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Transforming a μ to a τ, then the τ to to an e, results in μ → e. In an effective field theory (EFT)
framework, we explore the sensitivity of μ → e observables to products of ðμ → τÞ × ðτ → eÞ interactions
and show that the exceptional sensitivity of upcoming μ ↔ e experiments could allow us to probe
parameter space beyond the reach of upcoming τ ↔ l searches in Higgs, τ, and B decays. We describe the
τ ↔ l interactions as dimension six operators in the SM EFT, identify pairs of them giving interesting
contributions to μ ↔ e processes, and obtain the anomalous dimensions mixing those pairs into dimension
eight μ → e operators. We find that μ → e processes are sensitive to τ flavor-changing B decays at rates
comparable to current B anomalies, but lepton flavour violating operators cannot reduce B rates—as
appropriate in many current B anomalies—because they do not interfere with the SM.

DOI: 10.1103/PhysRevD.105.096040

I. INTRODUCTION

The three lepton flavors are accidentally conserved in the
Standard Model, if it is defined with massless neutrinos.
But the nonzero neutrino masses and mixing angles
established by the observation of neutrino oscillations
clearly demonstrate that leptons change flavor.
Extending the Standard Model (SM) with Dirac neutrino
masses generically predicts flavor-changing contact inter-
actions among the charged leptons (LFV or CLFV—for
reviews, see, e.g., [1,2]), but the branching ratios are GIM
suppressed by small neutrino masses Br ∼G2

Fm
4
ν ∼ 10−50

[3,4], so beyond any foreseeable experimental reach.
Searches for CLFV are thus of great interest, as an
observation would be an unambiguous signature of new
physics (NP) that could shed light on the neutrino mass
mechanism. In addition, null results generally limit the
parameter space of beyond the SM theories, many of which
predict sizable LFV rates. In Table I, a subset of LFV
processes is listed with the current experimental bounds on
their branching ratios, and the expected sensitivities of
upcoming searches.

The current limits on μ → e flavor change are more
restrictive than those on τ → l, where l ∈ fe; μg, due to the
possibility of making intense muon beams. Furthermore,
a significant gain in sensitivity is expected at upcoming
μ → e experiments (see Table I), sometimes allowing

Brðμ → e…Þ≲ Brðτ → e…ÞBrðτ → μ…Þ: ð1Þ

Improving the sensitivity to τ ↔ l processes by producing
the τ in the final state has been explored at the future
Electron Ion Collider [18] and electron-positron machines
[19]. Instead, we focus on the relation among the three
ΔF ¼ 1 lepton flavor changes,

If two lepton flavors are unconserved, then no symmetry
forbids the third to happen, so it could be generated from
the first two at some order in the perturbative expansion.
Equation (1) tells us that μ → e searches are potentially
sensitive to the product of μ → τ and τ → e interactions
respecting τ LFV constraints. So the aim of this manuscript
is to explore what can be learned about τ ↔ l interactions,
using μ → e observables. We are interested in the model-
independent aspects of this question, so we assume that the
NP responsible for LFV is heavy and use effective field
theory (EFT) [20–22] to parametrize low energy LFV.
In this EFT approach, lepton flavor violation is mediated

by contact interactions among Standard Model particles,
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which correspond in the Lagrangian to higher dimensional
operators respecting the appropriate gauge symmetries (our
EFT formalism is presented in more detail in Sec. II). We
will suppose a new physics scale ΛNP ≥ 4 TeV (“beyond
the LHC”), describe τ → l interactions via dimension six
operators, and calculate the log-enhanced contributions to
dimension eight μ → e operator coefficients, which
appear in their renormalization group evolution between
ΛNP andmW . These contributions arise from the insertion in
loop diagrams of both a μ → τ and a τ → e operator
and can be reliably computed in EFT—although they
may not be the dominant contributions to μ → e processes
coming from τ ↔ l interactions (see Sec. II A). We will
find that upcoming μ ↔ e searches could be sensitive
to τ ↔ l interactions beyond the reach of upcoming τ
experiments.
The paper is organized as follows. In Sec. II, we

introduce the formalism for the EFT calculation (notation
and operators), and we make several estimates to focus the
calculations on contributions within future μ → e exper-
imental sensitivity. Our results are illustrated in Sec. III,
where the renormalization group equations (RGEs) for
dimension eight operators are reviewed; we discuss exam-
ples of anomalous dimensions calculated from double
insertions of dimension six operators and give the weak
scale matching of μ → τ × τ → e onto low energy μ → e
operators. The complete results for ðdimension 6Þ2 →
dimension 8 mixing can be found in Appendix B. In
Sec. IV, we discuss some phenomenological implications:

μ → e observables are sensitive to products of τ ↔ l
operator coefficients, and we compare this sensitivity to
the limits coming from searches for τ ↔ l processes.

II. EFT, OPERATORS, AND NOTATION

In this section, we start by comparing our calculation to
the expectations of a few models in Sec. II A, then review
the EFT framework in Secs. II B–II D. Finally, in Sec. II E,
we estimate which ðμ → τÞ × ðτ → eÞ loop diagrams could
be accessible to future μ → e experiments, making them
interesting to calculate.

A. A few models

In this subsection, we discuss two models—one being
the SM—in order to illustrate the relationships between
τ ↔ l and μ ↔ e observables and to compare our EFT
calculation with the expectations of UV complete models.
First, consider a model where two heavy bosons,

M ≫ mW , are added to the SM, with flavor diagonal,
and, respectively, τ ↔ μ and τ ↔ e renormalizable inter-
actions. A first source of μ ↔ e flavor change could be
additional renormalizable μ ↔ e interactions of the heavy
bosons—not forbidden by symmetry—but these do not
interest us, because their magnitude depends on the model
and is independent of the τ ↔ l interactions. We are
interested in μ → e processes that occur due to diagrams
involving both the μ → τ and τ → e interactions. The part
of these amplitudes that is reproduced by our EFT
calculation, can be identified by matching the model onto
EFTat the heavy boson mass scaleM. The model generates
τ ↔ l four-fermion amplitudes at tree level and could
induce μ ↔ e amplitudes at one loop. These all are
expected to match onto dimension six operators in the

EFT, with coefficients of Oðλτl=M2Þ and Oð λ�μτλτe
16π2M2Þ. Our

EFT calculation cannot reproduce these model dependent
coefficients.1 Instead, the EFT below the heavy boson scale
allows to combine the dimension six τ ↔ e and τ ↔ μ
operators into a dimension eight μ ↔ e operator, giving a

contribution to the μ ↔ e amplitude ≲Oðλ�μτλτev2
16π2M4Þ (v is the

vacuum expectation value of the SM Higgs boson). By
power counting, this is subdominant compared to the
model-dependent matching contribution discussed above.
So this model illustrates that τ ↔ e and τ ↔ μ interactions
could generically combine into larger μ ↔ e rates than the
EFT allows to compute.
As a second example, consider K − K̄ mixing in the SM,

where the dominant contribution is computable in the EFT
(Fermi theory). The box diagram in the full SM is illustrated
in Fig. 1(a); evaluated with only massless u quarks in the
loop, it gives an amplitude ∝ ðV�

usVudÞ2=ð16π2m2
WÞ, where

TABLE I. Some μ ↔ e and τ ↔ l processes (l ∈ fe; μg), with
the current experimental bound on the branching ratios. The last
column lists the future sensitivities used in our projections, which
correspond to the expected reach of upcoming or planned
experiments (except for μ → eγ, where the MEGII experiment
at PSI, which starts taking data in 2022, aims to reach
BR ∼ 6 × 10−14). Additional τ ↔ l processes involving b quarks
are listed in Table XIV.

Process Current bound on BR Future sensitivity

μ → eγ <4.2 × 10−13 [5] 10−14 [6]
μ → ēee <1.0 × 10−12 [7] 10−16 [8]
μA → eA <7 × 10−13 [9] 10−16 [10]

τ → lγ <3.3 × 10−8 [11] 3 × 10−9ðeÞ, 10−9ðμÞ
τ → eēe <2.7 × 10−8 [12] 5 × 10−9 [13]
τ → μμ̄μ <2.1 × 10−8 [12] 4 × 10−9 [13]
τ → μēe; eμ̄μ <1.8; 2.7 × 10−8 [12] 3; 5 × 10−9 [13]
� � � � � � � � �
τ → lπ0 <8.0 × 10−8 [14] 4 × 10−9 [13]
τ → lη <6.5 × 10−8 [14] 7 × 10−9 [13]
τ → lρ <1.2 × 10−8 [14] 10−9 [13]

h → e�μ∓ <6.1 × 10−5 [15] 2.1 × 10−5 [16]
h → e�τ∓ <2.2 × 10−3 [17] 2.4 × 10−4 [16]
h → τ�μ∓ <1.5 × 10−3 [17] 2.3 × 10−4 [16]

1Despite that, the UV dependence is also apparent in the loop
integrals performed in the EFT, which are power divergent [23].
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V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This
wouldmatch atmW onto a dimension sixΔF ¼ 2 operator in
the low-energy theory Fermi theory. However, due to CKM
unitarity, this Oð 1

16π2m2
W
Þ amplitude vanishes when summing

over all up-type quark flavors and neglecting their masses.
Instead, the amplitude in the full SM has a GIM depen-
dence on the quark masses ∝ ðV�

csVcdÞ2m2
c=16π2m4

Wþ
ðV�

tsVtdÞ2m2
t =16π2m4

W . In matching this to the low-energy
EFT, the m2

t =16π2m4
W piece would match onto a dimension

six operator but is negligible due to the smallmixing between
the third and first generation. And the log-enhanced part of
the amplitude ∝ m2

c is reproduced in the EFT by calculating
the diagram with two insertions of dimension six operators,
illustrated in Fig. 1(b). So in the Standard Model, our
calculation can sometimes reproduce the observed flavor
changing rates.

B. EFT for LFV

If the new particles with lepton flavor changing inter-
actions are heavy, LFV at lower energies can be para-
metrized via contact interactions, which appear as
nonrenormalizable operators in the Lagrangian of an
EFT (see, e.g., [21,22] for a review). In this subsection,
we sketch the EFT background of our calculation and
introduce some notation.
Above the weak scale, we use the Lagrangian of the

SMEFT, in which the SM Lagrangian is augmented by
operators of higher dimension that respect the SUð3Þ ×
SUð2Þ × Uð1Þ gauge symmetry of the SM, and are con-
structed out of SM fields. We are interested in LFV
operators of dimension 6 or 8, so we write

LSMEFT ¼ LSM þ
�X

A;ζ

C½6�ζ
A O½6�ζ

A

v2
þ
X
B;ξ

C½8�ξ
B O½8�ξ

B

v4
þH:c:

�
;

ð2Þ

where v ¼ 174 GeV, the operator subscripts indicate the
gauge structure and particle content, and the superscripts
contain the operator dimension in brackets [suppressed
when unnecessary], additional information about the oper-
ator structure in parentheses (see Sec. II C for examples),
and the flavor indices. The LFV operators of interest here
are listed in Sec. II C. In the flavor sums of Eq. (2), each
index runs over all three generations. The doublet and
singlet lepton generations are the charged lepton mass
eigenstates fe; μ; τg, the singlet quarks are also labeled by
their flavor, and the quark doublets are in the u-type mass
basis, with generation indices that run 1 → 3.
The SM Lagrangian is in the notation of [24], so the

covariant derivative on doublet leptons is

ðDμlÞIi ¼
�
δIJ∂μ þ i

g
2
τaIJW

a
μ þ iδIJg0YðlÞBμ

�
lJ
i ; ð3Þ

where τa are Pauli matrices, I, J are SU(2) doublet indices
and i is a flavor index. At all scales, the doublet and singlet
leptons are in the low energy mass eigenstate basis, so the
lepton Yukawa matrix ½ye� can have off diagonal entries, in
the presence of the operator OeH [see Eqs. (18) and (88)].
We follow [25] in choosing this basis, because it defines
lepton flavor in the presence of LFV, so it simplifies our
calculations (as mentioned at the end of Sec. II D). The
Yukawa matrix eigenvalue of fermion f is written yf.
The dimension six operators in Eq. (2) are in the “on

shell” basis of [26] as pruned in [27], where “on shell”
means that the equations of motion were used to reduce the
basis. Complete bases of on-shell dimension eight oper-
ators have appeared recently [28,29], and our dimension
eight operators are in these lists. However, in reality, we are
only interested in the subset of dimension eight μ ↔ e
operators to which experiments could be sensitive, which
was given in [25]. Finally, some operators in Eq. (2) are

