 13, we showM − R curves for
a concatenation in the εðnÞ plane with the same polynomial
method as in the pðμÞ case, where the previous problem of
an incorrect low-density behavior is avoided.
Many previous studies have also investigated the effect

of changing the bag constant, only using a Maxwell
construction for modeling the phase transition (e.g.,
Refs. [32,98]). Some of these studies found that the
M–R curves cross each other in the vicinity of a single

point, the so-called special point [98–100]. Even though
these studies mostly apply a constant speed-of-sound
construction for the quark part, it was also shown that
the special point also appears with more realistic EoSs,
albeit it gets smeared. Since both our quark EoS and the
concatenation methods substantially differ from the model
case investigated in these papers, we do not expect an exact
special point to appear. Still, a similar feature can be
observed in Figs. 12 and 13 on the unstable part of the
M − R curves in case of the polynomial concatenations,
although this is also missing for the εðnÞ concatenation
with tangent hyperbolic interpolation.

V. CONCLUSIONS

We investigated hybrid star properties using the concept
of hadron-quark crossover, in which we took a hadronic
EoS together with a quark one and connected them with
some smooth interpolation method in an intermediate
region where both models are inaccurate. For the hadronic
EoS, we have used two different relativistic mean field
models, the SFHo and the DD2, while for the quark part, a
vector and axial-vector meson extended linear sigma model
was used with additional constituent quarks. The latter
model reproduces the meson spectrum in vacuum well and
also agrees with various lattice results at finite temperature
and zero density.
We argued that the changes in the values of the

parameters of the Lagrangian can have a significant effect
on the properties of the EoS and consequently on the
properties of hybrid stars themselves. For this very reason,
we investigated the asymptotic behavior of our system of
equations as a function of the μq quark chemical potential
and found a condition among a set of parameters of our

FIG. 12. M − R relations in case of a nonzero bag constant for
the εðnÞ (top) and the pðμÞ (bottom) interpolation methods. In the
pðμÞ case, the interpolation limits were chosen so that larger
values for B could be accommodated as well without producing
unstable EoSs.
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FIG. 13. M − R relations with various bag constants in case of a
polynomial interpolation in εðnÞ. The interpolation parameters
are nL ¼ 1.2n0 and nU ¼ 7n0. In this case, the problem with the
incorrect low-density behavior is evaded.
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Lagrangian that should be fulfilled in order to acquire
vanishing chiral condensates for very large μq, as it is
expected physically.
The interpolation method was also altered, and its effect

on the M − R curves was shown to be moderate in the
midmass range, while the maximum hybrid star mass
remained approximately constant. Moreover, the parame-
ters of the interpolation (like position and width), the gV
vector coupling, and the mσ sigma meson mass were also
changed in some range, and their effects were analyzed in
detail. We found that for a given value of the sigma meson
mass there is a relatively small acceptable range in gV ,
imposing constraints from astrophysical observations. The
consequences of the constraints on the tidal deformabilities
for different EoSs and gV vector couplings was also
discussed. Finally, we found in connection with the bag
constant that its introduction does not affect the M − R
curves significantly if its value is not too high for a given
gV value.
In conclusion, all the current astrophysical constraints

from observation are compatible with the investigated
phenomenological model if the relevant parameters—like
the vector coupling or the sigma meson masses—are within
a certain range and the parameters also satisfy a condition
that comes from the investigation of the asymptotic
behavior of the field equations. Turning the argument
around, one sees that data from NSs considerably constrain

the parameters of the chiral quark-meson model for bulk
quark matter.
It is worth it to note that the gV vector coupling can also

be determined from the parametrization procedure if one
uses one-loop order curvature masses for the vector and
axial vector meson masses [50]. In Ref. [50], its value was
found to be around 5 for a sigma mass around 300 MeV,
which is a little higher than the upper bound of the
acceptable range found here. To resolve this tension, further
investigation is needed.
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APPENDIX A: GRAND POTENTIAL IN THE HYBRID APPROXIMATION

The grand potential in the current (hybrid) approximation reads
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where the vector masses are given by

m2
ρ ¼ m2
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and
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jμej
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have also been introduced.
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APPENDIX B: PARAMETER SETS

In Table III, we present all the parameter sets that were used for the different sigma masses.
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