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Achieving the quantum noise targets of third-generation detectors will require 10 dB of squeezed-light
enhancement as well as megawatt laser power in the interferometer arms—both of which require
unprecedented control of the internal optical losses. In this work, we present a novel optimization approach
to gravitational-wave detector design aimed at maximizing the robustness to common, yet unavoidable,
optical fabrication and installation errors, which have caused significant loss in Advanced LIGO. As a
proof of concept, we employ these techniques to perform a two-part optimization of the LIGO Aþ design.
First, we optimize the arm cavities for reduced scattering loss in the presence of point absorbers, as
currently limit the operating power of Advanced LIGO. Then, we optimize the signal recycling cavity for
maximum squeezing performance, accounting for realistic errors in the positions and radii of curvature of
the optics. Our findings suggest that these techniques can be leveraged to achieve substantially greater
quantum noise performance in current and future gravitational-wave detectors.
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I. INTRODUCTION

In the last six years, Advanced LIGO and Virgo have
established gravitational waves as a new observational
probe of the Universe. With projected improvements in
gravitational-wave detector sensitivities, new tests of grav-
ity, cosmology, and dense nuclear matter will become
possible within the next decade. Higher sensitivity in the
200 Hz–1 kHz band will resolve the ringdown radiation of
newly coalesced black holes, detecting or constraining
potential quantum modifications at the event horizon [1–3].
Higher sensitivity in the 1.5–5 kHz band will resolve binary
neutron star mergers to the moment of coalescence,
illuminating the neutron star equation of state [4,5].
More frequent detections of binary neutron star mergers
will also enable independent measurement of the Hubble
constant to high precision [6], addressing the growing
tension between cosmic microwave background and local
distance ladder measurements [7].
The LIGO detectors are sensitive to gravitational waves

in a broad frequency band ranging from 20 Hz to 5 kHz.
Across this band, the limiting source of instrumental noise
transitions from sensing and controls noise, below roughly
30 Hz, to Brownian noise of the dielectric optical coatings,
up to roughly 200 Hz, and finally to quantum noise at

higher frequencies (see [8] for a thorough review of the
LIGO noise budget). In laser interferometers, quantum
noise arises not from the positional uncertainties of the
mirrors, but from the quantization of the electromagnetic
field used to interrogate their positions [9,10]. This effect,
commonly described as “shot noise,” arises from ground-
state fluctuations of the vacuum field, which enter the
interferometer and beat with the circulating laser field. The
interference of the two fields produces intensity fluctua-
tions which modulate the interferometer output signal.
These fluctuations also apply force to the mirrors via
radiation pressure, producing actual mirror displacements
at low frequencies. Shot noise can be reduced through two
means: higher laser power in the interferometer, which
increases number of photons incident on the beamsplitter,
and the injection of squeezed quantum states of light. Both
are critical to improving the high-frequency sensitivity of
gravitational-wave detectors.
In the third observing run, the Advanced LIGO detectors

operated with roughly 250 kW of resonating power inside
the arm cavities [8]—still only one third of their 750 kW
design power. Recent tests in both detectors have shown
that as the injected laser power is increased, the arm cavity
optical gain severely decays due to increasing internal loss
[8]. The source of this loss has been identified as sub-
millimeter, highly absorbing defects in the optical coatings
known as point absorbers. In situ wavefront sensors have*jonathan.richardson@ucr.edu
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detected their presence on at least four of the eight currently
installed test masses [8,11]. Point absorbers appear to
originate during the coating deposition process, although
it is still not understood how these contaminants enter the
coating nor to what extent they can be eliminated. Each
point absorber absorbs roughly 80 ppb of the total incident
power, or 20 mW when exposed to 250 kW. The extremely
localized heating induces a sharply peaked thermoelastic
deformation of the mirror surface, which scatters power
into higher-order spatial modes [11]. To achieve higher
operating power, point absorber losses must be mitigated.
Beginning also in the third observing run, squeezed light

was injected into both Advanced LIGO detectors [12].
Squeezed light allows for the engineering of the electro-
magnetic vacuum state that enters the interferometer.
Quantum fluctuations of the vacuum field, initially distrib-
uted uniformly between the amplitude and phase quad-
ratures, are redistributed so that they are suppressed in the
phase quadrature, containing the gravitational-wave signal,
and amplified in the unsensed amplitude quadrature. In
Advanced LIGO, squeezed vacuum field is generated via
degenerate optical parametric amplification [13] and
injected into the interferometer output port. During the
third observing run, a shot noise reduction factor of roughly
3 dB was achieved in each detector [12].
Although the injected level of squeezing can be high, the

observed level of squeezing at the interferometer output
depends on the amount of entanglement remaining in the
squeezed field. Losses within the detector lead directly to
decoherence of the squeezed state, limiting the quantum
noise reduction [14]. Losses arise from scattering, imper-
fect transmissivity or reflectivity of optics, photodetector
quantum efficiency, and spatial mode-mismatch between
the optical cavities. For the interferometer, the largest
source of loss is mode-mismatch between the coupled
laser cavities. For example, in the Advanced LIGO detec-
tors, the mode-matching loss between the arm cavities and
the output mode cleaner cavity alone is measured to be
10%. It has been demonstrated that this loss can be
attributed to practical, and largely irreducible, limitations
in the fabrication and hand-positioning of the interferom-
eter optics [15]. For third-generation detectors [16,17],
reducing the internal mode-matching losses to ∼1% levels
is imperative.
In this work, we present a novel optimization approach

