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Sensitivity of 4 — e processes to 7 flavor change
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Transforming a p to a 7, then the 7 to to an e, results in g — e. In an effective field theory (EFT)
framework, we explore the sensitivity of 4 — e observables to products of (4 — 7) x (z — e) interactions
and show that the exceptional sensitivity of upcoming u <> e experiments could allow us to probe
parameter space beyond the reach of upcoming 7 <> [ searches in Higgs, 7, and B decays. We describe the
7 <> [ interactions as dimension six operators in the SM EFT, identify pairs of them giving interesting
contributions to y <> e processes, and obtain the anomalous dimensions mixing those pairs into dimension
eight 4 — e operators. We find that y — e processes are sensitive to 7 flavor-changing B decays at rates
comparable to current B anomalies, but lepton flavour violating operators cannot reduce B rates—as

appropriate in many current B anomalies—because they do not interfere with the SM.
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I. INTRODUCTION

The three lepton flavors are accidentally conserved in the
Standard Model, if it is defined with massless neutrinos.
But the nonzero neutrino masses and mixing angles
established by the observation of neutrino oscillations
clearly demonstrate that leptons change flavor.
Extending the Standard Model (SM) with Dirac neutrino
masses generically predicts flavor-changing contact inter-
actions among the charged leptons (LFV or CLFV—for
reviews, see, e.g., [1,2]), but the branching ratios are GIM
suppressed by small neutrino masses Br ~ GZm; ~ 1075
[3,4], so beyond any foreseeable experimental reach.
Searches for CLFV are thus of great interest, as an
observation would be an unambiguous signature of new
physics (NP) that could shed light on the neutrino mass
mechanism. In addition, null results generally limit the
parameter space of beyond the SM theories, many of which
predict sizable LFV rates. In Table I, a subset of LFV
processes is listed with the current experimental bounds on
their branching ratios, and the expected sensitivities of
upcoming searches.
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The current limits on y — e flavor change are more
restrictive than those on 7 — [, where [ € {e, u}, due to the
possibility of making intense muon beams. Furthermore,
a significant gain in sensitivity is expected at upcoming
u — e experiments (see Table I), sometimes allowing

Br(y — e...) SBr(r - e...)Br(z - p...). (1)

Improving the sensitivity to 7 <> [ processes by producing
the 7 in the final state has been explored at the future
Electron Ion Collider [18] and electron-positron machines
[19]. Instead, we focus on the relation among the three
AF =1 lepton flavor changes,

7N\

e — Ui

If two lepton flavors are unconserved, then no symmetry
forbids the third to happen, so it could be generated from
the first two at some order in the perturbative expansion.
Equation (1) tells us that 4 — e searches are potentially
sensitive to the product of 4 — 7 and 7 — e interactions
respecting 7 LFV constraints. So the aim of this manuscript
is to explore what can be learned about 7 <> [ interactions,
using u — e observables. We are interested in the model-
independent aspects of this question, so we assume that the
NP responsible for LFV is heavy and use effective field
theory (EFT) [20-22] to parametrize low energy LFV.

In this EFT approach, lepton flavor violation is mediated
by contact interactions among Standard Model particles,
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TABLE L. Some u <> e and 7 <> [ processes (I € {e, u}), with
the current experimental bound on the branching ratios. The last
column lists the future sensitivities used in our projections, which
correspond to the expected reach of upcoming or planned
experiments (except for 4 — ey, where the MEGII experiment
at PSI, which starts taking data in 2022, aims to reach
BR ~ 6 x 107%). Additional 7 <> [ processes involving b quarks
are listed in Table XIV.

Process Current bound on BR Future sensitivity
u— ey <42 x 10713 [5] 1074 [6]
u— eee <1.0x 10712 [7] 10716 [8]

UA — eA <7 x 1071 [9] 10716 [10]

7 ly <33 x 1078 [11] 3x107%(e), 107°(u)
T — eée <2.7x 1078 [12] 5x 107 [13]
T — pjip <2.1x 1078 [12] 4% 1077 [13]
T > pee,eip <1.8,2.7x 1078 [12] 3,5x 107 [13]
7= 10 <8.0 x 1078 [14] 4 x 107 [13]

T n <6.5 x 1078 [14] 7 x 1072 [13]
T p <1.2x 1078 [14] 1079 [13]
h— etuT <6.1 x 1073 [15] 2.1 x 1073 [16]
h — e*rF <22 x 1073 [17] 2.4 x 1074 [16]
h— ™ <1.5x 1073 [17] 2.3 x 1074 [16]

which correspond in the Lagrangian to higher dimensional
operators respecting the appropriate gauge symmetries (our
EFT formalism is presented in more detail in Sec. II). We
will suppose a new physics scale Ayp >4 TeV (“beyond
the LHC”), describe 7 — [ interactions via dimension six
operators, and calculate the log-enhanced contributions to
dimension eight u — e operator coefficients, which
appear in their renormalization group evolution between
Axp and myy. These contributions arise from the insertion in
loop diagrams of both a y — 7 and a 7 — e operator
and can be reliably computed in EFT—although they
may not be the dominant contributions to 4 — e processes
coming from 7 <> [ interactions (see Sec. Il A). We will
find that upcoming p <> e searches could be sensitive
to 7 <> ¢ interactions beyond the reach of upcoming 7
experiments.

The paper is organized as follows. In Sec. II, we
introduce the formalism for the EFT calculation (notation
and operators), and we make several estimates to focus the
calculations on contributions within future y — e exper-
imental sensitivity. Our results are illustrated in Sec. III,
where the renormalization group equations (RGEs) for
dimension eight operators are reviewed; we discuss exam-
ples of anomalous dimensions calculated from double
insertions of dimension six operators and give the weak
scale matching of u — 7 x 7 — e onto low energy y — e
operators. The complete results for (dimension6)? —
dimension 8 mixing can be found in Appendix B. In
Sec. IV, we discuss some phenomenological implications:

1 — e observables are sensitive to products of 7 <> [
operator coefficients, and we compare this sensitivity to
the limits coming from searches for z <> [ processes.

II. EFT, OPERATORS, AND NOTATION

In this section, we start by comparing our calculation to
the expectations of a few models in Sec. Il A, then review
the EFT framework in Secs. II B—II D. Finally, in Sec. ITE,
we estimate which (¢ — 7) x (r — e) loop diagrams could
be accessible to future 4 — e experiments, making them
interesting to calculate.

A. A few models

In this subsection, we discuss two models—one being
the SM—in order to illustrate the relationships between
7 <> [ and u <> e observables and to compare our EFT
calculation with the expectations of UV complete models.

First, consider a model where two heavy bosons,
M > my,, are added to the SM, with flavor diagonal,
and, respectively, 7 <> u and 7 <> e renormalizable inter-
actions. A first source of y <> e flavor change could be
additional renormalizable y <> e interactions of the heavy
bosons—not forbidden by symmetry—but these do not
interest us, because their magnitude depends on the model
and is independent of the 7 <> [ interactions. We are
interested in 4 — e processes that occur due to diagrams
involving both the ¢ — 7 and 7 — e interactions. The part
of these amplitudes that is reproduced by our EFT
calculation, can be identified by matching the model onto
EFT at the heavy boson mass scale M. The model generates
7 <> | four-fermion amplitudes at tree level and could
induce u <> ¢ amplitudes at one loop. These all are
expected to match onto dimension six operators in the

EFT, with coefficients of O(1,,/M?) and (’)(l'é;sz) Our
EFT calculation cannot reproduce these model dependent
coefficients.' Instead, the EFT below the heavy boson scale
allows to combine the dimension six 7 <> ¢ and 7 <> p

operators into a dimension eight 4 <> e operator, giving a

contribution to the y <> e amplitude 5(’)(?"6;1‘;) (v is the
vacuum expectation value of the SM Higgs boson). By
power counting, this is subdominant compared to the
model-dependent matching contribution discussed above.
So this model illustrates that 7 <> e and 7 <> u interactions
could generically combine into larger y <> e rates than the
EFT allows to compute.

As a second example, consider K — K mixing in the SM,
where the dominant contribution is computable in the EFT
(Fermi theory). The box diagram in the full SM is illustrated
in Fig. 1(a); evaluated with only massless u quarks in the

loop, it gives an amplitude « (V,V,4)*/(162°m3,), where

lDespite that, the UV dependence is also apparent in the loop
integrals performed in the EFT, which are power divergent [23].
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FIG. 1. The GIM mechanism in K — K mixing: in the SM box
calculation of Fig. 1(a), the mass-independent dimension six
contribution cancels in the flavor sum because of CKM unitarity.
Then at O(G%), the top contribution is not dominant due to small
mixing with the down quark, whereas the dimension eight term
~G%m? is relevant. It can be calculated in the low-energy EFT
(Fermi theory) as the loop contribution with two dimension six
operators inserted, as illustrated in Fig. 1(b).

V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This
would match at my, onto a dimension six AF = 2 operator in
the low-energy theory Fermi theory. However, due to CKM
unitarity, this O(W) amplitude vanishes when summing

over all up-type quark flavors and neglecting their masses.
Instead, the amplitude in the full SM has a GIM depen-
dence on the quark masses o (Vi V. .4)?m2/167%my,+
(ViV,g)*m? /162’ m7,. In matching this to the low-energy
EFT, the m?/16x*m?, piece would match onto a dimension
six operator but is negligible due to the small mixing between
the third and first generation. And the log-enhanced part of
the amplitude « m? is reproduced in the EFT by calculating
the diagram with two insertions of dimension six operators,
illustrated in Fig. 1(b). So in the Standard Model, our
calculation can sometimes reproduce the observed flavor
changing rates.

B. EFT for LFV

If the new particles with lepton flavor changing inter-
actions are heavy, LFV at lower energies can be para-
metrized via contact interactions, which appear as
nonrenormalizable operators in the Lagrangian of an
EFT (see, e.g., [21,22] for a review). In this subsection,
we sketch the EFT background of our calculation and
introduce some notation.

Above the weak scale, we use the Lagrangian of the
SMEFT, in which the SM Lagrangian is augmented by
operators of higher dimension that respect the SU(3) x
SU(2) x U(1) gauge symmetry of the SM, and are con-
structed out of SM fields. We are interested in LFV
operators of dimension 6 or 8, so we write

[6]¢ 61
c,"0
Lsmerr = Lsuw + (Z% +

(8] 1 [8]&
Z%mc,),
v
AL B¢

(2)

where v = 174 GeV, the operator subscripts indicate the
gauge structure and particle content, and the superscripts
contain the operator dimension in brackets [suppressed
when unnecessary], additional information about the oper-
ator structure in parentheses (see Sec. II C for examples),
and the flavor indices. The LFV operators of interest here
are listed in Sec. II C. In the flavor sums of Eq. (2), each
index runs over all three generations. The doublet and
singlet lepton generations are the charged lepton mass
eigenstates {e, y, 7}, the singlet quarks are also labeled by
their flavor, and the quark doublets are in the u-type mass
basis, with generation indices that run 1 — 3.

The SM Lagrangian is in the notation of [24], so the
covariant derivative on doublet leptons is

N
(D”f){ = <5”3” + lET[JW” + léljg/Y(f)B”> flj, (3)

where ¢ are Pauli matrices, I, J are SU(2) doublet indices
and i is a flavor index. At all scales, the doublet and singlet
leptons are in the low energy mass eigenstate basis, so the
lepton Yukawa matrix [y,] can have off diagonal entries, in
the presence of the operator O,y [see Egs. (18) and (88)].
We follow [25] in choosing this basis, because it defines
lepton flavor in the presence of LFV, so it simplifies our
calculations (as mentioned at the end of Sec. II D). The
Yukawa matrix eigenvalue of fermion f is written y;.

The dimension six operators in Eq. (2) are in the “on
shell” basis of [26] as pruned in [27], where “on shell”
means that the equations of motion were used to reduce the
basis. Complete bases of on-shell dimension eight oper-
ators have appeared recently [28,29], and our dimension
eight operators are in these lists. However, in reality, we are
only interested in the subset of dimension eight y <> e
operators to which experiments could be sensitive, which
was given in [25]. Finally, some operators in Eq. (2) are
Hermitian in flavor space (ie [07Y]" = O/™); we include
these operators multiplied by an extra 1/2, as the Hermitian
conjugate is included in (2) and summing over flavor
indices would otherwise lead to double counting with
respect to the conventions of [24].

We assume LFV heavy particles are beyond the reach of
the LHC in the next decade, because we are interested in
combining observables from upcoming experiments at
low-\ energy. Concretely, this means that the operator
coefficients, or Wilson coefficients (WCs), satisfy

n—4
e o <L> L A —4TeV, (v=174GeV),
ANP
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and that we calculate renormalization group running of
LFV operators in SMEFT from Ayp — my. Should new
particles with LFV interactions and masses my < Myp <
4 TeV induce larger coefficients, our results would still
apply, but might be incomplete because additional oper-
ators and diagrams could contribute.

The WCs {CKM} function as coupling constants for LFV
interactions. Their numerical value can be obtained by
matching the EFT onto a model, for instance, by equating
the Greens functions of the model and the EFT at the new
particle mass scale ~Ayp. The renormalization group
equations (RGEs) govern the scale dependence of the
WCs below Aynp. The solution of these equations resums
the logarithms that are generated by the light particle,
which propagate as dynamical particles in the EFT. So in
SMEFT, the one-loop RGEs of dimension six SMEFT
operators arise from decorating a dimension six operator
with a loop involving renormalizable interactions
[24,30,31] and from loops involving two dimension 5
operators [32]. The mixing of a product of dimension five
and six operators into dimension seven has also been
calculated in SMEFT [33], as have some anomalous
dimensions for some operators of dimension eight [34-36].

