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Silesian University in Opava, Bezručovo náměstí 13, CZ-746 01 Opava, Czech Republic

(Received 3 September 2021; accepted 30 March 2022; published 11 May 2022)

We study the existence of charged fluid nonconducting structures orbiting in the background given by a
Schwarzschild black hole immersed in a monopolelike magnetic field introduced in the context of the
Blandford-Znajek process. Due to fact that the split-monopole magnetic field is not defined in the
equatorial plane, where typical accretion disks are located, we focus on searching for off-equatorial charged
toroidal structures. We demonstrate that charged nonconducting tori can arise very close to the symmetry
axis of the magnetized black hole; thus representing a possible obstacle for jets created due to the
Blanford-Znajek process.
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I. INTRODUCTION

The extraordinary energy outputs from quasars and
active galactic nuclei with central supermassive black
holes, or microquasars located in binary systems containing
a stellar mass black hole, are caused by accretion disks
orbiting the central black hole, and by the jets related to the
disks. The accretion disk theory is very complex at its
present state, as shown e.g., in [1], but it can be separated
into two large classes; namely of the geometrically thin,
Keplerian, accretion disks whose structure is mainly
governed by the spacetime circular geodesics [2], and
the geometrically thick, toroidal accretion disks governed
by the effective potential of orbiting perfect fluid deter-
mined by the Euler equation, i.e., by the interplay of the
gravitational and other inertial forces, and of the pressure
gradients [3,4]. Closed equipotential surfaces of the effec-
tive potential determine equilibrium toroidal structures,
while accretion (excretion) is related to self-crossing
equipotential surfaces; open equipotential surfaces around
the rotation axis govern jets. Complex equatorial tori
orbiting Kerr black holes, reflecting simultaneous existence
of relatively counter-rotating structures that could be
created during the evolution of accretion structures in
active galactic nuclei, were studied in [5–9].
For both Keplerian and toroidal accretion disks external

magnetic fields could be very important [10]. They can
substantially influence structure of ionized Keplerian disks,
leading in themost extreme cases to their destruction [11–15].

In the external magnetic fields around black holes even
off-equatorial charged-particle circular orbits are possible
[16–18]. In complex magnetohydrodynamic approach
[19,20], the fluid plasma structures are usually studied in
the force-free approximation corresponding to infinite con-
ductivity that was introduced for modeling of jets due to the
so-called Blanford-Znajek process [21] (for recent comments
on the relation of the Blandford-Znajek process and the
magnetic Penrose process see [22,23]). Here we consider an
opposite limit of zero conductivity for the so-called ‘non-
conducting (or dielectric) tori’ introduced in [24] and further
developed in [25–31]; such charged nonconducting tori can
be equatorial, but can also be levitating outside the equatorial
plane due to the electromagnetic interaction of the fluid
charge with the magnetic field, thus creating complementary
charged fluid structures to the equatorial ones. It is necessary
to point out that in our scenario, in principle, we do not
consider the nonconducting matter, in general, but the fluid
consisting of free charged particles (i.e., a conducting fluid).
However, when circling around the considered central black
hole endowed with a magnetic field, the electric current is
considered only because of the charge convection (the
convection current by rotation of the fluid) and not because
of a conduction; the charges are adherent to the circling
charged particles or directly represent them. Thus, we assume
the scenario where the “inertia” of circling particles domi-
nates the “electromagnetic action” that is the opposite limit of
thewidely used limit of the fluidwhere the conduction current
predominates—the limit of perfectly conducting (infinite
conductivity) quasineutral fluid—plasma. Since the real fluid
(accretion disks) rotating around compact objects endowed
with (or immersed in)magnetic fieldsmanifestswith a certain
finite conductivity, where the electric current is represented
by both the convection and conduction currents, we believe
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that the presented nonconducting limit is also very important
to be surveyed as the direct opposite to the force-free infinite
conductivity limit.
The exact shape and structure of the magnetic fields

