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We analyze the effects of chiral symmetry restoration in hadronic matter, including the lowest-lying
baryonic resonanceΔ based on the parity doublet model. We study the role ofΔ and its chiral partner on the
equation of state of dense matter under neutron star conditions of β equilibrium and charge neutrality. We
find that the softening of the equation of state driven by the early onset of Δmatter due to partial restoration
of chiral symmetry allows accommodating the modern multimessenger astrophysical constraints on the
mass, radius, and tidal deformability. The softening above the saturation density is accompanied by
subsequent stiffening at high densities. We also find that the matter composition in the neutron star cores
may be different upon variations of the repulsive interactions of Δ baryons in hadronic matter.
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I. INTRODUCTION

Neutron stars (NSs) are unique extraterrestrial laborato-
ries to probe matter under extreme conditions. Recently, the
possibility of the formation of baryons other than nucleons
in the cores of NSs has become one of the central issues
in modern nuclear astrophysics [1]. Many extensive studies
address the appearance of hyperons, especially in the
context of the notorious hyperon puzzle (see, e.g.,
[2–11]). In contrast, much less research has been conducted
on the influence of Δð1232Þ resonance on the gross
properties of the equation of state (EOS). In fact, for many
years, its possible contribution has been rather ignored
because early results suggested that Δð1232Þ resonance
appears at densities beyond the typical central densities of
compact objects [2]. However, recent studies based on the
relativistic mean-field model [12] and microscopic
approaches [13] suggest an early onset of Δð1232Þ reso-
nance, which, similarly to hyperons, leads to a significant
softening of the EOS. In the last decade, a number of
studies of Δð1232Þ in dense matter were conducted within
various approaches [3,12–24]. The consequences of the
appearance of Δð1232Þ resonance are found to be crucial
for the properties of the EOS and the structure of NSs.
Similar to the hyperon contribution, the early appearance
of Δð1232Þ resonance creates a tension with the maximum
NS mass. Consequently, obtained maximal masses are far
below the mass of the PSR J0740þ 6620 pulsar [25–29].
On the other hand, the radius and tidal deformability of a
1.4 M⊙ NS can be significantly reduced due to the soft-
ening of the EOS linked to the early appearance

of Δð1232Þ resonance at low to intermediate den-
sities [13,14].
The recent advancements of multimessenger astronomy

on different dense-matter astrophysical sources have led to
further improvements in constraining the EOS at low
temperature and high density. The modern observatories
for measuring masses and radii of compact objects, the
gravitational wave interferometers of the LIGO/Virgo
Collaboration (LVC) [30,31], and the x-ray observatory
Neutron star Interior Composition Explorer (NICER)
provide new powerful constraints on the neutron-star
mass-radius profile [32–35]. These stringent constraints
allow for a more systematic study of the influence of the
formation of various degrees of freedom inside the cores of
NSs. Therefore, it is crucial to explore the underlying role
of Δð1232Þ resonance in dense matter under extreme
conditions.
Central densities of neutron stars lie up to a few times

of normal nuclear density so that it is to be expected that
baryons, in particular nucleons and Δ, change their
properties due to the restoration of chiral symmetry.
The recent lattice QCD (LQCD) results [36–38] exhibit
a clear manifestation of the parity doubling structure for
the low-lying baryons around the chiral crossover. The
observed behavior of parity partners is likely an imprint
of the chiral symmetry restoration in the baryonic sector
of QCD and is expected to occur also in cold dense matter,
including neutron-star conditions. Such properties of the
chiral partners can be described in the framework of
the parity doublet model [39–41]. The model has been
applied to hot and dense hadronic matter, neutron stars,
as well as the vacuum phenomenology of QCD
[24,42–68].*michal.marczenko@uwr.edu.pl
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In this work, we explore the implications of dynamical
restoration of chiral symmetry within the hadronic phase.
To this end, we employ the parity doublet model for the
nucleon andΔ [40,69] and explore their implications on the
structure of neutron stars. We demonstrate how modern
constraints on the masses, radii, and tidal deformability of
neutron stars can be achieved in this framework.
This paper is organized as follows. In Sec. II, we introduce

the parity doublet model for nucleon and Δð1232Þ
resonance. In Sec. III, we discuss the obtained numerical
results on the equation of state and chiral structure in the
isospin-symmetric matter and under neutron-star condi-
tions. In Sec. IV, we discuss the obtained neutron-star
relations and confront the results with recent observations.
Finally, Sec. V is devoted to summary and conclusions.

II. PARITY DOUBLET MODEL

In this section, we briefly introduce the parity doublet
model for nucleon and Δð1232Þ resonance capable of
describing the chiral symmetry restoration, following
Ref. [69]. The model is composed of the baryonic parity
doublets for nucleon and Δð1232Þ resonance, and mesons
as in the Walecka model [70]. The spontaneous chiral
symmetry breaking yields the mass splitting between the
two baryonic parity partners in each parity doublet with
given spin. In this work, we consider a system withNf ¼ 2.
The baryonic degrees of freedom are coupled to the chiral
fields ðσ; πÞ, the vector-isoscalar field (ωμ), and the vector-
isovector field (ρμ). The thermodynamic potential of the
model in the mean-field approximation reads [69]

Ω ¼ Vσ þ Vω þ Vρ þ
X
x¼N;Δ

Ωx; ð1Þ

with the index N labeling collectively positive-parity and
negative-parity spin-1=2 nucleons, i.e., N ∈ fp; n;p⋆; n⋆g,
and spin-3=2 Δs, i.e., Δ ∈ fΔþþ;þ;0;−;Δ⋆