Upon reaching a particle mass scale, the high scale EFT
can be matched onto another EFT, where the now-heavy
particles are removed. For instance, in crossing the electro-
weak scale, SMEFT Greens functions are calculated in the
broken SM, with the Higgs doublet written

i = (v + VL;(;h:L iGY) > “)

where the Gs are the Goldstones and £ is the SM Higgs
boson. These Greens functions are then matched to those of
a QED and QCD invariant EFT (we refer to it as low energy
EFT) in which the nonrenormalizable operators are built
out of SM fields lighter than the W boson [37].

The running and matching continues from the weak scale
down to the experimental scale, where rates can be
calculated in terms of the WCs and matrix elements of
the operators. For three or four-legged u — e processes,
which are otherwise flavor diagonal (i.e., y — ey and
U — eyy, but not including K — uFe¥), the “leading”
evolution between the experimental scale and the weak
scale has been obtained [38]. This includes the one-loop
RGE:s for dimension five and six operators, and some large
two-loop anomalous dimensions where the one loop mix-
ing vanishes [39]. Several branching ratio calculations in
the low energy EFT are given in the 4 — e review [1], and
HA — eA conversion rates can be calculated from [40].
These results can be combined to calculate the current and
upcoming sensitivity of y <> e experiments to WCs at the
weak scale, and also extrapolated to give the sensitivities to
the 7 <> [ WCs considered in this manuscript [41].

The aim of this manuscript is to calculate the contribu-
tions to 4 — e observables that arise from combining 7 — e
and y — 7 operators. This could occur in SMEFT running,
in matching at the weak scale, and in running below the
weak scale. In SMEFT, loop diagrams containing pairs of
dimension six operators renormalize the Wilson coeffi-
cients of dimension eight operators, such that the RGEs for
the latter take the schematic form [42],

acyl g

~i6l. 26
(167%) m =Cgvpa+ Cg(]yXY,ACg’]’ (5)

having aligned the operator coefficients in the row vectors

6[8], 6‘[6], and where y is the anomalous dimension matrix
of dimension eight coefficients while 7 mixes pairs of
dimension six into dimension eight. The RGEs of dimen-
sion eight operators are currently unknown and only partial
calculations have been performed [34,35]. This manuscript
fits into this ongoing effort. We calculate at leading log; i.e.,
we compute the one-loop RGEs and match at tree level onto
the low energy EFT. This consistency between the running
and matching orders frees the calculation from scheme-
dependent contributions.

We define the anomalous dimensions with a 1/(16x2)
prefactor, while we unconventionally do not factor out SM
couplings. Two insertion of dimension Ssix operators
renormalize the dimension eight coefficients as

Aéf] - 6§]ZXY‘A6[6], (6)

where Z is the divergent renormalization factor and may
contain renormalizable couplings. In dimensional regulari-
zation, the independence of bare Wilson coefficients from
the arbitrary renormalization scale gives the anomalous
dimension matrix of Eq. (5), which at one-loop and with
our conventions takes the following form:

7 1672¢Z. (7)

Note that Z « 1/e and the product above is finite as
expected. A more detailed derivation of y can be found
in Sec. [T A.

Pairs of 7 <> [ operators also contribute to u — e
amplitudes in matching SMEFT onto the low energy
EFT at my. In “integrating out” the heavy bosons h, Z
and replacing the Higgs doublet with its vacuum expect-
ation value, it is possible to draw diagrams built out of
7 <> [ operators that match onto three or four-legged u — ¢
operators in the low energy EFT. We calculate these
matching conditions, which are meant to complete the
tree-level O(v*/Afp) matching performed in [25].

Finally, combining two 7 <> [ operators contributes to
the RGEs of Wilson coefficients in the EFT below my,. We
neglect these running contributions because they carry a
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suppression factor with respect to dimension six anomalous
dimensions which is <m2/AZp, given that the bottom
quark is the heaviest dynamical particle in the EFT. Such
suppression is absent in SMEFT, where the top quark, and
the Higgs and gauge bosons are present, allowing Higgs
legs to be attached with order one couplings to heavier
particles running in loops. SMEFT has also the advantage
of having two-fermion “penguin” operators that are effi-
ciently generated in mixing and which match onto vector
operators in the low energy EFT. For the above reasons, we
focus on SMEFT RGEs and matching, while we neglect the
running below my,.

Equation (5) has a straightforward solution if the
anomalous dimension matrices are constant, which occurs
when the running of all-but-one of the SM renormalizable
couplings can be neglected. We take all SM couplings
constant between my — Anp = 4 TeV, in solving Eq. (5).
It is augmented by the RGEs of dimension six coefficients,

——=-C". (8)

where t = log(Axp/M)/(167%) and M is the sliding
renormalization scale. The solution is

C%) = (0) exp(-71) (9)

Bl = [6[81 (0) — / " 4l (0) exp(=77)7
0
« exp(~777)C (0) expw)] exp(—r1). (10)

Expanding the exponential at leading log, the dimension
eight coefficients at the electroweak scale take the follow-
ing form:

~[8 =8 4 Anp
c! ](mw) =l ](ANP) (1 BT 10g<m—w>>

A

A
— O (Anp) L C (Anp) log< NP) + ..

16 my
(11)

C. Operators

This subsection lists the operators included in the
SMEFT Lagrangian of Eq. (2). They are classified into
subgroups (Dg,4f...), in order to facilitate the estimates
of Sec. IIE.

The SMEFT dimension six operators that are 7 — e or
u — 7 flavor changing are the following, where the indices
ij take the values et or 7u (except for the 4/4 operators).

®

(i)

(iif)

(iv)

)

096040-5

Dipole operators = Dg:

0, = y.(¢iHo"e;)B 4
Oy = v.(Zn*Ho"e; DIWas.

(12)

The Hermitian conjugates with exchanged i <> j
match onto the dipole operator with opposite

chirality.
Penguin operators = Pg:

O}, = i(2;7"¢;) (H'D,H)
Ofp1y = iy ) (HT DG H)
Oy pa) = (277" ;) (H' DoH),
where we have defined

iH'D,H = iH'(D,H) —i(D,H)H

iHTDZH = iH't“(D,H) — i(D,H")t"H.

Yukawa operators = Y:
Oy = (¢;He;)(H'H),

and their Hermitian conjugates.
Four lepton operators = 4/:

O = (eir”e;)(exrqeer)
O = (2"t )) (@ ae))

O = (Zi¢))(rrat).

(13)
(14)

(15)

(16)

(17)

(18)

(19)
(20)

(21)

where the pairs ij, k/, kj, il can be et or zu, while the
remaining pair is diagonal and can be {e, y, 7}.

Two-lepton two-quark operators = 4 f:

1)ijnm 2 _
O;q) ! = (fly fj)(‘]nYa"Im)
O™ = (22 ) (@ut V)

Ol/nm = ( ir 7, )(ﬁn}luum)
Ounm = ( iV e )(an}/adm)
O™ = (@r"e;) (@ ullm)

Ole]unm = (éi}’aej) (unYaum>
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O — (2;7%¢;)(dyY ody) (28)

Ozl,’j:;:] = (2iej>(anqm) (29)

Ofpan = (Zi€;)€(Gnttm), (30)
with n,m € {1,2,3} running over the three quark
families.

At dimension eight, there are thousands of operators, but
here are listed only the subset relevant for our calculations,
where relevant means that their contribution could be
detectable in the upcoming y — e experimental searches,
assuming a NP scale Ayp = 4 TeV. A list of such operators
was identified in [25] and is given below.

These include dipole operators = Dy,

O(fle);le3 = yﬂ<;ﬁeTaHGaﬂeﬂ)Wa (HjH)
O(fi)‘,e‘/llH3 = y,,(L_”eHa" e )W“ (HT aH)
O;eBH‘ = yﬂ@eH"aﬂeﬂ) aﬁ(HIH)7 (31)

and their Hermitian conjugates with the lepton indices
exchanged. Two-lepton two-quark vector = 4f5,

OW = (Z6,) Guratn) HH)  (32)
2)eunn 2 _a.a - a
O(fz)qz;;_lz = (feT 4 l’ﬂy)(qnyaQH)(HTT H) (33)
O = (2.5Y"6,)(@,7yad,) (HTH)  (34)

O™ — (2", )(@uy,q,) (HIT"H) — (35)

CPH T

OLII = (207" C,) () (H'H) (36)
O24m — (7,298, (o) (H'e°H)  (37)

OWI — (7,17, )(dyrady)(HTH)  (38)
ORI — (7 ,207%8,) (dyod,) (HTe°H)  (39)

O%’gf = (2.r"eu)(@nYadn) (H'H) (40)
O = (2,1"¢,)(@ue"Yu) (H'T'H)  (41)

Oeém;lH2 = (éeyaeﬂ)(ﬁnJ/aun)(HTH) (42)
O = (2%,) [duyady) (HTH).  (43)

with in most cases n =u, d belonging to the first
generation quarks. There are also penguin operators = Pg,

O = (¢, ) (H D H)(H'H)

O — i(Z,cy¢,)|(H DyH)(H'H)

+ (HTD(,H)(HTT“H)}

<>
O%ap = i(e,y"e,)(H'D,H)(H'H). (44)
Furthermore, the following two-fermion two-lepton scalar

and tensor operators are also relevant:

O = (Zee,)(dnq,) (HTH) (45)
ODW = (Z,0,)7(d,q,)(H'eH)  (46)
o = (Zoe,)e(@yu,)(H'H) (47)
ODM — (7,0,)ec(@uu,)(H'T"H)  (48)
O = (Ze0P e, )e(Guoaptty) (HTH)  (49)
O = (2,07 e))e(@u00ptt,) (H'T°H) (50
O = (Z.He,)(q,Hd,) (51)
oW = (7,07 He,)@,0pHd,)  (52)
OL) = (2,He,) (i, ), (53)

with n =u,c,t,d,s,b running over all quark flavors.
Finally, the four-lepton operators = 4lg read

0N = (1,Ho"e,) (I, Hope,) (54)
OR)tes = (1,He,)(1He,) (55)
OAe = (2,9¢,)(Z.vat ) (HTH) (56)
O = (2,°¢,) 22"yl ) (HTT“H)  (57)
OWLs = (2,7°¢,) (2urae.) (HTH) (58)
Ot — (2,0¢,) @,vpe,) (H'T°H)  (59)
0% = (2.r%e,)(ecrqe.) (H H). (60)

Note that in the Lagrangian of Eq. (2), we sum over all
possible generation indices, and more flavor structures are
relevant for low energy LFV interactions. For instance,

Ofirps O%5 match onto the same vector operator in the
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EFT below my. Similarly, in the case of eurr tensor
operator, the permutations tzep,tuer,erty must be
considered.

D. Equations of motion

In this section, we discuss some of the technical subtle-
ties that occur when two dimension six operators mix into
dimension eight operators. In our calculations of anoma-
lous dimensions, we consider two different approaches: we
can systematically apply the equations of motions onto the
amplitudes of our loop calculations in order to arrive at
expressions that are proportional to tree-level amplitudes of
the on shell or “physical” operators. Alternatively, we could
use a complete set of off shell operators and project
our loop amplitudes onto the on shell operator basis.
The situation is slightly complicated by the facts that the
dimension six operators will contribute themselves to the
equations of motion, and that there are a huge number of
dimension eight operators. In the following, we will show
how both approaches are equivalent in our calculation,
where we determine the mixing into the subset of dimen-
sion eight operators that contribute to LFV at low energy
experiments.

Working with a on shell (or physical) operator basis
implies the choice of a set of operators that vanish when the
equation of motions (EOM) are satisfied. Take two oper-
ators O, O, which differ by an operator Ogqy, that is EOM
vanishing, i.e.,

oS
— = —_— 1
Ol 02 OEOM X 6¢ s (6 )

where S is the action and ¢ labels a generic field. Oggy can
be dropped in physical processes because it leads to
vanishing S-matrix elements, so that the operators O,
O, are physically equivalent and only one of them is
retained in the basis.

For instance, at dimension six, the operators,

i(£,D¢)(H'H),  (D*¢.Hp). (62)

can be generated at one-loop from a penguin operator (see
Fig. 2). The first is relevant here, because it is on shell
equivalent to (¢£,He,)(H"H) by means of the dimension
four EOM of the lepton field i(D#,) = y,He,. (The second
operator will be relevant for the Cy; x Cy, mixing into
dipoles, which is discussed in Sec. I A 1.)

Therefore, we can project an amplitude that is proportional
to the left-hand side of the previous equation of motion,

i(ZMDfr)(HTH) - [i(zﬂbl’ﬁrxHTH) - yr(?ﬂHe‘r)(HTH)]
+y:(¢,He)(H'H), (63)

onto physical and EOM vanishing—in brackets—operators.
In Fig. 3, we show how the equivalence can be understood

Ollj;l- (Dpr _
lr +§ilk bn o St (0, D¢, ) (H' H)

Y

é (D7 _
H Uy lr o Cui 8 (D20, Hp)

1672€

(b)

FIG. 2. One-loop diagrams with the penguin operators of
Eq. (13). Matching the divergences off shell, the redundant
operators i(£,D¢,)(H'H), (D*¢,Hy) are generated.

yr £ O
br —>—>——>—{,
! 4’// \\
LT
! /7 \
| / \

H H H

A

FIG. 3. The diagram shows that the operator i(¢,D¢,)(H"H)
leads to the same S-matrix elements as y,(¢,He,)(H'H). The
nonlocal momentum dependence of the internal line propagator
cancels with the inverse propagator present in the equation of
motion.

diagrammatically: the P operator Feynman rule is propor-
tional to the ¢ momentum of the virtual £, line coming out of
arenormalizable Yukawa coupling; the momentum depend-
ence cancels with the £, propagator, yielding an S-matrix
element reproduced by the local operator y, (£, He,)(H H).
Once a reduced physical basis is identified, the theory
can be consistently renormalized among on shell operators,
as redundant counterterms AQ,/e are equivalent to
A(O; — Ogom)/e and EOM vanishing operators mix
exclusively among themselves in the RGEs [43].2
However, in order to consistently renormalize an EFT in
a given basis up to dimension eight (1/A};p), the dimension
six (1/A%p) terms in the EOM must be included when
removing redundant operators. Concretely, if a divergent
contribution to a redundant dimension Six operator,

(9[26] /(A]pe) is generated via loops, then it can be rewritten

A [6] OBl
OV +—-0 , 64
A ]2\]]36 ( 1 A ]2\1]3 EOM ( )

where 0[16] is equivalent to 0[26] via the renormalizable EOM

889=* /8¢ = 0 of Eq. (61), and the dimension eight O is

2Gauge fixing and ghost terms that appear in the EOM are
found to have no physical effects in operator mixing and S-matrix
elements [43].
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generated by the dimension six corrections 5S¢~ /5¢. The
dimension eight contribution is proportional to the product
of two dimension six operator coefficients, which is the
kind of contribution that we are interested in.