to gravitational-wave detector design. It is aimed at
maximizing the robustness to common optical fabrication
and installation errors, which introduce losses that degrade
the optical gain and squeezing performance. Under this
approach, design performance is assessed and improved
statistically, over thousands of trials in which realistic
random errors are assumed in the surface figures and
positions of the optics. As a proof of concept, we employ
these techniques to perform a two-part optimization of the
LIGO Aþ interferometers, planned to become operational

in 2025 [18]. First, in Sec. II we modify the arm cavities for
reduced scattering loss in the presence of point absorbers.
Then, in Sec. III we optimize the signal recycling cavity
(SRC) for maximum squeezing performance, accounting
for realistic errors in the positions and radii of curvature of
the optics. Our findings suggest that these techniques can
be leveraged to achieve substantially greater quantum noise
performance in current and future gravitational-wave
detectors. Finally, in Sec. IV we summarize and discuss
future extensions of this work.

II. ARM CAVITY DESIGN

In the Advanced LIGO arm cavities, point absorbers
on the mirror surfaces disproportionately scatter power
into 7th-order spatial modes. Although a point-absorber-
induced deformation scatters power into many higher-order
modes (HOM), the Fabry-Perot cavity resonantly enhances
or suppresses each mode as a function of the roundtrip
phase it accumulates in the cavity. This effect was first
analyzed for static deformations by Vajente [19] and
extended to power-dependent surface deformations from
point absorbers by Brooks et al. [11], who showed that the
power loss from the fundamental mode to themnth HOM is
approximately

Lmn ¼ a2
00jmngmn: ð1Þ

The first term, a00jmn, is the single-bounce amplitude
scattering from the fundamental mode to the mnth HOM
when reflected off the deformed mirror surface. The second
term, gmn, is the optical gain of that HOM, which depends
on the cavity geometry and the actual (nonideal) surface
profiles of the two mirrors:

gmn ¼
1 − r021 r

02
2

1þ r021 r
02
2

1
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1
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2

1þr02
1
r02
2

cos½Φmn�
: ð2Þ

The factors r01 and r02 are the effective amplitude reflectiv-
ities of the input test mass (ITM) and the end test mass
(ETM), respectively, accounting for mode-dependent clip-
ping losses, and Φmn is the additional roundtrip phase that
the HOM accumulates relative to the fundamental mode. In
the LIGO arm cavities, modes of order 7, by coincidence,
are nearly coresonant with the fundamental mode, leading
to optical gain factors gmn up to 100 times larger than those
for nonresonant modes.
Thus, to reduce point absorber losses and achieve higher

operational power in LIGO A+, our design objective is to
fully eliminate mode coresonances below order 8 in the arm
cavities. In principle, this could be achieved by adjusting
the arm cavity parameters (the arm length and the radii of
curvature of the test masses) for a more favorable transverse
mode spacing. However, a significant change of the cavity
parameters is precluded by other operational constraints.
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The 4 km arm length is constrained by the existing
infrastructure to approximately �2 m of the current length.
With only the radii of curvature of the two mirrors free to
vary, it is not possible to maintain the current beam sizes on
both optics. A smaller beam size results in increased
coating Brownian noise—unacceptable for the Aþ design,
which is already thermal-noise-limited across its mid-
frequency band [18]. A larger beam size, on the other
hand, results in unacceptably higher clipping losses inside
the arms and the signal recycling cavity. Thus, the problem
is overconstrained from the perspective of a standard cavity
design approach using spherical optics.
In this section, we demonstrate that by applying novel,

nonspherical surface profiles to the LIGO test masses, the
mode 7 co-resonances can be eliminated without incurring
any increase in coating thermal noise or clipping loss. Our
approach exploits the large difference in transverse spatial
confinement between the fundamental mode and 7th-order
modes. Each mirror profile is spherical in the central
region, where fundamental mode power is concentrated,
but assumes a sharply nonspherical shape at the outermost
radii, where the incident power is almost purely in higher-
order modes. We show that the outer surface profile can be
tailored to control the roundtrip phaseΦmn [see Eq. (2)] that
an HOM accumulates relative to the fundamental mode.
This provides a means to suppress problematic higher-order
modes while negligibly altering the fundamental cavity
mode, leading to a significant loss reduction in the presence
of scattering sources such as point absorbers.

