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When searching for new gravitational-wave or electromagnetic sources, the n signal parameters (masses,
sky location, frequencies, etc.) are unknown. In practice, one hunts for signals at a discrete set of points
in parameter space, called a template bank. These may be constructed systematically as a lattice or,
alternatively, by placing templates at randomly selected points in parameter space. Here, we calculate the
fraction of signals lost by an n-dimensional random template bank (compared to a very finely spaced bank).
This fraction is compared to the corresponding loss fraction for the best possible lattice-based template
banks containing the same number of grid points. For dimensions n < 4, the lattice-based template banks
significantly outperform the random ones. However, remarkably, for dimensions n > 8, the difference is
negligible. In high dimensions, random template banks outperform the best known lattices.
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I. INTRODUCTION

Many searches for gravitational-wave and electro-
magnetic signals are carried out using matched filtering,
which compares instrumental data to waveform templates
[1–3]. Because the parameters of the sources are not known
a priori, many templates are required, forming a grid in
parameter space [4–9]. Like the mesh on a fishing net, the
grid needs to be spaced finely enough that signals do not
slip through. But if the grid has far more points than are
needed, the computational cost becomes excessive. For this
reason, a substantial technology has evolved to create these
grids [10–16]. What choice of template bank is best?
The traditional literature on the topic asserts that, for a

fixed number of grid points, the optimal template bank is
the one that minimizes the maximum distance (twice the
covering radius) between any grid point and its closest
neighbor [10,12,13,15,17–20]. However, as recently shown
in Ref. [21], this is incorrect.
If the goal is to maximize the number of detections and

the templates are closely spaced, then the optimal template
bank minimizes the average mismatch: the average squared
distance between any point in parameter space and the
closest grid point. The bank which minimizes this quantity
(at fixed grid point density) is called the optimal quantizer.

An extensive introduction to the topic of optimal quantizer
lattices can be found in the remarkable book by Conway
and Sloane [22], and an update on the current status can be
found in Ref. [23].
Lattice-based template banks can be challenging to

construct, particularly if the parameter-space metric is
not flat. One solution is to build template banks by placing
search grid points at random [13] in parameter space.
Because they are simple and quick to construct, even in a
curved parameter space, and because they can easily
accommodate arbitrary parameter-space constraints and
boundaries, such “random template banks” are appealing
[14,24]. Note that random template banks may be improved
by pruning away [25] grid points that are not needed. The
result is then called a “stochastic template bank” [12].
Here, we provide a simple exact analysis of the perfor-

mance of a random template bank. This analysis could have
been done a decade ago, when such template banks were
introduced [13]. However, the authors of Ref. [13] (follow-
ing the mistaken conventional wisdom described above; see
Ref. [21], Sec. IV) assessed the performance in terms of the
covering radius [13] rather than in terms of the average
mismatch.
Our analysis of random template bank performance has

significant consequences. We find that in low dimensions, a
random template bank performs poorly compared to a well-
chosen lattice. However, as the dimension increases, the
performance of a random template bank quickly approaches
and then surpasses the performance of even the best lattices.
This paper assumes that the reader is familiar with

Ref. [21] and is structured as follows. Section II defines
the average mismatch hr2i in the usual quadratic approxi-
mation and reviews its relationship to the fraction of signals
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lost and to the scale-invariant second momentG of a lattice.
Section III defines a random template bank as a Poisson
process in n dimensions and calculates hr2i following an
argument from Ref. [26]. This average mismatch is
compared to that of the best currently known lattices
and to that of the best theoretically possible lattices.
In Sec. IV, we examine the assumptions implicit in the
Poisson process and discuss the “dimensional reduction”
case, where the template bank becomes “thin” in one or
more dimensions. In Sec. V, we use results from Ref. [23]
to calculate lost signals in template banks which are
Cartesian products, since these are often used. In
Sec. VI, we extend the results to cover the case of large
mismatch, by replacing the normal quadratic approxima-
tion to the mismatch with the recently proposed spherical
ansatz [27]. This is followed by a short conclusion.
The reader who is primarily interested in the results and

not in the details should see Eq. (2.6) for the fraction f of
lost detections and then consult Fig. 1 and Table I. These
show the performance of a random template bank, also
comparing it to the best currently known lattice-based
template banks and to the best theoretically achievable
template banks.