As an example of the impact of dimension six terms in
the EOM, suppose that the only 7 <> e operator at
dimension six is Ogjyn = (¢.e.)(d,q,), and that the
operator i(Z D¢.)(H'H) is generated via loop corrections.
Then Eq. (63), up to dimension §, becomes

i(¢,D¢,)(H'H) > |i(¢,D¢,)(H'H) — y,(¢,He,)(H'H)

A
(7 0.) @) (H'H)
NP

+y.(¢,He,)(H'H)

+

Tenm

tedq ;7 -
- A2 1 (fﬂee)(dncbn)(HTH)’ (65)
NP

where the EOM vanishing operator in square brackets

(1)iknm __
Ofequ2 -

(¢,e.)(d,q,,)(H"H). Similarly to the renormalizable case,
the on shell equivalence is apparent diagrammatically, by
dressing the redundant operator with dimension six contact
interactions as shown in Fig. 4. Once again, the inverse
propagator that is present in the EOM, and appears in the
operator Feynman rule, cancels the momentum dependence
of the internal line, such that the amplitude is local and
equivalent to a dimension eight operator. Its coefficient will
be proportional to the product of two dimension six WC.

For instance, i(¢,D¢,)(H'H) is generated in matching
off shell the divergence of the one-loop diagram of
Fig. 2 that involves the penguin operators of Eq. (13).
Equation (65) allows us to project the divergence onto the
on shell basis, giving a contribution to the renormalization

now contains the dimension eight

dm dn
0, *P
€e 4,
ClT?i'fLm *)// \\
o Pa oy
H o

FIG. 4. Correction to the equation of motion due to dimension
six operators. At 1/A{p order, the operator i(£,D¢,)(H'H) is on
shell equivalent to a combination of dimension six and dimension
eight operators. The dimension eight contribution can be under-
stood by attaching dimension six interactions to the operator,
where the internal line propagator cancels against the vertex
Feynman rule. The diagram shows an example with the insertion
Ojenm = (¢.e,)(d,q,), which reproduces the EOM reduction

of Eq. (65).

(1)penm
CedqH> ~—

(¢,e.)(d,q,,)(H H) from the product (92; X Ogeqq- This
contribution from the EOM projection must be included in
calculating the mixing from (dimension 6)> — dimension 8,
together with one particle irreducible (1PI) diagrams

of the dimension eight p <> e operator O

x Cg; X Cgeqq- (Indeed, the anomalous dimension is only
gauge invariant if one includes both the IP1 vertex and the
non-1PI “wave function” contributions.)

The EOM contribution can be reproduced by calculating
non-1PI divergent diagrams, as shown in Fig. 4. In working
with a subspace of dimension eight operators (as we do
here), proceeding diagrammatically can be particularly
convenient. Our subspace is phenomenologically selected
to contribute to the low energy u — e processes. When
using the EOM to project the off shell divergences, the
redundant terms must be written in terms of operators in the
full basis (which can include operators outside the sub-
space) and the EOM vanishing operators that the basis
choice implies. In the end, only the interesting operators in
the subspace are retained but it required working with the
full basis as an intermediate step. On the other hand, in the
approach of calculating one-particle-reducible diagrams, it
is often easier to restrict to diagrams that directly give
dimension eight operators of the subspace. In this manu-
script, we calculate the one-particle-reducible diagrams that
generate the relevant dimension eight operators. We cross-
checked our diagrammatic results by calculating the
dimension eight LFV operators obtained from the list of
EOM-vanishing operators in [27], by using equations of
motion up to dimension six.

Finally, recall that we work in the low-energy mass
eigenstate basis of the leptons, where the lepton mass
matrix is

meiﬁij = ”([ye]ij - CtejH) (66)

So in the above diagrammatic and EOM-based arguments,
the Yukawa matrix element y, is replaced by the matrix
element of the parentheses on the right side of (66), which
is also flavor diagonal.3 Therefore, we do not include non-

1PI diagrams involving a loop on the external leg of OY,.

E. Estimates

The goal of this section is to better identify the dimension
eight contributions that are interesting to calculate in the
context of y — e LFV, that is, those that will be within
the reach of future experiments. The Wilson coefficients of
the dimension eight operators presented in the previous
section were estimated in [25] to be within upcoming
experimental sensitivity if they have values >v*/A*, for

3However, in this basis, the /4 retains LFV interactions—see
Eq. (89).
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TABLE II. Sensitivities to 7 <> [ dimension six operator co-
efficients, normalized as in Eq. (2). Current limits come from the
branching ratio bounds of Table I, while the third column
assumes that the experimental sensitivity to 7 <> [ decays will
improve by an order of magnitude.

Operator Current Future

coefficient sensitivity sensitivity Process
cgé <7x 107 <2 x 1070 Ty
Cy, <107 <3x 107 h—lt
C, <4x 1074 <107 Tl
cyl <3x 1074 <107 T 1l
cj{;j <3x10™* <10~ 7= Iz(n)

A Z 4 TeV. We estimate in this section the additional loop
and small couplings suppression that could be encountered
in generating these coefficients in running and matching.
This will allow us to narrow down the list of diagrams that
should be calculated.

In estimating diagrams built out of gy »>7x7—>e¢
operators, we take into account the constraints on 7 <> [
processes coming from the bounds reported in the lower
part of Table I. Employing the acronyms introduced in the
previous section for sets of ¢ LFV operators, current and
upcoming one-at-a-time-limits on their coefficients are
written in Table II. These estimates assume that the
branching ratio sensitivities on 7 decays will improve of
an order of magnitude at Bellell [13], and use the future
sensitivities to & — 77T decays at the ILC [16]. In the case
where the operators are not (loosely) bounded, we assume

cloliz.. < (v/4 TeV)? ~2 x 1073, (67)

corresponding to an O(1) coefficient at a new physics scale
of 4 TeV.

Diagrams that can generate the dimension eight y <> e
operators of Sec. II C, in matching or in running, are drawn
with a pair of 7 <> [ operators. The contribution to the
coefficients are estimated as

et T 1 "
ACBler & ClO c[f“(@) x {ykglam..} x log,  (68)

where 7 is the number of loops, SM couplings are factored
out into the curly brackets, and the log(4 TeV/my,) factor
is present in running, while absent in matching. The
experimental sensitivity to classes of y — e operators are
given in Table IIl. In running, we restrict the number of
loops to n = 1, while up to two loop diagrams contribute in
“tree-level”’(in the low-energy EFT) matching.

An example of a diagram contributing to the RGEs is
shown in the diagram of Fig. 5, where two Yukawa
operators 0%, x O%, ~ Y¢ x Y4 mix into dimension eight

p— e penguin operators O%,, OF., ~Pg by

TABLE III.  Sensitivities to u — e dimension eight operator
coefficients, normalized as in Eq. (2). Current and future limits
correspond to the experimental sensitivities of Table I. 7', S label
the Lorentz structure of the operator for tensor and scalar,
respectively. For instance, Cyj'; is the coefficient of the

dimension eight tensor in Eq. (50) with top quarks.

Operator Current Future

coefficient sensitivity sensitivity Process

Cg; <1078 <1.5x107° u—ey

Clir <3x 107 <5x 10712 H— ey

Cinr Cipr - 51070 SLSx10 u—ey

Ccerbh <8 x 107° <107° u—ey
4fe.T ~ ~

Cfg’; <1077 <10~° UA — eA

(o <8 x 107’ <8 x 107 u— eéee

Ce;mu.e/ldd 510—8 510_10 /,tA — eA
4f5.S

exchanging the 7 and closing the loop with a Higgs line.
The estimated contribution to the penguin coefficients is
then

log(4 TeV/my)

~3x107°. (69)

Future uA — eA experiments will be sensitive to penguin
coefficients larger than ~107%; hence, our estimate lies
within experimental reach and Y4 x Y¢ — Pg mixing is
calculated in Sec. III.

As another example, 7 <> [ dipoles D are defined with a
built-in z Yukawa suppression—see Eq. (12)—so y, ~
102 multiplies any dipole insertion. For instance, if Dg X
O mix into a dimension eight operator O, its coefficient is
estimated to be

log(4 TeV/my)

e <1072, (70)
T

ACg ~ yTCD(,CG

where we took Cg < v%/A2, for A ~4 TeV. Equation (70)
is smaller than any future y — e sensitivity to operator
coefficients, so we disregard mixing that involves 7 dipoles
in our calculations.

The results of our estimates are summarized in Tables IV
and V, referring, respectively, to RGEs and matching
contributions. There, we report the potentially detectable

FIG. 5. Mixing to the dimension eight 4 — e penguin operator
from double insertion of dimension six Yukawas Y¢ X Yg — Pyg.
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TABLE IV. We present the dimension eight operators that we
estimate to be generated within experimental sensitivity through
(dimension six)?> mixing in the RGEs. The x means that the
contributions is too small or that there is no one-loop diagram that
can generate the desired dimension eight operators with the given
pair. Pg X Pg — Dg, Yq X Pg — Dg mixing diagrams exist and
appear to be interesting; however, we find that the anomalous
dimension vanishes (see Sec. Il A 1).

P Yo 4l 4f6
P6 Dg =0 Dg =0 x 4fg
Y6 Dg =0 Pg x x
416 x X x
4f6 4fs x 4fs

TABLE V. We present the dimension eight operators that we
estimate to be generated within experimental sensitivity through
(dimension six)? in matching. The x means that the contributions
is too small or that there is no tree-level matching that can
generate the desired dimension eight operators with the given
pair.

Pg Ys 4l 4fs
Pg x Dy x x
Y6 x Dg, 418 x X
4l x x x x
4f6 x x x x

dimension eight operators generated by a given pair of
dimension six operators.

III. CALCULATION

The contributions that were estimated in the previous
section to be within experimental sensitivity are calculated
here. Section III A determines the divergences of the
relevant one-loop diagrams and relates them to the anoma-
lous dimensions of the dimension eight Wilson coefficients
in SMEFT, and in Sec. III B, pairs of 7 <> [ dimension six
operators are tree-level-matched at my, onto the low energy
u — e EFT.

A. SMEFT running

In this section, we outline the calculation of the anoma-
lous dimension matrix 7xy 4, that mixes the dimension six

7 <> | operators 0[6], ng] into the ¢ — e dimension eight

Of]. We work in dimensional regularization in 4 —2e
dimensions and renormalize in the MS scheme, where we
label the renormalization scale with M (rather than the
usual p). Double insertions of dimension six operators
renormalize dimension eight coefficients as

A

Aéf] = 6§]ZXY,A 6[)9]7 (71)

where the Wilson coefficients of dimension eight and six

are respectively aligned in the row vectors 6’[8], 6’[6],
dimension eight and six operator labels are, respectively,
capitals from the beginning and end of the alphabet, and
flavor indices are suppressed. The bare dimension eight
coefficients can be written as

e = W 2304 E ). (72)

Jbare

where we have factored out the sliding scale power M€ to
assure that the renormalized WC stay dimensionless in d =
4 — 2¢ dimensions. The RGEs can be obtained from the
independence of the bare Lagrangian from the arbitrary
renormalization scale M,

déf .]bare

2 _
(162) e =0 (73)

which implies the following differential equation for the
renormalized Wilson coefficients:

@

dlog M (1677) —aAe(éf] + 5&?]6[5]2”,325%)

(1672)

~8) dZpc
-C Z

B glogm “AT
da’v[ﬁ] R -
] logXM Zxy g C[;)] Zg,

6]
S A dC
+ _CE?]ZXY,B L

7Y -l
dlogM 54

=6 AZxvp 26,
_ 207 7 . 74
CX legM CY BA ( )

The RGEs of dimension six Wilson coefficients are the
following:

dC¥

m = —(167[2)0)(66?] + 6[}?]771/)( + ey (75)

(1672)

where aye is the mass dimension of the bare coefficient of
Oy and ¥ is the anomalous dimension matrix for dimension
six operators. In the limit € — 0, the term proportional to €
is irrelevant for the dimension six renormalization, while it
plays a crucial role in (dimension6)? to dimension eight
mixing. Upon substitution, Eq. (74) becomes
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) dCY 2 8, )
(1 T )m: (1677.') —dAé'CA +CB YBA

—(ay —ax —ay)e(C (4[6]5@2)(1/,3234)