þþ;þ;0;−g. The
negative-parity states are marked with asterisks. The
mean-field potentials in Eq. (1) read

Vσ ¼ −
λ2
2
σ2 þ λ4

4
σ4 −

λ6
6
σ6 − ϵσ; ð2aÞ

Vω ¼ −
m2

ω

2
ω2; ð2bÞ

Vρ ¼ −
m2

ρ

2
ρ2; ð2cÞ

where λ2 ¼ λ4f2π − λ6f4π −m2
π and ϵ ¼ m2

πfπ . mπ , mω, and
mρ are the π, ω, and ρmeson masses, respectively, and fπ is
the pion decay constant. The parameters λ4 and λ6 are fixed
by the properties of the nuclear ground state. We note that
the six-point scalar interaction term in Eq. (2a) is essential
in order to reproduce the experimental value of the
compressibility K ¼ 240� 20 MeV [66,71]. In Eqs. (2b)
and (2c), ω and ρ are the only nonvanishing expectation
values of the ωμ and ρμ in the mean-field approximation,
respectively. The kinetic part of the thermodynamic poten-
tial, Ωx, reads

Ωx ¼ γx
d3p
ð2πÞ3 Tðlnð1 − fxÞ þ lnð1 − f̄xÞÞ; ð3Þ

where the factors γN ¼ 2 and γΔ ¼ 4 denote the spin
degeneracy of both parity partners for nucleons and Δs,
respectively. The particle (antiparticle) Fermi-Dirac distri-
bution function reads

fx ¼
1

1þ eβðEx−μxÞ ; ð4aÞ

f̄x ¼
1

1þ eβðExþμxÞ ; ð4bÞ

with β being the inverse temperature, the dispersion relation
Ex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

x

p
and μx is the effective chemical potential.

The masses of the positive- and negative-parity chiral
partners are given by

mx
� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgx1 þ gx2Þ2σ2 þ 4ðmx

0Þ2
q

∓ ðgx1 − gx2Þσ
�
; ð5Þ

where� sign denotes parity and x ¼ N;Δ for nucleons and
Δ, respectively. The positive-parity nucleons are identified
as the positively charged and neutral Nð938Þ states: proton
(p) and neutron (n). Their negative-parity counterparts,
denoted as p⋆ and n⋆, are identified as Nð1535Þ resonance
[72]. The positive-parity Δ states are identified with
Δð1232Þ. Their negative-parity chiral partners, Δ⋆, are
identified with Δð1700Þ [72]. For given chirally invariant
mass, mx

0, the parameters gx1 and gx2 are determined by the
corresponding vacuum masses (see Table I).
The effective chemical potentials for nucleons and their

chiral partners are given by

μp ¼ μp⋆ ¼ μB þ μQ − gNωω − gNρ ρ; ð6aÞ

μn ¼ μn⋆ ¼ μB − gNωω − gNρ ρ; ð6bÞ

TABLE I. Physical vacuum inputs and the parity doublet model parameters used in this work.

mN [MeV] m⋆
N [MeV] mΔ [MeV] m⋆

Δ [MeV] mπ [MeV] mω [MeV] mρ [MeV] fπ [MeV]

939 1500 1232 1700 140 783 775 93
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The effective chemical potentials for Δ and their chiral
partners are given by

μΔþþ ¼ μΔ⋆
þþ ¼ μB þ 2μQ − gΔωω − 3gΔρ ρ; ð7aÞ

μΔþ ¼ μΔ⋆
þ ¼ μB þ μQ − gΔωω − gΔρ ρ; ð7bÞ

μΔ0
¼ μΔ⋆

0
¼ μB − gΔωω − gΔρ ρ; ð7cÞ

μΔ− ¼ μΔ⋆− ¼ μB − μQ − gΔωω − 3gΔρ ρ: ð7dÞ

The parameters, gxω and gxρ control the coupling strengths of
baryons to ω and ρ mesons, respectively [69].
In-medium profiles of the mean fields are obtained by

extremizing the thermodynamic potential in Eq. (1), lead-
ing to the following gap equations

∂Ω
∂σ ¼ ∂Vσ

∂σ þ
X
x¼N;Δ

sx
∂mx

∂σ ð8aÞ

∂Ω
∂ω ¼ ∂Vω

∂ω þ
X
x¼N;Δ

gxωnx ð8bÞ

∂Ω
∂ρ ¼ ∂Vρ

∂ρ þ gNρ ðnp − nn þ np⋆ − nn⋆Þ

þ gΔρ ð3nΔþþ þ nΔþ − nΔ0
− 3nΔ−

þ 3nΔ⋆
þþ þ nΔ⋆

þ − nΔ⋆
0
− 3nΔ⋆−Þ; ð8cÞ

where the scalar and vector densities are

sx ¼ γx

Z
d3p
ð2πÞ3

mx

Ex
ðfx þ f̄xÞ ð9Þ

and

nx ¼ γx

Z
d3p
ð2πÞ3 ðfx − f̄xÞ; ð10Þ

respectively.
In the grand canonical ensemble, the thermodynamic

pressure is obtained from the thermodynamic potential as
P ¼ −Ω̃þ Ω̃0, whereΩ0 is the value of the thermodynamic
potential in the vacuum, and tilde means that the quantity is
taken per unit volume.
The net-baryon number density and net-charge densities

for a species x are defined as

nxB ¼ −
∂ΩxðT; μB; μQÞ

∂μB ; ð11aÞ

nxQ ¼ −
∂ΩxðT; μB; μQÞ

∂μQ ; ð11bÞ

respectively, where Ωx is the kinetic term in Eq. (3). The
particle-density fractions are defined as