A. Nonspherical test mass profiles

For mirror fabrication in the Aþ era, LIGO has the
ability to specify an arbitrary (nonspherical) polishing
figure. Internal discussions with optics manufacturers have

indicated that an arbitrary radial profile, subject to a
maximum slope of 2.5 nm=mm, could be produced with
high confidence, with a possibility that an even steeper
polishing slope could be achieved. Figure 1 shows our
proposed surface profiles for the LIGO input test masses
(ITM) and end test masses (ETM). In each panel, the
polishing figure (blue curve) both compensates the
expected nonuniformity of the optical coating (gray curve)
and adds a nonspherical edge component to produce the
total surface figure (pink curve). To remain within dem-
onstrated fabrication limits, we restrict the polishing slope
to 2.5 nm=mm, as shown in the lower panels of Fig. 1. In
Aþ, a new coating material with improved thermal noise
performance, TiO2-doped GeO2 [20], is expected to replace
the TiO2-doped Ta2O5 coatings used in Advanced LIGO
[21,22]. Accordingly, we estimate the Aþ coating non-
uniformity as the measured nonuniformity of the LIGO O4
coating plume, which will be reused to produce the Aþ
optics, multiplied by the relative coating thickness required
to achieve the same reflectivity with the new material (1.2
for the ITM and 1.5 for the ETM).
Figure 2 illustrates how these profiles eliminate the arm

cavity modal degeneracy. First, for comparison, the top
panel shows the nominal locations of the 7th-order
Laguerre-Gauss (LG) mode resonances, assuming a spheri-
cal mirror polish. With higher cavity power (or coating
absorptivity), the resonances shift toward higher frequency
due to the increasing residual thermal deformation of the
test masses. Although ring heaters compensate the central
heating due to uniform coating absorption, the ring heaters
“overcorrect” the mirror surface at large radii, resulting in a
net profile that steeply rises near the edge of the optic [23].
Here, we assume 120 mW of coating absorption per test
mass, corresponding to a cavity power of 400 kW for
absorptivity at the level of the Advanced LIGO coatings.

FIG. 1. Proposed surface profiles for the LIGO Aþ input test masses (ITM; left) and end test masses (ETM; right). In each panel, the
total surface figure (pink curve) is the sum of the polishing profile (blue curve) and the optical coating nonuniformity (gray curve).
Based on current fabrication capabilities, the polishing slope is restricted to ≤ 2.5 nm=mm, as shown in the lower panels.
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The bottom panel shows the new locations of the 7th-order
mode resonances after including the compensation polish
shown in Fig. 1 (blue curves). The polishing profiles are
designed to shift the 7th-order mode resonances rightward,
toward higher frequency, where any degree of thermal
distortion now strictly shifts them further away from
coresonance. This has significant implications for the loss
performance of the arm cavities, as discussed in the
following section.

B. Loss performance improvement

We now assess the impact of our proposed compensation
polish on the arm cavity loss. For this, we consider two
scenarios, with (“proposed”) and without (“nominal”) our
proposed modification. The “nominal” test mass profiles
(with spherical power subtracted) are equal to the gray
curves in Fig. 1. The “proposed” test mass profiles (again
with spherical power subtracted) are equal to the pink
curves in Fig. 1. For each set of profiles, we perform
numerical simulations of an Aþ arm cavity using SIS [24],
an FFT-based optical simulation package. The model
includes all thermoelastic effects: (1) uniform coating
absorption and (2) optimal ring heater compensation, to
maintain constant mode-matching of the arm to the
recycling cavities. Throughout, we assume coating

absorption at the average level of the Advanced LIGO
test masses, 0.3 ppm. We also assume a fixed high-angle
scattering loss of 25 ppm per optic. To account for realistic
nonidealities, which could unequally impact the two
designs, all loss analyses are performed as Monte Carlo
simulations over 1000 trials with random beam miscenter-
ings and surface roughnesses. Beam miscenterings on the
ITM and ETM are independently drawn from a Gaussian
distribution with zero mean and a standard deviation of
5 mm. Surface roughness profiles are randomly generated
by SIS with a power spectral density chosen to match that of
the current Advanced LIGO optics [25].
First, we evaluate the baseline loss performance of both

designs in the absence of scattering sources. The aim of our
compensated design is to achieve the HOM frequency
shifts outlined in Sec. II Awithout worsening the roundtrip
loss of the fundamental mode. Figure 3 shows the roundtrip
arm loss under each design as a function of mode order, at
an arm power of 750 kW. The curves represent the median
loss values over all randomized trials, and averaged over all
modes LGp;l of order N ¼ 2pþ jlj. The shading represents
the 16th and 84th percentiles of the loss distributions across
all trials and modes. Our results indicate that the proposed
test mass profiles do not increase loss in the fundamental
mode, but they do significantly increase the losses of
HOMs above order 2. While the design objective in
Sec. II A was only to shift resonance frequencies of
HOMs, the larger dissipation of HOMs is an added
advantage that helps to further reduce their optical gain.
Enhancing the dissipation of certain HOMs may be also

FIG. 2. Optical gain gmn of the 7th-order Laguerre-Gauss (LG)
modes in the LIGO Aþ arm cavities, as a function of frequency
detuning from the fundamental mode resonance. Top: the
nominal resonance locations with a spherical test mass polish.
Bottom: the new resonance locations after including the com-
pensation polish shown in Fig. 1 (blue curves). In both panels,
coating absorption of 120 mW per test mass is assumed.