=] dZxy.5 =
-C Cyz
XdlogM Y BA:|

- CgiV]T/WXZXY BC[ ]ZEA

- E(]ZXY BC[ ]7WYZBA7

—(167%) 225 Z¢h, which is the
anomalous dimension matrix of dimension eight operators.
At one-loop, we can replace Z with the identity and neglect
the second line of the above equation, since 7 and Z both
appear at one loop at leading order. The product eZ is finite,
and the RGEs in d = 4 dimensions read

having defined yg, =

18]

dcC g
16 2 A CH
( ” )—dlogM B 7BA
— (167%)(ay — ax — aY)ég?]aY%ZXY,A
dz -
(162286 4Zxva o
(162°)Cy 71 o &7
= _)[5?] YBA T CEX]yXYACM (76)

The one-loop 7 anomalous dimension matrix that mixes
two dimension six operators into dimension eight is finally

dZXY,A ( )
dlogM |’

Pxya = (167%)|(ax + ay — as)eZyy s —

The second term contribute to the mixing when renorma-
lizable couplings appear in Z, which carry an implicit
dependence on the renormalization scale M. The beta
functions of renormalized SM couplings for € > 0 take
the form, f.({9.9.y}) = —e{9.4’. v} + f({g. 4. »}), and

at one-loop,

dZxy _ dZxy 4 /
dlogM — d{g.4. y}ﬁs({Q,Q V)
dZxy A

x{g,q,y} +higher loops. 78
~Cdfgg.y) <9 7

1. p—>tx7t—ein SMEFT

We calculate the divergent part of one-loop diagrams
with the product of y — 7 x 7 — e operator insertions,
which, according to the estimates summarized in Table IV,
give potentially detectable contributions to y — e observ-
ables in the dimension eight running. We work in SMEFT
and unbroken SU(2), where all SM particles are taken

massless, including the Higgs doublet. The diagrams have
been drawn by hand and were also generated with a code
based on FeynArts [44] and FeynRules [45]. In most cases,4 the
dimension eight operators to which y — e observables are
sensitive do not contain z external legs, so we here consider
diagrams with a virtual 7 line connecting two dimension six
SMEFT operators. We are interested in one-particle-irre-
ducible divergent diagrams (which restrict the number of
internal propagators) that can generate the dimension eight
operators of Sec. II B (which constrain the external legs),
and also in some one-particle-reducible divergent diagrams
that reproduce the contribution of the dimension six
correction in the EOM, as discussed in Sec. IID.
Yukawa couplings smaller than y, ~ 1072 are neglected,
because they lead to 4 — e coefficients below experimental
sensitivity, assuming dimension six WC Cl < »2/A2; and
Anp = 4 TeV. However, the estimates of Sec. I1E select
diagrams that only involve top Yukawas y, and single
insertions of y,, while the bottom and charm Yukawas y,,,y,.
do not appear.

In Fig. 6, we show the “classes” of diagrams listed in
Table IV, that were estimated to be within 4 — e exper-
imental sensitivity. Each class is described below. The
divergences were calculated both by hand and with an in-
house developed Mathematica program, making use of the
Feynman Rules listed in Appendix A.

(i) Figure 6(a): Y4 X Ps — Dg. The penguin operators
of Egs. (13)—(15) can be combined with the Yukawa
operators of Eq. (18). The chirality flips on the lepton
line, so attaching a gauge boson potentially generates
the y — e dipoles of Eq. (31). The gauge bosons can
be inserted on the internal Higgs and lepton lines or
can come out of penguin operators, while the three
external Higgs bosons can be permuted in several
ways among the dimension six vertices. Also, in the
diagram depicted, the Yukawa operator is y — 7 and
the penguin is 7 — e, but the two vertices can be
exchanged: for instance, in the case of external
left-handed electrons, the possible operator combi-

nations are 0%, x 0%, 0%, x OW, 0% x OF).
We find that these anomalous d1mens1ons vanish.
This is consistent with the dimension six version of
this calculation, where neither penguin operators
dressed with renormalizable Yukawa couplings,
nor O,y dressed with a gauge loop, mix into the
dimension six dipoles [30]. Note that in broken SU(2)
and unitary gauge, dimension six penguins and
Yukawas give Feynman rules that look like SM
renormalizable interactions. By analogy with the
SM, we expect them to not generate divergent non-
renormalizable dipoles. The same argument applies

“The exception is the pezr tensors, but the leading contribution
to these is from tree-level matching onto the low energy EFT,
which is discussed the next section.
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(f) 4f6 X 4f6 — 4f8

FIG. 6. Classes of divergent diagrams that give observable
contributions to u — e processes, as identified in Table I'V.

(i)

to the Pg X Pg — Dg mixing discussed in the next
paragraph.

Figure 6(b): Pg x Ps — Dg. The diagrams feature
double insertions of penguin operators—see
Egs. (13)—(15). The two vertices couple to vector
currents of leptons, so to mix into the 4 — e dipoles,
the chirality flip is achieved by attaching a Higgs
boson to the 7z virtual line. The contribution is
estimated to lie within experimental sensitivity,
because the generated u — e dipole coefficient is
enhanced by the ratio y,/y, due to the Yukawa
couplings in the dipole operator definitions in
Eq. (31). The gauge bosons can be attached to the
Higgs boson and 7 in the loop or can belong to one
of the penguin vertices. Furthermore, all possible
permutations of the external Higgs bosons are taken

into account. The operator pairs are O, x (92;(3>’

(iii)

(iv)

096040-12

where the 7 — ¢ LFV can be mediated by either
right-handed or left-handed penguins, depending on
the chirality of the external legs. As the previous
case, the mixing into the y — e dipole is found to
vanish.

In addition to the 1PI diagrams of Fig. 6(b),
dimension six terms in the EOM contribute to the
mixing. Loop diagrams where the Higgs leg of a
penguin operator closes into the 7 line via a Yukawa
interaction renormalize the redundant operator
(D*¢,)He; [see Fig. 2(b)]. When the divergence
is projected onto the on shell basis, the penguin
correction to the EOM gives additional P X Pg —
Dg mixing. However, the combination of SMEFT
u — e dipoles that is generated is orthogonal to the y
dipole and does not contribute to low energy 4 — e
observables. This is also apparent in considering
non-1PI diagrams (see Sec. I D), where a penguin
operator is inserted in the 7 line of D?/,He;; the
amplitude is local and reproduces the EOM result
when the external gauge boson belongs to the
penguin vertex. In broken SU(2), penguins give
flavor changing (and correct the flavor diagonal)
couplings with the Z, but leave QED interactions
untarnished.

Figure 6(c): Y¢ x Y¢ — Pg. In this class of diagrams
the loop is closed with Higgs exchange between two
Yukawa operators. The superficial degree of diver-
gence is 1, and the divergence is linear in momen-
tum. With four external Higgs bosons, it mixes into
the dimension eight y — e penguin operators of
Eq. (44). For right-handed leptons the inserted
operators are O, x 0% while 0% x O%, gives
mixing into left-handed penguins.

Figure 6(d): 4f¢ x Pg — 4f5. Two-lepton two-
quark 7 — [ operators can mix into 4 — e dimension
eight four fermion operators by inserting a penguin
in the tau line and closing the loop with a gauge
boson. Only two-lepton two quark operators are
considered because they contribute to y — e con-
version (while tensors with heavy quarks contribute
to u — ey), which is the process with the best
upcoming sensitivity to operator coefficients. The
gauge boson is attached to the other fermion lines in
every possible way, and the diagram shows just one
example. As discussed in Sec. II D, we also include
dimension six corrections to the EOM or, equiv-
alently, non-1PI diagrams where the loop of
Fig. 2 dresses one of the lepton lines. These
diagrams are analogous to fermion wave function
renormalization and are pure gauge, i.e., & & in the
R; gauge; to avoid calculating wave function-like
diagrams, the calculation is done for £ = 0, com-
monly known as Landau gauge. In Table VII, we
summarize the y — e dimension eight operators
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TABLE VL

Dimension eight operators generated through the diagrams of Figs. 6(e) and 6(f) with pairs of two-lepton two-quark

operators, 4fg X 4 f¢. Most of dimension eight coefficients are proportional to y?, with the exception of O, x O,q> Opy x O, mixing

into the tensors (’)<

where the Yukawa couplings y,y, multiply the coefficient.

HZa
1 3 * * 3 %(3
Cz(/”; Cz(/’q) Cf“ Cé’fl Ceu Cffd(i’ Cdeq Cz(/’le)qu’ Cf(elq)u Cée)qu Cfszq)u
(1) (3).(4) (1),(2),3).(4) ~*(1).(2),(3).(4) (1).(2),(3).(4) (3).(4)
qu sz 2H7 CW 2H2 * * CfequHZ C/equz C/equz Cfeqqu Cfeqqu CfequH CfequH
U el cl et e el ol
Cfu szuvHZCfequH * X Cz/”equH2 C;Squﬂz C(fle)qfl?lz C;(elq)u(l:’)l2
C, (1).(2) (1).2)  ~(1).(2) (1),(2),3).(4) ~*(1).(2),(3).(4) (1):(2),(3).(4) ~(1).(2),(3).(4)
e Cezqu2 * Cfequ Cfequ2 Cfeqqu Cfeqqu Cfeqqu Cfeqqu
C.. C (1.63)  ~+(1).3) (1.3)  ~*(1).3)
¢ S H? X Cfeqqu Cfeqqu CfequH7 tequH?
Cfedq’ C;edq C 2l H? C(ﬂ)dgljz x x
1 (1 1 1 1 1).(2 1).(3
C;’e)qu’ Cf(eq)u CgZuZHZ Cfgzquz C)(/pz) EH)Z C;z) gH)z Cezquz Cizzisz C;z)uglgz C(fz)qgl_}z
.l Cownr Coabayp Cll CLI,
generated by the product of 7 — [ penguins with o ZCoe  CHC
four fermion operators. (Cen cHtp =~ 3272¢
(v) Figures 6(e)-6(f): 4f¢ x 4f¢ — 4f5. In the last two 3C™ CFre
diagrams, pairs of two-lepton two-quark dimension (C%ZCZ;;’)E“ZWD = _ﬁ
six operators are connected through a fermion loop, .
where two Higgs legs are inserted. With the ex- (C*’” ce, )(Z)e{: _ Cent
ception of dimension eight tensor with tops, y — ¢ HieHD 647T €
observables are sensitive to the resulting dimension N chce,
eight coefficients only if the Higgs bosons are (Con 2C5) opep = = 6472e
attached to a top internal line. In the case of tensors CHT et
with tops, the better sensitivity allows for the top- (crizee: )(Z)eff = —¢H “eH
: : eH/CH'D 1287[26
ology of Fig. 6(f), where a r Yukawa is present. In o
Table VI, we list the dimension eight operators that (o 7cer )(Z)eﬂ _ C
. . . . eH eH Uf2H4D -
are generated for every pair of dimension six four 1671 €
fermion operators. . chice
) . s e _ “en“en
The complete anomalous dimensions for the above classes (Cen CZ‘I)KZH“D - lez&rze P (79)

of diagrams can be found in Appendix B.

We discuss the example of a pair of dimension six
7 <> | Yukawa operators mixing into the 4 — e dimension
eight penguins, depicted in the representative diagram of
Fig. 6(c). The counterterms that renormalize the divergen-

. £ H'D
ces are the following:

operators.

where the subscript of the parentheses label the corre-
sponding dimension eight
oWer 1K

The operator
(¢,7'y*¢,)(H'T"H)D,(H'tXH) is not in
the list of Sec. II B because it does not contribute to low

TABLE VII. Dimension eight operators generated via the diagrams of Fig. 6(d) with pairs of two-lepton two-quark 4f¢ and
penguins Pg.
(1) 3) % (1) (1) () *(3)
qu Ct’q Cf“ Cfd Cff?dl]’ Cfedq sz’c qu’ CLequ Cfequ’ Cfequ
C (1).(4) Cc-3).0) (1) (1) (1) (1) DG *#(1),(3),(4) (1),(2),3),(4) ~*(1),(2),(3).(4)
He(1) szqu2 fz 2H? Cﬂu’H2 szdsz szequ2 tedqH? feqqu CfequH2 Cfeqqu Cfeqqu
C (2).3) (1) (4).(5) 2) (2) (2) *(2) (2).3 *(2),(3).(4) (1).(2),(3).(4) ~(1).(2).(3).(4)
HEB) szquz szquz sz 2H? szdsz CfequZ Cfequz Cfeqqu CequH? tequH? Cfeqqu
C c c Creaq: C: cl) .t ) .C
eq eu ed Cedqr ™~ tedg Lequ® ~ Lequ Cequ® ~ Lequ
C (1).(2) C Cop (1.2)  ~*(1).(2) (1):(2),(3).(4) ~#(1).(2).(3).(4) (1.(2).3).(4) ~=(1).(2).(3).(4)
he C 2¢PH? CutH? cHdPH? Cfequ2 Cfequ2 CfequH Cfeqqu CfequH2 Cfeqqu
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energy u — e observables, although it appears as a counter-
term. Furthermore, the following redundant operators are
radiatively generated in our off shell calculation:

O, . = i(eD,)(HHY
— i(eDu)(H'H)? — i(Dep) (HTH)?  (80)
Okt — i(Z,De,)(HTH)? (81)
O, = i(Z,D¢,,)(HHY)(HTH). (82)

These are related to the physical/on shell basis as follows:

OeﬂzH4D = Oi‘ﬂ + [yz]tﬂO?lZS + { e]ieoiﬂ

ve e leH®

(83)

1)e, 1)e, ei % kL
O(U;ZII_;AD = Og}) ! + [ye}yiO]eHs + [ye]eioleﬂHS (84)

2)e, 2)eu ei % gL
0222:141) = O + VeluiOns + beleiOppysr (85)
where (’);’;H5 = (¢;He;)(H"H)?, and each of O, o\Ver,
(952 Jeu vanishes, when the renormalizable EOM on singlet
and doublet leptons i(Du) — [yi],(H'¢;) =0, i(DZ,) —
[Vel,i(He;) = 0 are satisfied. The off shell counterterms are

on shell equivalent to [y;];, O3 s + [v.] ieoi;e s

beyond y — e experimental reach. The resulting RGEs are
obtained from Eqs. (79) and (76), and read

which is

1622C%, . = —Cl,Cixe (86)
2 ~(Dep 1 it e 2 ~(2)ep 1t e
167°Cply =5 CliCy - 16m°C = 2 CICEly.
(87)

where the dot on the dimension eight coefficients corre-
sponds to d/dlog M.