Yx ¼
nxB
nB

: ð12Þ

The compressibility, symmetry energy, and its slope at
saturation density are given as

K ¼ 9n0
∂μB
∂nB

����
nB¼n0

; ð13aÞ

Esym ¼ 1

2

∂2ðϵ=nBÞ
∂δ2

����
δ¼0

; ð13bÞ

L ¼ 3n0
∂Esym

∂nB
����
nB¼n0

; ð13cÞ

respectively. In Eq. (13b), ϵ is the energy density and the
isospin asymmetry parameter δ ¼ P

i Iini=nB, where Ii is
the third component of the isospin operator of the ith
species.1We remark that the obtained values of Lsym ≈
82 MeV at saturation for mN

0 ¼ 550–700 MeV agree with
the commonly considered range of the parameter [1] and
are also found in other parity-doublet models [66]. The
most updated estimate, Lsym ¼ 53þ14

−15 MeV, is based on
combined astrophysical data, PREX-II, and recent effective
chiral field theory results [73]. Furthermore, the recent
analysis within density functional theory yields Lsym ¼
54� 8 MeV [74]. We note that the value of the parameter
Lsym can be decreased, e.g., by introducing an ω − ρ
interaction term to the Lagrangian [75].
The strength of the gNω coupling is fixed by the nuclear

saturation properties: the saturation density, n0, and the
binding energy, ϵ=nB −mN ; the value of gNρ can be fixed by
fitting the value of symmetry energy. The properties of the
nuclear ground state and the symmetry energy are compiled
in Table II. The couplings of the Δ resonance to the meson
fields are poorly constrained due to limited knowledge
from experimental observations. The most advocated con-
straint was obtained by an analysis of electromagnetic
excitations of the Δ baryon in the framework of relativistic

TABLE II. Properties of the nuclear ground state at μB ¼
923 MeV and μQ ¼ 0, and the symmetry energy used in this
work.

n0 ½fm−3� E=A −mN [MeV] K [MeV] Esym [MeV]

0.16 −16 240 31

1We note that this generalized definition reduces to the known
definition of the asymmetry parameter, δ ¼ ðnpB − nnBÞ=nB, where
the negative parity states, N⋆ and Δ states are not populated, and
their densities vanish, which is the case at the saturation density.
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mean-field model [76]. It puts a constraint on the relative
strength of the scalar and vector couplings. Other
phenomenological studies indicate an attractive Δ − N
potential with no consensus on its actual size [77–80].
We note that in the parity doublet model the values of the
Δ − σ couplings, gΔ1 and gΔ2 , are uniquely fixed by requiring
the vacuum masses of Δ and Δ⋆. On the other hand, the
nature of the repulsive interaction among Δ isobars and
their coupling to the ω and ρ mean fields are still far from
consensus.
It is customary to parametrize the Δ-meson couplings in

terms of the nucleon-meson couplings (see, e.g., [3,12]):

gΔω ¼ RΔgNω ; ð14aÞ

gΔρ ¼ RΔgNρ : ð14bÞ

For simplicity, in the present study, we fix RΔ ¼ 1. Detailed
discussion of the dependence of RΔ is presented in
Sec. IV C. In general, additional repulsion between Δs
would systematically shift their onset in the stellar
sequence to higher densities. This eventually would prevent
the neutron stars with Δ matter from existence in the
gravitationally stable branch of the sequence. We note that
this effect is similar to the case of repulsive interactions
between quarks [53].
In the present work, we take four representative values of

mN
0 ¼ 550, 600, 650, 700 MeV. Because the onset of Δ

matter depends on the value of the chirally invariant mass
mΔ

0 [69], we systematically study the influence of Δ on the
EOS and compliance with terrestrial constraints from
heavy-ion collisions [81], and the astrophysical constraints,
i.e., the 2 M⊙ and the tidal deformability constraints [28–
30,82]. In this work, we put an additional constraint on the
chirally invariant mass of Δ. Namely, we require that
mN

0 ≤ mΔ
0 . Too low values of mΔ

0 lead to the onset of Δ
matter at subsaturation densities; thus, it spoils the proper-
ties of the ground state [69]. Setting mΔ

0 ¼ ∞ suppresses
the Δ states and the EOS effectively corresponds to the
purely nucleonic EOS. We note that by the assumption,
Lsym does not depend on the choice of mΔ

0 .
The physical inputs used in this work are summarized in

Tables I and II.

III. CHIRAL STRUCTURE AND EQUATION OF
STATE

In this section, we discuss the influence of Δ matter on
the EOS in the parity doublet model in the isospin-
symmetric matter, as well as under the NS conditions of
β equilibrium and charge neutrality at T ¼ 0.
In Fig. 1, we show the baryon chemical potential

dependence of the expectation value of the σ mean field
for the isospin-symmetric matter. To illustrate the effects of
the onset of Δ matter on the chiral structure, we fix mN

0 ¼
600 MeV and study the dependence on the parameter mΔ

0 .