around black holes is still under examination, but the
uniform magnetic field assumption introduced by Wald
[32] can be used as an appropriate simple approximation to
more complex fields. In the Kerr (Schwarzschild) black hole
spacetimes and the uniform or dipole external magnetic
fields, the charged nonconducting fluid structures were
studied demonstrating that the equatorial tori give interest-
ing complex structures from the astrophysical and obser-
vational point of view—they can constitute even doubled
equatorial structures that can be accompanied by off-
equatorial tori or clouds [25,27–30,33]; it has been shown
that the off-equatorial tori having sufficiently low density
can be considered as collisionless plasma [26].
In all the studies of the charged nonconducting fluid tori

orbiting in the field of magnetized black holes the external
magnetic field that can be completed by a Coulomb electric
field was assumed to be asymptotically uniform, or of
dipole character. However, there are some other possibil-
ities of the magnetic field that are of astrophysical
relevance. Here we consider the special case of split-
monopole magnetic field that is considered in the first
treatment of the Blandford-Znajek process [21] and later its
relevance was confirmed for the magnetic fields generated
by currents in thin accretion disks [20], or for magneto-
sphere by accretion configurations corresponding to the
Blandford-Znajek process, restricted to vicinity of the black
hole horizon [34]. Thus, we first introduce the model of the
equilibrium or accretion charged fluid structures, and then
discuss the tori in the field of Schwarzschild black hole
with the split-monopole magnetic field that can be con-
sidered as a simple but realistic approximation for more
realistic fields.
In the following, we use the geometric system of units,

c ¼ G ¼ kB ¼ 1=4πε0 ¼ 1. Moreover, when considering
our particular background fields, we also scale quantities
by the spacetime mass parameter, M; thus, we use the
dimensionless units there.

II. THE MODEL

The considered model of charged fluid toroidal configu-
rations describes stationary and axisymmetric nonconduct-
ing equilibrium configurations of a perfect fluid with
locally measured charge density qϱ, energy density ϵ,
and pressure p profiles enabling their orbiting with the
four-velocity field Uα in a fixed background gravitational,
gαβ, and electromagnetic, Fαβ ¼ ∇αAβ −∇βAα, fields. The
considered background fields must reflect simultaneous
axial symmetry along with the symmetry of the orbiting
fluid. The charged-fluid configurations are assumed to be
test configurations from the general relativity point of view,
being sufficiently low mass and weakly charged and thus

having negligible influence on the background gravita-
tional and external electromagnetic fields. The charged
fluid configurations can be then determined by equations
following from the general energy-momentum conserva-
tion law

∇βT αβ ¼ 0; ð1Þ

where the energy-momentum tensor T αβ ¼ Tαβ þ Tαβ
em,

with its parts

Tαβ ¼ ðϵþ pÞUαUβ þ pgαβ; ð2Þ

Tαβ
em ¼ 1

4π

�
F α

γF βγ −
1

4
F γδF γδgαβ

�
; ð3Þ

describes a charged fluid with negligible viscosity and heat
conduction. The general electromagnetic part of this tensor
is related to the Faraday tensor having two parts,
F αβ ¼ Fαβ þ Fαβ

self , where the background and the self-
electromagnetic components satisfy the Maxwell equations

∇βFαβ ¼ 0; ∇βF
αβ
self ¼ 4πJα; ð4Þ

with the four-current density field of the charged fluid Jα

satisfying the linearized general Ohms law [35]

Jα ¼ qϱUα þ σF αβUβ ≡ jv þ jd; ð5Þ

where jv denotes the convection (inertial) current and jd the
conduction (electromagnetic) current. In the commonly
accepted and applied approach in the so-called force-free
models (see e.g., [21]), it is assumed that the conductivity
σ → ∞, and the dynamics of the charged matter is
governed by the relation F αβUβ ¼ 0. In our approach of
the nonconducting charged-fluid tori we abandon the
second term in Ohms law, the conduction current jd,
assuming σ → 0. This approach reflects the assumption
that the charges are fixed to the rotating matter. Moreover,
we assume the electromagnetically test fluid, Fαβ

self ≪ Fαβ.
Recall that the assumption of vanishing conductivity is
necessary condition for the self-consistency of the axial
symmetry of the model of charged fluid equilibrium
configurations, as the nonzero conductivity implies due
to the Ohm law existence of radial electric flows [36]—
for details see [28]. Thus, we use the reduced form of
Ohms law