Hermitian in flavor space (ie ½Oījk̄l
A �† ¼ Oj̄il̄k

A ); we include
these operators multiplied by an extra 1=2, as the Hermitian
conjugate is included in (2) and summing over flavor
indices would otherwise lead to double counting with
respect to the conventions of [24].
We assume LFV heavy particles are beyond the reach of

the LHC in the next decade, because we are interested in
combining observables from upcoming experiments at
low-\ energy. Concretely, this means that the operator
coefficients, or Wilson coefficients (WCs), satisfy

C½n�ζ
A ≤

�
v

ΛNP

�
n−4

; ΛNP ¼ 4 TeV; ðv ¼ 174 GeVÞ;

(a)

(b)

FIG. 1. The GIM mechanism in K − K̄ mixing: in the SM box
calculation of Fig. 1(a), the mass-independent dimension six
contribution cancels in the flavor sum because of CKM unitarity.
Then atOðG2

FÞ, the top contribution is not dominant due to small
mixing with the down quark, whereas the dimension eight term
∼G2

Fm
2
c is relevant. It can be calculated in the low-energy EFT

(Fermi theory) as the loop contribution with two dimension six
operators inserted, as illustrated in Fig. 1(b).
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and that we calculate renormalization group running of
LFV operators in SMEFT from ΛNP → mW . Should new
particles with LFV interactions and masses mW <MNP <
4 TeV induce larger coefficients, our results would still
apply, but might be incomplete because additional oper-
ators and diagrams could contribute.
TheWCs fC½n�ζ

A g function as coupling constants for LFV
interactions. Their numerical value can be obtained by
matching the EFT onto a model, for instance, by equating
the Greens functions of the model and the EFT at the new
particle mass scale ∼ΛNP. The renormalization group
equations (RGEs) govern the scale dependence of the
WCs below ΛNP. The solution of these equations resums
the logarithms that are generated by the light particle,
which propagate as dynamical particles in the EFT. So in
SMEFT, the one-loop RGEs of dimension six SMEFT
operators arise from decorating a dimension six operator
with a loop involving renormalizable interactions
[24,30,31] and from loops involving two dimension 5
operators [32]. The mixing of a product of dimension five
and six operators into dimension seven has also been
calculated in SMEFT [33], as have some anomalous
dimensions for some operators of dimension eight [34–36].
Upon reaching a particle mass scale, the high scale EFT

can be matched onto another EFT, where the now-heavy
particles are removed. For instance, in crossing the electro-
weak scale, SMEFT Greens functions are calculated in the
broken SM, with the Higgs doublet written

H ¼
� Gþ

vþ 1ffiffi
2

p ðhþ iG0Þ
�
; ð4Þ

where the Gs are the Goldstones and h is the SM Higgs
boson. These Greens functions are then matched to those of
a QED and QCD invariant EFT (we refer to it as low energy
EFT) in which the nonrenormalizable operators are built
out of SM fields lighter than the W boson [37].
The running and matching continues from the weak scale

down to the experimental scale, where rates can be
calculated in terms of the WCs and matrix elements of
the operators. For three or four-legged μ → e processes,
which are otherwise flavor diagonal (i.e., μ → eγ and
μ → eγγ, but not including K → μ�e∓), the “leading”
evolution between the experimental scale and the weak
scale has been obtained [38]. This includes the one-loop
RGEs for dimension five and six operators, and some large
two-loop anomalous dimensions where the one loop mix-
ing vanishes [39]. Several branching ratio calculations in
the low energy EFT are given in the μ → e review [1], and
μA → eA conversion rates can be calculated from [40].
These results can be combined to calculate the current and
upcoming sensitivity of μ ↔ e experiments to WCs at the
weak scale, and also extrapolated to give the sensitivities to
the τ ↔ l WCs considered in this manuscript [41].

The aim of this manuscript is to calculate the contribu-
tions to μ → e observables that arise from combining τ → e
and μ → τ operators. This could occur in SMEFT running,
in matching at the weak scale, and in running below the
weak scale. In SMEFT, loop diagrams containing pairs of
dimension six operators renormalize the Wilson coeffi-
cients of dimension eight operators, such that the RGEs for
the latter take the schematic form [42],

ð16π2Þ dC⃗½8�
A

d logM
¼ C⃗½8�

B γBA þ C⃗½6�
X γ̂XY;AC⃗

½6�
Y ; ð5Þ

having aligned the operator coefficients in the row vectors

C⃗½8�, C⃗½6�, and where γ is the anomalous dimension matrix
of dimension eight coefficients while γ̂ mixes pairs of
dimension six into dimension eight. The RGEs of dimen-
sion eight operators are currently unknown and only partial
calculations have been performed [34,35]. This manuscript
fits into this ongoing effort. We calculate at leading log; i.e.,
we compute the one-loop RGEs and match at tree level onto
the low energy EFT. This consistency between the running
and matching orders frees the calculation from scheme-
dependent contributions.
We define the anomalous dimensions with a 1=ð16π2Þ

prefactor, while we unconventionally do not factor out SM
couplings. Two insertion of dimension six operators
renormalize the dimension eight coefficients as

ΔC⃗½8�
A ¼ C⃗½6�

X ẐXY;AC⃗
½6�
Y ; ð6Þ

where Ẑ is the divergent renormalization factor and may
contain renormalizable couplings. In dimensional regulari-
zation, the independence of bare Wilson coefficients from
the arbitrary renormalization scale gives the anomalous
dimension matrix of Eq. (5), which at one-loop and with
our conventions takes the following form:

γ̂ ∝ 16π2ϵẐ: ð7Þ

Note that Ẑ ∝ 1=ϵ and the product above is finite as
expected. A more detailed derivation of γ̂ can be found
in Sec. III A.
Pairs of τ ↔ l operators also contribute to μ → e

amplitudes in matching SMEFT onto the low energy
EFT at mW . In “integrating out” the heavy bosons h, Z
and replacing the Higgs doublet with its vacuum expect-
ation value, it is possible to draw diagrams built out of
τ ↔ l operators that match onto three or four-legged μ → e
operators in the low energy EFT. We calculate these
matching conditions, which are meant to complete the
tree-level Oðv4=Λ4

NPÞ matching performed in [25].
Finally, combining two τ ↔ l operators contributes to

the RGEs of Wilson coefficients in the EFT below mW. We
neglect these running contributions because they carry a
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suppression factor with respect to dimension six anomalous
dimensions which is ≲m2

b=Λ2
NP, given that the bottom

quark is the heaviest dynamical particle in the EFT. Such
suppression is absent in SMEFT, where the top quark, and
the Higgs and gauge bosons are present, allowing Higgs
legs to be attached with order one couplings to heavier
particles running in loops. SMEFT has also the advantage
of having two-fermion “penguin” operators that are effi-
ciently generated in mixing and which match onto vector
operators in the low energy EFT. For the above reasons, we
focus on SMEFT RGEs and matching, while we neglect the
running below mW.
Equation (5) has a straightforward solution if the

anomalous dimension matrices are constant, which occurs
when the running of all-but-one of the SM renormalizable
couplings can be neglected. We take all SM couplings
constant between mW → ΛNP ¼ 4 TeV, in solving Eq. (5).
It is augmented by the RGEs of dimension six coefficients,

dC⃗½6�

dt
¼ −C⃗½6�γ̃; ð8Þ

where t ¼ logðΛNP=MÞ=ð16π2Þ and M is the sliding
renormalization scale. The solution is

C⃗½6�ðtÞ ¼ C⃗½6�ð0Þ expð−γ̃tÞ ð9Þ

C⃗½8�ðtÞ ¼
�
C⃗½8�ð0Þ −

Z
t

0

dτC⃗½6�ð0Þ expð−γ̃τÞγ̂

× expð−γ̃TτÞC⃗½6�ð0Þ expðγτÞ
�
expð−γtÞ: ð10Þ

Expanding the exponential at leading log, the dimension
eight coefficients at the electroweak scale take the follow-
ing form:

C⃗½8�ðmWÞ ¼ C⃗½8�ðΛNPÞ
�
1 −

γ

16π2
log

�
ΛNP

mW

��

− C⃗½6�ðΛNPÞ
γ̂

16π2
C⃗½6�ðΛNPÞ log

�
ΛNP

mW

�
þ…

ð11Þ

C. Operators

This subsection lists the operators included in the
SMEFT Lagrangian of Eq. (2). They are classified into
subgroups (D6; 4f6…), in order to facilitate the estimates
of Sec. II E.
The SMEFT dimension six operators that are τ → e or

μ → τ flavor changing are the following, where the indices
ij take the values eτ or τμ (except for the 4l6 operators).

(i) Dipole operators≡D6:

Oij
eB ¼ yτðl̄iHσαβejÞBαβ

Oij
eW ¼ yτðl̄iτ

aHσαβejÞWa
αβ: ð12Þ

The Hermitian conjugates with exchanged i ↔ j
match onto the dipole operator with opposite
chirality.

(ii) Penguin operators≡ P6:

Oij
He ¼ iðēiγαejÞðH†D

↔

αHÞ ð13Þ

Oij
Hlð1Þ ¼ iðl̄iγ

αljÞðH†D
↔

αHÞ ð14Þ

Oij
Hlð3Þ ¼ iðl̄iτ

aγαljÞðH†D
↔a

αHÞ; ð15Þ

where we have defined

iH†D
↔

μH ≡ iH†ðDμHÞ − iðDμH†ÞH ð16Þ

iH†D
↔a

μH ≡ iH†τaðDμHÞ − iðDμH†ÞτaH: ð17Þ

(iii) Yukawa operators≡ Y6:

Oij
eH ¼ ðl̄iHejÞðH†HÞ; ð18Þ

and their Hermitian conjugates.
(iv) Four lepton operators≡ 4l6:

Oijkl
ee ¼ ðēiγαejÞðēkγαelÞ ð19Þ

Oijkl
le ¼ ðl̄iγ

αljÞðēkγαelÞ ð20Þ

Oijkl
ll ¼ ðl̄iγ

αljÞðl̄kγαllÞ; ð21Þ

where the pairs ij; kl; kj; il can be eτ or τμ, while the
remaining pair is diagonal and can be fe; μ; τg.

(v) Two-lepton two-quark operators≡ 4f6:

Oð1Þijnm
lq ¼ ðl̄iγ

αljÞðq̄nγαqmÞ ð22Þ

Oð3Þijnm
lq ¼ ðl̄iτ

aγαljÞðq̄nτaγαqmÞ ð23Þ

Oijnm
lu ¼ ðl̄iγ

αljÞðūnγμumÞ ð24Þ

Oijnm
ld ¼ ðl̄iγ

αljÞðd̄nγαdmÞ ð25Þ

Oijnm
eq ¼ ðēiγαejÞðq̄nγαqmÞ ð26Þ

Oijnm
eu ¼ ðēiγαejÞðūnγαumÞ ð27Þ
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Oijnm
ed ¼ ðēiγαejÞðd̄nγαdmÞ ð28Þ

Oijnm
ledq ¼ ðl̄iejÞðd̄nqmÞ ð29Þ

Oijnm
lequ ¼ ðl̄iejÞϵðq̄numÞ; ð30Þ

with n;m ∈ f1; 2; 3g running over the three quark
families.