In all cases shown in the figure, the results exhibit similar
behavior in the vicinity of the liquid-gas phase transition at
small values of the baryon chemical potential. Thus, the
appearance of Δ matter does not spoil the properties of the
nuclear ground state. In the case of the purely nucleonic
EOS, the chiral transition is a smooth crossover. The
transition happens at μB ≃ 1400 MeV and corresponds to
a sudden drop of σ to about zero, causing the parity-doublet
nucleons (N, N⋆) to become nearly equally populated
[cf. Eq. (5)]. In general, the appearance of Δ matter is seen
as a change in the stiffness of the EOS above the saturation
density; thus, deviations from the purely nucleonic EOS
can be attributed to the onset of Δ matter. For the case
mΔ

0 ¼ 650 MeV, σ deviates smoothly from the purely
nucleonic result around μB ¼ 1100 MeV, which corre-
sponds to the onset of positive-parity Δ matter. After this
point, σ changes very slowly, and the population of chiral
partners is seen only mildly around μB ¼ 1400 MeV and
μB ¼ 1900 MeV, for N⋆ and Δ⋆, respectively. For the case
mΔ

0 ¼ 600 MeV, the swift decrease of σ at μB ¼ 950 MeV
corresponds to the onset of positive-parityΔ through a first-
order phase transition. The chiral symmetry gets restored
around μB ¼ 1500 MeV where the chiral partners of the
nucleon and Δ appear almost simultaneously. We note that
for smaller values of mΔ

0 , Δ enters the matter at smaller
baryon chemical potentials before N⋆ is populated in the
purely nucleonic EOS. In both cases, it is associated with a
drop of σ. At the same time, the onset of Δ⋆, and thus the
full restoration of chiral symmetry, is shifted to higher
baryon chemical potentials.
In Fig. 2, we plot the thermodynamic pressure for the

same set of EOSs. In general, the chiral structure resembles
the stiffness of the EOS. The softening of the pressure in the
purely nucleonic EOS around 4n0 corresponds to the chiral
symmetry restoration and the onset of N⋆. Similar to the σ
expectation value, the onset of Δ matter is signaled by

FIG. 1. The σ mean field in the parity doublet model for mN
0 ¼

600 MeV in isospin-symmetric matter at zero temperature as a
function of the baryon chemical potential.
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deviations from the template nucleonic EOS. For mΔ
0 ¼

650 MeV the onset is smooth and only softens the
thermodynamic pressure. However, for mΔ

0 ¼ 600 MeV,
the onset of Δ through the first-order transition is pro-
nounced in the density jump of the order of 0.5n0. In
general, smaller values ofmΔ

0 result in the earlier onset ofΔ
matter. However, the strength of the transition depends on
the choice of mΔ

0 . Namely, higher values yield weaker first-
order transition, which turns into a second-order and
eventually becomes a smooth crossover, defined as a peak
in ∂σ=∂μB. WhenmΔ

0 → ∞, the onset ofΔmatter is shifted
to higher densities and the EOS converges to the purely
nucleonic case. We note that the structure discussed for
mN

0 ¼ 600 MeV remains qualitatively the same for other
values of the parameter.

In the left panel of Fig. 3, shown are the EOSs for
selected values ofmN

0 . To illustrate the effect ofΔmatter on
the EOS at intermediate densities, we show results obtained
for purely nucleonic EOS (dashed line) together with the
case mΔ

0 ¼ mN
0 (solid line). The regions bounded by the

two results correspond to the range spanned by solutions
with mN

0 < mΔ
0 in each case. In the left panel of the figure,

we show the isospin-symmetric matter EOSs. The orange-
shaded region shows the proton flow constraint [81]. In
general, the low-density behavior in each case is similar,
until the deviations from the purely nucleonic EOSs are
induced by the onset of Δ matter. The softening due to the
onset of Δ resonance yields better agreement with the
proton flow constraint. The EOSs with Δ converge back to
the purely nucleonic EOS at high densities.
In the right panel of Fig. 3, we show the corresponding

EOSs under the neutron-star conditions. The gray- and
orange-shaded envelopes show the constraints derived in
[30,83], respectively. Similar to the isospin-symmetric case,
the low-density behavior is comparable. For
mN

0 ¼ 550 MeV, the EOSs with mΔ
0 ≈mN

0 result in an
appearance of Δ− via a strong first-order phase transition
and underestimate the constraint at low densities. However,
the phase transition is followed by a subsequent stiffening as
compared to the purely nucleonic case and the EOS reaches
the constraint at higher densities. It suggests that the onset of
Δ matter softens the EOS and stiffens it at larger densities.
This also resembles a higher speed of sound at intermediate
densities.We note that this effect ismore readily pronounced
for smaller values of mΔ

0 . For other parametrizations shown
in the figure, the EOSs fall into the region derived by the
constraint.We note that in the study of cold and dense QCD,
commonly used are separate effective models for the
hadronic and quark matter phases (two-phase approaches)
with a priori assumed first-order phase transition, typically

FIG. 3. Thermodynamic pressure for isospin-symmetric matter as a function of the net-baryon number density, in units of the
saturation density, n0 ¼ 0.16 fm−3 (left panel), and under the NS conditions of β equilibrium and charge neutrality, as a function of the
energy density, ϵ, at T ¼ 0 (right panel). In the left panel, the orange-shaded region shows the flow constraint [81]. In the right panel, the
orange- and gray-shaded regions show the constraints obtained by [30,83], respectively.