Jα ¼ qϱUα: ð6Þ

The assumption σ → 0 and the following reduced form
of Ohms law (6) is relevant for the scenario of a fluid
consisting of elements (particles) possessing sufficiently
small specific charge, q ¼ e=m ¼ qϱ=ϱ, where e is the
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charge of the fluid elements, m is their mass or sufficiently
small collision time, τ, moving in gravitational and suffi-
ciently weak electromagnetic fields. This is because for
jBeτ=mj ≪ 1, where Bα ¼ 1

2
ϵαβγδFγδUβ, the conductivity

can be determined as σ ¼ nee2τ=m, where ne ¼ qϱ=e is the
fluid element density [37]. Thus, in this case, the gener-
alized Ohms law (5) can be written in the form
Jα ¼ qϱUα þ qϱðeτ=mÞFα

βUβ. Then, for jeτ=mj ≪ 1

and for weak electromagnetic fields, i.e., for small magni-
tudes of components of Fα

β ¼ gαγFγβ (as compared to
unity), we find qϱðeτ=mÞFα

βUβ ≪ qϱUα. Thus, jd ≪ jv,
and consequently Jα ≈ qϱUα. As an example of such a
scenario, we can mention free protons in a massive neutron
star interior forming a charged ideal superfluid flowing by
itself and interacting only with the gravitational and
electromagnetic fields [37].

A. Balance equations of the fluid

Basic features of the charged fluid model of toroidal
configurations can be summarized as follows: The elemen-
tary charges in the fluid are adherent to the fluid elements,
i.e., we assume σ → 0; the charged elements are uniformly
rotating in the azimuthal direction with the four-velocity
field Uα ¼ ðUt; 0; 0; UφÞ and Uα ≠ Uαðt;φÞ. Presuming
the electromagnetically test fluid, Fαβ

self ≪ Fαβ, the general
energy-momentum conservation law (1) reduces to the
form of the equation of motion [24]

∇βTαβ ¼ FαβJβ; ð7Þ

governing the orbiting charged fluid. The related fluid-flow
pressure balance equations take the form

∂rp ¼ −ðpþ ϵÞR∘ þ qϱR� ≡R;

∂θp ¼ −ðpþ ϵÞT ∘ þ qϱT � ≡ T : ð8Þ

We denote the right-hand sides of these equations gov-
erning the pressure gradients guaranteeing the fluid balance
as R ¼ Rðr; θÞ and T ¼ Tðr; θÞ, separating them into two
parts—the purely hydrodynamical, and the additional
magnetohydrodynamical that are given by the relations

R∘ ¼ ∂r ln jUtj −
Ω∂rl
1 −Ωl

; R� ¼ Ut∂rAt þ Uφ∂rAφ;

T ∘ ¼ ∂θ ln jUtj −
Ω∂θl
1 −Ωl

; T � ¼ Ut∂θAt þ Uφ∂θAφ:

The standard fluid models of toroidal configurations [3] are
governed by the pure hydrodynamic parts R∘ and T ∘.
The specific angular momentum profile of the rotating

fluid, l ¼ −Uφ=Ut, and the angular velocity related to the
static distant observers, Ω ¼ Uφ=Ut, are related by the
formula

Ω ¼ −
lgtt þ gtφ
lgtφ þ gφφ

; ð9Þ

and the profile of the time component of the four-velocity
Ut is related to the specific angular momentum profile as

ðUtÞ2 ¼
g2tφ − gttgφφ

l2gtt þ 2lgtφ þ gφφ
: ð10Þ

The axial component of the four-velocity field is then given
by the relation Uφ ¼ −lUt. Derivation of the pressure
Eqs. (8) can be found in [24,27,28]; their uncharged limit
qϱ ¼ 0 corresponds to the Euler equation describing a
rotating electrically neutral perfect fluid [3,38–40].
Note that since we consider qϱ ¼ qϱðr; θÞ,Ut ¼ Utðr; θÞ,

Uφ ¼ Uφðr; θÞ, Uα ¼ ðUt; 0; 0; UφÞ in our model, then for
the considered four-current density (6) we have ∇αJα ¼
Uα∂αqϱ þ qϱ∇αUα ¼ qϱ

1ffiffiffiffi−gp ð ffiffiffiffiffiffi−gp ∂αUαÞ ¼ 0, i.e., the

four-current density is conserved.