At dimension eight, there are thousands of operators, but
here are listed only the subset relevant for our calculations,
where relevant means that their contribution could be
detectable in the upcoming μ → e experimental searches,
assuming a NP scale ΛNP ≳ 4 TeV. A list of such operators
was identified in [25] and is given below.
These include dipole operators≡D8,

Oð1Þeμ
leWH3 ¼ yμðl̄eτ

aHσαβeμÞWa
αβðH†HÞ

Oð2Þeμ
leWH3 ¼ yμðl̄eHσαβeμÞWa

αβðH†τaHÞ
Oeμ

leBH3 ¼ yμðl̄eHσαβeμÞBαβðH†HÞ; ð31Þ

and their Hermitian conjugates with the lepton indices
exchanged. Two-lepton two-quark vector ≡ 4f8,

Oð1Þeμnn
l2q2H2 ¼ ðl̄eγ

αlμÞðq̄nγαqnÞðH†HÞ ð32Þ

Oð2Þeμnn
l2q2H2 ¼ ðl̄eτ

aγαlμÞðq̄nγαqnÞðH†τaHÞ ð33Þ

Oð3Þeμnn
l2q2H2 ¼ ðl̄eτ

aγαlμÞðq̄nτaγαqnÞðH†HÞ ð34Þ

Oð4Þeμnn
l2q2H2 ¼ ðl̄eγ

μlμÞðq̄nτaγμqnÞðH†τaHÞ ð35Þ

Oð1Þeμnn
l2u2H2 ¼ ðl̄eγ

αlμÞðūnγμunÞðH†HÞ ð36Þ

Oð2Þeμnn
l2u2H2 ¼ ðl̄eτ

aγαlμÞðūnγαunÞðH†τaHÞ ð37Þ

Oð1Þeμnn
l2d2H2 ¼ ðl̄eγ

αlμÞðd̄nγαdnÞðH†HÞ ð38Þ

Oð2Þeμnn
l2d2H2 ¼ ðl̄eτ

aγαlμÞðd̄nγαdnÞðH†τaHÞ ð39Þ

Oð1Þeμnn
e2q2H2 ¼ ðēeγαeμÞðq̄nγαqnÞðH†HÞ ð40Þ

Oð2Þeμnn
e2q2H2 ¼ ðēeγαeμÞðq̄nτaγαqnÞðH†τaHÞ ð41Þ

Oeμnn
e2u2H2 ¼ ðēeγαeμÞðūnγαunÞðH†HÞ ð42Þ

Oeμnn
e2d2H2 ¼ ðēeγαeμÞðd̄nγαdnÞðH†HÞ; ð43Þ

with in most cases n ¼ u, d belonging to the first
generation quarks. There are also penguin operators≡ P8,

Oð1Þeμ
l2H4D

¼ iðl̄eγ
αlμÞðH†D

↔

αHÞðH†HÞ
Oð2Þeμ

l2H4D ¼ iðl̄eτ
aγαlμÞ½ðH†D

↔a
αHÞðH†HÞ

þ ðH†D
↔

αHÞðH†τaHÞ�
Oeμ

e2H4D ¼ iðēeγαeμÞðH†D
↔

αHÞðH†HÞ: ð44Þ

Furthermore, the following two-fermion two-lepton scalar
and tensor operators are also relevant:

Oð1Þeμnn
ledqH2 ¼ ðl̄eeμÞðd̄nqnÞðH†HÞ ð45Þ

Oð2Þeμnn
ledqH2 ¼ ðl̄eeμÞτaðd̄nqnÞðH†τaHÞ ð46Þ

Oð1Þeμnn
lequH2 ¼ ðl̄eeμÞϵðq̄nunÞðH†HÞ ð47Þ

Oð2Þeμnn
lequH2 ¼ ðl̄eeμÞτaϵðq̄nunÞðH†τaHÞ ð48Þ

Oð3Þeμnn
lequH2 ¼ ðl̄eσ

αβeμÞϵðq̄nσαβunÞðH†HÞ ð49Þ

Oð4Þeμnn
lequH2 ¼ ðl̄eσ

αβejÞτaϵðq̄nσαβunÞðH†τaHÞ ð50Þ

Oð3Þeμnn
ledqH2 ¼ ðl̄eHeμÞðq̄nHdnÞ ð51Þ

Oð4Þeμnn
ledqH2 ¼ ðl̄eσ

αβHeμÞðq̄nσαβHdnÞ ð52Þ

Oð5Þeμnn
lequH2 ¼ ðl̄eHeμÞðūnH̃†qnÞ; ð53Þ

with n ¼ u; c; t; d; s; b running over all quark flavors.
Finally, the four-lepton operators ≡ 4l8 read

Oð4Þeμττ
l2e2H2 ¼ ðl̄eHσαβeμÞðl̄τHσαβeτÞ ð54Þ

Oð3Þeμee
l2e2H2 ¼ ðl̄eHeμÞðl̄eHeeÞ ð55Þ

Oð1Þeμee
l4H2 ¼ ðl̄eγ

αlμÞðl̄eγαleÞðH†HÞ ð56Þ

Oð2Þeμee
l4H2 ¼ ðl̄eγ

αlμÞðl̄eτ
aγαleÞðH†τaHÞ ð57Þ

Oð1Þeμee
l2e2H2 ¼ ðl̄eγ

αlμÞðēeγαeeÞðH†HÞ ð58Þ

Oð2Þeμee
l2e2H2 ¼ ðl̄eτ

aγαlμÞðēeγαeeÞðH†τaHÞ ð59Þ

Oeμee
e4H2 ¼ ðēeγαeμÞðēeγαeeÞðH†HÞ: ð60Þ

Note that in the Lagrangian of Eq. (2), we sum over all
possible generation indices, and more flavor structures are
relevant for low energy LFV interactions. For instance,
Oeμee

l4H2 ;O
eeeμ
l4H2 match onto the same vector operator in the
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EFT below mW. Similarly, in the case of eμττ tensor
operator, the permutations ττeμ; τμeτ; eττμ must be
considered.

D. Equations of motion

In this section, we discuss some of the technical subtle-
ties that occur when two dimension six operators mix into
dimension eight operators. In our calculations of anoma-
lous dimensions, we consider two different approaches: we
can systematically apply the equations of motions onto the
amplitudes of our loop calculations in order to arrive at
expressions that are proportional to tree-level amplitudes of
the on shell or “physical” operators. Alternatively, we could
use a complete set of off shell operators and project
our loop amplitudes onto the on shell operator basis.
The situation is slightly complicated by the facts that the
dimension six operators will contribute themselves to the
equations of motion, and that there are a huge number of
dimension eight operators. In the following, we will show
how both approaches are equivalent in our calculation,
where we determine the mixing into the subset of dimen-
sion eight operators that contribute to LFV at low energy
experiments.
Working with a on shell (or physical) operator basis

implies the choice of a set of operators that vanish when the
equation of motions (EOM) are satisfied. Take two oper-
atorsO1,O2 which differ by an operatorOEOM that is EOM
vanishing, i.e.,

O1 −O2 ¼ OEOM ∝
δS
δϕ

; ð61Þ

where S is the action and ϕ labels a generic field.OEOM can
be dropped in physical processes because it leads to
vanishing S-matrix elements, so that the operators O1,
O2 are physically equivalent and only one of them is
retained in the basis.
For instance, at dimension six, the operators,

iðl̄μDlτÞðH†HÞ; ðD2l̄τHμÞ; ð62Þ

can be generated at one-loop from a penguin operator (see
Fig. 2). The first is relevant here, because it is on shell
equivalent to ðl̄μHeτÞðH†HÞ by means of the dimension
four EOM of the lepton field iðDlτÞ ¼ yτHeτ. (The second
operator will be relevant for the CHl × CHe mixing into
dipoles, which is discussed in Sec. III A 1.)
Therefore,we can project an amplitude that is proportional

to the left-hand side of the previous equation of motion,

iðl̄μDlτÞðH†HÞ → ½iðl̄μDlτÞðH†HÞ − yτðl̄μHeτÞðH†HÞ�
þ yτðl̄μHeτÞðH†HÞ; ð63Þ

onto physical and EOM vanishing—in brackets—operators.
In Fig. 3, we show how the equivalence can be understood

diagrammatically: the D operator Feynman rule is propor-
tional to the=qmomentum of the virtual lτ line coming out of
a renormalizable Yukawa coupling; the momentum depend-
ence cancels with the lτ propagator, yielding an S-matrix
element reproduced by the local operator yτðl̄μHeτÞðH†HÞ.
Once a reduced physical basis is identified, the theory

can be consistently renormalized among on shell operators,
as redundant counterterms AO2=ϵ are equivalent to
AðO1 −OEOMÞ=ϵ and EOM vanishing operators mix
exclusively among themselves in the RGEs [43].2

However, in order to consistently renormalize an EFT in
a given basis up to dimension eight (1=Λ4

NP), the dimension
six (1=Λ2

NP) terms in the EOM must be included when
removing redundant operators. Concretely, if a divergent
contribution to a redundant dimension six operator,

O½6�
2 =ðΛ2

NPϵÞ is generated via loops, then it can be rewritten

A
Λ2
NPϵ

�
O½6�

1 þ O½8�

Λ2
NP

−OEOM

�
; ð64Þ

whereO½6�
1 is equivalent toO½6�

2 via the renormalizable EOM
δSd¼4=δϕ ¼ 0 of Eq. (61), and the dimension eight O½8� is

(a)

(b)

FIG. 2. One-loop diagrams with the penguin operators of
Eq. (13). Matching the divergences off shell, the redundant
operators iðl̄μDlτÞðH†HÞ, ðD2l̄τHμÞ are generated.

FIG. 3. The diagram shows that the operator iðl̄μDlτÞðH†HÞ
leads to the same S-matrix elements as yτðl̄μHeeÞðH†HÞ. The
nonlocal momentum dependence of the internal line propagator
cancels with the inverse propagator present in the equation of
motion.

2Gauge fixing and ghost terms that appear in the EOM are
found to have no physical effects in operator mixing and S-matrix
elements [43].
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generated by the dimension six corrections δSd¼6=δϕ. The
dimension eight contribution is proportional to the product
of two dimension six operator coefficients, which is the
kind of contribution that we are interested in.
As an example of the impact of dimension six terms in

the EOM, suppose that the only τ ↔ e operator at
dimension six is Oeτnm

ledq ¼ ðl̄τeeÞðd̄nqmÞ, and that the

operator iðl̄μDlτÞðH†HÞ is generated via loop corrections.
Then Eq. (63), up to dimension 8, becomes

iðl̄μDlτÞðH†HÞ →
�
iðl̄μDlτÞðH†HÞ − yτðl̄μHeτÞðH†HÞ

þ Cτenm
ledq

Λ2
NP

ðl̄μeeÞðd̄nqmÞðH†HÞ
�

þ yτðl̄μHeτÞðH†HÞ

−
Cτenm
ledq

Λ2
NP

ðl̄μeeÞðd̄nqmÞðH†HÞ; ð65Þ

where the EOM vanishing operator in square brackets

now contains the dimension eight Oð1Þiknm
ledqH2 ¼

ðl̄μeeÞðd̄nqmÞðH†HÞ. Similarly to the renormalizable case,
the on shell equivalence is apparent diagrammatically, by
dressing the redundant operator with dimension six contact
interactions as shown in Fig. 4. Once again, the inverse
propagator that is present in the EOM, and appears in the
operator Feynman rule, cancels the momentum dependence
of the internal line, such that the amplitude is local and
equivalent to a dimension eight operator. Its coefficient will
be proportional to the product of two dimension six WC.
For instance, iðl̄μDlτÞðH†HÞ is generated in matching

off shell the divergence of the one-loop diagram of
Fig. 2 that involves the penguin operators of Eq. (13).
Equation (65) allows us to project the divergence onto the
on shell basis, giving a contribution to the renormalization

of the dimension eight μ ↔ e operator Oð1Þμenm
ledqH2 ¼

ðl̄μeeÞðd̄nqmÞðH†HÞ from the product Oð1Þ
Hl ×Oledq. This

contribution from the EOM projection must be included in
calculating the mixing from ðdimension 6Þ2 → dimension 8,
together with one particle irreducible (1PI) diagrams

∝ Cð1Þ
Hl × Cledq. (Indeed, the anomalous dimension is only

gauge invariant if one includes both the IP1 vertex and the
non-1PI “wave function” contributions.)
The EOM contribution can be reproduced by calculating

non-1PI divergent diagrams, as shown in Fig. 4. In working
with a subspace of dimension eight operators (as we do
here), proceeding diagrammatically can be particularly
convenient. Our subspace is phenomenologically selected
to contribute to the low energy μ → e processes. When
using the EOM to project the off shell divergences, the
redundant terms must be written in terms of operators in the
full basis (which can include operators outside the sub-
space) and the EOM vanishing operators that the basis
choice implies. In the end, only the interesting operators in
the subspace are retained but it required working with the
full basis as an intermediate step. On the other hand, in the
approach of calculating one-particle-reducible diagrams, it
is often easier to restrict to diagrams that directly give
dimension eight operators of the subspace. In this manu-
script, we calculate the one-particle-reducible diagrams that
generate the relevant dimension eight operators. We cross-
checked our diagrammatic results by calculating the
dimension eight LFV operators obtained from the list of
EOM-vanishing operators in [27], by using equations of
motion up to dimension six.
Finally, recall that we work in the low-energy mass

eigenstate basis of the leptons, where the lepton mass
matrix is

meiδij ¼ vð½ye�ij − Cij
eHÞ: ð66Þ

So in the above diagrammatic and EOM-based arguments,
the Yukawa matrix element yτ is replaced by the matrix
element of the parentheses on the right side of (66), which
is also flavor diagonal.3 Therefore, we do not include non-
1PI diagrams involving a loop on the external leg of Oij

eH.