FIG. 2. Thermodynamic pressure in isospin-symmetric matter
as a function of the net-baryon number density, in units of the
saturation density, n0 ¼ 0.16 fm−3.
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associated with simultaneous chiral and deconfinement
transitions [84]. As recently demonstrated in [24], such a
strong phase transition with large latent heat can occur also
within hadronic matter due to the onset of Δ matter being
subject to chiral symmetry restoration.

IV. PROPERTIES OF NEUTRON STARS

A. TOV solutions

In this section, we explore the impact of the emergence
of the Δ matter at supersaturation densities on the structure
of neutron stars. The composition of neutron-star matter
requires β equilibrium with leptons (l), electrons (e), and
muons (μ) included as free relativistic particles, as well as
the charge neutrality condition.
The EOS of dense matter plays a crucial role in

determination of the structure of neutron stars. Its micro-
scopic details are linked to the specific values of mass and
radius, and therefore compactness. We use the EOSs
introduced in the previous section to solve the general-
relativistic Tolman-Oppenheimer-Volkoff (TOV) equations
[85,86] for spherically symmetric objects,

dPðrÞ
dr

¼ −
ðϵðrÞ þ PðrÞÞðMðrÞ þ 4πr3PðrÞÞ

rðr − 2MðrÞÞ ; ð15aÞ

dMðrÞ
dr

¼ 4πr2ϵðrÞ; ð15bÞ

with the boundary conditions Pðr ¼ RÞ ¼ 0, M ¼
Mðr ¼ RÞ, where R and M are the radius and the mass

of a neutron star, respectively. Once the initial conditions
are specified based on a given equation of state, namely the
central pressure Pc and the central energy density ϵc, the
internal profile of a neutron star can be calculated.
In general, there is one-to-one correspondence between

the EOS and the mass-radius relation calculated from
Eqs. (15). In the left panel of Fig. 4, we show the relationship
of mass versus central net-baryon density, for the calculated
sequences of neutron stars for mN

0 ¼ 550 MeV, mN
0 ¼

600 MeV,mN
0 ¼ 650 MeV,mN

0 ¼ 700 MeV, togetherwith
the state-of-the-art constraint on the maximum mass for the
pulsar PSR J0740þ 6620, M ¼ 2.08� 0.07 M⊙ [29].
Shown are sequences for mΔ

0 ¼ mN
0 (solid line) and pure

nucleonic sequence (dashed line). The color-shaded areas
show the region spanned by solutions obtained with
mΔ

0 > mN
0 . The relations are plotted up to the maximally

stable solutions. We point out that, similarly to the EOS, the
onset of positive-parity Δ leads to a softening of the mass-
radius sequence so that it is accompanied by a strong
increase of the central density. This is seen for mN

0 ¼ mΔ
0

with plateaux at small NS masses. We note that in general
smaller values of mN

0 yield larger values of the maximum
mass, owing to the stiffness of the EOS.
In the right panel of Fig. 4, we show the relationship of

mass and radius. Also shown are the state-of-the-art
constraints: the high precision mass-radius analysis of the
massive pulsar PSR J0740þ 6620 by the NICER collabo-
ration [34,35], constraint from the recent GW170817 event
[30], and the constraint obtained for PSR J0030þ 0451 by
the group analyzing x-ray data [33]. The appearance of Δ

FIG. 4. Sequences of masses for neutron stars vs central net-baryon density (left panel) and radius (right panel) as solutions of the TOV
equations. The dashed lines correspond to the purely nucleonic EOSs. The solid lines correspond to the case mN

0 ¼ mΔ
0 . The region

spanned between the two lines mark the results obtained for mN
0 < mΔ

0 in each case. The mass-density and mass-radius curves are
plotted up to the maximal mass solutions for given mN

0 . The orange band in the left panel shows the PSR J0740þ 6620 mass constraint
Mmax ¼ 2.08� 0.07 [29]. The inner (outer) orange band in the right panel shows the 1σ credibility regions from the NICER analysis of
observations of the massive pulsar PSR J0740þ 6620 as dark orange [35] and light orange [34] regions. The inner (outer) green and
purple bands show 50% (90%) credibility regions obtained from the recent GW170817 [30] event for the low- and high-mass posteriors.
Finally, the inner (outer) gray region corresponds to the mass and radius constraint at 68.2% (95.4%) obtained for PSR J0030þ 0451 by
the group analyzing NICER x-ray data [34].
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matter affects theNS structurewhich is reflected in themass-
radius relations. As discussed in Sec. III, the softening of the
EOS due to the appearance ofΔ is followed by a subsequent
stiffening of the EOS. A substantial reduction of the radii is
observed. For instance, the radii of the 1.4 M⊙ NS obtained
in the purely nucleonic EOS reduce roughly up to 1 km for
mN

0 ¼ 700 MeV, to almost 2 km for mN
0 ¼ 550 MeV. On

the other hand, the decrease of the star’s maximum mass is
seen only mildly. This, in turn, is a consequence of the
subsequent stiffening of the EOS at higher densities, which
allows for massive stars to sustain from the gravitational
collapse. In Ref. [14], it was shown that the earlier onset ofΔ
yields a larger maximum mass. We note that this stays in
contrast to our work, where we find a mild decrease of the
maximum mass. This is due to additional softening of
the EOS at high densities that is provided by the onset of
the negative-parity N⋆ and Δ⋆ due to the chiral symmetry
restoration.This highlights the importanceof chiral symmetry
restoration in the EOS and the properties of the NS matter.
In Fig. 5 we study the onset densities of the particle

species. As an example, we show the results for a fixed
value of mN

0 ¼ 600 MeV. We note that the onset densities
of the positive-parity nucleons, protons, and neutrons are
not shown in the figure. Their negative-parity counterparts,
n⋆ and p⋆, are always present for any choice of mΔ