II. AVERAGE MISMATCH
AND THE SECOND MOMENT G

As we have explained, the performance of a template
bank is determined by the average mismatch [21]. For a
given region of parameter space and a given number of grid
points, this in turn is proportional to the scale invariant
second moment G.
To define G and show its relationship to the average

mismatch, let x ∈ Rn be parameter-space coordinates, and
let V ⊂ Rn be the region of interest (for example corre-
sponding to the desired ranges of masses and frequencies
of interest in a search). Here, x denotes a vector with n
Cartesian components, and we employ the standard
Euclidean metric and norm.
[In general, the metric on parameter space has non-

vanishing curvature. In such cases, the space can be
subdivided into regions which are locally flat. In each
region, new coordinates can be introduced, in which the
transformed metric and norm take our assumed Euclidean
form, as discussed in Ref. [21], following Eq. (2.6). A
feature of random template banks is that no such con-
struction is required for nonflat metrics [13].]

FIG. 1. The current record-holding (smallest G) lattice template banks (Ref. [23], Table 1) (blue points) lie above the conjectured
Conway and Sloane [28] lower bound (cyan curve). The random template bankG (orange) has its performance given by the Zador upper
bound (3.8). The remaining colored curves show the well-known classical lattices An andDn and their duals. For a fixed number of grid
points, in dimensions n > 8, a random template bank has a performance (detection loss) which is within 10% of the theoretically best
possible template bank (see Table I). In many higher dimensions (for example, 15 or 19), the random template bank outperforms any
known lattice.
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The parameter-space n-volume is V ¼ VðVÞ, where

VðSÞ ¼
Z
S
dnx ð2:1Þ

is the volume of some subset S ⊂ Rn.
Suppose that N search templates are located at grid

points x1;…; xN . Define the mismatch function

r2ðxÞ ¼ minðjx − x1j2; jx − x2j2;…; jx − xN j2Þ; ð2:2Þ

which is the squared distance from x to the nearest
template. For the given template bank, it is the fractional
loss in (squared) signal-to-noise ratio (SNR) at each point
in parameter space. The average of this quantity,

hr2i ¼ 1

V

Z
V
r2ðxÞdnx; ð2:3Þ

is the average mismatch [29].
Note that the fractional loss in (squared) SNR is only

equal to hr2i when hr2i is small. The large hr2i case is
treated in more detail in Sec. VI.
The goal of the template-bank architect is to minimize

the average mismatch. This is because the fraction of
signals which are lost (compared to a template bank with a
very finely spaced grid) is given by Ref. [21], Eq. (5.6),

f ¼ D
2
hr2i; ð2:4Þ

where D is the effective dimension of the source distribu-
tion, which usually lies in the range 2 < D < 3.
[The positive real constantD describes the distribution of

sources as a function of distance from the detector; see
Ref. [21], Eq. (5.1). For example, Galactic pulsars with a
planar distribution have D ¼ 2; gravitational-wave binary
inspiral sources distributed uniformly in volume have
D ¼ 3. Note that in this paper, to avoid confusion with
the differential symbol, we use the symbolD rather than the
d of Ref. [21].)
For example, suppose that 100 sources would in prin-

ciple be detectable with a very finely spaced template bank
and that these sources were distributed uniformly in space
(D ¼ 3). Then, a template bank with an hr2i ¼ 3% average
mismatch loses about f ¼ 5% of potential detections, so on
average, 95 sources would be detected, and 5 would be lost.
To compare the relative performance of different tem-

plate banks (i.e., different choices of the N grid point
locations xi), it is convenient to define the scale-invariant
second moment