E. Estimates

The goal of this section is to better identify the dimension
eight contributions that are interesting to calculate in the
context of μ → e LFV, that is, those that will be within
the reach of future experiments. The Wilson coefficients of
the dimension eight operators presented in the previous
section were estimated in [25] to be within upcoming
experimental sensitivity if they have values ≳v4=Λ4, for

FIG. 4. Correction to the equation of motion due to dimension
six operators. At 1=Λ4

NP order, the operator iðl̄μDlτÞðH†HÞ is on
shell equivalent to a combination of dimension six and dimension
eight operators. The dimension eight contribution can be under-
stood by attaching dimension six interactions to the operator,
where the internal line propagator cancels against the vertex
Feynman rule. The diagram shows an example with the insertion
Oτenm

ledq ¼ ðl̄τeeÞðd̄nqmÞ, which reproduces the EOM reduction
of Eq. (65).

3However, in this basis, the h retains LFV interactions—see
Eq. (89).
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Λ≳ 4 TeV. We estimate in this section the additional loop
and small couplings suppression that could be encountered
in generating these coefficients in running and matching.
This will allow us to narrow down the list of diagrams that
should be calculated.
In estimating diagrams built out of μ → τ × τ → e

operators, we take into account the constraints on τ ↔ l
processes coming from the bounds reported in the lower
part of Table I. Employing the acronyms introduced in the
previous section for sets of τ LFV operators, current and
upcoming one-at-a-time-limits on their coefficients are
written in Table II. These estimates assume that the
branching ratio sensitivities on τ decays will improve of
an order of magnitude at BelleII [13], and use the future
sensitivities to h → τ�l∓ decays at the ILC [16]. In the case
where the operators are not (loosely) bounded, we assume

C½6�lτ… ≲ ðv=4 TeVÞ2 ∼ 2 × 10−3; ð67Þ

corresponding to anOð1Þ coefficient at a new physics scale
of 4 TeV.
Diagrams that can generate the dimension eight μ ↔ e

operators of Sec. II C, in matching or in running, are drawn
with a pair of τ ↔ l operators. The contribution to the
coefficients are estimated as

ΔC½8�eμ ≃ C½6�eτ
1 C½6�τμ

2

�
1

16π2

�
n
× fykglλm…g × log; ð68Þ

where n is the number of loops, SM couplings are factored
out into the curly brackets, and the logð4 TeV=mWÞ factor
is present in running, while absent in matching. The
experimental sensitivity to classes of μ → e operators are
given in Table III. In running, we restrict the number of
loops to n ¼ 1, while up to two loop diagrams contribute in
“tree-level”(in the low-energy EFT) matching.
An example of a diagram contributing to the RGEs is

shown in the diagram of Fig. 5, where two Yukawa
operators Oeτ

eH ×Oτμ
eH ∼ Y6 × Y6 mix into dimension eight

μ → e penguin operators Oeμ
e2H2D

;Oeμ
l2H2D

∼ P8 by

exchanging the τ and closing the loop with a Higgs line.
The estimated contribution to the penguin coefficients is
then

ΔCP8
∼ ðCY6

Þ2 logð4 TeV=mWÞ
16π2

∼ 3 × 10−9: ð69Þ

Future μA → eA experiments will be sensitive to penguin
coefficients larger than ∼10−9; hence, our estimate lies
within experimental reach and Y6 × Y6 → P8 mixing is
calculated in Sec. III.
As another example, τ ↔ l dipolesD6 are defined with a

built-in τ Yukawa suppression—see Eq. (12)—so yτ ∼
10−2 multiplies any dipole insertion. For instance, if D6 ×
O6 mix into a dimension eight operatorO8, its coefficient is
estimated to be

ΔC8 ∼ yτCD6
C6

logð4 TeV=mWÞ
16π2

≲ 10−12; ð70Þ

where we took C6 ≲ v2=Λ2, for Λ ∼ 4 TeV. Equation (70)
is smaller than any future μ → e sensitivity to operator
coefficients, so we disregard mixing that involves τ dipoles
in our calculations.
The results of our estimates are summarized in Tables IV

and V, referring, respectively, to RGEs and matching
contributions. There, we report the potentially detectable

TABLE II. Sensitivities to τ ↔ l dimension six operator co-
efficients, normalized as in Eq. (2). Current limits come from the
branching ratio bounds of Table I, while the third column
assumes that the experimental sensitivity to τ ↔ l decays will
improve by an order of magnitude.

Operator
coefficient

Current
sensitivity

Future
sensitivity Process

Clτ
D6

≲7 × 10−6 ≲2 × 10−6 τ → lγ

Clτ
Y6

≲10−3 ≲3 × 10−4 h → lτ

Clτ
P6

≲4 × 10−4 ≲10−4 τ → l̄ll
Clτll
4l6

≲3 × 10−4 ≲10−4 τ → l̄ll

Clτqq
4f6

≲3 × 10−4 ≲10−4 τ → lπðηÞ

TABLE III. Sensitivities to μ → e dimension eight operator
coefficients, normalized as in Eq. (2). Current and future limits
correspond to the experimental sensitivities of Table I. T; S label
the Lorentz structure of the operator for tensor and scalar,
respectively. For instance, Ceμtt

4f8;T
is the coefficient of the

dimension eight tensor in Eq. (50) with top quarks.

Operator
coefficient

Current
sensitivity

Future
sensitivity Process

Ceμ
D8

≲10−8 ≲1.5 × 10−9 μ → eγ

Ceμtt
4f8;T

≲3 × 10−11 ≲5 × 10−12 μ → eγ

Ceμττ
4l8;T

; Ceμcc
4f8;T

≲10−8 ≲1.5 × 10−9 μ → eγ

Ceμbb
4f8;T

≲8 × 10−9 ≲10−9 μ → eγ

Ceμ
P8

≲10−7 ≲10−9 μA → eA
Ceμee
4l8

≲8 × 10−7 ≲8 × 10−9 μ → ēee

Ceμuu;eμdd
4f8;S

≲10−8 ≲10−10 μA → eA

FIG. 5. Mixing to the dimension eight μ → e penguin operator
from double insertion of dimension six Yukawas Y6 × Y6 → P8.
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dimension eight operators generated by a given pair of
dimension six operators.

III. CALCULATION

The contributions that were estimated in the previous
section to be within experimental sensitivity are calculated
here. Section III A determines the divergences of the
relevant one-loop diagrams and relates them to the anoma-
lous dimensions of the dimension eight Wilson coefficients
in SMEFT, and in Sec. III B, pairs of τ ↔ l dimension six
operators are tree-level-matched atmW onto the low energy
μ → e EFT.

A. SMEFT running

In this section, we outline the calculation of the anoma-
lous dimension matrix γ̂XY;A, that mixes the dimension six

τ ↔ l operators O½6�
X ;O½6�

Y into the μ → e dimension eight

O½8�
A . We work in dimensional regularization in 4 − 2ϵ

dimensions and renormalize in the MS scheme, where we
label the renormalization scale with M (rather than the
usual μ). Double insertions of dimension six operators
renormalize dimension eight coefficients as

ΔC⃗½8�
A ¼ C⃗½6�

X ẐXY;AC⃗
½6�
Y ; ð71Þ

where the Wilson coefficients of dimension eight and six

are respectively aligned in the row vectors C⃗½8�, C⃗½6�,
dimension eight and six operator labels are, respectively,
capitals from the beginning and end of the alphabet, and
flavor indices are suppressed. The bare dimension eight
coefficients can be written as

C⃗½8�
A;bare ¼ MaAϵðC⃗½8�

B ZBA þ C⃗½6�
X ẐXY;AC⃗

½6�
Y Þ; ð72Þ

where we have factored out the sliding scale powerMaAϵ to
assure that the renormalized WC stay dimensionless in d ¼
4 − 2ϵ dimensions. The RGEs can be obtained from the
independence of the bare Lagrangian from the arbitrary
renormalization scale M,

ð16π2Þ dC⃗
½8�
A;bare

d logM
¼ 0; ð73Þ

which implies the following differential equation for the
renormalized Wilson coefficients:

ð16π2Þ dC⃗½8�
A

d logM
¼ ð16π2Þ

�
−aAϵðC⃗½8�

A þ C⃗½6�
X C⃗½6�

Y ẐXY;BZ−1
BAÞ

− C⃗½8�
B

dZBC

d logM
Z−1
CAþ

−
dC⃗½6�

X

d logM
ẐXY;BC⃗

½6�
Y Z−1

BA

þ −C⃗½6�
X ẐXY;B

dC⃗½6�
Y

d logM
Z−1
BA

− C⃗½6�
X

dẐXY;B

d logM
C⃗½6�
Y Z−1

BA

�
: ð74Þ

The RGEs of dimension six Wilson coefficients are the
following:

ð16π2Þ dC⃗½6�
X

d logM
¼ −ð16π2ÞaXϵC⃗½6�

X þ C⃗½6�
Y γ̃YX þ…; ð75Þ

where aXϵ is the mass dimension of the bare coefficient of
OX and γ̃ is the anomalous dimension matrix for dimension
six operators. In the limit ϵ → 0, the term proportional to ϵ
is irrelevant for the dimension six renormalization, while it
plays a crucial role in ðdimension6Þ2 to dimension eight
mixing. Upon substitution, Eq. (74) becomes

TABLE IV. We present the dimension eight operators that we
estimate to be generated within experimental sensitivity through
ðdimension sixÞ2 mixing in the RGEs. The ⨯ means that the
contributions is too small or that there is no one-loop diagram that
can generate the desired dimension eight operators with the given
pair. P6 × P6 → D8, Y6 × P6 → D8 mixing diagrams exist and
appear to be interesting; however, we find that the anomalous
dimension vanishes (see Sec. III A 1).

P6 Y6 4l6 4f6

P6 D8 ≡ 0 D8 ≡ 0 ⨯ 4f8
Y6 D8 ≡ 0 P8 ⨯ ⨯
4l6 ⨯ ⨯ ⨯ ⨯
4f6 4f8 ⨯ ⨯ 4f8

TABLE V. We present the dimension eight operators that we
estimate to be generated within experimental sensitivity through
ðdimension sixÞ2 in matching. The ⨯means that the contributions
is too small or that there is no tree-level matching that can
generate the desired dimension eight operators with the given
pair.