B. Matching SMEFT onto the low energy EFT

In Table V of Sec. IIC, we identified the relevant
matching contributions to low energy y <> e interactions
from the double insertion of 4 — 7 X 7 — e dimension six
SMEFT operators. At the matching scale my,, the electro-
weak symmetry is spontaneously broken by the Higgs
VEV, and the h, Z, W, and ¢ are removed from the
low energy EFT. The matching is performed by identifying
the matrix elements of a 4 — e process calculated in the
theories above and below the matching scale, with the
electroweak symmetry broken in both theories. As a result,
products of 7 <> [ SMEFT operators can match onto u — ¢
three and four point functions. The interesting diagrams are
illustrated in Fig. 7. When the Higgs doublet acquires a
VEV, Yukawa operators contribute to the mass matrix,

(c) (d)

FIG. 7. Diagrams matching pairs of dimension six 7 — [
SMEFT operators onto low energy u — e operators.

m,6;; = U([)’e]i/ - CZLI)’ (88)

and the % couplings,

h _ i
- —2€iPR€j([ye]ij - 3CJy) +He.

h ¢,0ij ij
— —EéiPRej <mv S _ 2CeJH> +H.c., (89)

of charged leptons with a different prefactor, such that &
acquires LFV couplings in the lepton mass eigenstate basis.
The two-loop Barr-Zee diagrams [Figs. 7(c)-7(d)] match
to the dipole at tree level in the low energy EFT and
correspond to a dimension 10 dipole in SMEFT. Therefore,
the matching contribution should be independent of the
renormalization scheme in both EFTs, because (dim6)?
terms in the RGEs cannot generate a dimension 10
operator, and tree level is scheme independent. The lepton
line is connected via Z and & exchange to a top or W loop,
where the Z and h, respectively, couple to the lepton line
via a penguin and an off diagonal Yukawa operator. Such
diagrams can be significant [46] (despite the two-loop
suppression), because they are not suppressed by small
Yukawa couplings. We estimate these diagrams from the
results of [47], who calculated the Barr-Zee diagrams in the
two Higgs doublet model (2HDM) with LFV couplings,
where they provide the leading contribution to u — ey
(because the diagrams are not suppressed by y,). In the
2HDM results of [47], the Z diagrams are suppressed
(relative to y diagrams) because the C-even dipole moment
only couples the Z to the vector current of leptons, so there
is a suppression of (1 — 4sin®@y,) < 0.03. However, in our
case, the Z-lepton vertex is a penguin operator with a
flavor-changing coefficient that we wish to constrain and so
does not suffer from such SM factors. The estimated
contributions to the dipole coefficients are [47]
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9ea, v or
DR= 64r §— [C‘;}]IeceH +

98(1 v *Te )7 FUT et
s |Cu (Cf™ 4+ C)™) + CUT o). (90)
u

(Ch)™ + Cy™)C]

CD,L =

A dipole is also generated at one-loop with a pair of
penguin operators, which look like the flavor changing
version of the electroweak correction to (g —2), with a Z
exchange. However, assuming the future limits on penguin
coefficients shown in Table II, the contribution is below
U — ey upcoming experimental sensitivity.

Four lepton eurr operators get matching contribution
from tree-level diagrams with a Z, h exchange between
penguin vertices or LFV Higgs boson couplings, as
illustrated in the diagrams of Figs. 7(a) and 7(b).
SMEFT 7 — LFV penguins and Yukawa corrections are
matched at my onto low energy four lepton operator
coefficients as follows:

2

ey — _Lger o U (91)
T.RR 4 eH m%l
1 oz U

Cf == CaiCli — 92)

4eH eHm

=N

2

eUtTT er v
CS/,IRR = _CeHCZ/;-]m—%l (93)
eUTT *UT UZ
CS,LL =—-CiCey mfﬁ (94)
CUTT 292 7) T, 3)er 1}2
CS;,lRL = 0082 9 (Cl-ﬁlecg-lg’ + CI-IIleC;I; )M_% (95)
2¢° (1) By U
cHt =2 __(ce ™ C4.Ch T"— 96
S.LR cos2 Oy (Ci.Cr " + )M% (96)
G mMer (D | Ber e
Cv’fu_ = _cos2 O (CHf CHf + CHf CHf
2
l)er v
+ CoTC - C ) o (97)
z
7 )
euTT TUH
CV,RR - _0052 9W CHe M2 ’ (98)

where the low energy EFT basis is in the notation of [48].
We report for completeness the matching conditions for
eutt vector coefficients, although y — e observables are
not sensitive to them.

IV. PHENOMENOLOGICAL IMPLICATIONS

This section gives limits on pairs of 7 <> [ coefficients
from their contribution to 4 — e processes, and we discuss
some examples where the upcoming sensitivity of y — e
observables is complementary to the future direct limits
from 7 — [ processes. Section IVA considers u <> e
amplitudes generated by the fish diagrams of Figs. 6(e)-
6(f), and compares with the limits arising from B — 7 LFV
decays (summarized in Appendix C). An example
of u <> e from matching out the Higgs boson is given in
Sec. IV B, where we compare the sensitivity of u — e
processes to i — [T decays. Appendix D gives results
for the cases where the y <> e sensitivity is marginal or
uninteresting.

The limits we quote apply to pairs of 7 <> [ coefficients
at a new physics scale Axp =4 TeV. The NP scale is
relevant because it appears in the logarithms of the RG
running. We assume that dimension six 7 <> [ operators are
generated at Ayp = 4 TeV and contribute to y — e observ-
ables in two ways: first, as discussed in Sec. Il A, via
renormalization group mixing into dimension eight 4 — e
operators in SMEFT between Ayp and myy,, and second via
the matching at my of combined dimension six 7 <> [
operators onto 4 — e operators as calculated in Sec. III B.
The running is described with the solution of the RGEs
given in Eq. (11), then the dimension eight 4 — e operators
are matched onto the low energy EFT as given in [25]. The
sensitivity of current y <> e experiments to coefficients at
myy is tabulated in [48]; we extrapolate these limits to the
future experimental reaches given in Table I, in order to
determine the experimental sensitivities of 4 — e processes
to the product of 7 — [ operator coefficients. In most cases,
we just rescale the sensitivities of [48]. But for the limits
from uA — eA on vector operators with quarks, we
recalculate the sensitivities on an aluminium target, as will
be used by upcoming experiments. The current bounds are
from gold targets, which have more neutrons than protons,
whereas aluminium contains equal numbers of protons and
neutrons (u and d quarks). So gold has comparable
sensitivity to (eyu)(ityu + dyd) and (eyu)(ityu — dyd),
whereas the sensitivity of aluminium to (eyu)(iayu —
dyd) is suppressed by a loop.

Note that we distinguish sensitivities from constraints or
bounds. But we use limits to mean either. A constraint
identifies the region of parameter space where the coef-
ficients must sit, while a sensitivity represents the smallest
absolute value that can be experimentally detected. The
notion of sensitivity is particularly useful when the number
of parameters is larger than the number of observables, so
that exclusion bounds on single coefficients cannot be
inferred. A coefficient smaller than the sensitivity escapes
experimental detection but larger values can also escape
detection if accidental cancellations occur. In practice, in
this manuscript we obtain sensitivities, because we consider

096040-15



ARDU, DAVIDSON, and GORBAHN

PHYS. REV. D 105, 096040 (2022)

one nonzero pair of 7 <> [ operators at a time and compute
the contribution to 4 — e observables.

Our results are interesting, because they show that
upcoming p <> e experiments could be sensitive to 7 <>
[ coefficients beyond the reach of 7 <> [ searches. We
obtain experimental sensitivities B,.,, to the product of
coefficients

|ClolmCloler| < B, .. (99)

The same coefficients Cl/%, Cloler might contribute to
constrained 7 <> [ processes and be respectively subjected
to the sensitivity “limits” B,_,,, B,_,, imposed by direct
7LFV searches. In the Cl0/% — Clle7 plane, this identifies an
ellipse,

| C[6]ry |2

2
BT<—>/4

|C[6]er|2

2
BT(—)E

<1 (100)

that encloses the coefficient space to which 7 <> [ observ-
ables are not sensitive. On the other hand, u — e searches
can detect coefficients in the region bounded by the
hyperbola in Eq. (99). If the following inequality is satisfied

BT<—>€BT(—>
pere ST £, (101)

B

the hyperbola enters the ellipse and y — e processes are
able to probe a region of parameter space that eludes the
direct 7 <> [ searches. This is illustrated in Fig. 8. In the
subsequent sections, we discuss examples where Eq. (101)

RS

o o
o N S
H’// ‘H\‘\H‘\H‘\H‘\HI
Lk
o
NN 9
RNt
5

Col/Besy

FIG. 8. The plot shows the parameter space probed by direct
7 <> [ searches and by  — e observables, in the C;, — C, plane.
The direct searches can probe the region outside the ellipse of
Eq. (100) (which correspond to the red circle when the Wilson
coefficients are normalized by the sensitivities B,.,; of the 7 <> [
processes), while u — e is sensitive to the area above the
hyperbolae, as defined in Eq. (99). The blue dashed hyperbolae
correspond to the boundary condition B,,.../(B,...B...,) = 1/2,
while the black ones satisfies B, ./ (B;<¢Brwy) < 1/2. In this
second case, 4 — e searches are able to probe parameter space
missed by 7 <> [ observables.

is satisfied considering the upcoming experimental sensi-
tivities on 4 — e and © — [ processes.

A. Fish diagrams with internal top quarks

In this section, we discuss some examples where the
sensitivity of u4 — e conversion to some 7 <> [ coefficients
is complementary to B decays. The “fish” diagrams that
mix four fermion 7 <> [ interactions into dimension
eight 4 — e operators are illustrated in Figs. 6(e)-6(f) of
Sec. III A. In these diagrams, one or two Higgs bosons are
attached to a heavy top internal line, so the 7 <> [ operators
that our calculation can probe contain one quark doublet or
up-type singlet in the third generation. In the former case,
the operator can contribute to the LFV decays of the B
mesons with a 7(v,) in the final state. Recall that the quark
doublets are in the u-basis, so these operators also match
via CKM mixing onto low energy contact interactions with
d-type quarks of the first and second generations. For the
operators considered here, we checked that the limits on
their coefficients arising from CKM-suppressed contribu-
tions to 7 LFV processes with d and s quarks, such as
K* — [*v and 7 hadron decays, are not competitive with
the limits inferred from B decays.

The following subsections are organized by the different
1 — e interactions that the 7 <> [ operators mix into.

1. p — e scalars

Consider, for example, the

O‘rﬂ13 o

eq —

(z71)(@17qs) and OL)er*" = (Z,07)(g30u), which mix into
the 4 — e scalar and tensor dimension eight operators

OL2EHY of Eqs. (48)~(50) (with up quarks) via the

diagram of Fig. 9. These match at my onto scalar and
tensor operators in the low energy EFT, with the following
coefficients’:

operators

3 mtz 13 ~(3)er3 my
== Ct C " log | —— 102
S.RR (mW) 2”2 2 q Cequ 0g ANP ( )

3 m% 13 ~(3)er3 My
cue =_—_—Lcr cy" —, 103
T,RR(mW) Qa2 12 et “tequ 0g Axp (103)

where m, ~ v is the top quark mass and the SMEFT
operator coefficients are at Ayp.

Scalar operators with up quarks contribute at tree-level to
u — e conversion in nuclei (see e.g., [40]), where a muon is
stopped in a target, captured by a nucleus, and converts into
an electron in the presence of LFV interaction with

>This simple solution does not include the QCD running of
tensors and scalars from Ayp — my. Since QCD does not
renormalize vector coefficients, this QCD running is analogous
to the rescaling of QED tensor <> scalar mixing below my, [48]
and can be estimated to be a <10% effect. It is therefore
neglected.
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H T

CMT3U

lequ(3)

FIG. 9. The operators Cifl,Cg);fl are inserted in the left

diagram and mix into the dimension eight y — e scalar/tensor

operators O;L>‘;<Ltzfl)’2(3)’(4) of Egs. (48)—(50).

nucleons. Scalar interactions of first generation quarks
match onto nucleon operators with large matching coef-
ficients, and the rate for spin-independent conversion is
enhanced by the atomic number of the target, giving a good
current sensitivity to scalar coefficients C¢* < 1078 [48].
Including the impressive improvement in sensitivity
promised by upcoming experiments, Br(uAu — eAu) <
10712 = Br(uAl — eAl) ~ 107'°, 4 — e conversion will
be able to probe scalar coefficients as small as C4* ~ 10710,

Tensors with light-quarks contribute to the spin-inde-
pendent rate via their QED mixing into scalars, which
introduces a ~1/10 suppression. For this reason, the tensor
of Eq. (103) contribute to the ¢ — e conversion rate as
Cy ~ Cg/40 and is therefore neglected. So the upcoming
1 — e conversion experiments can set the following limit
(sensitivity) on the product of the coefficients at
Anp =4 TeV:

CHB 5 3 <15 % 10710,

Cequ (104)

The two 7 <> [ operators could also induce the leptonic
decays of B mesons BY — ¥ and B* — 7v. The current
95% C.L. experimental constraints on these processes lead
to the following limits on the coefficients:

Br(B) — 7)< 1.4 x 107 —» €7 < 1.4 x 1073
Br(B" — ) = 16 x 107 — €)™ <22 %107,
(105)

These limits were obtained with the public code FLAVIO
[49] and analytically, are discussed in more detail in
Appendix C, which reviews the sensitivity of B decays
to interesting operator coefficients.