1. Rotation regime and charge distribution

In general, all solutions pðr; θÞ of the set of equations (8)
are subjected to the integrability condition

∂θR ¼ ∂rT ; ð11Þ

which must be assumed simultaneously. Thus, the profiles
of the specific angular momentum l ¼ lðr; θÞ [angular
velocity Ω ¼ Ωðr; θÞ] and the charge density qϱ ¼ qϱðr; θÞ
must be properly adjusted to each other in accord with this
integrability condition. To close the system of equations,
we assume perfect fluid with the polytropic energy density
and pressure relations

p ¼ κϱΓ; ϵ ¼ ϱþ 1

Γ − 1
p; ð12Þ

with κ and Γ being the polytropic coefficient and exponent.

2. Analytic solution of the balance equations

An analytic integration of the balance pressure equations
leading to a particular class of solutions is based on an
introduction of the charge density transformation formula

K ¼ qϱ
ϵþ p

Uφ; ð13Þ

and the pressure transformation relations

∂rw ¼ ∂rp
ðpþ ϵÞ ; ∂θw ¼ ∂θp

ðpþ ϵÞ ; ð14Þ

whereas in the considered case Aα ¼ ð0; 0; 0; AφÞ, we arrive
at the transformed pressure balance equations
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∂rw ¼ −∂r ln jUtj þ
Ω∂rl
1 − Ωl

þK∂rAφ;

∂θw ¼ −∂θ ln jUtj þ
Ω∂θl
1 − Ωl

þK∂θAφ: ð15Þ

Due to the considered axial symmetry, where there are
Ut ¼ Utðr; θÞ, Uφ ¼ Uφðr; θÞ, l ¼ −Uφ=Ut ¼ lðr; θÞ,
and Aφ ¼ Aφðr; θÞ, the related differentials can be written
in the form

dAφ ¼ ∂rAφdrþ ∂θAφdθ; ð16Þ

dl ¼ ∂rldrþ ∂θldθ; ð17Þ

d ln jUtj ¼ ∂r ln jUtjdrþ ∂θ ln jUtjdθ: ð18Þ

The differentials can be incorporated into the system of
Eqs. (15) (multiplied by dr and dθ), which yields the
Pfaffian form

dw ¼ −d ln jUtj þ
Ω

1 −Ωl
dlþKdAφ; ð19Þ

that can be easily integrated as

Z
w

0

dw ¼ − ln

���� Ut

Utin

����þ
Z

l

lin

Ωdl
1 −Ωl

þ
Z

Aφ

Aφin

KdAφ; ð20Þ

if Ω ¼ ΩðlÞ and K ¼ KðAφÞ. Then, the solution of the set
of Eqs. (15) can be written in the form

w ¼
Z

w

0

dw ¼ −W þWin: ð21Þ

The functionWðr; θÞ denotes an effective potential variable
part of the right-hand side of Eq. (20), and the subscript ‘in’
relates to the position of a particular inner edge of the
orbiting fluid structure at r ¼ rin for θ ¼ θin, whereas
for a function X ¼ Xðr; θÞ, we denote Xin ¼ Xðrin; θinÞ.
Moreover, Win plays the role of a constant of integration.
The pressure transformation relations (14) are integrated

so that

Z
w

0

dw ¼
Z

p

0

dp
pþ ϵ

; ð22Þ

if we consider a barotropic fluid, i.e., ϵ ¼ ϵðpÞ, guaranteed
by the chosen polytropic equation of state (12). The
equipressure surfaces, p ¼ const:, determining the top-
ology of the orbiting fluid structure, are of the same shape
as the equipotential surfaces, W ¼ const. The effective
potential fully governs behavior of the stationary and
axisymmetric fluid configurations both for uncharged
fluids [38,40] and for considered charged fluids [27,28]
as well.

Note that the employed conditions Ω ¼ ΩðlÞ and K ¼
KðAφÞ guarantee the integrability of the system of
Eqs. (15), as we can also easily see after checking the
integrability condition (11) that reads

∂θðf∂rlþK∂rAφÞ ¼ ∂rðf∂θlþK∂θAφÞ: ð23Þ

Here, we denote f ¼ Ω=ð1 − ΩlÞ, and since we assume
Ω ¼ ΩðlÞ and K ¼ KðAφÞ, then ∂θf ¼ ∂lf∂θl, ∂rf ¼
∂lf∂rl, ∂θK ¼ ∂Aφ

K∂θAφ, ∂rK ¼ ∂Aφ
K∂rAφ, thus the

integrability condition is satisfied.