P6 Y6 4l6 4f6

P6 ⨯ D8 ⨯ ⨯
Y6 ⨯ D8; 4l8 ⨯ ⨯
4l6 ⨯ ⨯ ⨯ ⨯
4f6 ⨯ ⨯ ⨯ ⨯
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ð16π2Þ dC⃗½8�
A

d logM
¼ ð16π2Þ

�
−aAϵC⃗

½8�
A þ C⃗½8�

B γBA

− ðaA − aX − aYÞϵðC⃗½6�
X C⃗½6�

Y ẐXY;BZ−1
BAÞ

− C⃗½6�
X

dẐXY;B

d logM
C⃗½6�
Y Z−1

BA

�

− C⃗½6�
W γ̃WXẐXY;BC⃗

½6�
Y Z−1

BA

− C⃗½6�
X ẐXY;BC⃗

½6�
W γ̃WYZ−1

BA;

having defined γBA ≡ −ð16π2Þ dZBC
d logM Z−1

CA, which is the
anomalous dimension matrix of dimension eight operators.
At one-loop, we can replace Z with the identity and neglect
the second line of the above equation, since γ̃ and Ẑ both
appear at one loop at leading order. The product ϵẐ is finite,
and the RGEs in d ¼ 4 dimensions read

ð16π2Þ dC⃗½8�
A

d logM
¼ C⃗½8�

B γBA

− ð16π2ÞðaA − aX − aYÞC⃗½6�
X C⃗½6�

Y ϵẐXY;A

− ð16π2ÞC⃗½6�
X

dẐXY;A

d logM
C⃗½6�
Y

≡ C⃗½8�
B γBA þ C⃗½6�

X γ̂XY;AC⃗
½6�
Y : ð76Þ

The one-loop γ̂ anomalous dimension matrix that mixes
two dimension six operators into dimension eight is finally

γ̂XY;A ¼ ð16π2Þ
�
ðaX þ aY − aAÞϵẐXY;A −

dẐXY;A

d logM

�
: ð77Þ

The second term contribute to the mixing when renorma-
lizable couplings appear in Ẑ, which carry an implicit
dependence on the renormalization scale M. The beta
functions of renormalized SM couplings for ϵ > 0 take
the form, βϵðfg; g0; ygÞ ¼ −ϵfg; g0; yg þ βðfg; g0; ygÞ, and
at one-loop,

−
dẐXY;A

d logM
¼−

dẐXY;A

dfg;g0;ygβϵðfg;g
0;ygÞ

¼ ϵ
dẐXY;A

dfg;g0;yg×fg;g0;ygþhigher loops: ð78Þ

1. μ → τ × τ → e in SMEFT

We calculate the divergent part of one-loop diagrams
with the product of μ → τ × τ → e operator insertions,
which, according to the estimates summarized in Table IV,
give potentially detectable contributions to μ → e observ-
ables in the dimension eight running. We work in SMEFT
and unbroken SU(2), where all SM particles are taken

massless, including the Higgs doublet. The diagrams have
been drawn by hand and were also generated with a code
based on FeynArts [44] and FeynRules [45]. In most cases,4 the
dimension eight operators to which μ → e observables are
sensitive do not contain τ external legs, so we here consider
diagrams with a virtual τ line connecting two dimension six
SMEFT operators. We are interested in one-particle-irre-
ducible divergent diagrams (which restrict the number of
internal propagators) that can generate the dimension eight
operators of Sec. II B (which constrain the external legs),
and also in some one-particle-reducible divergent diagrams
that reproduce the contribution of the dimension six
correction in the EOM, as discussed in Sec. II D.
Yukawa couplings smaller than yτ ∼ 10−2 are neglected,
because they lead to μ → e coefficients below experimental
sensitivity, assuming dimension six WC C½6� ≲ v2=Λ2

NP and
ΛNP ¼ 4 TeV. However, the estimates of Sec. II E select
diagrams that only involve top Yukawas yt and single
insertions of yτ, while the bottom and charm Yukawas yb,yc
do not appear.
In Fig. 6, we show the “classes” of diagrams listed in

Table IV, that were estimated to be within μ → e exper-
imental sensitivity. Each class is described below. The
divergences were calculated both by hand and with an in-
house developed Mathematica program, making use of the
Feynman Rules listed in Appendix A.

(i) Figure 6(a): Y6 × P6 → D8. The penguin operators
of Eqs. (13)–(15) can be combined with the Yukawa
operators of Eq. (18). The chirality flips on the lepton
line, so attaching a gauge boson potentially generates
the μ → e dipoles of Eq. (31). The gauge bosons can
be inserted on the internal Higgs and lepton lines or
can come out of penguin operators, while the three
external Higgs bosons can be permuted in several
ways among the dimension six vertices. Also, in the
diagram depicted, the Yukawa operator is μ → τ and
the penguin is τ → e, but the two vertices can be
exchanged: for instance, in the case of external
left-handed electrons, the possible operator combi-

nations areOτμ
He ×Oeτ

eH,O
τμ
eH ×Oð1Þeτ

Hl ,Oτμ
eH ×Oð3Þeτ

Hl .
We find that these anomalous dimensions vanish.
This is consistent with the dimension six version of
this calculation, where neither penguin operators
dressed with renormalizable Yukawa couplings,
nor OeH dressed with a gauge loop, mix into the
dimension six dipoles [30]. Note that in broken SU(2)
and unitary gauge, dimension six penguins and
Yukawas give Feynman rules that look like SM
renormalizable interactions. By analogy with the
SM, we expect them to not generate divergent non-
renormalizable dipoles. The same argument applies

4The exception is the μeττ tensors, but the leading contribution
to these is from tree-level matching onto the low energy EFT,
which is discussed the next section.
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to the P6 × P6 → D8 mixing discussed in the next
paragraph.

(ii) Figure 6(b): P6 × P6 → D8. The diagrams feature
double insertions of penguin operators—see
Eqs. (13)–(15). The two vertices couple to vector
currents of leptons, so to mix into the μ → e dipoles,
the chirality flip is achieved by attaching a Higgs
boson to the τ virtual line. The contribution is
estimated to lie within experimental sensitivity,
because the generated μ → e dipole coefficient is
enhanced by the ratio yτ=yμ due to the Yukawa
couplings in the dipole operator definitions in
Eq. (31). The gauge bosons can be attached to the
Higgs boson and τ in the loop or can belong to one
of the penguin vertices. Furthermore, all possible
permutations of the external Higgs bosons are taken

into account. The operator pairs are OHe ×Oð1Þ;ð3Þ
Hl ,

where the τ → e LFV can be mediated by either
right-handed or left-handed penguins, depending on
the chirality of the external legs. As the previous
case, the mixing into the μ → e dipole is found to
vanish.
In addition to the 1PI diagrams of Fig. 6(b),

dimension six terms in the EOM contribute to the
mixing. Loop diagrams where the Higgs leg of a
penguin operator closes into the τ line via a Yukawa
interaction renormalize the redundant operator
ðD2l̄τÞHei [see Fig. 2(b)]. When the divergence
is projected onto the on shell basis, the penguin
correction to the EOM gives additional P6 × P6 →
D8 mixing. However, the combination of SMEFT
μ → e dipoles that is generated is orthogonal to the γ
dipole and does not contribute to low energy μ → e
observables. This is also apparent in considering
non-1PI diagrams (see Sec. II D), where a penguin
operator is inserted in the τ line of D2l̄τHei; the
amplitude is local and reproduces the EOM result
when the external gauge boson belongs to the
penguin vertex. In broken SU(2), penguins give
flavor changing (and correct the flavor diagonal)
couplings with the Z, but leave QED interactions
untarnished.

(iii) Figure 6(c): Y6 × Y6 → P8. In this class of diagrams
the loop is closed with Higgs exchange between two
Yukawa operators. The superficial degree of diver-
gence is 1, and the divergence is linear in momen-
tum. With four external Higgs bosons, it mixes into
the dimension eight μ → e penguin operators of
Eq. (44). For right-handed leptons the inserted
operators are Oτμ

eH ×O�τe
eH , while O�μτ

eH ×Oeτ
eH gives

mixing into left-handed penguins.
(iv) Figure 6(d): 4f6 × P6 → 4f8. Two-lepton two-

quark τ → l operators can mix into μ → e dimension
eight four fermion operators by inserting a penguin
in the tau line and closing the loop with a gauge
boson. Only two-lepton two quark operators are
considered because they contribute to μ → e con-
version (while tensors with heavy quarks contribute
to μ → eγ), which is the process with the best
upcoming sensitivity to operator coefficients. The
gauge boson is attached to the other fermion lines in
every possible way, and the diagram shows just one
example. As discussed in Sec. II D, we also include
dimension six corrections to the EOM or, equiv-
alently, non-1PI diagrams where the loop of
Fig. 2 dresses one of the lepton lines. These
diagrams are analogous to fermion wave function
renormalization and are pure gauge, i.e., ∝ ξ in the
Rξ gauge; to avoid calculating wave function-like
diagrams, the calculation is done for ξ ¼ 0, com-
monly known as Landau gauge. In Table VII, we
summarize the μ → e dimension eight operators

(a) (b)

(c)

(d)
(e)

(f)

FIG. 6. Classes of divergent diagrams that give observable
contributions to μ → e processes, as identified in Table IV.
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generated by the product of τ → l penguins with
four fermion operators.

(v) Figures 6(e)–6(f): 4f6 × 4f6 → 4f8. In the last two
diagrams, pairs of two-lepton two-quark dimension
six operators are connected through a fermion loop,
where two Higgs legs are inserted. With the ex-
ception of dimension eight tensor with tops, μ → e
observables are sensitive to the resulting dimension
eight coefficients only if the Higgs bosons are
attached to a top internal line. In the case of tensors
with tops, the better sensitivity allows for the top-
ology of Fig. 6(f), where a τ Yukawa is present. In
Table VI, we list the dimension eight operators that
are generated for every pair of dimension six four
fermion operators.

The complete anomalous dimensions for the above classes
of diagrams can be found in Appendix B.
We discuss the example of a pair of dimension six

τ ↔ l Yukawa operators mixing into the μ → e dimension
eight penguins, depicted in the representative diagram of
Fig. 6(c). The counterterms that renormalize the divergen-
ces are the following:

ðCτμ
eHẐC

�τe
eH Þeμe2H4D ¼ −

Cτμ
eHC

�τe
eH

32π2ϵ

ðCτμ
eHẐC

�τe
eH Þeμve2H4D

¼ −
3Cτμ

eHC
�τe
eH

32π2ϵ

ðC�μτ
eH ẐCeτ

eHÞð1Þeμl2H4D
¼ C�μτ

eH Ceτ
eH

64π2ϵ

ðC�μτ
eH ẐCeτ

eHÞð1Þeμvl2H4D
¼ −

C�μτ
eH Ceτ

eH

64π2ϵ

ðC�μτ
eH ẐCeτ

eHÞð2Þeμl2H4D
¼ C�μτ

eH Ceτ
eH

128π2ϵ

ðC�μτ
eH ẐCeτ

eHÞð2Þeμvl2H4D
¼ −

C�μτ
eH Ceτ

eH

16π2ϵ

ðC�μτ
eH ẐCeτ

eHÞð4Þeμl2H4D
¼ C�μτ

eH Ceτ
eH

128π2ϵ
; ð79Þ

where the subscript of the parentheses label the corre-
sponding dimension eight operators. The operator

Oð4Þeμ
l2H4D

¼ ϵIJKðl̄eτ
IγαlμÞðH†τJHÞDαðH†τKHÞ is not in

the list of Sec. II B because it does not contribute to low

TABLE VII. Dimension eight operators generated via the diagrams of Fig. 6(d) with pairs of two-lepton two-quark 4f6 and
penguins P6.