FIG. 3. Arm cavity loss as a function of mode order. Each curve
represents the median loss in 1000 trials with random miscenter-
ings and surface roughnesses, averaged over all Laguerre-Gauss
modes LGp;l of order N ¼ 2pþ jlj. The shading represents the
16th and 84th percentiles of the loss distributions over all trials
and modes. The proposed mirror profiles achieve significantly
enhanced higher-order mode dissipation, with no increase in
fundamental mode loss.
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relevant for improving the damping of parametric insta-
bilities in gravitational-wave detectors [26]. For this reason,
we include a full breakdown of the dissipation per optical
mode in the Appendix.
Next, we add random point absorbers to the Monte Carlo

simulation and reevaluate the loss performance of both
designs. One point absorber is applied to each test mass,
randomly positioned in the central 150 mm diameter. The
radial and angular coordinates are drawn from uniform
distributions, with the radial distribution truncated at
75 mm and the angular distribution spanning the full
360°. Point absorber phase maps are generated using the
analytic formalism for thermoelastic surface deformation
from Brooks et al. [11]. We assume a fixed absorptivity
chosen so that, at a cavity power of 250 kW, a perfectly
centered point absorber absorbs 20 mW of incident power.
Figure 4 shows the roundtrip loss distributions for the
fundamental cavity mode under each design, at three
different arm power levels. We find the proposed profiles
statistically outperform the nominal profiles in all cases.

III. SIGNAL RECYCLING CAVITY DESIGN

The single largest source of loss in the Advanced LIGO
interferometers is spatial mode-mismatch between optical
cavities. Mode-mismatch arises from unintended deviations

of the as-built optical system from design. The two folding
mirrors of the signal recycling cavity (SRC) are known to
be especially sensitive to fabrication and installation errors.
Even small perturbations in the curvatures and positions of
these optics can result in a significant mode-mismatch with
the arm cavities.
The impact of mode-mismatch internal to the interfer-

ometer on the observed squeezing is difficult to model
analytically. In LIGO, the fundamental optical mode is
squeezed in the modal basis defined by a parametric
amplifier cavity, which serves as the squeezing source.
The cavities of the interferometer each define their own
basis of optical modes. As the squeezed state propagates
through the interferometer, it is transformed from the modal
basis of the squeezing source into the basis of each
respective cavity. If the spatial modes of the cavities are
imperfectly matched, these basis transformations must mix
the optical modes. Since only the fundamental mode in the
source basis is squeezed, the higher-order modes carry
standard vacuum. Thus, basis mixing from mode-mismatch
leads to loss. However, unlike dissipative losses, each
modal mixing is coherent and unitary—leading to complex
interference effects which can potentially increase squeez-
ing losses. To date, the most detailed analytical treatment of
the coherent interactions of transverse modal mixing on
squeezed states is given by McCuller et al. [27].
In the present work, we use a numerical simulation to

model the squeezing degradation from internal mode-
mismatches. The aim of this analysis is to identify an
SRC design in LIGO Aþ that is maximally robust to
common errors which induce mode-mismatch. We identify
the maximally error-tolerant design through a numerical
optimization procedure described in Sec. III A, which
employs an evolutionary search algorithm in a parameter
space spanning all possible SRC designs. The results of this
optimization and a quantitative analysis of the design
performance are described in Sec. III B.

A. Optimization procedure

Our objective is to find the optimal values of the radii of
curvature and positions of the SRC mirrors, such that
deviations from these nominal values minimally degrade
the squeezing level observed at the interferometer output.
To perform this search, we employ a global-best particle
swarm optimization (PSO) algorithm provided by the
Pyswarms optimization toolkit [28]. PSO is an evolutionary
search algorithm designed to efficiently explore high-
dimensional parameter spaces. Initially, many “particles,”
each, in our case, representing a candidate optical design,
are scattered around the parameter space. Each particle has
an associated velocity which determines its position in the
parameter space at the following iteration. Its velocity is
determined by its best known local position as well as the
best positions discovered by other particles. In this way, the

FIG. 4. Arm cavity loss distributions due to point absorbers,
shown at three different power levels. Each loss distribution
represents 1000 trials with a point absorber randomly positioned
on each test mass. Uniform coating absorption of 0.3 ppm per test
mass, along with optimal ring heater compensation, is assumed.
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entire swarm is iteratively guided toward the global
optimum.
The relative “goodness” of positions within the param-

eter space is quantified by a cost function whose value the
algorithm seeks to minimize. Primarily, our cost function is
designed to penalize SRC designs in which the observed
squeezing level is strongly sensitive to perturbations of the
SRC parameters. To evaluate the cost function at each
particle’s position, at each iteration, a FINESSE optical
simulation [29] is used to compute the partial derivatives
of the observed squeezing level with respect to small
detunings of each candidate SRC parameter. We detail
the FINESSE simulation in Sec. III A 1. Then, in Sec. III A 2
we describe the set of optical parameters which we
optimize, as well as relevant parameter constraints.
Finally, in Sec. III A 3 we detail the construction of the
cost function used to define the optimization objective.