III. BLACK HOLE WITH SPLIT-MONOPOLE
MAGNETIC FIELD

In the following section, we focus on the charged
nonconducting fluid structures rotating around the
Schwarzschild black hole with its spacetime geometry line
element

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gφφdφ2; ð24Þ

where

gθθ ¼ r2; gφφ ¼ r2 sin θ2;

gtt ¼ −fðrÞ; grr ¼ fðrÞ−1; ð25Þ

and fðrÞ ¼ 1–2=r, immersed in a split-monopole test
magnetic field described by the four-vector electromagnetic
potential [21]

Aα ¼ ð0; 0; 0; gj cos θjÞ; ð26Þ

with the parameter g governing the strength of the magnetic
field. Note that the split-monopole magnetic field shares
with the spacetime its symmetries, i.e., it is static and
spherically symmetric.
Since no magnetic monopole solutions are assumed in

the electrodynamics, i.e., the magnetic field Ba must satisfy
the condition ∇aBa ¼ 0, the considered monopole solution
is the split one with an imaginary source in the origin, and
with the orientation of the magnetic field lines inversed
below the equatorial plane—the forbidden region (see
Fig. 1.); in the following, we consider only the part above
the equatorial plane, 0 ≤ θ < π=2.
The split-monopole magnetic field was introduced for

modeling of creation of jets in magnetospheres of rotating
black holes in regions close to their horizons [21]. The
physical relevance of this special kind of magnetic field
was confirmed by numerical models of magnetohydrody-
namic processes around black holes [20], where it was
demonstrated that the source of such a magnetic field can
be an electric flow in a thin equatorial accretion disk, or that
such a field can appear in a vicinity of black hole or
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magnetosphere giving rise to the Blandford-Znajek process
of jet acceleration [34].
The split-monopole magnetic field can be well charac-

terized by a local observer tetrad three-vector field BðaÞ
with the only nonvanishing component

BðrÞ ¼ FðφθÞ ¼ eφðφÞe
θ
ðθÞFφθ; ð27Þ

being transformed to the Schwarzschild coordinate basis as

Br ¼
eφðφÞe

θ
ðθÞ

erðrÞ
Fφθ; ð28Þ

where erðrÞ ¼ g−1=2rr , eφðφÞ ¼ g−1=2φφ and eθðθÞ ¼ g−1=2θθ are the

nonvanishing components of the tetrad basis vectors eαðrÞ,
eαðφÞ, and eαðθÞ.
In the considered background, and thanks to the expres-

sion Fαβ ¼ ∇αAβ −∇βAα, there is also only a radial
contravariant nonvanishing vector-field component

Br ¼ −erðrÞe
φ
ðφÞe

θ
ðθÞ∂θAφ; ð29Þ

thus fully satisfactory for the magnetic field visualization
(see Fig. 2).
The strength of the magnetic field measured by local

observers, B ¼ ðBðaÞBðaÞÞ1=2, can be expressed as

B ¼ jeφðφÞeθðθÞ∂θAφj ¼
jg sin θj

ðgφφgθθÞ1=2
: ð30Þ

Thus, it is related to the parameter g by the simple formula
jgj ¼ Br2. For those interested in the above mentioned
astrophysical contextualization, we can note that in the case
of, e.g., central Schwarzschild mass MSI ¼ 1010 M⊙ and
the magnetic field strength BSI ¼ 10 T measured at the
dimensionless radius r ¼ 10, the dimensionless param-
eter g ≈ 5 × 10−3.