G ¼ 1

n
hr2i

ðV=NÞ2=n : ð2:5Þ

Note that our definition in Eq. (2.5) is the conventional one
[Ref. [22], Ch. 2, Eq. (87)], in spite of the appearance of N.
This is because in the conventional definition, V denotes
the volume per grid point, which here is V=N.
The performance indicator f, which is the fraction of

potentially detectable signals that are lost because of the
discreteness of the template bank, may be expressed in
terms of G, as

f ¼ 1

2
nDðV=NÞ2=nG: ð2:6Þ

Here, the “effective source dimension” D is set by the
spatial distribution of signal sources, and V=N is the
parameter-space volume per grid point.
To compare the performance of different template banks,

fix the number of templates N, the parameter-space
dimension n, and the volume of parameter space V.
Then, the template grid with the smallest G is the best
choice, since it loses the smallest fraction of detections.
The simplest lattice, which is the n-dimensional cubic

lattice, has a dimensionless second moment GðZnÞ ¼
1=12 ≈ 0.08333. A table showing the current records for
the smallest G among lattices (and also comparing the
covering thickness) can be found in Ref. [21] and a larger
and more recent table in Ref. [23]; these latter values are
also shown in Fig. 1.

TABLE I. An ideal template bank has a loss factor G at the
Conway and Sloane lower bound GCS, whereas a random
template bank has a loss factor of Grandom. The final column
shows the fractional difference ðGrandom − GCSÞ=GCS in percent.
For example, in n ¼ 9 dimensions, if an ideal template bank were
spaced to lose 5% of detectable signals, then a random template
bank with the same number of grid points would lose about 5.5%
of detectable signals (9.7% more).

n GCS Grandom Max gain (%)

1 0.08333 0.50000 500
2 0.08019 0.15915 98.5
3 0.07787 0.11580 48.7
4 0.07609 0.09974 31.1

5 0.07465 0.09132 22.3
6 0.07347 0.08608 17.2
7 0.07248 0.08248 13.8
8 0.07163 0.07982 11.4

9 0.07090 0.07778 9.7
10 0.07026 0.07614 8.4
11 0.06969 0.07480 7.3
12 0.06918 0.07367 6.5

13 0.06872 0.07272 5.8
14 0.06831 0.07189 5.2
15 0.06793 0.07116 4.8
16 0.06759 0.07053 4.3
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III. RANDOM TEMPLATE BANKS

We now compute the performance of a random template
bank. As first proposed by Ref. [13], a random template
bank is created by randomly placing grid points with
uniform probability within V, locating each point inde-
pendently of the positions of the other points. (Note that,
while we continue to use the word “grid” to describe this
template bank, the points are not uniformly spaced.)
In this construction, “uniform probability” means a

Poisson process: the probability that an infinitesimal
volume dV contains a grid point is

P ¼ ρdV; ð3:1Þ

where the constant ρ is the number of grid points per unit
parameter-space volume ρ ¼ N=V or the number density of
grid points. (This is easily generalized to a parameter space
with nonflat metric; see the Conclusions and Ref. [13].)
By standard arguments for Poisson processes [Ref. [30],

Eq. (14.24)], the probability of finding l points within a
finite volume v is

PðlÞ ¼ ðρvÞl
l!

e−ρv: ð3:2Þ

This assumption and its implications are examined more
closely in Sec. IV.
We now calculate hr2i and G following a beautiful

argument [31] given by Torquato in Ref. [26]. Let EðrÞ
denote the empty probability. This is the probability that
an n-ball of radius r, centered at a randomly selected point
x of parameter space, contains no grid points. The ball’s
n-volume is