1. Optical simulation

In our optimization routine, the core compute engine is a
FINESSE simulation [29] used to analyze the performance of
a given SRC design. FINESSE is a modal-based optical
simulation package widely used for modeling laser cavities,
whose modern user interface is provided by the PyKat [30]
package. To illustrate the optimization procedure, we adopt
a toy interferometer model based on the LIGO Aþ design.
Its optical layout is shown in Fig. 5. However, for the
purpose of this illustration, several simplifying departures

from the Aþ design are made to reduce the computational
cost and complexity:

(i) Frequency-independent squeezing. Although Aþ
will use frequency-dependent squeezing [18], for
simplicity we assume a frequency-independent
squeezing angle. In principle, our routine can be
extended to the frequency-dependent case by
jointly optimizing the error tolerance at multiple
frequencies.

(ii) DC readout. For signal detection, a bright carrier
field must present at the interferometer output port.
In Advanced LIGO, this is generated by offsetting
the differential arm length∼1 pm from a dark fringe.
In Aþ, this technique, known as “DC readout,” will
be replaced by balanced homodyne readout [31]. As
balanced homodyne readout adds considerable com-
plexity, we use DC readout in this simulation.

(iii) Output mode-matching. Inclusion of an output mode
cleaner (OMC) adds significant computational cost
because, as SRC parameters are detuned, at least
two adaptive optics between the SRC and OMC
must be continually re-optimized to maintain the
mode-matching of the OMC to the arm cavities.
Although such a retuning of the output mode-
matching been previously demonstrated [15], for
the present simulation we omit the OMC and
instead assume a fixed output loss ranging from
5% to 20%.

The FINESSE simulation starts from a “nominal” model
(using a provided set of SRC parameters), then individually
detunes each SRC parameter from its design value and
computes the change in observed squeezing. The parameter
detunings introduce a spatial mode-mismatch between the
SRC and the arm cavities. Higher-order modes up to order
4 are tracked, which is sufficient given the small size of the
parameter detunings. Coincidentally, the mode-mismatch
shifts interferometer length degrees of freedom away from
their nominal operating points, as well as rotates the
squeezing quadrature away from the interferometer readout
quadrature. In a real detector, these offsets are zeroed by a
combination of control servos and manual optimizations.
Thus, it is necessary to implement servos within the
FINESSE simulation to zero all such “artifical” detunings.
To prevent length detunings, we incorporate DC servos

for all five length degrees of freedom: the common arm
length, differential arm length, power recycling cavity
length, Michelson length, and signal recycling cavity
length [see, e.g., [32]]. Linear error signals are constructed
by injecting 9 MHz and 45 MHz phase modulation side-
bands at the interferometer input and measuring the
demodulated fields at the symmetric port, antisymmetric
port, and a pick-off port inside the power recycling cavity.
Every time an SRC parameter is varied, we reorthogonalize
the sensing matrix. Then, to verify the new servo points, we
individually detune each length degree of freedom and
verify its error signal to be at a zero crossing.

FIG. 5. Optical configuration used for simulating a LIGO-like
interferometer. All of the distances and radii of curvature are fixed
to the nominal LIGO A+ design values, except for the signal
recycling cavity parameters which are indicated in blue.
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To calculate the observed squeezing level for the
detector, we inject a −14 dB squeezed vacuum source at
the output of the SRC, as shown in Fig. 5. The injected
squeezing level is chosen to match that expected for LIGO
Aþ. We then rotate the squeezing angle so as to minimize
the quantum (shot) noise level in the interferometer readout
channel at 1 kHz. The signal frequency of 1 kHz is chosen
to lie in LIGO’s high-frequency, shot-noise-dominated
band, where optomechanical interactions with the interfer-
ometer optics may be neglected. The injected squeezed
field is mode-matched to the interferometer arm cavities,
rather than to the low-finesse SRC, equivalently to the
procedure in use for the real detectors. Every time an SRC
parameter is varied, we adjust the input squeezing mode to
recover the mode-matching to the arm cavities, then retune
the squeezing angle for maximum shot noise reduction.

2. Parameters and constraints

During optimization, we allow the lengths and mirror
curvatures defining the SRC to vary, while keeping the arm
cavities and the power recycling cavity fixed. There are
thus six degrees of freedom, as indicated in blue lettering
in Fig. 5: the radii of curvature of the SR3, SR2, and
SRM mirrors (RSR3, RSR2, and RSRM, respectively) and the
distances between ITMX/Y and SR3, SR3 and SR2, and
SR2 and the SRM (LITM−SR3, LSR3−SR2, and LSR2−SRM,
respectively). As shown in Fig. 5, the distance between the
ITMs and SR3 is the sum of the distances between the
ITMs and beamsplitter (LX1 and LY1) and the beamsplitter
and SR3 (LBS−SR3). To avoid changing the power recycling
cavity mode, we allow only the LBS−SR3 component to vary.
It is necessary to impose two constraints on the SRC

parameters, as described below. In effect, these constraints
reduce the dimensionality of the optimization problem from
six to four.
a. Total length. For length sensing and control of the

SRC, Advanced LIGO relies on the resonance of a 45 MHz
phase modulation sideband in this cavity [33]. In order to
avoid requiring a major change in the control system, the
45 MHz sideband must remain resonant in the redesigned
cavity. Thus, we require the total SRC length to remain
fixed. This reduces the dimensionality of the optimization
problem from six to five, via the constraint