IV. OFF-EQUATORIAL TORI

Off-equatorial toroidal structures (tori) are the toroidal
structures with their pressure maxima (centers) located
above, or under, the equatorial plane of the considered
background. Here, in the case of the Schwarzschild
spacetime accompanied by the split-monopole magnetic
field, there are Ut ¼ gttUt, Uφ ¼ gφφUφ and

ðUtÞ2 ¼ −
fðrÞr2 sin2 θ

l2fðrÞ − r2 sin2 θ
: ð31Þ

The condition ðUtÞ2 > 0 requires l2fðrÞ − r2 sin2 θ < 0,
implying the restriction on the acceptable values of the
specific angular momentum in the form

l2 <
r3 sin2 θ
r − 2

≡ l2phðr; θÞ: ð32Þ

Note that the function l2phðr; θ ¼ π=2Þ governs the motion
of photons in the equatorial plane, and for l2 ¼ 27 we
obtain the circular photon orbit at r ¼ 3 giving the inner-
most limit on position of circular geodesics.
Due to the simple form of the vector potential (26), the

transformed pressure balance Eqs. (15) reduce to the form

∂rw ¼ −∂r ln jUtj þ
Ω∂rl
1 −Ωl

;

∂θw ¼ −∂θ ln jUtj þ
Ω∂θl
1 −Ωl

þ gK∂θ cos θ; ð33Þ

whereas we require Ω ¼ ΩðlÞ and K ¼ Kðcos θÞ for the
integrability to be satisfied. Thus, the solution can be
written in the form

0 1 2 3 4 5

0

1

2

3

4

5

r sin

r
co

s

FIG. 2. Split-monopole magnetic field lines determined by their
tangent vector field Ba.

FIG. 1. Scheme of a split-monopole magnetic field.
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w ¼ − ln

���� Ut

Utin

����þ
Z

l

lin

Ωdl
1 −Ωl

þ g
Z

cos θ

cos θin

Kdðcos θÞ

¼ −W þWin: ð34Þ

Below we demonstrate the existence of the off-equatorial
tori with their centers, possibly located at ðrc; θcÞ, corre-
sponding to local minima of the effective potential W
(maxima of the pressure p). Thus, these locations must
satisfy the necessary conditions

∂rWj r ¼ rc
θ ¼ θc

¼ 0; ∂θWj r ¼ rc
θ ¼ θc

¼ 0; ð35Þ

and, moreover, the sufficient conditions

∂2
θθWj r ¼ rc

θ ¼ θc

> 0; detHj r ¼ rc
θ ¼ θc

> 0; ð36Þ

where

H ¼
� ∂2

rrW ∂2
rθW

∂2
θrW ∂2

θθW

�
; ð37Þ

is the Hessian matrix. We survey a couple of rotation
regimes of the fluid, particularly the case l ¼ const: and
two cases l ≠ const: satisfying the condition Ω ¼ ΩðlÞ,
and the distribution of the charge density given by the
monomial profile of the function K ¼ Kðcos θÞ,

K ¼ cosn−1 θ; ð38Þ

integrated as
R
Kd cos θ ¼ cosn θ=n for n ≠ 0, andR

Kd cos θ ¼ ln j cos θj for n ¼ 0, relaxing the integration
constants.

A. Rotation regime l= const:

The rotational regime l ¼ const: is an unique one,
representing the marginally stable distribution of l that
is able to govern the basic properties of generally accept-
able equilibrium tori [1]. In this case, the potential (34),
governing the toroidal configurations, takes under our
assumption K ¼ Kðcos θÞ the form

W ¼ ln jUtj − g
Z

Kdðcos θÞ; ð39Þ

where we neglect the integration constant.
The necessary conditions (35) implying the set of

equations

rc sin2 θc − l2f2c
fcrcðr2c sin2 θc − l2fcÞ

¼ 0; ð40Þ

gKc sin θc −
l2fc cot θc

r2c sin2 θc − l2fc
¼ 0; ð41Þ

relate values of the constants l and g with the possible
location of centers so that

g ¼ cot θc
ðrc − 3Þ sin θcKc

; ð42Þ

l2 ¼ rc sin2 θc
f2c

; ð43Þ

where fc ≡ fðrcÞ and Kc ≡Kðcos θcÞ. For the considered
monomial form of the function K (38), the sufficient
conditions (36) can be explicitly written as

ð36−14rcÞcos2θcþð18−9rcþr2cÞð2−nÞsin2θc
r2cðrc−3Þ3ðrc−2Þsin2θc

>0;

ð4rc−10Þcos2θcþðrc−3Þð2−nÞsin2θc
ðrc−3Þ2sin2θc

>0; ð44Þ

determining the region of existence of the potential W
minima in the plane ðr; θÞ (see Fig. 3). Note that for a
presentation of this region and for a presentation of profiles of
W, it is more convenient to use the cylindrical coordinates

R ¼ r sin θ; Z ¼ r cos θ: ð45Þ

-100 -10 -1 1

n =
 1.95

*

*

*

*
**

*

= const.