VðBðrÞÞ ¼ πn=2

Γð1þ n=2Þ r
n; ð3:3Þ

where the gamma function is defined by

ΓðzÞ ¼
Z

∞

0

tz−1e−tdt ð3:4Þ

on the half-plane ℜðzÞ > 0 and by analytic continuation
elsewhere. Setting l ¼ 0 in Eq. (3.2), the empty probability
is

EðrÞ ¼ Pð0Þ ¼ e−ρVðBðrÞÞ: ð3:5Þ

Now, by definition, Eðrþ drÞ is the probability that a
slightly larger ball of radius rþ dr, randomly placed in
parameter space, contains no grid points. This is a bit
smaller than EðrÞ, and the difference,

EðrÞ − Eðrþ drÞ ¼ −
dE
dr

dr; ð3:6Þ

is the probability that the closest grid point to a random
point x lies in the shell of radius r ∈ ðr; rþ drÞ from
x [33].
Since − dE

dr dr is the probability that the closest grid point
lies in the shell of radius ðr; rþ drÞ, it follows immediately
that the average squared distance to the closest point in the
template bank is

hr2i ¼ −
Z

∞

0

r2
dE
dr

dr

¼ 2

Z
∞

0

rEðrÞdr

¼ 1

π
ρ−

2
nΓ
�
1þ n

2

�2
n

Γ
�
1þ 2

n

�
; ð3:7Þ

where on the second line we have integrated by parts and on
the third line we have substituted Eq. (3.5), changed
variables, and used the definition Eq. (3.4) of the gamma
function, along with zΓðzÞ ¼ Γðzþ 1Þ.
The scale-invariant second moment G of the random

template bank follows from Eqs. (2.5) and (3.7), since
ρ ¼ N=V. This reproduces Ref. [26]’s Eq. (99) and
furthermore, as noted by Torquato, gives exactly the
Zador upper bound [34] for the optimal scale-invariant
second moment

Grandom ¼ GZador upper

¼ 1

nπ
Γ
�
1þ n

2

�2
n

Γ
�
1þ 2

n

�
: ð3:8Þ

This is plotted as the orange curve in Fig. 1.
As can be seen from Fig. 1 and Table I, the performance

of a random template bank is very dependent upon
dimension. In small dimensions, the performance is poor.
For example, in one dimension, for a given parameter-space
volume, signal source, and number of templates, a one-
dimensional random template bank loses six times as many
signals as the uniformly spaced grid Z. In dimension 2, the
random template bank loses almost twice as many signals
as the hexagonal lattice A2, and in dimension 3, it loses
about 47% more signals than the optimal quantizer, which
is the body-centered cubic (bcc, A�

3) lattice. But the relative
performance of a random template bank improves rapidly
with dimension. By dimension 7, its performance is better
than that of the hypercubic lattice Zn. By dimension 8,
the random template bank loses only 11% more signals
than the best known quantizer lattice E8, which is likely
optimal [35].
As the parameter-space dimension n → ∞, both the

Conway and Sloane conjectured lower bound and the
Zador upper bound approach G∞ ¼ 1=2πe ≈ 0.058549.
In this sense, in higher dimensions, a random template
bank, whose performance is equal to the Zador upper
bound, is as good as one can get. In practice, this limit is
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quickly reached. If one selects a random template bank,
then the final column of Table I shows the maximum
fractional improvement (decrease from optimal) that is
possible if there were a lattice that lies on the Conway and
Sloane conjectured lower bound. This potential fractional
improvement drops below 10% in dimension 8 and below
5% in dimension 15.