LSRC ¼ LITM−SR3 þ LSR3−SR2 þ LSR2−SRM ð3Þ

where LSRC ¼ 56.01 m is the current SRC length.
b. Mode-matching. In order to read out the interferometer

signal field through the SRC, the SRC must be mode-
matched to the arm cavities. Thus, at the longitudinal
location of the ITM reflective surface, z ¼ zITM, we require
that the beam parameter of the SRC, qSRC, equal that of the
arm cavities, qarm:

qSRCðzITMÞ ¼ qarmðzITMÞ ð4Þ

This mode-matching constraint implies that for one round-
trip traversal through the SRC, starting from the ITM, the
ABCD matrix [34] of the SRC must satisfy

qarmðzITMÞ ¼
AqarmðzITMÞ þ B
CqarmðzITMÞ þD

: ð5Þ

Implicitly, the matrix elements A, B, C, andD are functions
of the six SRC design parameters. We numerically solve
Eq. (5) for RSR2 in terms of the other five parameters,
further reducing the dimensionality of the optimization
problem from five to four.

3. Cost function

The relative performance of competing optical designs is
quantified by a cost function, whose value the optimization
procedure seeks to minimize. Unlike classical optimization
methods, PSO does not use the gradient of the cost function
and, thus, does not require it to be differentiable. This
allows a high degree of flexibility in construction of the
cost function. Primarily, our cost function is designed to
penalize SRC designs in which the observed squeezing
level is strongly sensitive to perturbations of the SRC
parameters (CSQZ). Several additional penalties are
included to ensure that the cavity is stable (Cstable), low-
loss (due to clipping on the optics; Closs), and modally
nondegenerate (CHOM). The total cost of an SRC design is
defined as

COST ¼ CSQZ þ Cstable þ Closs þ CHOM: ð6Þ

Each of the terms in Eq. (6) is described in detail below.
a. Squeezing sensitivity (CSQZ). To quantify the

sensitivity of the SRC design to real-world errors, we
detune each SRC parameter individually to estimate the
partial derivatives of the observed squeezing. Radii of
curvature are detuned by ΔR ¼ �0.1% and lengths by
ΔL ¼ �3 mm. These detunings are chosen to reflect the
best achievable fabrication and hand-placement tolerances
for LIGO optics, respectively. The design is assigned a
cost of

CSQZ ∝
X

i

�����
ΔSi;þ
Δxi

����þ
����
ΔSi;−
Δxi

����
�
; ð7Þ

where ΔSi;� is the change in observed squeezing for a
positive or negative detuning �Δxi of the parameter xi.
b. Cavity stability (Cstable). To ensure the SRC is a stable

optical resonator, we penalize cavities whose g factor is
close to the instability limit of �1 [35]. Designs with
stability factors of jgj > 0.9 are assigned a linearly increas-
ing cost of

Cstable ∝ jgj: ð8Þ
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Designs with stability factors below this threshold are
assigned a fixed cost of Cstable ¼ −1.
c. Clipping losses (Closs). A larger beam size on the SRM

will result in higher clipping losses further downstream
on the output mode-matching optics, which are smaller in
diameter. We thus include a penalty to ensure the beam
exiting the SRC does not become significantly larger than
its present size. At the longitudinal location of the SRM,
z ¼ zSRM, designs with a Gaussian beam radius wðzSRMÞ >
3 mm are assigned a linearly increasing cost of

Closs ∝ wðzSRMÞ: ð9Þ

Designs with beam sizes below this threshold are assigned
a fixed cost of Closs ¼ −1.
d. Modal degeneracy (CHOM). The presence of higher-

order mode (HOM) coresonances in the SRC can lead to
a resonant amplification of scattering losses through a
process known as “mode harming” [36]. To ensure the
SRC is modally nondegenerate, we penalize HOM
coresonances up to order 10. If the roundtrip Guoy phase
of the cavity, ϕG, is within �10% of 2π=n for any
n ∈ f1; 2;…10g, the design is assigned a linearly increas-
ing cost of
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FIG. 6. Nominal versus optimized signal recycling cavity
designs for LIGO Aþ. Shown is the Gaussian beam size (top)
and the accumulated Gouy phase (bottom) along the cavity axis,
from the ITM to the SRM. Of all the optics, only the positions of
SR2 and SR3 are allowed to vary.

TABLE I. Nominal versus optimized signal recycling cavity
parameters for LIGO Aþ.

Parameter Aþ Nominal Aþ Optimal

SR3 radius of curvature 35.97 m 60.24 m
SR2 radius of curvature −6.41 m −4.77 m
SRM radius of curvature −5.69 m −56.27 m
Beamsplitter to SR3 length 19.37 m 9.97 m
SR3 to SR2 length 15.44 m 28.56 m
SR2 to SRM length 15.76 m 12.04 m

FIG. 7. Probability distributions of the squeezing achieved with
two different signal recycling cavity (SRC) designs, in the
presence of realistic random optical errors. The three panels
assume various levels of readout loss ranging from 5% (top) to
20% (bottom). In each panel, the black vertical lines indicate
the difference in worst possible outcome, at 95% confidence,
between the two designs.
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CHOM ∝ 1 −
jϕG − 2π=nj

2π=n
: ð10Þ

Designs with no HOM coresonances within this threshold
are assigned a fixed cost of CHOM ¼ −1.