In order to compare future B decay sensitivities to the
future reach of u — e conversion, we suppose that Belle II
could improve the sensitivities to B decays by an order of
magnitude, so the limits of Eq. (105) on the Wilson

coefficients will get ~+/10 better. Comparing the product

Tul3 et 3u
Oeq X oquu3

10°  10* 10° 102 107" 1 10 102 10°  10*  10°

C. /By
(a)
e131 T 3u
OIq1 ><Olequ1
1.8
16f \ 7
; / 2,
0 1.2 AR
: S .
© 7RSI8
e i
>~ F N\
e - *’0\
O 08
06 - @ :
E \ R N
02 "“’&"&‘-%&
oE ! it L1
0 05 1 15 2 25
C./Beo
(b)
FIG. 10. (a) Parameter space probed by u — e conversion

(straight lines) and LFV B decays (box), in the CZ’,B — C;?;f"
plane. The blue line correspond to the current experimental reach,
while in the black one we assume Br(uAl — eAl) < 107'6. In

both cases, the u — e hyperbole enter the ellipse beyond the

reach of B decays. (b) Similar to Fig. 10(a), in the C(flq)”13 —
C(fle);’f" plane. For this pair of operators, 4 — e will have a better

sensitivity to the coeffcient product than B decays with the
upcoming experimental improvement.

of the upcoming B sensitivities with the limit in Eq. (104)
that arise from future y — e conversion gives [the (f)
superscript stands for “future”]

B, = (BYL.BY.,) x (5x 107),  (106)
which satisfies the condition of Eq. (101). We fall in the
scenario depicted in Fig. 10(a), where y — e probes a
region inside the ellipse, beyond the reach of B — 7 direct

096040-17



ARDU, DAVIDSON, and GORBAHN

PHYS. REV. D 105, 096040 (2022)

searches. Notice that the hyperbola of the current y — e
conversion results already enters the ellipse of the
B —- 7 LFV decays [with the current sensitivities

”93/ (B 79335‘2}”) ~5x 1073]. This is because tensors
contribute to the B decays rate via the one-loop
QED mixing to scalars, while the (dimension six)? —
(dimension eight) mixing benefits from a large anomalous
dimension.

The pair of 7+« [ dimension six operators
C(f;)”BC;le)qT” similarly mixes into the dimension eight

1 — e scalars with a singlet u. In this case, B decays are
currently more sensitive than u — e processes to the

product of the coefficients [BW_)e/ ( T(_w 59,,) ~2].
However, in the next generation of experiments, the
sensitivity ratio will be reduced by 1 order of magnitude

t /4<—>e/( THEBQQ,,,) ~0.2, allowing the u — e conver-

sion hyperbola to enter the ellipse of the direct 7 <> /
searches [see Fig. 10(b)].

In Tables VIII and IX, we compare the sensitivities of
7 <> [ and u — e processes to the product of several
operators that mix into scalars with first generation quarks,
via diagrams similar to Fig. 9. Note that the pairs in the
table feature an electron doublet and a singlet muon, but
opposite chiralities are also possible. For instance,

13 3 I . 3
Céy Cfe)qe; “ mix into C(fe)qif);” “ while C§’3'Cf(eq)” o

contributes to the RGEs of C) (1 >(Hl” “l " Although the

TABLE VIII.  The product of current (c) direct limits BgﬁleBgil,,
on pairs of coefficients that mix to a u — e dimension eight

scalar operator with a singlet # quark [see Eq. (48)], upon which

applies the limit B,(,Qe arising from future ¢ — e conversion

[Br(uAl — eAl) ~ 107'0]. The “limits” are on coefficients at
Anp ~ 4 TeV. Details on the limits that apply to operators
with permuted indices are given in the text below Eq. (106).

To compare B,(Q,e with the future sensitivity of direct 7 <> [

searches, the product BgieBEQ,ﬂ should be divided by 10:

TABLE IX. Similar to Table VIII, for dimension eight scalar
u — e operators involving a singlet d quark [see Eq. (46)]. The

limit B, arises from  — e conversion [Br(uAl— eAl) ~10716],
Coefficients 352163521,4 B/(Qe
CB)er3! apd3 23x1073(c) x22x 1074(c) 1 x 107

‘q Cedq

C;;w”(creds) 1.5x1073(c) x 3.4 x107*(c)  1x107°

anomalous dimensions are the same (and so are the
u — e sensitivities), the dimension six operator that was
T <> e is now 7 <> u and vice versa, which might lead to
slightly different direct limits on the 7 <> [ interactions. In
the above example, the branching ratios sensitivities of the
B0 decay into ze, zu differ by a factor ~3, and as a result,

the limits on the vector coefficients C¢7'3, CT"3 lis ~v3
different. We do not present the tables for the pairs with
exchanged y < e, as the marginally different numbers do

not modify our conclusions.

2. u — e tensors with heavy quarks

The fish diagrams that generated scalar and tensor u — ¢
operators on u quarks, arise also with external ¢ quarks.
Although the sensitivity of y — e conversion to charm
scalars is insufficient for our purposes, y — ey has inter-
esting sensitivity to the charm tensors, because their mixing
to the dipole is enhanced o m./m,. The pairs of 7 < [
operators that mix to y <> e tensors with external charms,
and the sensitivities of B decays and Br(u — ey) < 10714
are summarized in Table X.

TABLE X. Similar to Table VIII, for 4 — e dimension eight
tensor operators [see Eq. (50)] with a ¢ quark bilinear. The

sensitivity B<_,e arises from u — ey with a branching ratio

roduc Br(u — ey) ~107'%. The “limits” are on coefficients at

BB, ~ BB, 0. Axp ~4 TeV.
Coefficients 352,635‘2),, Bff_),e Coefficients BgieBgﬁ,, B,(,Qg
CoChon” X 23107 cgrecy X 121077
o X L5107 gy X 1107
co3 C(flﬂ);fu 1.5x1073(c) x43x107%(c)  2x107° C?;”C;L);f" 23x1073(c) x 1.0x 1072(¢)  1.2x 1077
CZ’;”CSL);;“ 1.5x1073(c) x 24 x 1073(¢)  1.5x 10710 Cgf-?cg)qefc 2.3 x 1073(¢) x 5.0 x 1073(¢) 1x1078

Tptu 71 — X — -9 Tutc 72 — X — -7
cam et x 2% 10 caeclees x 12 x 10
C?:tmc(;e;,:” X — 1.5 x 10710 C?;[CC;e);,:Z[ — X — 1x 1078
C;;”BC;EZf“ 23x1073(c) x43x107(c)  2x107 C(fq)”BC(f‘e);Z% 23x1073(c) x9.0x 1073(¢)  1.2x 1077
C?;””C;?Z“ 23 x1073(c) x 4.3 x 1073(c) 2x107° CSL])”BC(K]();Z% 2.3 x1073(c) x 9.0 x 1073(c) 1x1077
cert3clman 23 x107(c) x 1.8 x 107 (c)  1.5x 10710 e cBlude 23107 (c) x 64 x 107(c) 1.2 1077

q equ q equ
C“)””C?e);luﬁ" 23x1073(c) x 1.8 x 107*(c)  1.5x 10710 C;;LTBC(;E);ZSC 2.3 x1073(c) x 6.4 x 1073(c) 1x107°
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Leptonic and semileptonic B decays have recently
attracted attention due to several anomalies with respect
to SM expectations; see, e.g., Ref. [50]. Our LFV operators
could potentially address the anomalies in “charged cur-
rent” b transitions (such as BT — t"v); however, the
observed rates are often below the SM expectations, so
cannot be explained by lepton-flavor-changing interactions
that necessarily increase the rates (because they cannot
interfere destructively with the SM). An exception is
the SM expectation for R}, = Br(B — D*z0)/Br(B —
D*Ip) ~ 0.24 [49], which is smaller than the observed value
Rp%,/;~0.3 [51]. We can fit the difference by enhancing
the branching fraction in the numerator with the tensor

3)iz3c
operator C;ng ¢

23 . : Lo .
C¢y” to mix into a dimension eight tensor with external

charms, to which Br(u — ey) ~ 107!4 has the sensitivity

B,_,, reported in Table X. In the C(f?;fc — C#* plane, the

ellipse is now shifted to the right and centered on the best-

fit value of C?e);fc (see Fig. 11). In the simplified scenario

where the discrepancy |R}Y,, — R’ | is fully explained

by the presence of the 7 <> e tensor, a nonobservation
u — ey signal in future experiments would make it unlikely
for the coefficients to occupy the portion of the red ellipse
overlapping the blue region.

Table XI summarises the case of y <> e operator with
external top quarks. The mixing of tensors with a top
bilinear into the dipole is enhanced by the ratio m,/m,,, so
the upcoming x4 — ey experiments can probe dimension 6

. The latter can be paired with the vector

1073 s
10~ T
e} \‘\
< .
=310 ~
D ~
1076,
B — D*rv and By — tHuT
n—re
1077 T .
107° 1074 107° 1072
(3)er3c
Cﬁequ
FIG. 11. The plot shows the parameter space probed by B LFV

Jet3c Cm23

decays and by future y — ey, in the C(;e qu ¢q  plane. The

)et3c

ellipse is centered to the best-fit value of C(;e qu  that can explain
the R+ anomaly (see text for details). Nonobservation of y — ey

can give a limit on CZ’,‘]B (assuming only this pair to be nonzero).
The dashed line correspond to the current MEG upper bound
Br(u — ey) <4 x 10713,

TABLE XI. Similar to Table VIII, with the product of (current)
direct limits 35263521,, on pairs of 7 <> [ coefficients that mix to a
u — e dimension eight tensor operator [see Eq. (50)] with two top
quarks, upon which applies the limit B,,_, . All the limits apply to

the coefficients at Axp ~4 TeV. The limit B,(,Qe arises from

u — ey [Br(u — ey) < 107'4], due to the large mixing of the top-

tensor to the dipole, while the limits Bii_))l are from the current

upper limits on Br(z — 3/) given in Table I. Future limits

BY),BY), are ~B\ B\, /10.

Coefficients B, B u B/(f_), .

Corcey” 10X 107(e) x 20 x 107(c) ~ 1.0x 107
cleemr 45x107(c) x 10X 1072(c)  10x 107
cleemt 40x107%(c) x LOx 102(c)  =1.0x 107

coefficients C[f]e” ">5x 10712, We suppose that the

SMEFT mixing of dimension eight tensors into the
dimension eight dipoles is comparable to the dimension
six mixing [30]. This impressive sensitivity explains why
the diagrams of Fig. 6(f) with external top legs are
interesting regardless of the y, Yukawa suppression.

The SMEFT 7 <> [ operators that are inserted in those
diagrams contain a flavor diagonal quark pair in the third
generation. Vectors with tops contribute to the rate of 7 —
3] via one-loop penguin diagrams, while the dimension six
tensors contribute to 7 — [y via the above-discussed mixing
into the 7 <> [ dipole. Tensors are not considered in our
tables, because 7 — [y has already an excellent sensitivity
to the operator coefficients. In Table XI, the direct “limits”
on the product of 7 <> [ dimension six vectors arising from
7 — 3] searches are compared with the sensitivity
of Br(u — ey) < 10714,

3. u — e vectors

The remaining fish diagrams give mixing of two dimen-
sion six 7 <> [ SMEFT operators into dimension eight
u — e vectors with first generation quarks. The sensitivities
of 4 — e conversion and B decays on the product of the
operator coefficients are summarized in Table XII for
lepton singlets and in Table XIII for lepton doublets.
(The u — e conversion estimates assume an aluminium
target—see the beginning of Sec. IV.)