IV. NUMBER OF TEMPLATES AND THE
EFFECTIVE DIMENSION OF PARAMETER

SPACE

Here, we examine in detail the assumptions made in the
previous section and their implications regarding the shape
and structure of the parameter space.
Consider Eq. (3.2) for a parameter space of finite volume

V containing exactly N templates, and let v ¼ V. Since this
volume contains N templates, we would expect to obtain
Pð0Þ ¼ 0. But Eq. (3.2) instead gives Pð0Þ ¼ e−ρV ¼ e−N ,
which is nonzero for finite N.
Since our calculation only uses the probability Pð0Þ, the

results will hold in a parameter space with a finite volume V
if we assume that the number of templates N is large. This
is equivalent to requiring that e−ρV ¼ e−N ≪ 1, which also
ensures that truncating the Poisson distribution of Eq. (3.2)
for l > N has no significant effect.
To satisfy this condition, one may take the n-volume

V → ∞ with the density of grid points ρ held constant.
Alternatively, one may assume that the volume v of the ball
of radius

ffiffiffiffiffiffiffiffi
hr2i

p
is small compared to V, so that v=V ≪ 1.

A more subtle issue concerns the shape of the parameter
space, as illustrated in Fig. 2. In Eq. (3.5), we have
computed Pð0Þ from Eq. (3.2), which assumes that the
ball BðrÞ lies entirely within the volume V. But if we are
near a parameter-space boundary, then that is no longer
true. If the parameter space is “thick” in all dimensions,
then such boundary effects can be neglected. On the other
hand, if some regions of the n-dimensional parameter space
are “thin”, then their n-volume vanishes. The Poisson
process then implies that they contain no template grid
points. That would be correct if the probability that a source
lies in those thin regions also has zero measure. However,
in practice, such thin regions can occur in regions of
parameter space where the detection statistic is (effectively)
independent of one or more template parameters.
In such cases, the effective dimension of the parameter

space is reduced. Although the n-volume vanishes, there is
nevertheless a nonzero probability that a source lies in these
thin regions, so a separate lower-dimensional template bank
must be constructed to cover them. If this lower-dimen-
sional template bank is a random bank, then it has a density
ρ0 whose units (dimensions) differ from those of ρ. The
value of ρ0 may be set via Eq. (3.7) to ensure that the
average squared distance to the nearest point in the lower-
dimensional parameter space is the same as that in the

higher-dimensional space. For example, in the two-
dimensional regions of Fig. 2, there are ρ ¼ 100 grid
points per unit area, implying that the average squared
distance to the closest point is hr2i ¼ 1=100π.
Equation (3.7) implies that a random grid along the one-
dimensional line needs ρ0 ¼ ffiffiffiffiffiffiffiffi

50π
p

grid points per unit
length to obtain the same average spacing (mismatch).
The degree of dimensional reduction, i.e., the number of

thin dimensions, is determined by the density of templates.
A dimension is thin if its characteristic length scale is
comparable to, or less than, the distance

ffiffiffiffiffiffiffiffi
hr2i

p
given by

Eq. (3.7). If the template density is made very high, then
none of the dimensions is thin, but as the template density is
lowered,

ffiffiffiffiffiffiffiffi
hr2i

p
increases, and eventually the parameter

space becomes thin in some dimensions.

V. PRODUCT TEMPLATE BANKS

It is often desirable to form a template bank as the
Cartesian product of two lower-dimensional template
banks. For example, this occurs in searches where one
of the parameter-space dimensions is frequency, and SNR
values are obtained via a fast Fourier transform (FFT) from
time-domain data. Such an FFT yields evenly spaced
frequency bins. A second example is binary inspiral
searches, where one of the parameter-space dimensions
is binary coalescence time, sampled at the same sample rate
as the data. In both examples, the parameter-space grid has
a factor which is the evenly spaced one-dimensional
lattice Z.
In the most general approach to such cases, the template

bank on the full n-dimensional parameter space is the
Cartesian product of two lower-dimensional template bank
“factors,” whose dimensions are na and nb, with