B. Squeezing performance improvement

In this section, we present the most error-tolerant SRC
design identified by our optimization routine and character-
ize its optical performance. Table I lists the optimized SRC
parameter values compared to those for the nominal Aþ

design. The design differences are visualized in Fig. 6. The
top panel shows the Gaussian beam diameter along the
cavity axis, from the ITM to the SRM. The bottom panel
shows the accumulated Gouy phase along the same path. As
shown, the optimization favors converging the beam more
slowly, which is achieved largely by increasing the separa-
tion between the SR2 and SR3 telescope mirrors. For the
reasons discussed in Sec. III A, the total SRC length is
constrained to remain the same, which fixes the position of
the SRM in Fig. 6, and a larger beam size at the SRM
position is also strongly penalized.

FIG. 8. Corner plot comparing the sensitivity to error in pairs of parameters (see Table I) between two signal recycling cavity (SRC)
designs. In each panel, the lines represent iso-squeezing contours at which errors in the two parameters degrade the observed squeezing
by 3 dB, compared to the unperturbed case (located at the origin). A larger area enclosed by the iso-squeezing contour of one design
indicates a greater error tolerance.
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To assess the competitiveness of this candidate design,
we analyze its squeezing performance statistically using
a Monte Carlo method. With a fixed level of injected
squeezing, small random errors are added each of the SRC
parameters and the observed squeezing is computed for a
large number of trials. The resulting squeezing distributions
provide a direct, quantitative comparison of the perfor-
mance of competing cavity designs. In detail, our procedure
is as follows:
(1) Assume realistic uncertainties in the curvatures and

positions of the SRC optics. We assume the un-
certainties to be normally distributed with zero mean
and a standard deviation of 0.1% for radius of
curvature errors and 3 mm for position errors.

(2) Draw a set of random errors for all six SRC
parameters listed in Table I.

(3) Using the FINESSE model described in Sec. III A 1,
simulate the interferometer with these perturbed
parameters and compute the observed squeezing level.
A fixed injected squeezing level of−14 dB is assumed.

(4) Repeat the previous steps 2000 times, each time
drawing a new set of random parameter errors.

(5) Calculate the probability distribution of observed
squeezing across all trials.

Convergence testing with varying numbers of trials has
found 2000 to adequately sample the distribution.
Figure 7 shows the result of this comparative perfor-

mance analysis for the nominal and optimized SRC
designs. The three panels show the probability distributions
of observed squeezing under varying levels of readout loss,
ranging from 5% (top panel) to 20% (bottom panel). This
readout loss accounts for attenuation losses due to output
mode-mismatch, Faraday isolator insertion loss, optical
pick-offs for diagnostic and control purposes, and photo-
diode quantum inefficiency. At the beginning of LIGO Aþ,
the readout losses are expected to be similar to the
bottommost panel. We find that, in the presence of random
optical errors, our optimization procedure results in a
significant narrowing of the distribution of possible squeez-
ing outcomes. As shown, this narrowing leads to a modest
improvement in the median squeezing level and, at 95%
confidence, a dramatic improvement in the worst possible
outcome (black vertical lines in Fig. 7).
The squeezing distributions of the nominal design exhibit a

bimodality which arises from two distinct parameter regimes.
In each panel, the left peak (corresponding to higher squeez-
ing) overwhelmingly consists of cases in which the SR3
radius of curvature is smaller than intended (ΔRSR3 < 0.0%).
On the other hand, the right peak (corresponding to lower
squeezing) overwhelmingly consists of large, positive errors
in the SR3 radius of curvature (ΔRSR3 > þ0.1%).We find no
strong correlation in the values of the other five SRC
parameters between the two peaks. The strong dependency
on ΔRSR3 is reduced but not completely eliminated by the
optimization process. In the squeezing distributions of the

optimal design, nearly all of the low-squeezing outliers arise
from cases of very large, positive error in the SR3 radius of
curvature (ΔRSR3 ≥ þ0.2%).
To understand the extreme sensitivity to errors in the SR3

mirror, and how our optimization process reduces it, we
generate a “corner plot” by detuning individual pairs of
SRC parameters, as shown in Fig. 8. In each panel, the lines
represent iso-squeezing contours at which errors in the two
parameters degrade the observed squeezing by 3 dB,
compared to the unperturbed case (located at the origin).
The contours for the nominal SRC design (solid blue lines)
and the optimized design (dashed red lines) are overlaid to
allow a direct comparison of the parameter sensitivities. A
greater error tolerance appears as an increase in the area
enclosed by the iso-squeezing contour (that is, larger
parameter errors are required to produce the same degra-
dation in squeezing). As shown, the single largest improve-
ment is a dramatic reduction of sensitivity to errors in RSR3.