0 . They
enter the matter composition roughly between 3–5n0. Their
appearance is always sequential due to differences in their
effective chemical potentials. Conversely, for small values
of mΔ

0 , the positive-parity Δ resonances appear almost
simultaneously through a first-order transition, which
triggers a sufficiently big density jump. At higher values
of the parameter, the differences in the onset density
become more readily exposed. The onset density of Δ−

changes only mildly within the shown range of the
parameter, while the densities for others increase and
eventually the Δþþ, Δþ, and Δ0 are being populated in
the gravitationally unstable branch of the EOS. We find
similar behavior for the negative-parity Δ⋆s. They appear
sequentially and no Δ⋆s are present for mΔ

0 > 670 MeV.
We stress that similarly to matter constituents in symmetric
matter, the appearance of the chiral partners reflects the
partial chiral symmetry restoration. For mN

0 ¼ 600 MeV
the Λ1.4 < 580 constraint is met for mΔ

0 < 650 MeV (see
Ref. [24]). Therefore, the appearance of Δ matter is
essential for softening the EOS at intermediate densities.
Although Δ⋆s are not populated at central densities of
1.4 M⊙ NSs, the compliance with the deformability con-
straint implies their onset at higher, gravitationally stable,
densities, and therefore, their presence in the cores of high-
mass neutron stars. This is a direct consequence of the
chiral symmetry restoration. Namely, the onset of Δ matter
drastically decreases the value of the σ mean field, and
consequently, decreases the mass of Δ⋆s towards the
asymptotic value of mΔ

0 , allowing for their earlier onset.
For sufficiently high mΔ

0 , Δ matter is not populated in the
gravitationally stable part of the mass-radius sequence. The
shift of the threshold of the onset density is qualitatively
similar as in the case of increasing the strength of repulsion
between Δs, which may push their onset out of the
gravitationally stable branch of the stellar sequence.
Thus, the corresponding EOSs would be equivalent to
the purely nucleonic EOS in this range. Lastly, we note that
the maximum-mass central density and the central density
of a 1.4 M⊙ NS decrease only mildly by approximately
0.5n0 as the value of mΔ

0 increases.
In Fig. 6, we show the neutron-star matter composition

for mN
0 ¼ 600 MeV, in the case without Δ (first panel),

mΔ
0 ¼ 750 MeV (second panel), mΔ

0 ¼ 650 MeV (third
panel), and mΔ

0 ¼ 600 MeV (fourth panel). The gray-
shaded regions mark the central densities that are gravita-
tionally unstable. Because of charge neutrality, the inclu-
sion of Δ and Δ⋆ influences the composition of neutron
stars. We observe that the onset of Δ−, and consequently
other Δ states, is shifted to higher values ofmΔ

0 . Negatively
charged Δ− and Δ⋆

− partially replace the role of muons in
compensating the charge of positively charged baryons. For
instance, the proton fraction drastically increases upon the
onset of Δ−. This may have consequences for the thermal
evolution of NSs and different cooling mechanisms, which
are sensitive to the proton fraction [87]. The direct Urca
processes that include the Δ resonance may be essential for
rapid cooling of NSs as they can become operative without
the presence of exotic states nor the large proton concen-
tration (11–14%), which is required for the canonical direct
Urca process [88]. Moreover, the threshold proton con-
centration for the direct Urca process reduces by about 3%
when the chiral symmetry is restored, i.e., nucleons and
their chiral partners are equally populated [50].

FIG. 5. Onset densities of particle species for mN
0 ¼ 600 MeV

as a function of mΔ
0 . The gray-shaded regions indicate densities

beyond the maximum mass configurations. The orange, solid line
marks the central density of 1.4 M⊙ neutron stars. We note that
the onset densities of the positive-parity nucleons, proton and
neutron, are not shown in the figure.
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B. Tidal deformability

The dimensionless tidal deformability parameter Λ can
be computed through its relation to the Love number k2
[89–93],

Λ ¼ 2

3
k2C−5; ð16Þ

where C ¼ M=R is the star compactness parameter, withM
and R being the total mass and radius of a star. The Love
number k2 reads

k2 ¼
8C5

5
ð1−2CÞ2½2þ2Cðy−1Þ−y�

× ð2C½6−3yþ3Cð5y−8Þ�
þ4C3½13−11yþCð3y−2Þþ2C2ð1þyÞ�
þ3ð1−2CÞ2½2−yþ2Cðy−1Þ lnð1−2CÞ�Þ−1; ð17Þ

where y ¼ RβðRÞ=HðRÞ. The functions HðrÞ and βðrÞ are
given by the following set of differential equations:

dβ
dr

¼ 2

�
1 − 2

MðrÞ
r

�
−1

×H

�
−2π

�
5ϵðrÞ þ 9PðrÞ þ dϵ

dP
ðϵðrÞ þ PðrÞÞ

�

þ 3

r2
þ 2

�
1 − 2

MðrÞ
r

�
−1
�
MðrÞ
r2

þ 4πrPðrÞ
�

2
	

þ 2β

r

�
1 − 2

MðrÞ
r

�
−1

×

�
MðrÞ
r

þ 2πr2ðϵðrÞ − PðrÞÞ − 1

	
; ð18Þ

dH
dr

¼ β: ð19Þ

The above equations have to be solved along with the TOV
equations (15). The initial conditions are Hðr → 0Þ ¼ c0r2