B. Higgs LFV couplings

In this section, we discuss the sensitivities of y — e
observables to dimension six Yukawa operators O,y
[Eq. (18)] and compare them with the upcoming direct
limits imposed by h — 7l decays. Pairs of Yukawa 7 <> [
operators contribute to various y — e interactions at
dimension eight. They mix into penguins via the divergent
diagrams of Fig. 6(c), which match onto the vector
operators involved at tree-level in the y — e conversion
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. 1milar to Tables , for dimension eight 4 — e
TABLE XII.  Simil Tables VIII, for di i igh
vector operators with SU(2) singlet leptons [see Egs. (41)—(43)].
Coefficients Bgflngflﬂ B,(fi),e
ceen” 23x1073(c) x 1.5x 1073(¢) 2.5x107°
Cg;”cﬁffl 23x1073(c) x 1.5x 1073(¢) 1x1078
Cg;tucé/;m — X — 2.5x%x107°
ngutcz‘l”‘ — X = 2.5%x107°
(C;,‘L‘Z) C;"efé 34 x107%(c) x 22 x 107%(c) 4 x 1078
( ‘relr) ()zulr — X — 2 %1078
Cequ fcqu
( Cﬁ;:%u) f?;ﬁfw 58x107%(c) x 43 x 10(c) 4x1078
el Tul — — —10
(Cfeqtj t) Cfe)qg t X 1x10
(Cfe;f“) ;2;53” 2.4 x 107*(c) x 2.4 x 107*(c) 2.5x 10710
)rel (3)zul _ _ -9
(Cfequ Z) fe)q;ul ' X 2x10
)rel (1)zul — — -9
(Cquu Z) fc)qg ' X 2x10
(Cﬁ;%) ;2;5*” 58 x107(c) x 2.4 x 107*(c) 4 x107°
(Cfe;;”*”) Cfeq’if“ 24 x1074(c) x43x107(c) 4x107°
TABLE XIII.  Similar to Tables VIII, to generate y — e vector
operators with a doublet lepton bilinear [see Egs. (33)—(39)].
Coefficients BﬁieBLﬂ,, B,(/i),e
C%”“C;{}’”” 23x1073(c) x 1.5x 1073(c) 1x1078
C;lq>erl3c<flq>wﬂ 23x1073(c) x 1.5 x 1073(c) 2.5x 107
CS(])”?"CS;’”B 23x1073(c) x 1.5 x 1073(¢) 2 x107°
C?q)”BC(;(I)’/‘“ 23x1073(c) x 1.5x1073(c) 2.5x107°
Cgerwcggwﬂ 23x1073(c) x 1.5 x 1073(¢) 2.5%x 1077
C;Q”BCS‘}T”M 23x1073(c) x 1.5 x 1073(¢) 2.5%x 107
C<3>cﬂlc<f w3 23 %1073 (c) x 1.5 x 1073 (¢)  1x 1078
Cf )”*‘C ”T/‘” 23x1073(c) x 1.5x 1073(¢) 1x1078
C?mtcguu X = 1x 10—8
caren —x - 2.5 % 107
(Cfqu;w) Cfg)u;” 45 x 107*(c) x 4.5 x 107*(c) 4 x 1078
( erlt) (Dpurle X — 4 % 1078
fequ fequ
(Cﬁ;fu) fﬁ,ff” 1.8 x 1073(c) x 1.8 x 1073(¢) 1.25x 10710
Jerl (3)url _ _ —10
(Cquu I) fc):u ' X 125x10
Jerl url X — -9
(Cfcqeu t) fe);u t x 3x10
(Cfe;,fu) Cfel"*“ 45%x107%(c) x 1.8 x 1073(¢) 1.6 x 107
(Cfe;l:”) fe):u‘[” X 3x 10_9
e feqe;zu) Cfe:f“ 1.8 x 1073(c) x 4.5 x 107(¢c) 1.6 x 107

and 4 — eee rates. In addition, dimension six Yukawas are
inserted in the diagrams of Figs. 7(b) and 7(c)-7(d), that
give matching contributions to the perr tensor and dipole,
respectively. The matching conditions are written in

gs. (90) and (91)—(92). u — ey is marginally more
sensitive to the perr tensor than on the dipole; this is
due to the large tensor-to-dipole mixing and the built-in y,
Yukawa suppression in the dipole definition, which lead to
the already discussed enhancement m,/m,. As a result,
U — ey is the most sensitive process, and an upcoming
experimental reach of Br(u — ey) < 107'* gives

CEic

re, Chy) <3 % 1077 (107)
In the charged lepton mass-eigenstate basis, the dimension
six Yukawas induce flavor-changing interactions of
125 GeV-Higgs boson [see Eq. (89)], so h — 7/ decays
probe the off-diagonal coefficients C%*. The most strin-
gent upper limits on the rates are currently set by CMS [52],
and ILC is expected to improve them by one order of
magnitude [16]. The projected sensitivities to the branching
ratios Br(h—7e)<2.3x107*, Br(h — zu) <2.4 x 1074,
respectively lead to the bounds,

\IC% )2 +|C% 7 <32 x 1074
\VICH 2+ |Chy > <3 x 1074,

The product of the direct limits is larger than 2x the
sensitivity of Eq. (107), so that y — e probe a region of
parameter space that is beyond the reach of future LFV
Higgs decays (see Fig. 8).

(108)

V. SUMMARY

The u — e experiments under construction are expected
to improve the current branching ratio sensitivities by
several orders of magnitude. In some cases, the improve-
ment is such that the upcoming experiments will be able to
probe products 4 — 7 and t — e interactions beyond the
reach of direct 7 <> [ searches (where [€ {e,u}).
However, the relationship between 7 <« [ and yu < e
observables is generically model dependent, as we dis-
cussed in Sec. IT A. The goal of this paper is to retain the
model-independent contributions to 4 — e processes from
7 <> [ lepton flavor change, although these may be sub-
dominant. To do so, we assume that the new physics
responsible for 7 <> I LFV is heavy (Ayxp 2 4 TeV), and we
parameterize it wigth 7 <> [ dimension six operators in the
“on shell” operator basis of SMEFT. We briefly introduce
our EFT formalism in Sec. II B.

We insert 4 — 7 and 7 — ¢ dimension six interactions
O(1/A%p) in diagrams that generates u — e amplitudes at
dimension eight O(1/A%p). We only compute the contri-
butions that are phenomenologically relevant, i.e., within
the reach of future experiments. Firstly, we focus on a
subspace of dimension eight operators to which y — e
observables are sensitive, as given in [25] and presented in
Sec. IIC. Secondly, in Sec. IIE, we draw and estimate
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diagrams with two 7 <> [ dimension six interactions gen-
erating the above-mentioned dimension eight operators,
and we disregard the contributions smaller than the
upcoming experimental sensitivity.

Log-enhanced corrections to p — e dimension eight
coefficients are the result of the (dimension6)? —
(dimension 8) mixing which appear in the renormalization
group evolution, that we review in Sec. Il B. Calculating
this mixing present some technical challenges. The “on
shell” operator bases we use at dimension six and eight are
reduced using the equation of motion (EOM), i.e., do not
contain operators that are related by applying the classical
EOM on some field. In order to include the dimension 8
contributions that arise from using the EOM up to dimen-
sion 6 in reducing to the on shell basis at dimension 6, we
include some not-1PI diagrams in our calculations. This is
more carefully discussed in Sec. II D.

In Sec. III, we describe the calculation of the interesting
contributions to y — e processes from 7 < [ interactions,
depicted in the diagrams of Figs. 6 and 7. Pairs of 7 <> [
operators are assumed to be generated at a new physics
scale Axp =4 TeV and mix into dimension eight 4 — e
interactions when evolved down to the experimental scale
of u — e observables. Between Ayp and my,, the running is
performed in SMEFT as described in Sec. III A and
employing the RGEs solution of Eq. (11). The complete
list of the (dimension6)> — (dimension8) anomalous
dimensions that we obtained is given in Appendix B.

The dimension eight SMEFT operators that are generated
in running are matched onto low energy interactions at my,
as described in [25]. We also include the contribution from
pairs of 7 <> [ operators that generate y <> e operators at
tree level in matching, as discussed in Sec. III B. Between
my and the experimental scale Ay, the running of low
energy Wilson coefficients is taken from [48], while we
find that 4 - 7 x 7 — ¢ RGEs mixing is negligible in the
EFT below my, as discussed at the end of Sec. II B.

We thus determined the sensitivity of 4 — e processes to
products of 7 <> [ operator coefficients. Sensitivities re-
present the smallest absolute value that is experimentally
detectable and are obtained by considering one nonzero
pair of 7 <> [ operators at a time. They give a hyperbola in
the Cl0% — ClOler plane of the dimension six coefficients
(see Fig. 8), outside which 4 — e observables can probe. In
the same plane, direct 7 <> [ searches are sensitive to the
region outside an ellipse. In Sec. IV, we discuss two
examples where the hyperbola passes inside the ellipse:
Sec. IV A shows that the contributions of fish diagrams [see
Figs. 6(e)-6(f)] to 4 — e observables allow us to probe
products of 7 <> [ coefficients involving third generation
quarks. These same interactions contribute to the rate of
LFV B — 7(v,) meson decays, which can directly probe
the size of the Wilson coefficients [the “limits” arising from
the upper bounds on B — 7(v,) + ... are summarized in
Appendix C]. In most cases, we find that upcoming 4 — ¢

experiments are sensitive to coefficients beyond the reach
of future B — 7(v,) + ... searches. In Sec. IV B, we study
the sensitivity of upcoming u — e searches to products of
LFV Higgs couplings, which overcomes the projected

reach of the ILC to h — 75[7.

In summary, we computed in SMEFT the contributions
to 4 — e observables arising from (u — 7) X (r — e)
interactions. This required calculating a subset of the
RGEs for dimension eight operators, so far missing in
the literature. As a result, we obtained limits on products of
7 <> | SMEFT coefficients assuming nonobservation of
u — e in future experiments. This can give model-inde-
pendent relations among u <> e, 7 <> e,and 7 <> p LFV:in
the event of a detected 7 <> u signal, the nonobservation of
u <> e would suggest that some 7 <> ¢ interactions are
unlikely (if they occur, additional u <> e interactions are
required to obtain a cancellation in the 4 <> ¢ amplitude).
This could provide theoretical guidance on where to search,
or not, for 7 < e.

We find that 4 — e processes have a good sensitivity to
products of 7 <> [ operators that involve b quarks. These
mediate leptonic flavor changing B decays, which are a
promising avenue for new physics in light of the recent
anomalies. In most cases, the anomalous rates are below the
SM expectations, requiring destructive interference with
the SM that cannot be addressed by our LFV operators. An
exception is the Rp- anomaly, where the experimental value
is larger than the SM prediction and, as discussed in
Sec. IVA 2 (see Fig. 11), can be fitted by increasing the
rate of B — D*7v with 7 <> e operators. This is an example
of the above-discussed relations that we can extrapolate
from our calculation; the nonobservation of y — e proc-
esses can identify values where 7 <> y is unlikely to
be seen.
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APPENDIX A: FEYNMAN RULES

In this section, we list the Feynman Rules for the
interactions involved in the diagrams of Sec. IIA.
Capital letters 1, J, L, K... are used to label SU(2) indices,
while lowercase letters i, j, [, k are generation indices. 7¢
are the Pauli matrices and €, = —ey; = 1,611 = €3, = 01is
the antisymmetric SU(2) tensor. The Feynman rules are
obtained calculating by hand the iM amplitude of the tree-
level processes. We write the Feynman rules for the
renormalizable interactions in Fig. 12, for the dimension
six operators in Figs. 13-14 and for the dimension eight
operators in Figs. 15 and 16.
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FIG. 12. Feynman rules for the dimension four interaction.
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>< iCifkfyapR © e b X iczilk&J’YQPL ® YaPr
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o i(C €1.Pr @ Pr+
iCHY¥ 51 Pr @ Py Sequ
X bedq +C,§SzjlkerLa“’3PR ® 0apPr)
qrK d; Up, qiL

FIG. 13. Feynman rules for the dimension six SMEFT four-fermion interaction 4 f¢ of Sec. II C. In the product I'; @ I',, the left matrix
I'; multiplies the lepton bilinear. Scalar and tensor with opposite chiralities have the same Feynman rules with conjugate coefficients and
exchanged flavor indices within lepton and quark bilinears.
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FIG. 14. Feynman rules for the dimension six SMEFT two fermion operators Yy, Pg of Sec. II C. The Higgs momenta follow the
hypercharge arrows.
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FIG. 15. Feynman rules for the dimension eight SMEFT two fermion operators Dg, Pg of Sec. II C. The Higgs momenta directions
follow the hypercharge arrow, while the bosons momentum ¢ is outgoing.

096040-25



ARDU, DAVIDSON, and GORBAHN

PHYS. REV. D 105, 096040 (2022)

€j €

Hy - » » - Hp, icsgxsz25LK’YaPR®7&PR

Uk Uy
ej-] enl
-~ (1)iglk
I(Cz 3172017 0LK+
Hg -» > - Hp, 2yijtk Lo H o
C( LzJH;zTI ITLK)’Y Pr @ vaPr

Uk ul

(1)ijlk
C£2 22

(1)ijik
j XI{M i Ctequ2

kK

€5 €

Hy - X+ - Hy iC%% 200k7"Pr ® Yo Pr

dk dl
2% Cir
A ()ijlk
i(Clals o 010LK+
Cgi;z];;zﬁ ITLK) Pr @vaPr
di: d,

2)ijlk

0rj0LKdmMN + ng 32 TLITMNOLK

a
- > - Huy (3)ijlk (4)ijlk '
P ‘.'.J 1] a
X +Cy2 szTIJTLKéi'\U\t + Cp2pz 2 LKTJ\'INJIJ)'?/

“Pr ® yaPL

2)ijlk

Ordmn + C(equzTIKTAIN)PR ® P

CMIk by + C DIk (7" €)1k Trn ) Pr @ Pr+

> Hu @itk ()il :
Cieq:sz ST IVINE S Chdngust (7€)1 7Rin)0* Pr @ a'aﬁPR]

FIG. 16. Feynman rules for the dimension eight SMEFT four-fermion interactions 4 fg of Sec. Il C. We consider only the dimension
eight operators involved in the diagrams of Sec. IIl A 1. In the product I'; & I, the left matrix I'; multiplies the lepton bilinear. Scalar
and tensor with opposite chiralities have the same Feynman rules with conjugate coefficients and exchanged flavor indices within lepton

Eeq uH?2

and quark bilinears.

APPENDIX B: ANOMALOUS DIMENSIONS

In this section, we write the renormalization group
equations for the mixing of a 4 — 7 dimension six operator,
multiplied by a 7 — e dimension six operator, into a
dimension eight u — e operator. These anomalous dimen-
sions are generated by the diagrams of Sec. III A 1. We
conveniently present the RGEs divided in the “classes”
introduced in the same section. The operator definitions can
be found in Sec. IIC. The upper dot C on the Wilson
coefficient indicate the logarithmic derivative with respect
to the renormalization scale M. The anomalous dimensions
are written for the dimension eight operators of Sec. II C,

fequH?2

which are relevant for y — e processes that are otherwise
flavor diagonal, although more general flavor structures can
be obtained with the appropriate substitutions. For non-

voqui> W€ write the RGEs

1)euii «(1)peii
(44 uHZ’Ofeqqu'
explicitly show the 7 <> [ operator pairs upon which we
obtain limits in Sec. IV.