FIG. 2. A random template bank for a two-dimensional
parameter space, with an (area) template point density
ρ ¼ 100. The upper bar has a length hr2i1=2 ¼ ðπρÞ−1=2, which
is the root-mean-square (rms) distance to the closest template
point. The middle of the parameter space has a region which
is “thin” compared to this distance, with effective dimension 1. To
obtain the same average mismatch hr2i as the two-dimensional
part of parameter space, templates must be placed along this
one-dimensional “line” with characteristic separation 1=ρ0 ¼
ðπρ=2Þ−1=2 corresponding to the lower bar.
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n ¼ na þ nb. Recent work [23] shows how the relative grid
spacings of the two factors can be scaled or adjusted to
achieve the smallest possible value of G for the resulting
product. After that scaling, the product template bank has a
scale-invariant second moment given by [see Ref. [23],
Eq. (41)]

G ¼ G
na
n
a G

nb
n
b ; ð5:1Þ

whereGa andGb are the scale-invariant second moments of
the two factors. Since GðZÞ ¼ 1=12, the one-dimensional
examples above correspond to na ¼ 1 and Ga ¼ 1=12.
In this way, the results of this paper can also be used to

characterize and optimize the performance of template
banks that are constructed as a product of a random
template bank with a lattice or of two independent random
template banks.

VI. LOSS FRACTION AT LARGE MISMATCH

Up to this point in the paper, we have only considered
“closely spaced” random template banks. We now general-
ize those results to arbitrarily large spacing. To distinguish
these two cases, it is helpful to define

Δ ¼ ρ−1=n ¼
�
V
N

�
1=n

; ð6:1Þ

which is the characteristic distance between grid points.
If the templates are closely spaced, thenΔ is small. From

Eqs. (2.4) and (3.7), this ensures that the fraction of lost
signals

f ¼ D
2π

Γ
�
1þ n

2

�2
n

Γ
�
1þ 2

n

�
Δ2 ð6:2Þ

is small: f ≪ 1. However, the treatment in Sec. III clearly
breaks down if the grid spacing Δ becomes too large, since
in that case the loss fraction f in Eq. (6.2) would exceed
unity. This is inconsistent, since by definition f ≤ 1. This
inconsistency arises because Sec. III assumes the “quad-
ratic approximation” to the mismatch, which is invalid for
large separations.
In this section, we make use of the “spherical ansatz” of

Ref. [27] to compute the loss fraction of a random template
bank for arbitrarily large template grid spacing Δ. As
before, the calculation for a random template bank is much
simpler than for a lattice.
Employing the spherical ansatz, the loss fraction of

Eq. (2.4) f ¼ Dhr2i=2 is replaced by

f ¼ hsðrÞi; ð6:3Þ

where

sðrÞ ¼
�
1 − cosDr for r ≤ π=2; and

1 for r > π=2:
ð6:4Þ

[These equations are derived in Ref. [27], Eq. (5.10), and
Ref. [38], Eqs. (3.6) and (3.7). When r is small, expansion
of Eq. (6.4) in a Taylor series for small r gives
sðrÞ ≈Dr2=2, recovering Eq. (2.4).]
To calculate hsðrÞi, we proceed as in Sec. III, beginning

with Eq. (3.7), to obtain

hsðrÞi ¼ −
Z

∞

0

sðrÞ dE
dr

dr

¼
Z

∞

0

dsðrÞ
dr

EðrÞdr

¼
Z

π=2

0

EðrÞ d
dr

ð1 − cosDrÞdr: ð6:5Þ

In the second line, we have integrated by parts, since sðrÞ
vanishes at r ¼ 0 and EðrÞ vanishes as r → ∞. The third
line follows because the derivative of sðrÞ vanishes
for r > π=2.
To compute this in closed form, we rewrite the integral in

terms of the “expected values” of even powers of r. (These
are defined as in Ref. [21], Eq. (5.11), with the caveat that
the corresponding integrals are truncated at r ¼ π=2.
To emphasize this, we use R rather than r inside the angle
brackets.) Thus, we define the truncated moments

hRpi ¼
Z

π=2

0

EðrÞ d
dr

rpdr

¼ p
n
Δpπ−

p
2Γ
�
1þ n

2

�p
n

γ

�
p
n
;