Cð1Þ
lq Cð3Þ

lq Clu Cld Cledq; C�
ledq Cð1Þ

lequ; C
�ð1Þ
lequ Cð3Þ

lequ; C
�ð3Þ
lequ

CHlð1Þ Cð1Þ;ð4Þ
l2q2H2 Cð2Þ;ð3Þ;ð5Þ

l2q2H2 Cð1Þ
l2u2H2 Cð1Þ

l2d2H2 Cð1Þ
ledqH2 C�ð1Þ

ledqH2 Cð1Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð3Þ;ð4Þ

lequH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2

CHlð3Þ Cð2Þ;ð3Þ
l2q2H2 Cð1Þ;ð4Þ;ð5Þ

l2q2H2 Cð2Þ
l2u2H2 Cð2Þ

l2d2H2 Cð2Þ
ledqH2 C�ð2Þ

ledqH2 Cð2Þ;ð3Þ;ð4Þ
lequH2 C�ð2Þ;ð3Þ;ð4Þ

lequH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2

Ceq Ceu Ced Cledq; C�
ledq Cð1Þ

lequ; C
�ð1Þ
lequ Cð3Þ

lequ; C
�ð3Þ
lequ

CHe Cð1Þ;ð2Þ
e2q2H2

Ce2u2H2 Ce2d2H2 Cð1Þ;ð2Þ
ledqH2 C�ð1Þ;ð2Þ

ledqH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2

TABLE VI. Dimension eight operators generated through the diagrams of Figs. 6(e) and 6(f) with pairs of two-lepton two-quark
operators, 4f6 × 4f6. Most of dimension eight coefficients are proportional to y2t , with the exception of Olu ×Oeq, Olq ×Oeu mixing

into the tensors Oð3Þ;ð4Þ
lequH2 , where the Yukawa couplings yτyt multiply the coefficient.

Cð1Þ
lq Cð3Þ

lq Clu Ceq Ceu Cledq; C�
ledq Cð1Þ

lequ; C
�ð1Þ
lequ Cð3Þ

lequ; C
�ð3Þ
lequ

Cð1Þ
lq Cð1Þ;ð4Þ

l2q2H2C
ð2Þ;ð3Þ;ð5Þ
l2q2H2

⨯ ⨯ Cð3Þ;ð4Þ
lequH2C

ð1Þ;ð2Þ
ledqH2 C�ð1Þ;ð2Þ

ledqH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2

Cð3Þ
lq Cð1Þ;ð2Þ

l2q2H2
⨯ ⨯ Cð3Þ;ð4Þ

lequH2C
ð1Þ;ð2Þ
ledqH2 C�ð1Þ;ð2Þ

ledqH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2

Clu Cð1Þ
l2u2H2C

ð3Þ;ð4Þ
lequH2

⨯ ⨯ Cð1Þ;ð3Þ
lequH2 C�ð1Þ;ð3Þ

lequH2 Cð1Þ;ð3Þ
lequH2 C�ð1Þ;ð3Þ

lequH2

Ceq Cð1Þ;ð2Þ
e2q2H2

⨯ Cð1Þ;ð2Þ
ledqH2 C�ð1Þ;ð2Þ

ledqH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2 Cð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 C�ð1Þ;ð2Þ;ð3Þ;ð4Þ

lequH2

Ceu Ce2u2H2 ⨯ Cð1Þ;ð3Þ
lequH2 C�ð1Þ;ð3Þ

lequH2 Cð1Þ;ð3Þ
lequH2 C�ð1Þ;ð3Þ

lequH2

Cledq; C�
ledq Ce2d2H2 Cð1Þ;ð2Þ

l2d2H2
⨯ ⨯

Cð1Þ
lequ; C

�ð1Þ
lequ Ce2u2H2 Cð1Þ

e2q2H2 Cð1Þ;ð2Þ
l2u2H2 Cð1Þ;ð3Þ

l2q2H2Ce2u2H2 Cð1Þ
e2q2H2 Cð1Þ;ð2Þ

l2u2H2 Cð1Þ;ð3Þ
l2q2H2

Cð3Þ
lequ; C

�ð3Þ
lequ Ce2u2H2 Cð1Þ

e2q2H2 Cð1Þ;ð2Þ
l2u2H2 Cð1Þ;ð3Þ

l2q2H2
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energy μ → e observables, although it appears as a counter-
term. Furthermore, the following redundant operators are
radiatively generated in our off shell calculation:

Oeμ
ve2H4D

¼ iðēD
↔

μÞðH†HÞ2
≡ iðēDμÞðH†HÞ2 − iðDēμÞðH†HÞ2 ð80Þ

Oð1Þeμ
vl2H4D

¼ iðl̄eD
↔
lμÞðH†HÞ2 ð81Þ

Oð2Þeμ
vl2H4D ¼ iðl̄eID

↔
lμJÞðHIH

†
JÞðH†HÞ: ð82Þ

These are related to the physical/on shell basis as follows:

Oeμ
ve2H4D

¼ Oeμ
v þ ½y�e�iμO�ie

leH5 þ ½ye�ieOiμ
leH5 ð83Þ

Oð1Þeμ
vl2H4D

¼ Oð1Þeμ
v þ ½ye�μiOei

leH5 þ ½y�e�eiO�μi
leH5 ð84Þ

Oð2Þeμ
vl2H4D

¼ Oð2Þeμ
v þ ½ye�μiOei

leH5 þ ½y�e�eiO�μi
leH5 ; ð85Þ

where Oij
leH5 ¼ ðl̄iHejÞðH†HÞ2, and each of Oeμ

v , Oð1Þeμ
v ,

Oð2Þeμ
v vanishes, when the renormalizable EOM on singlet

and doublet leptons iðDμÞ − ½y�e�iμðH†liÞ ¼ 0, iðDlμÞ −
½ye�μiðHeiÞ ¼ 0 are satisfied. The off shell counterterms are

on shell equivalent to ½y�e�iμO�ie
leH5 þ ½ye�ieOiμ

leH5 , which is
beyond μ → e experimental reach. The resulting RGEs are
obtained from Eqs. (79) and (76), and read

16π2 _Ceμ
e2H4D ¼ −Cτμ

eHC
�τe
eH ð86Þ

16π2 _Cð1Þeμ
l2H4D ¼ 1

2
C�μτ
eH Ceτ

eH 16π2 _Cð2Þeμ
l2H4D ¼ 1

4
C�μτ
eH Ceτ

eH;

ð87Þ

where the dot on the dimension eight coefficients corre-
sponds to d=d logM.

B. Matching SMEFT onto the low energy EFT

In Table V of Sec. II C, we identified the relevant
matching contributions to low energy μ ↔ e interactions
from the double insertion of μ → τ × τ → e dimension six
SMEFT operators. At the matching scale mW , the electro-
weak symmetry is spontaneously broken by the Higgs
VEV, and the h, Z, W, and t are removed from the
low energy EFT. The matching is performed by identifying
the matrix elements of a μ → e process calculated in the
theories above and below the matching scale, with the
electroweak symmetry broken in both theories. As a result,
products of τ ↔ l SMEFT operators can match onto μ → e
three and four point functions. The interesting diagrams are
illustrated in Fig. 7. When the Higgs doublet acquires a
VEV, Yukawa operators contribute to the mass matrix,

meiδij ¼ vð½ye�ij − Cij
eHÞ; ð88Þ

and the h couplings,

−
hffiffiffi
2

p ēiPRejð½ye�ij − 3Cij
eHÞ þ H:c:

¼ −
hffiffiffi
2

p ēiPRej

�
meiδij
v

− 2Cij
eH

�
þ H:c:; ð89Þ

of charged leptons with a different prefactor, such that h
acquires LFV couplings in the lepton mass eigenstate basis.
The two-loop Barr-Zee diagrams [Figs. 7(c)–7(d)] match

to the dipole at tree level in the low energy EFT and
correspond to a dimension 10 dipole in SMEFT. Therefore,
the matching contribution should be independent of the
renormalization scheme in both EFTs, because ðdim 6Þ2
terms in the RGEs cannot generate a dimension 10
operator, and tree level is scheme independent. The lepton
line is connected via Z and h exchange to a top or W loop,
where the Z and h, respectively, couple to the lepton line
via a penguin and an off diagonal Yukawa operator. Such
diagrams can be significant [46] (despite the two-loop
suppression), because they are not suppressed by small
Yukawa couplings. We estimate these diagrams from the
results of [47], who calculated the Barr-Zee diagrams in the
two Higgs doublet model (2HDM) with LFV couplings,
where they provide the leading contribution to μ → eγ
(because the diagrams are not suppressed by yμ). In the
2HDM results of [47], the Z diagrams are suppressed
(relative to γ diagrams) because the C-even dipole moment
only couples the Z to the vector current of leptons, so there
is a suppression of ð1 − 4sin2θWÞ≲ 0.03. However, in our
case, the Z-lepton vertex is a penguin operator with a
flavor-changing coefficient that we wish to constrain and so
does not suffer from such SM factors. The estimated
contributions to the dipole coefficients are [47]

(a) (b)

(c) (d)

FIG. 7. Diagrams matching pairs of dimension six τ → l
SMEFT operators onto low energy μ → e operators.
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CD;R ≃
9eαe
64π3

v
mμ

½Cτμ
HeC

eτ
eH þ ðCð1Þeτ

Hl þ Cð3Þeτ
Hl ÞCτμ

eH�

CD;L ≃
9eαe
64π3

v
mμ

½C�τe
eH ðCð1Þτμ

Hl þ Cð3Þτμ
Hl Þ þ C�μτ

eH Ceτ
He�: ð90Þ

A dipole is also generated at one-loop with a pair of
penguin operators, which look like the flavor changing
version of the electroweak correction to ðg − 2Þμ with a Z
exchange. However, assuming the future limits on penguin
coefficients shown in Table II, the contribution is below
μ → eγ upcoming experimental sensitivity.
Four lepton eμττ operators get matching contribution

from tree-level diagrams with a Z, h exchange between
penguin vertices or LFV Higgs boson couplings, as
illustrated in the diagrams of Figs. 7(a) and 7(b).
SMEFT τ − LFV penguins and Yukawa corrections are
matched at mW onto low energy four lepton operator
coefficients as follows:

Ceμττ
T;RR ¼ −

1

4
Ceτ
eHC

τμ
eH

v2

m2
h

ð91Þ

Ceμττ
T;LL ¼ −

1

4
C�τe
eHC

�μτ
eH

v2

m2
h

ð92Þ

Ceμττ
S;RR ¼ −Ceτ

eHC
τμ
eH

v2

m2
h

ð93Þ

Ceμττ
S;LL ¼ −C�τe

eHC
�μτ
eH

v2

m2
h

ð94Þ

Ceμττ
S;RL ¼ 2g2

cos2 θW
ðCτμ

HeC
ð1Þeτ
Hl þ Cτμ

HeC
ð3Þeτ
Hl Þ v2

M2
Z

ð95Þ

Ceμττ
S;LR ¼ 2g2

cos2 θW
ðCeτ

HeC
ð1Þτμ
Hl þ Ceτ

HeC
ð3Þτμ
Hl Þ v2

M2
Z

ð96Þ

Ceμττ
V;LL ¼ −

g2

cos2 θW
ðCð1Þeτ

Hl Cð1Þτμ
Hl þ Cð3Þeτ

Hl Cð3Þτμ
Hl

þ Cð1Þeτ
Hl Cð3Þτμ

Hl þ Cð1Þτμ
Hl Cð3Þeτ

Hl Þ v2

M2
Z

ð97Þ

Ceμττ
V;RR ¼ −

g2

cos2 θW
Ceτ
HeC

τμ
He

v2

M2
Z
; ð98Þ

where the low energy EFT basis is in the notation of [48].
We report for completeness the matching conditions for
eμττ vector coefficients, although μ → e observables are
not sensitive to them.