 0  20  40  60  80  100

Rc

 0

 20

 40

 60

 80

 100

Z
c

FIG. 3. Existence of minima of the potential W—centers of
toroidal structures rotating with the specific angular-momentum
profile l ¼ const: and with the monomial charge density dis-
tribution function K ¼ cosn−1 θ, for different values of the
exponent n; for a chosen n, the minima exist in the region ‘on
the right’ of the corresponding curve. The asterisks denote the
positions of the potential minima shown in Figs. 5 and 6.
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As it is clearly seen from thementioned conditions, a position
of potential minimum with the radius rc and latitude θc is
determined by values of the parameters l, g, and n. To
demonstrate corresponding mutual relations between these
parameters and coordinates, we illustrate combinations of
values of the parameters l, g, and latitude θc allowing for
formations of the potential minimum at a chosen radius rc,
for a fixed value of n (see Fig. 4). This figure fully represents
the dependence of the minimum of the effective potential
corresponding to the torus center on the parameters of the

nonconducting charged configuration located off the equa-
torial plane. There is a clear observable tendency for torus
center to be located closer to the symmetry axis (θc ∼ 0)
because of decreasing value of the specific angular momen-
tum l, and charge distribution parameter n decreasing to
negative values. As expected, shifting to large values of the
parameterl corresponds to the shifting of the center closer to
the equatorial plane. Of course, Fig. 4 gives no information
on the possible extension and shape of the nonconducting
charged tori.
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Behavior of the equipotential surfaces governing the
extension and shape of the toroidal configurations is
represented in Figs 5 and 6, where we fix the magnitude
of the specific angular momentum l and the magnetic field
parameter g in one case, and the charge distribution
parameter n and the radius of the torus center rc in the
other one. We can see that very narrow and prolonged
toroidal configurations usually occur as the symmetry axis
is approached.

B. Rotation regime l ≠ const:

In the case of the rotational regime l ≠ const:, the
potential (34) takes the general form

W ¼ ln jUtj −
Z

Ωdl
1 −Ωl

− g
Z

Kdðcos θÞ; ð46Þ

where we neglect the integration constants. Here the
relation Ω ¼ ΩðlÞ required for the integrability is chosen
so that

Ω ¼ l1þ1=m

K1=m ; ð47Þ

implying the specific angular momentum in the form

l ¼ K
fðrÞm

r2m sin2m θ
; ð48Þ
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since Ω and l are related to each other by the general
formula (9) taking in the Schwarzschild spacetime the form

Ω ¼ l
fðrÞ

r2 sin2 θ
: ð49Þ

1. Case m= − 1

The case m ¼ −1 corresponds to a rigid rotation of the
fluid, Ω ¼ K, whereas the rotational part of the potential
(46) takes the form

Z
Ωdl

1 −Ωl
¼ − ln

����1 − Ω2r2sin2θ
fðrÞ

����: ð50Þ

Due to the necessary conditions (35), in the centers
of the toroidal structures, the constants g and Ω must take
values

g ¼ cot θc
ðrc − 3Þ sin θcKc

; ð51Þ

Ω2 ¼ 1

r3c sin2 θc
: ð52Þ

Moreover, here, the sufficient conditions (36)
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3nðrc − 3Þ − 2rc þ ð18 − 4rcÞ cot2 θc
ðrc − 3Þ3r2c

> 0

ð2 − nÞðrc − 3Þ − 2 cot2 θc
ðrc − 3Þ2 > 0; ð53Þ

must be satisfied. However, for any values of n of the
considered monomial profile of the function K (38), there
are no possible centers of the toroidal structures. Therefore,
no rigidly rotating nonconducting charged toroidal con-
figurations are allowed in the field of the split monopole.