and βðr → 0Þ ¼ 2c0r, where c0 is a constant, which is
irrelevant in the expression for the Love number k2.
In Fig. 7, we plot the tidal deformability parameters Λ1

vs Λ2 of the high- and low-mass members of the binary
merger together with the 50% and 90% fidelity regions
obtained by the LVC analysis of the GW170817 event [30].
We note that the tidal deformability parameter requires
sufficiently soft EOS up to a few times the saturation
density. This is seen in the figure, where the smallest tidal
deformability and thus the best agreement with the con-
straint is obtained for smallest values of mΔ

0 , which
corresponds to softest EOSs at low density. On the other
hand, the 2 M⊙ requires a sufficiently stiff equation of state
at higher densities. Inversely to the tidal deformability, the
most massive stars are obtained for the stiffest EOSs,
namely for purely nucleonic ones. Therefore, the two
constraints are exclusive, which allows for their precise
determination. In Ref. [24], it was shown that the chirally
invariant masses can be roughly estimated to lie in the range
from 550 to 680 MeV. We remark that these values are at
tension with the results obtained in the LQCD simulations
[37] at vanishing chemical potential and finite temperature
where within the errors the masses of the ground state
nucleon and Δ do not deviate from their vacuum masses.
This might suggest additional medium dependence of the
chirally invariant masses, whereas the LQCD simulations
were performed with a large pion mass, mπ ¼ 400 MeV.
We also note that the interplay between the 2 M⊙ and the
tidal deformability constraints can be further used to fix
the allowed range of external model parameters. This
would be of particular use in a class of effective models
in which the low- and high-density regimes are not treated
independently but rather combined in a consistent unified
framework.

FIG. 6. Particle fractions as a function of the net-baryon density
in the units of saturation density formN

0 ¼ 600 MeV and different
values ofmΔ

0 . The top panel shows the results for the parity double
model without Δ matter. The gray-shaded regions indicate
densities beyond the maximum mass configurations. The solid
(dashed) lines show the positive-parity (negative-parity) particles.
The color coding is the same as in Fig. 5. The electrons and muons
are shown as gray, dotted, and dashed, lines, respectively.
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C. RΔ dependence

In this section, we explore the influence of the Δ
couplings to vector mesons on the properties of dense
matter. We start by considering the isospin-symmetric case,
i.e., μQ ¼ 0, which also implies that ρ ¼ 0. First, we
analyze the asymptotic matter composition. Due to chiral
symmetry restoration at high density, baryon masses
converge to constant values mx

0 [cf. Eq (5)]. Because
mx

0 ≪ μB, their contribution can be neglected at large
values of chemical potential, thus

nxB ≈
dx
6π2

μ3x; ð20Þ

where dx and μx are the degeneracy factor and effective
chemical potential of the xth species, respectively. The
effective chemical potential of the nucleon is
μN ¼ μB − gNωω. The effective chemical potential for Δ
can be written as follows

μΔ ¼ μB − gΔωω ¼ μN − ðRΔ − 1ÞgNωω; ð21Þ

thus, their difference,

μN − μΔ ¼ ðRΔ − 1ÞgNωω; ð22Þ

is directly proportional to the value of ω mean field. In
general, the value of ω is expected to increase with density
[cf. Eq. (8a)]. Thus, the difference given in Eq. (22) increases
with density as well. ForRΔ ¼ 1, the chemical potentials are
equal, i.e., μN ¼ μΔ. The densities of nucleons and Δ
approach the same value and the matter composition can
be determined solely based on their degeneracy factors, i.e.,

Yx ¼ dx=
P

i di. In this case, the fraction of Δ matter
amounts to YΔþΔ⋆ ¼ 0.8. For RΔ < 1, μΔ > μN and their
difference grows with density. The partial density YΔþΔ⋆
will asymptotically approach unity. Conversely, forRΔ > 1,
μΔ < μN , thus the system will be dominated by nucleons,
and YΔþΔ⋆ will vanish at high density.
We note that the above analysis can be also performed

for matter under NS conditions of β equilibrium and charge
neutrality. This case is depicted in Fig. 8, where shown are
the results obtained for three values of the parameter
RΔ ¼ 0.95, 1, 1.10 [see Eq. (14)] for mN

0 ¼ 650 MeV
and mΔ

0 ¼ 650, 670, 700 MeV. The results converge to the
appropriate asymptotic values for different values of RΔ.
Densities in the cores of neutron stars can reach the

values of the order of 5–8n0 (cf. Fig. 4). Already under such
conditions, qualitative differences in the abundance of Δ
matter are vividly seen in Fig. 8, even for small deviations
of RΔ from unity. For instance, in the considered examples,
for a canonical 1.4 M⊙ NS Δ matter concentration can be
up to four times smaller for RΔ ¼ 1.10 when compared to
RΔ ¼ 0.95. Interestingly, we find that for RΔ > 1 the
fraction of Δ matter exhibits a maximum at few times
n0, owing to the asymptotic behavior, which requires thatΔ
matter should disappear from the system at high densities.
Similarly for RΔ < 1, the matter at high densities is
composed solely of Δs, and the nucleons are not present.
We note that different studies suggested various ranges of
the repulsive forces (see, e.g., [12,94]). The differences in
the matter composition due to the repulsive interactions are
also seen in the bulk NS properties. In Fig. 9, shown are the
corresponding mass-radius sequences. As expected, more
compact solutions are obtained for smaller values of mΔ

0

and RΔ. Contrary to the previous finding that the decrease
of mΔ

0 changes the maximum mass only mildly, smaller
values of RΔ yield noticeably smaller maximum masses. In
Fig. 10, we plot various NS properties as functions of RΔ.