IV. PHENOMENOLOGICAL IMPLICATIONS

This section gives limits on pairs of τ ↔ l coefficients
from their contribution to μ → e processes, and we discuss
some examples where the upcoming sensitivity of μ → e
observables is complementary to the future direct limits
from τ → l processes. Section IVA considers μ ↔ e
amplitudes generated by the fish diagrams of Figs. 6(e)–
6(f), and compares with the limits arising from B → τ LFV
decays (summarized in Appendix C). An example
of μ ↔ e from matching out the Higgs boson is given in
Sec. IV B, where we compare the sensitivity of μ → e
processes to h → τ�l∓ decays. Appendix D gives results
for the cases where the μ ↔ e sensitivity is marginal or
uninteresting.
The limits we quote apply to pairs of τ ↔ l coefficients

at a new physics scale ΛNP ¼ 4 TeV. The NP scale is
relevant because it appears in the logarithms of the RG
running. We assume that dimension six τ ↔ l operators are
generated at ΛNP ¼ 4 TeV and contribute to μ → e observ-
ables in two ways: first, as discussed in Sec. III A, via
renormalization group mixing into dimension eight μ → e
operators in SMEFT between ΛNP and mW , and second via
the matching at mW of combined dimension six τ ↔ l
operators onto μ → e operators as calculated in Sec. III B.
The running is described with the solution of the RGEs
given in Eq. (11), then the dimension eight μ → e operators
are matched onto the low energy EFT as given in [25]. The
sensitivity of current μ ↔ e experiments to coefficients at
mW is tabulated in [48]; we extrapolate these limits to the
future experimental reaches given in Table I, in order to
determine the experimental sensitivities of μ → e processes
to the product of τ → l operator coefficients. In most cases,
we just rescale the sensitivities of [48]. But for the limits
from μA → eA on vector operators with quarks, we
recalculate the sensitivities on an aluminium target, as will
be used by upcoming experiments. The current bounds are
from gold targets, which have more neutrons than protons,
whereas aluminium contains equal numbers of protons and
neutrons (u and d quarks). So gold has comparable
sensitivity to ðēγμÞðūγuþ d̄γdÞ and ðēγμÞðūγu − d̄γdÞ,
whereas the sensitivity of aluminium to ðēγμÞðūγu −
d̄γdÞ is suppressed by a loop.
Note that we distinguish sensitivities from constraints or

bounds. But we use limits to mean either. A constraint
identifies the region of parameter space where the coef-
ficients must sit, while a sensitivity represents the smallest
absolute value that can be experimentally detected. The
notion of sensitivity is particularly useful when the number
of parameters is larger than the number of observables, so
that exclusion bounds on single coefficients cannot be
inferred. A coefficient smaller than the sensitivity escapes
experimental detection but larger values can also escape
detection if accidental cancellations occur. In practice, in
this manuscript we obtain sensitivities, because we consider
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one nonzero pair of τ ↔ l operators at a time and compute
the contribution to μ → e observables.
Our results are interesting, because they show that

upcoming μ ↔ e experiments could be sensitive to τ ↔
l coefficients beyond the reach of τ ↔ l searches. We
obtain experimental sensitivities Bμ↔e to the product of
coefficients

jC½6�τμC½6�eτj ≲ Bμ↔e: ð99Þ

The same coefficients C½6�τμ, C½6�eτ might contribute to
constrained τ ↔ l processes and be respectively subjected
to the sensitivity “limits” Bτ→μ, Bτ→e imposed by direct
τLFV searches. In the C½6�τμ − C½6�eτ plane, this identifies an
ellipse,

jC½6�τμj2
B2
τ↔μ

þ jC½6�eτj2
B2
τ↔e

≲ 1; ð100Þ

that encloses the coefficient space to which τ ↔ l observ-
ables are not sensitive. On the other hand, μ → e searches
can detect coefficients in the region bounded by the
hyperbola in Eq. (99). If the following inequality is satisfied

Bμ↔e <
Bτ↔eBτ↔μ

2
; ð101Þ

the hyperbola enters the ellipse and μ → e processes are
able to probe a region of parameter space that eludes the
direct τ ↔ l searches. This is illustrated in Fig. 8. In the
subsequent sections, we discuss examples where Eq. (101)

is satisfied considering the upcoming experimental sensi-
tivities on μ → e and τ → l processes.

A. Fish diagrams with internal top quarks

In this section, we discuss some examples where the
sensitivity of μ → e conversion to some τ ↔ l coefficients
is complementary to B decays. The “fish” diagrams that
mix four fermion τ ↔ l interactions into dimension
eight μ → e operators are illustrated in Figs. 6(e)–6(f) of
Sec. III A. In these diagrams, one or two Higgs bosons are
attached to a heavy top internal line, so the τ ↔ l operators
that our calculation can probe contain one quark doublet or
up-type singlet in the third generation. In the former case,
the operator can contribute to the LFV decays of the B
mesons with a τðντÞ in the final state. Recall that the quark
doublets are in the u-basis, so these operators also match
via CKM mixing onto low energy contact interactions with
d-type quarks of the first and second generations. For the
operators considered here, we checked that the limits on
their coefficients arising from CKM-suppressed contribu-
tions to τ LFV processes with d and s quarks, such as
K� → l�ν and τ hadron decays, are not competitive with
the limits inferred from B decays.
The following subsections are organized by the different

μ → e interactions that the τ ↔ l operators mix into.

1. μ → e scalars

Consider, for example, the operators Oτμ13
eq ¼

ðτ̄γμÞðq̄1γq3Þ andOð3Þeτ31
lequ ¼ ðl̄eστÞðq̄3σuÞ, which mix into

the μ → e scalar and tensor dimension eight operators

Oð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 of Eqs. (48)–(50) (with up quarks) via the

diagram of Fig. 9. These match at mW onto scalar and
tensor operators in the low energy EFT, with the following
coefficients5:

Cuu
S;RRðmWÞ ¼

3

2π2
m2

t

v2
Cτμ13
eq Cð3Þeτ3u

lequ log

�
mW

ΛNP

�
ð102Þ

Cuu
T;RRðmWÞ ¼

3

8π2
m2

t

v2
Cτμ13
eq Cð3Þeτ3u

lequ log

�
mW

ΛNP

�
; ð103Þ

where mt ∼ v is the top quark mass and the SMEFT
operator coefficients are at ΛNP.
Scalar operators with up quarks contribute at tree-level to

μ → e conversion in nuclei (see e.g., [40]), where a muon is
stopped in a target, captured by a nucleus, and converts into
an electron in the presence of LFV interaction with

−1.5 −1 −0.5 0 0.5 1 1.5
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]
C

FIG. 8. The plot shows the parameter space probed by direct
τ ↔ l searches and by μ → e observables, in the Cτμ − Cτe plane.
The direct searches can probe the region outside the ellipse of
Eq. (100) (which correspond to the red circle when the Wilson
coefficients are normalized by the sensitivities Bτ↔l of the τ ↔ l
processes), while μ → e is sensitive to the area above the
hyperbolae, as defined in Eq. (99). The blue dashed hyperbolae
correspond to the boundary condition Bμ↔e=ðBτ↔eBτ↔μÞ ¼ 1=2,
while the black ones satisfies Bμ↔e=ðBτ↔eBτ↔μÞ< 1=2. In this
second case, μ → e searches are able to probe parameter space
missed by τ ↔ l observables.

5This simple solution does not include the QCD running of
tensors and scalars from ΛNP → mW . Since QCD does not
renormalize vector coefficients, this QCD running is analogous
to the rescaling of QED tensor ↔ scalar mixing below mW [48]
and can be estimated to be a ≲10% effect. It is therefore
neglected.
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nucleons. Scalar interactions of first generation quarks
match onto nucleon operators with large matching coef-
ficients, and the rate for spin-independent conversion is
enhanced by the atomic number of the target, giving a good
current sensitivity to scalar coefficients Cuu

S ≲ 10−8 [48].
Including the impressive improvement in sensitivity
promised by upcoming experiments, BrðμAu → eAuÞ≲
10−12 → BrðμAl → eAlÞ ∼ 10−16, μ → e conversion will
be able to probe scalar coefficients as small as Cuu

S ∼ 10−10.
Tensors with light-quarks contribute to the spin-inde-

pendent rate via their QED mixing into scalars, which
introduces a ∼1=10 suppression. For this reason, the tensor
of Eq. (103) contribute to the μ → e conversion rate as
CT ∼ CS=40 and is therefore neglected. So the upcoming
μ → e conversion experiments can set the following limit
(sensitivity) on the product of the coefficients at
ΛNP ¼ 4 TeV:

Cτμ13
eq × Cð3Þeτ31

lequ ≲ 1.5 × 10−10: ð104Þ
The two τ ↔ l operators could also induce the leptonic
decays of Bmesons B0

d → μ�τ∓ and Bþ → τ̄ν. The current
95% C.L. experimental constraints on these processes lead
to the following limits on the coefficients:

BrðB0
d → μ�τ∓Þ < 1.4 × 10−5 → Cτμ13

eq ≲ 1.4 × 10−3

BrðBþ → τ̄νÞ ¼ 1.6 × 10−4 → Cð3Þeτ31
lequ ≲ 2.2 × 10−3:

ð105Þ

These limits were obtained with the public code FLAVIO

[49] and analytically, are discussed in more detail in
Appendix C, which reviews the sensitivity of B decays
to interesting operator coefficients.
In order to compare future B decay sensitivities to the

future reach of μ → e conversion, we suppose that Belle II
could improve the sensitivities to B decays by an order of
magnitude, so the limits of Eq. (105) on the Wilson
coefficients will get ∼

ffiffiffiffiffi
10

p
better. Comparing the product

of the upcoming B sensitivities with the limit in Eq. (104)
that arise from future μ → e conversion gives [the (f)
superscript stands for “future”]

BðfÞ
μ↔e ¼ ðBðfÞ

τ↔eB
ðfÞ
τ↔μÞ × ð5 × 10−4Þ; ð106Þ

which satisfies the condition of Eq. (101). We fall in the
scenario depicted in Fig. 10(a), where μ → e probes a
region inside the ellipse, beyond the reach of B → τ direct

FIG. 9. The operators Ceτ31
eq ; Cð3Þeτ31

lequ are inserted in the left
diagram and mix into the dimension eight μ → e scalar/tensor

operators Oð1Þ;ð2Þ;ð3Þ;ð4Þ
lequH2 of Eqs. (48)–(50).

(a)

(b)

FIG. 10. (a) Parameter space probed by μ → e conversion

(straight lines) and LFV B decays (box), in the Cτμ13
eq − Cð3Þeτ3u

lequ

plane. The blue line correspond to the current experimental reach,
while in the black one we assume BrðμAl → eAlÞ< 10−16. In
both cases, the μ → e hyperbole enter the ellipse beyond the

reach of B decays. (b) Similar to Fig. 10(a), in the Cð1Þeτ13
lq −

Cð1Þτμ3u
lequ plane. For this pair of operators, μ → e will have a better

sensitivity to the coeffcient product than B decays with the
upcoming experimental improvement.
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searches. Notice that the hyperbola of the current μ → e
conversion results already enters the ellipse of the
B → τ LFV decays [with the current sensitivities

BðcÞ
μ↔e=ðBðcÞ

τ↔eB
ðcÞ
τ↔μÞ ∼ 5 × 10−3]. This is because tensors

contribute to the B decays rate via the one-loop
QED mixing to scalars, while the ðdimension sixÞ2 →
ðdimension eightÞ mixing benefits from a large anomalous
dimension.
The pair of τ ↔ l dimension six operators

Cð1Þeτ13
lq Cð1Þτμ3u

lequ similarly mixes into the dimension eight
μ → e scalars with a singlet u. In this case, B decays are
currently more sensitive than μ → e processes to the

product of the coefficients [BðcÞ
μ↔e=ðBðcÞ

τ↔eB
ðcÞ
τ↔μÞ ∼ 2].