2. Case m=1

The case m ¼ 1 corresponds to a rotation of the fluid
with the angular velocity profile

Ω ¼ l2

K
¼ K

fðrÞ2
r4 sin4 θ

; ð54Þ

whereas the corresponding rotational term of the potential
(46) takes the form

Z
Ωdl

1 −Ωl
¼ −

1

3
ln

����1 − K2fðrÞ3
r6 sin6 θ

����: ð55Þ

Due to the necessary conditions (35), in the centers of the
toroidal structures, the constants g and K must take values

g ¼ cot θc
ðrc − 3Þ sin θcKc

; ð56Þ

K ¼ � r3c sin3 θcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f3cðrc − 2Þ

p : ð57Þ

Moreover, here, the sufficient conditions (36)

6ðrc−2Þrc−nðrc−3Þð5rc−18Þþ 2ð54þrcð2rc−27ÞÞ
sin2 θc

ðrc−3Þ3ðrc−2Þr2c
>0;

3ð4þnÞ−ð6þnÞrcþ 2ð4rc−9Þ
sin2 θc

ðrc−3Þ2 >0; ð58Þ

must be satisfied—see Fig. 7 where the allowed positions
of the tori center are demonstrated along with an example
of the equilibrium configurations allowed in vicinity of the
symmetry axis. From the presented results we can conclude
that the model is rich enough to support the off-equatorial
nonconducting charged structures with the assumed special
profile of the angular velocity. We again demonstrate that
such off-equatorial tori located near the symmetry axis
should be very narrow and prolonged, similarly to the case
of the l ¼ const: configurations.

V. CONCLUSIONS

The Blandford-Znajek process is related to large accel-
eration of electrons and assumes force-free approximation
of the electromagnetic processes where the inertial effects
corresponding to the rest mass of accelerated particles can
be fully abandoned—in the force-free approximation we
thus consider matter with infinite conductivity. However,
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around the magnetized black holes can be also much
heavier particles (protons, heavy ions, or even dust par-
ticles), and in some circumstances (for properly chosen
astrophysically relevant magnetic field intensity) their rest
mass cannot be considered as negligible, implying irrel-
evance of the force-free approximation for these particles.
In such a case we have to model the influence of
electromagnetic field on the charged particles in different
way, taking into account the rest mass of particles. For these
purposes, the opposite approach based on the assumption of
vanishing conductivity where only convection is considered
can be considered as convenient—the charged nonconduct-
ing structures could be considered as ‘dielectric’. We thus
studied possibility of creation of such structures in the
regions where the jets should be created by the Blandford-
Znajek process, i.e., near the symmetry axis of the
magnetized black hole.
In modeling jets created by the Blandford-Znajek proc-

ess, the assumed magnetic field has the character of the split
magnetic monopole or some kind of parabolic field. In the
present paper we concentrated attention on the case of the
split magnetic monopole because this kind of magnetic
field can be considered in vicinity of the black hole event
horizon as an appropriate approximation of the magnetic
fields created by a charged loop orbiting in the equatorial
plane of the central black hole [20,21,34].
We have demonstrated the existence of nonconducting

charged tori located off the equatorial plane for properly
chosen parameters governing their location and structure;
namely, the distribution of the specific angular momentum,
and the electric charge density. Existence of such
off-equatorial charged tori was proven for the profiles with

l ¼ const: and Ω ¼ l2=K. On the other hand, we have
shown that charged tori with uniform rotation (with
Ω ¼ const:) are not allowed. We have given detailed study
of the possible center positions and shape of the off-
equatorial charge tori.
We conclude that we were able to demonstrate clearly

existence of nonconducting charged tori created by heavy
particles located off the equatorial plane that could be,
under properly chosen condition on the charged matter, its
distribution, and distribution of the specific angular
momentum governing their equilibrium configurations,
allowed to occur near the symmetry axis of the magnet-
ized black hole. The charged tori located near the
symmetry axis could represent a possible obstacle for
the matter of the jets that should probably interact with
such configurations—the accelerated electrons should
collide with heavy particles constituting the charged tori.
Interactions of extremely accelerated electrons of the jet
with the equilibrium tori created by heavy particles should
lead to specific effects that could be observed, and maybe
to some modifications of the Blandford-Znajek process.
Clearly, the phenomenon of charged nonconducting tori
located near the symmetry axis would be a serious
challenge for future research in the field of accretion
disks and related jets.
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