FIG. 8. Δ matter fraction under the NS conditions of β
equilibrium and charge neutrality as a function of the net-baryon
density in the units of saturation density.

FIG. 7. The relation between tidal deformabilities Λ1 and Λ2 of
two compact stars that merged in the GW170817 event [30]. For
comparison, also shown are the 50% and 90% fidelity regions
from the analysis of the GW signal by the LIGO-VIRGO
Collaboration [30]. Shown is only the physical region
where Λ1 < Λ2.
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Besides the decrease in radius of the canonical 1.4 M⊙ NS
and the maximum mass for smaller values of RΔ, we also
observe a notable decrease in the tidal deformability
parameter Λ1.4. Therefore, as far as the repulsive inter-
actions are concerned, the matter composition inside the
cores of 2 M⊙ NSs may be very different upon small
variations in the strength of the repulsive interactions
among Δ isobars. Thus, determining the NS matter
composition has to be treated with particular care. For
completeness, the NS properties are listed in Table III.

V. SUMMARY

We have explored the influence of the formation of Δ
resonance in dense matter on the bulk properties of NSs. To
this end, we employed the parity doublet model for
nucleons and Δs, which accounts for the self-consistent

treatment of the chiral symmetry breaking and its restora-
tion in the mesonic and baryonic sectors. We analyzed the
EOS under the NS conditions of β equilibrium and charge
neutrality.
We have shown howmodern astrophysical constraints on

the maximum mass [29], the tidal deformability from the
binary merger GW170817 [30], and recent simultaneous
mass-radius constraints from the NICER experiment [32–
35] allow us to make a consistent determination of the EOS
of dense matter. We have demonstrated that the purely
nucleonic EOSs obtained in the parity doublet model are
too stiff at intermediate densities and therefore they are
ruled out by the recently revised tidal deformability
constraint. This is caused by the apparent correlation
between the properties of matter at saturation and the
compactness at a few times the saturation density.
We find that the early appearance of Δð1232Þ resonance

softens the EOS at intermediate densities. As a result, the
radius of canonical 1.4 M⊙ reduces substantially providing
better agreement with the tidal deformability constraint
from the GW170817 event. We observe a subsequent
stiffening of the EOS at higher densities. As a consequence,
we also find, in contrast to previous studies [14], that the
maximum mass decreases compared to purely nucleonic
results, and stays in agreement with observational astro-
physical data. This is traced back to the restoration of chiral
symmetry, which further softens the EOS at higher den-
sities and results in the onset of N⋆ and Δ⋆ resonances in
the high-mass part of the NS sequence.
We emphasize that an abrupt change in mass-radius

profile in the high-mass part of the sequence can be in
general due to phase transition in nuclear matter. However,
as discussed above and also shown in [24,95], such a
change is not necessarily linked to a hadron-quark phase
transition that implies the existence of quark matter in the
cores of NSs, as suggested in [84,96,97].

FIG. 9. Mass-radius sequences for different values of the
parameter RΔ for mN

0 ¼ 650 MeV. Black, solid line shows the
mass-radius sequences obtained for purely nucleonic EOS.

FIG. 10. Various NS properties as functions of the parameter RΔ for mN
0 ¼ 650 MeV and different values of mΔ

0 . Gray-shaded areas
show regions excluded by the astrophysical constraints (see text for details).
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To address in more detail the role of baryonic resonances
in the presence of chiral symmetry restoration, we have
analyzed the repulsive Δ (vector meson) interactions and
studied their consequences for the phenomenological
description of NSs. We find that small repulsion yields
more compact stellar sequences with reduced maximum
mass, and that variations of the strength of these inter-
actions lead to notable qualitative changes in the matter
composition at a few times the saturation density. Thus, the
determination of the structure of the NS matter requires
detailed knowledge of the intricate repulsive forces
between individual hadronic constituents.
In the present study, we have assumed a hadronic EOS to

conclude the composition of neutron star interiors and the
phase structure of dense matter. A natural extension is to
generalize the parity doublet model with Δ and include the
quark degrees of freedom that may allow the existence of
hybrid quark-hadron stars through a deconfinement phase
transition while fulfilling the maximum mass constraint
[53]. Furthermore, it is interesting to verify if signatures of
the chiral symmetry restoration related to a crossover or
first-order phase transition in the hadronic phase have an
observable imprint on the GW emission from NS mergers,
and, thus, can be measurable in future GW detections.

Given the recent formulation of the three-flavor parity
doubling [58,98] and further lattice QCD studies [36,37],
which indicate that the parity doubling occurs also in the
hyperon channels, it would be of great interest to extend
this work and include contributions of hyperons.
Furthermore, one anticipates that the Δ resonance may

be essential for rapid cooling of NSs [88]. Thus, it is
alluring to examine how the presence of the chiral partners
of the nucleon and Δ affect the NS thermal evolution. Work
in these directions is in progress.
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