π
3
2
n

2nΔnΓð1þ n
2
Þ
�
; ð6:6Þ

where the lower incomplete gamma function is defined by

γðz; xÞ ¼
Z

x

0

tz−1e−tdt: ð6:7Þ

To use these moments to compute the loss fraction from
Eq. (6.5), first expand cosD r in a Taylor series, and then
replace the (even) powers of r using Eq. (6.6). One obtains
the loss fraction f ¼ hsðrÞi given by

f¼D
2
hR2i−3D2−2D

24
hR4iþ15D3−30D2þ16D

720
hR6i

−
105D4−420D3þ588D2−272D

40320
hR8iþ…: ð6:8Þ

The loss fractions f for random template banks are shown
in Fig. 3 for a D ¼ 3-dimensional source distribution. Note
that, while Eq. (6.8) does not show the expansion terms
proportional to hR10i and hR12i, these are nevertheless
included in Fig. 3, providing accuracy substantially greater
than the plotting line width.
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VII. CONCLUSION

Random template banks are practical to employ because
they are quick and simple to construct. It is remarkable that
their performance is so easily characterized.
This analysis would have been possible when random

template banks were first introduced in Ref. [13]. However,
as we have explained, the authors of that work were
focused on the covering radius or, more strictly speaking,
on the “effective covering radius.” Here, “effective” means
that a specified (large) fraction of the parameter space was
within a region covered by balls of the specified radius.
This approach was necessary because the covering radius is
defined by the first positive root of the empty probability
EðrÞ. But, as can be seen from Eq. (3.5), in the case of a
random template bank, EðrÞ has no positive roots. Hence,
the authors of Ref. [13] made use of an effective covering
radius, at which EðrÞ had decreased to an acceptably small
value. This leads to a more complex treatment than the one
given here.
For simplicity in this short paper, we have concentrated

on the simplest case, with a flat parameter-space metric.
However, these results also apply to the nonflat case,
provided that the density of grid points is large enough
to ensure that the signal manifold around each grid point is

well approximated by flat space in the vicinity of the
nearest neighboring n grid points. If so, then a Poisson
random template bank may be created by placing grid
points with a constant probability density per unit volume
dV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgabÞ
p

dnx, which is the volume measure
induced by the parameter-space metric [13]. This could
also be modified to account for a varying probability of
sources, as in Ref. [21] Sec. VI.
Random template banks outperform cubic lattices in

dimensions n > 7 and are within 10% of optimal for
dimension n > 9. However, it is currently not practical
to carry out blind searches in such high dimensions because
so many templates are needed. To date, the largest number
of templates employed in (continuous) gravitational-wave
searches (Ref. [39], Sec. IV.1) is of order 1018, in a four-
dimensional parameter space. However, we expect that
advances in quantum computing technology will eventually
permit corresponding higher-dimensional searches [40].
For these, random template banks might be the best
approach, or close enough to be equivalent.
For the moment, as we have explained, random template

banks have been employed [41–44] for practical reasons.
In such applications, the results of this paper are of interest
because they permit the performance of such banks to be
predicted in advance. In addition to being used for con-
structing and characterizing random template banks, these
results may also be used to characterize any type of
template bank, yielding a quantitative assessment of the
degree to which that template bank has improved on a
random bank. The results here may also be applied to
characterize “injection studies” which are used to assess
data analysis pipelines. In these, simulated signals picked
from random locations in parameter space are added to
detector output and passed through an analysis pipeline.
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FIG. 3. The fraction of signals which are lost by a random
template bank as a function of the grid spacing Δ. These
are computed using the spherical ansatz for the mismatch, for
a D ¼ 3 − dimensional source distribution; the curves show
parameter-space dimensions n ¼ 2; 4;…; 10. The dashed lines
show the quadratic approximation for the mismatch Eq. (6.2),
which is accurate at small grid spacings.
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