IV. CONCLUSIONS

The aim of this paper has been to demonstrate the
promise of two novel, complementary techniques in optical
experiment design:
(1) Nonspherical mirror surfaces as solutions to other-

wise overconstrained cavity design problems.
(2) Statistics-guided cavity design for optimal robust-

ness to real-world optical errors.
As a proof of concept, we have performed a two-part
optimization of the LIGO Aþ design, first modifying the
arm cavities for reduced point-absorber-induced loss (see
Sec. II) and then optimizing the SRC for maximum
squeezing performance (see Sec. III). Our findings strongly
suggest that these techniques can be leveraged to achieve
greater performance in current and future gravitational-
wave detectors. Both act to minimize internal optical
losses, as is critical to achieving megawatt-scale power
and high levels of squeezing in third-generation detectors.
Several caveats apply to the results presented herein,

which will be the target of future studies. In Sec. II, the
optimal test mass profiles depend critically on the thermal
state of the optics. Central heating due to (uniform) coating
absorption and thermal compensation applied by the ring
heaters induce thermoelastic surface deformations of the
same magnitude as the static polish, even at the outer radii.
For the purpose of illustration, we assume coating absorp-
tion at the same level as for the Advanced LIGO optics.
However, the absorptivity of the new coating materials
targeted for LIGO Aþ, TiO2-doped GeO2 [20], is not
currently known. Given this uncertainty, an equivalent
active solution is possible in which an annular heating
pattern is projected onto the front surface of the test mass
near the edge, providing a tunable means of generating
surfaces profiles similar to those shown in Fig. 1.
In Sec. III, an analytical or semi-analytical squeezing

model is desirable to cross-validate the numerical results
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presented in Fig. 7. In future work, we aim to develop a
semianalytic mode-scattering model that will enable
squeezing calculations to be performed using the FFT-
based optical simulation SIS [24]. This will provide an
important cross-check of the FINESSE-based models. In
future work, we also aim to extend the complexity of the
optimization in several key ways:
(1) Include an OMC, to remove sideband power and

nonartificially capture output mode-matching losses.
(2) Jointly optimize the quantum noise performance at

multiple frequencies, to extend our procedure to
frequency-dependent squeezing.

(3) Incorporate additional constraints to generate optical
designs compatible with the footprint of the existing
LIGO vacuum chambers.

(4) Jointly optimize the power and signal recycling
cavities, enabling potential searches for “mode-
healing” designs [36] in the presence of point
absorbers.

Each of these extensions incurs a considerably higher
computational cost than the present work, due either to
an increase in the dimensionality of the optimization itself,
or by requiring additional suboptimizations (or serving) to
be performed within each iteration of the optimization.
Improved algorithmic efficiency, together with highly
parallelized simulations, will be essential to achieving
them at the scale of a full gravitational-wave interferometer.
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APPENDIX: ARM CAVITY LOSS BY MODE

Although the test mass profiles presented in Sec. II A are
designed to shift the resonance frequencies of 7th-order

modes (to reduce point absorber scattering), they also
achieve a significantly greater dissipation of mode orders
2–7 as shown in Fig. 3. Enhancing the dissipation of certain
modes may be relevant for improving the damping of
parametric instabilities in gravitational-wave detectors [26].
Thus, in Table II we include a breakdown of the roundtrip
dissipation per optical mode.

TABLE II. Roundtrip arm cavity loss for each Laguerre-Gauss
mode up to order 8, shown for both the nominal and proposed test
mass profiles. The lower and upper error bars represent the 16th
and 84th percentiles of the loss distributions, respectively (see
Sec. II B).

Mode LGp;l Roundtrip arm loss

Order p jlj Aþ nominal Aþ proposed Units

0 0 0 76þ0.7
−1.8 62þ0.5

−0.3 ppm

1 0 1 159þ4
−15 122þ6

−7 ppm

2 0 2 357þ17
−66 649þ48

−88 ppm

2 1 0 597þ32
−110 1092þ81

−148 ppm

3 0 3 793þ47
−174 3165þ220

−420 ppm

3 1 1 1.7þ0.1
−0.4 7.2þ0.4

−0.9 ppt

4 0 4 2.7þ0.1
−0.4 15þ0.6

−1.8 ppt

4 1 2 7.6þ0.3
−1.1 35þ1

−4 ppt

4 2 0 10þ0.4
−1.5 44þ1

−5 ppt

5 0 5 10þ0.3
−1.2 42þ1

−5 ppt

5 1 3 32þ1
−4 92þ2

−8 ppt

5 2 1 49þ2
−6 120þ3

−10 ppt

6 0 6 31þ0.6
−2.8 80þ2

−7 ppt

6 1 4 94þ2
−7 160þ3

−11 ppt

6 2 2 150þ3
−10 209þ3

−11 ppt

6 3 0 171þ3
−11 225þ3

−11 ppt

7 0 7 76þ2
−6 134þ2

−9 ppt

7 1 5 210þ4
−13 261þ3

−9 ppt

7 2 3 312þ5
−13 342þ3

−8 ppt

7 3 1 360þ6
−13 379þ3

−9 ppt

8 0 8 154þ3
−10 224þ2

−7 ppt

8 1 6 348þ5
−11 388þ3

−8 ppt

8 2 4 463þ6
−12 472þ3

−11 ppt

8 3 2 512þ8
−14 511þ4

−12 ppt

8 4 0 526þ8
−15 522þ4

−12 ppt
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