Hermitian operators such as oV

for the u — e operators o! This is to more

1. 4f6x4f6—)4f8

Figure 6(f) shows the mixing « y,y, of pairs of dimen-
sion six 7 — [ operators into the dimension eight 4 — e
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tensor with top legs. We align 7 <> ¢,7 <> u Wilson
coefficients, respectively, in row and column vectors to
write the following anomalous dimensions, relevant for the
B, .. sensitivity of Table XI.

2 ~(3)eudt et (1)er33 (3)er33 (1)ez3t  (3)er3t
167 CfequH2 - (Cfun qu qu Cfequ Cfequ )
V¥ 0 0 0 CZ}:]33
0 —YVi 0 0 C‘rﬂt!
X 0 V)i 0 0 C(fl)r/ﬁt
equ
0 0 0 3y.v; .
0 0 3yy =8y Cequ
(B1)
2 *(3)ueldt 1t ~(1)7u33  ~(3)7u33 e (1)utdt  ~*(3)ur3e
167 Cfeqqu - <CZ4 qu ! sz’q ! sz’eqt!tl sz’eqlﬁ )
YeVi 0 0 0 Cg‘f]33
0 -yy 0 0 certt
X 0 Ve Vi 0 0 C*(l)fef'at
fequ
0 0 0 3y,
C*(?a)fe?at
0 0 3yy =8y Cequ
(82)
|
~(Depii erti 1)erti 3)er3i
16ﬂ2Cfeq5H2 - (Cfut C;e)qut C(fe)qu
—2y?  —24y? 0
0 0 —y?
0 0 —12y?
X 0 0 0
0 0 0
0 0 0
0 0 0
~e(Dpeii Tui #(1pu3i #(3)ue3i
16”2CfquH2 = (Cf[;t Cf(eq): Cf(eq):;
=2y; 24yt 0
0 0 -y
0 0 —12y?
X 0 0 0
0 0 0
0 0 0
0 0 0

2 ~(4)eudt et 1)er33 3)er33 1)ez3t (3)e3t
167 Cz,’eq::Hz - (Cfutt Cl(fq C(fq C)(fequ Cfe)qu )
VeV 0 0 0 Cz;:]?’_’)
0 —Vei 0 0 C‘é/‘jtt
X 0 —V Vi 0 0 (1)zu3t
fequ
0 0 0 yy .
0 0  y 8y Zequ
(B3)
167[2C;i4q):232t _ <C?;” C;lq)m% C(;q)m% C;(glq)’fﬁt C;(:q);;ﬁt)
VeV 0 0 0 Ce¢33
eq
0 —VVi 0 0 certt
X 0 =V V: 0 0 «(1)Te3t
Cequ
0 0 O yoyr «(3)7e3t
0 0 Yy 8y, requ

(B4)

In Fig. 6(e), we show a representative diagram with the
double insertion of two-lepton two-quark z — [ operators
of dimension six, which renormalizes the coefficient of
u — e dimension eight four fermion operators. The mixing
is proportional to the square of the top Yukawa y?. The
RGEs for scalar and tensor with a up-singlet quark (the
sensitivities of y — e processes that we obtain from this
mixing are summarized in Tables VIII and X)) read

1)eri 3)eti 1)ezi3 3)eri3
cllrt el el )
1)zui
0 0 0 cpm
0 0 0 3)tpi
Crup"
0 0 0 A
Céq
2% 0 0 . (B5)
C‘mn
—24y? 0 0 e
C(l)w?:l
0 i =12y7 tequ
3)zu3i
0 =32 362 )\
*(1)pzi *(3)pti 1)zu3i 3)Tu3i
Coomt e el el
*(1)zei
0 0 0 Cfizq)u '
0 0 0 C;(Zi)‘reit
0 0 0 o
Ccedi
2y? 0 0 . (B6)
Cetit
—24y? 0 0 e
C*(])T€3l
0 v —12y? tequ
0 342 362 C*(S)Te?)i
—3Vi Vi Cequ
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The anomalous dimensions for the mixing into y — e
vectors with SU(2) lepton singlets are (sensitivities in
Table XII)
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Tui3
47 0 0 0 Ceq

Tu3i

0 y 0 0 Céq
1)zui

0 0 _y’2/2 —6)7;2 C(fe)qg[

0 0 —6)’% —72)%2 C(3)mit
Cequ
(B17)

et N[0\ [ CHP
(2)epii _ er3i eti Vi ¢q
167T2Cezqzl;_lz - (Ceq3 Ceq3 ) ( 2 ) ( Tu3i )
0 -y Ceq
(BIS)
16”266#1’!’ _ (Ceni cetit C*(l)f€3i C*(3)T€3i )
e2u’H? eu eu Lequ Lequ
22 0 0 0
om0 o
0 0 /2 =6y
0 0 —6y? 72y?
ca'
ol
X ru3i (Blg)
Cg’e)qlul
3)zu3i
C(fe)qlul
16m2 et | — T curen o B20
n A2 H? 2 Cedq ~ Cedq’ ( )

while for vectors with lepton doublets (sensitivities in
Table XIII) these are
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2. P6X4f6—)4f8

Dimension six 7 — [ four fermion interactions renorm-
alize 4 — e dimension eight operators via gauge loops
where one vertex is a flavor changing penguin [Egs. (13)—
(15)], as depicted in Fig. 6(d). One-particle-irreducible
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0 3y 367 )|
i

vertex corrections and “wave-function-like” contributions
(see Sec. II D for a discussion) give the following gauge
invariant anomalous dimensions, where we align four-
fermion interactions and penguins respectively in row
and column vectors,
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3. YGXY6_)P8

We here write the RGEs for the mixing of two dimension
six 7 — [ Yukawa [Eq. (18)] into the dimension eight
1 — e penguins [Eq. (44)]. More details can be found in
Sec. I A 1 of the text.

162°Ce, , = —CEliClif (B52)
. e 1 *UT ~eoT . ¢ 1 HT et
16mCi, = SClices,  162CR, = 2 Clicy,
(B53)

APPENDIX C: LIMITS FROM B DECAYS

In the body of the paper, we saw thatu <> e processes have a
good sensitivity to products of 7 <> [ coefficients, which both
involve a top quark, via the fish diagram of Fig. 6(e). When the
top quark is in a doublet, these same 7 <> [ coefficients mediate
B decays, which is discussed in this section.

We set limits on the 7 <> [ coefficients from their con-
tributions to leptonic and semileptonic B decays. They can

induce “neutral current” processes, such as B, — 7-[7,
which are absent in the SM, and also contribute to “‘charged
current” decays such as BT — 7u, to which the SM does
contribute but with a different-flavored neutrino. Since our
coefficients are lepton-flavor-changing, they cannot interfere
with the Standard Model, so necessarily increase the branch-
ing ratios with respect to their SM expectation. This makes it
difficult to fit the current B anomalies with LFV operators,
because many of the anomalies are experimental deficits with
respect to the SM predictions.

The list of decays that are included is given in Table XIV,
along with the value of the branching ratio (BR), which we
use to extract limits (A coefficient at its upper limit gives
this BR). For processes where the SM contribution is
negligible, this value is the experimental 95% C.L. upper
bound on the BR. In the case of SM processes where
prediction =~ observation, this value is the SM prediction +
theory uncertainty 4+ 20 experimental uncertainty. This
definition is used because we would like to remove the
SM part and require that the flavor-changing interactions
contribute less than the remainder. However, it can occur
that the SM prediction exceeds the experimental observa-
tion (as in some “B anomalies”).

To extrapolate the limits, we obtain from current exper-
imental constraints into the future, we suppose a factor of
10 improvement in the experimental sensitivity (and in the
theoretical precision), such that the future limits will be a
factor of ~3 better.

Our limits are obtained using FLAVIO [49]. The limits
obtained from two-body leptonic decays were checked
analytically, using the well-known formula for the rate as a
function of operator coefficients at the experimental
scale my,

- E.f% dbut dbut
F(Bo - Tﬂ) = 16”7“}4 <|CV,ZX|2 + ‘CV,IP;X 2)(Er - Eu)
dbut 2 dbut 2 m%}
+(|Csrxl” +1Cs 1x )W(E1+Eu)+---}v
b
(C1)
where “...” are cross-terms and m, is neglected. A

numerical limit can be obtained by, for instance, comparing
to the experimental rate for B — 7v.

The coefficients are run from m;, — Axp =4 TeV with
the one-loop RGEs of QCD (which shrinks scalar coef-
ficients by a factor ~3/5), with tree-level matching to
SMEFT operators when passing my,. Electroweak running
is neglected, except in the case of tensor to scalar mixing in

SMEFT® [where Cg(my) ~0.3Cy(Axp)], which, for in-
(3)ze3u

Cequ into scalars that

stance, mixes single-top tensors O
induce BT — ev.

®The tensor to scalar mixing below my in QED is negligible
for “charged-current” tensors involving a b and a v.

096040-32



SENSITIVITY OF y — e PROCESSES TO r FLAVOR CHANGE

PHYS. REV. D 105, 096040 (2022)

TABLE XIV. Current limits (c) on 7 <> e and 7 <> p coefficients of SMEFT operators, at 4 TeV, arising from the B
decays given in the third column. The limits saturate the branching ratio given in the last column (which may not be
the cited experimental limit, see discussion in Appendix C). Limits on vector coefficients apply for permuted lepton
and quark flavor indices, scalars apply as given.

Coefficient Limit Process BR
ngﬁ{d””n n C<3) 2.3 x1073(c) BT - K +tte¥ <4.4 x 107 [53]
ngn,dl)ersl C(;q)em 2.3 x 1073(c) BY — Fe¥ <3.0 x 1075 [54]
2 i . a2 23%107(c) B — <43 107 [55]
C’;,j“,c(””’“ + C)(;q)”m 1.5 x 1073(c) BY — u¥ <1.2x 1072 [55]
Cods Credd 3.4 x 107(c) BY — e*1¥ <3.0 x 1075 [54]
il 2y 22107 B e <1210 (59
cron Clon 3.3 x1074(c) BY) — p*r¥ <4.3 x 107 [55]
C(fe){;‘;fm 4.5 % 107(c) B~ - 1D 1.4 x 10~* [49,56]
C;LB);SM 5.8 x 1073(c) B~ —eb <1.2 x 107° [57]
C}(f}();g&t 4.3 x 107%(c) B~ — ub <1.0 x 107° [58]
C(f e)[;;%c 1.0 x 1072(c) By - 1w 0.1749]

c(f e)qrssc 9.0 x 1073(c) BY — Dev <3.0 x 1072 [49]
C(fle);f,’&' 1073(c) BY — Duv <3.1 x 1072 [49]
C%f" 1.8 x 1073(c) B~ = 1D 1.4 x 107* [49,56]
C(fg);;zu 2.4 % 10—4(0) B~ — er <1.2x107% [57]
Cfequsu 1.8 x 1074(c) B~ — ub <1.0 x 1076 [58]
cBine 5.0 x 1073(c) R,/ (B — D*ID) 0.28 [49]

C(;e);;‘t 53 %1073 (c) Bg — D¥ev <7.3 x 1072 [49]
C(fi){;g% 6.4 x 1073(c) BY — D*uv <7.7 x 1072 [49]

APPENDIX D: TABLE OF SENSITIVITIES

In Tables XV-XVI we compare the sensitivities of 7 <> [ processes and 4 — e processes on the product of two dimension
six operator coefficients in cases where the difference in sensitivity is marginal. More details are provided in the captions.

TABLE XV. Pairofr <> [ penguin and four fermion dimension six operators that generate 4 — e scalar/tensor dimension eight operators

with asinglet u and d quark. The future (f) “limits” B ;

’; ,ont <> [vectorsand scalars are from the upper bounds on the LFV decays z — Ip(n)

andt — zl,respectively (adapted from [48]). The limits on penguins follow from their contribution to four—lepton vectorinteractionst — 3.

The same bound applies to the dimension six operators with y <> e interchanged. The sensitivities

. arise from future 4 — e conversion.

Bolded pairs indicate that the sensitivity of u — e is better than the one arising from direct 7 <> l searches [see Eq. (101)].

Coefficients BSQe B, B E{f_)> .

cheter, 83 x 1075(f) x 1.2 x 1074(f) 5 % 100
cort e, 7.7 % 1075(f) x 1.2 x 1074(f) 2% 1070
(Cfe;,jl”) Hf(] 8.3 x 1073(f) x 1.0 x 107*(f) 1x 1078
(Coety Hm 7.7 x 1075(f) x 1.0 x 1074(f) 2 % 10~
(Chetycl 8.3 x 1075(f) x 1.0 x 1074(f) 1% 108
(Comettys CZ‘/@ 7.7 x 1075(f) x 1.0 x 107*(f) 3% 10-10
CoutyChle 8.3 x 1075(f) x 1.2 x 107(f) 5 % 10-°
(CEa) Chray 8.3 x 1075(f) x 1.0 x 1074(f) 1 x 10-8
(Ct) Chivs) 8.3 x 1075(f) x 1.0 x 107*(f) 1 x 1078
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TABLE XVI. Similar to Table XV but with product of penguin and four-fermion dimension six operators that mix
into y — e vectors at dimension eight.
Coefficients Bg{le BgQ, ’ B /(L) .
cemcy, 2.4 x 1074(f) x 1.1 x 107*(f) 4.6 x 1078
ceticy, 24 x 1074(f) x 1.1 x 1074(f) 82x 107
ch e, 7.0 x 1074(f) x 1. x 1074() 1 % 1077
Coy”™" Chiagy 7.0 1074 (f) x 1. x 107(f) 8.5 % 10~
cgmlc;;m) 1.2 x 1074(f) x 1. x 1074(f) 1x1078
(3)erll —4 —4 9
quef CZ‘f(S) 1.2 x 1074(f) x 1. x 107*(f) 32x 10
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