However, in the next generation of experiments, the
sensitivity ratio will be reduced by 1 order of magnitude

to BðfÞ
μ↔e=ðBðfÞ

τ↔eB
ðfÞ
τ↔μÞ ∼ 0.2, allowing the μ → e conver-

sion hyperbola to enter the ellipse of the direct τ ↔ l
searches [see Fig. 10(b)].
In Tables VIII and IX, we compare the sensitivities of

τ ↔ l and μ → e processes to the product of several
operators that mix into scalars with first generation quarks,
via diagrams similar to Fig. 9. Note that the pairs in the
table feature an electron doublet and a singlet muon, but
opposite chiralities are also possible. For instance,

Cτμ13
eq Cð1Þeτ3u

lequ mix into Cð1Þ;ð2Þeμ1u
lequH2 while Ceτ31

eq C�ð1Þμτ3u
lequ

contributes to the RGEs of C�ð1Þ;ð2Þμe1u
lequH2 . Although the

anomalous dimensions are the same (and so are the
μ → e sensitivities), the dimension six operator that was
τ ↔ e is now τ ↔ μ and vice versa, which might lead to
slightly different direct limits on the τ ↔ l interactions. In
the above example, the branching ratios sensitivities of the
B0
d decay into τe; τμ differ by a factor ∼3, and as a result,

the limits on the vector coefficients Ceτ13
eq ; Cτμ31

eq is ∼
ffiffiffi
3

p
different. We do not present the tables for the pairs with
exchanged μ ↔ e, as the marginally different numbers do
not modify our conclusions.

2. μ → e tensors with heavy quarks

The fish diagrams that generated scalar and tensor μ → e
operators on u quarks, arise also with external c quarks.
Although the sensitivity of μ → e conversion to charm
scalars is insufficient for our purposes, μ → eγ has inter-
esting sensitivity to the charm tensors, because their mixing
to the dipole is enhanced ∝ mc=mμ. The pairs of τ ↔ l
operators that mix to μ ↔ e tensors with external charms,
and the sensitivities of B decays and Brðμ → eγÞ< 10−14

are summarized in Table X.

TABLE VIII. The product of current (c) direct limits BðcÞ
τ↔eB

ðcÞ
τ↔μ

on pairs of coefficients that mix to a μ → e dimension eight
scalar operator with a singlet u quark [see Eq. (48)], upon which

applies the limit BðfÞ
μ→e arising from future μ → e conversion

[BrðμAl → eAlÞ ∼ 10−16]. The “limits” are on coefficients at
ΛNP ∼ 4 TeV. Details on the limits that apply to operators
with permuted indices are given in the text below Eq. (106).

To compare BðfÞ
μ→e with the future sensitivity of direct τ ↔ l

searches, the product BðcÞ
τ↔eB

ðcÞ
τ↔μ should be divided by 10:

BðfÞ
τ↔eB

ðfÞ
τ↔μ ∼ BðcÞ

τ↔eB
ðcÞ
τ↔μ=10.

Coefficients BðcÞ
τ↔eB

ðcÞ
τ↔μ BðfÞ

μ→e

Ceτtu
lu Cð1Þτμ1t

lequ
− × − 2 × 10−9

Ceτtu
lu Cð3Þτμ1t

lequ
− × − 1.5 × 10−10

Cτμ13
eq Cð1Þeτ3u

lequ
1.5 × 10−3ðcÞ × 4.3 × 10−4ðcÞ 2 × 10−9

Cτμ13
eq Cð3Þeτ3u

lequ
1.5 × 10−3ðcÞ × 2.4 × 10−3ðcÞ 1.5 × 10−10

Cτμtu
eu Cð1Þeτ1t

lequ
− × − 2 × 10−9

Cτμtu
eu Cð3Þeτ1t

lequ
− × − 1.5 × 10−10

Cð1Þeτ13
lq Cð1Þτμ3u

lequ
2.3 × 10−3ðcÞ × 4.3 × 10−5ðcÞ 2 × 10−9

Cð3Þeτ13
lq Cð1Þτμ3u

lequ
2.3 × 10−3ðcÞ × 4.3 × 10−5ðcÞ 2 × 10−9

Cð1Þeτ13
lq Cð3Þτμ3u

lequ
2.3 × 10−3ðcÞ × 1.8 × 10−4ðcÞ 1.5 × 10−10

Cð3Þeτ13
lq Cð3Þτμ3u

lequ
2.3 × 10−3ðcÞ × 1.8 × 10−4ðcÞ 1.5 × 10−10

TABLE IX. Similar to Table VIII, for dimension eight scalar
μ → e operators involving a singlet d quark [see Eq. (46)]. The

limitBðfÞ
μ→e arises fromμ → e conversion [BrðμAl→eAlÞ∼10−16].

Coefficients BðcÞ
τ↔eB

ðcÞ
τ↔μ BðfÞ

μ→e

Cð3Þeτ31
lq Cτμd3

ledq
2.3 × 10−3ðcÞ × 2.2 × 10−4ðcÞ 1 × 10−9

Cð3Þτμ13
lq ðCτed3

ledqÞ� 1.5 × 10−3ðcÞ × 3.4 × 10−4ðcÞ 1 × 10−9

TABLE X. Similar to Table VIII, for μ → e dimension eight
tensor operators [see Eq. (50)] with a c quark bilinear. The

sensitivity BðfÞ
μ→e arises from μ → eγ with a branching ratio

Brðμ → eγÞ ∼ 10−14. The “limits” are on coefficients at
ΛNP ∼ 4 TeV.

Coefficients BðcÞ
τ↔eB

ðcÞ
τ↔μ BðfÞ

μ→e

Ceτtc
lu Cð1Þτμ2t

lequ
− × − 1.2 × 10−7

Ceτtc
lu Cð3Þτμ2t

lequ
− × − 1 × 10−8

Cτμ23
eq Cð1Þeτ3c

lequ
2.3 × 10−3ðcÞ × 1.0 × 10−2ðcÞ 1.2 × 10−7

Cτμ23
eq Cð3Þeτ3c

lequ
2.3 × 10−3ðcÞ × 5.0 × 10−3ðcÞ 1 × 10−8

Cτμtc
eu Cð1Þeτ2t

lequ
− × − 1.2 × 10−7

Cτμtc
eu Cð3Þeτ2t

lequ
− × − 1 × 10−8

Cð1Þeτ23
lq Cð1Þτμ3c

lequ
2.3 × 10−3ðcÞ × 9.0 × 10−3ðcÞ 1.2 × 10−7

Cð3Þeτ23
lq Cð1Þτμ3c

lequ
2.3 × 10−3ðcÞ × 9.0 × 10−3ðcÞ 1 × 10−7

Cð1Þeτ23
lq Cð3Þτμ3c

lequ
2.3 × 10−3ðcÞ × 6.4 × 10−3ðcÞ 1.2 × 10−7

Cð3Þeτ23
lq Cð3Þτμ3c

lequ
2.3 × 10−3ðcÞ × 6.4 × 10−3ðcÞ 1 × 10−9

ARDU, DAVIDSON, and GORBAHN PHYS. REV. D 105, 096040 (2022)

096040-18



Leptonic and semileptonic B decays have recently
attracted attention due to several anomalies with respect
to SM expectations; see, e.g., Ref. [50]. Our LFVoperators
could potentially address the anomalies in “charged cur-
rent” b transitions (such as Bþ → τþν); however, the
observed rates are often below the SM expectations, so
cannot be explained by lepton-flavor-changing interactions
that necessarily increase the rates (because they cannot
interfere destructively with the SM). An exception is
the SM expectation for RSM

D�τ=l ≡ BrðB → D�τν̄Þ=BrðB →
D�lν̄Þ ∼ 0.24 [49], which is smaller than the observed value
Rexp
D�τ=l ∼ 0.3 [51]. We can fit the difference by enhancing

the branching fraction in the numerator with the tensor

operator Cð3Þlτ3c
lequ . The latter can be paired with the vector

Cτμ23
eq to mix into a dimension eight tensor with external

charms, to which Brðμ → eγÞ ∼ 10−14 has the sensitivity

Bμ→e reported in Table X. In the Cð3Þeτ3c
lequ − Cτμ23

eq plane, the
ellipse is now shifted to the right and centered on the best-

fit value of Cð3Þeτ3c
lequ (see Fig. 11). In the simplified scenario

where the discrepancy jRSM
D�τ=e − Rexp

D�τ=ej is fully explained
by the presence of the τ ↔ e tensor, a nonobservation
μ → eγ signal in future experiments would make it unlikely
for the coefficients to occupy the portion of the red ellipse
overlapping the blue region.
Table XI summarises the case of μ ↔ e operator with

external top quarks. The mixing of tensors with a top
bilinear into the dipole is enhanced by the ratio mt=mμ, so
the upcoming μ → eγ experiments can probe dimension 6

coefficients C½6�eμtt
T ≳ 5 × 10−12. We suppose that the

SMEFT mixing of dimension eight tensors into the
dimension eight dipoles is comparable to the dimension
six mixing [30]. This impressive sensitivity explains why
the diagrams of Fig. 6(f) with external top legs are
interesting regardless of the yτ Yukawa suppression.
The SMEFT τ ↔ l operators that are inserted in those

diagrams contain a flavor diagonal quark pair in the third
generation. Vectors with tops contribute to the rate of τ →
3l via one-loop penguin diagrams, while the dimension six
tensors contribute to τ → lγ via the above-discussed mixing
into the τ ↔ l dipole. Tensors are not considered in our
tables, because τ → lγ has already an excellent sensitivity
to the operator coefficients. In Table XI, the direct “limits”
on the product of τ ↔ l dimension six vectors arising from
τ → 3l searches are compared with the sensitivity
of Brðμ → eγÞ < 10−14.

3. μ → e vectors

The remaining fish diagrams give mixing of two dimen-
sion six τ ↔ l SMEFT operators into dimension eight
μ → e vectors with first generation quarks. The sensitivities
of μ → e conversion and B decays on the product of the
operator coefficients are summarized in Table XII for
lepton singlets and in Table XIII for lepton doublets.
(The μ → e conversion estimates assume an aluminium
target—see the beginning of Sec. IV.)

B. Higgs LFV couplings

In this section, we discuss the sensitivities of μ → e
observables to dimension six Yukawa operators OeH
[Eq. (18)] and compare them with the upcoming direct
limits imposed by h → τl decays. Pairs of Yukawa τ ↔ l
operators contribute to various μ → e interactions at
dimension eight. They mix into penguins via the divergent
diagrams of Fig. 6(c), which match onto the vector
operators involved at tree-level in the μ → e conversion

FIG. 11. The plot shows the parameter space probed by B LFV

decays and by future μ → eγ, in the Cð3Þeτ3c
lequ − Cτμ23

eq plane. The

ellipse is centered to the best-fit value of Cð3Þeτ3c
lequ that can explain

the RD� anomaly (see text for details). Nonobservation of μ → eγ
can give a limit on Cτμ23

eq (assuming only this pair to be nonzero).
The dashed line correspond to the current MEG upper bound
Brðμ → eγÞ< 4 × 10−13.

TABLE XI. Similar to Table VIII, with the product of (current)
direct limits BðcÞ

τ↔eB
ðcÞ
τ↔μ on pairs of τ ↔ l coefficients that mix to a

μ → e dimension eight tensor operator [see Eq. (50)] with two top
quarks, upon which applies the limit Bμ→e. All the limits apply to

the coefficients at ΛNP ∼ 4 TeV. The limit BðfÞ
μ→e arises from

μ → eγ [Brðμ → eγÞ< 10−14], due to the large mixing of the top-

tensor to the dipole, while the limits BðcÞ
τ↔l are from the current

upper limits on Brðτ → 3lÞ given in Table I. Future limits

BðfÞ
τ↔eB

ðfÞ
τ↔μ are ∼BðcÞ

τ↔eB
ðcÞ
τ↔μ=10.

Coefficients BðcÞ
τ↔eB

ðcÞ
τ↔μ BðfÞ

μ→e

Ceτtt
lu Cτμ33

eq 1.0 × 10−2ðcÞ × 2.0 × 10−2ðcÞ 1.0 × 10−6

Cð3Þeτ33
lq Cτμtt

eu 4.5 × 10−3ðcÞ × 1.0 × 10−2ðcÞ 1.0 × 10−6

Cð1Þeτ33
lq Cτμtt

eu 4.0 × 10−2ðcÞ × 1.0 × 10−2ðcÞ −1.0 × 10−6
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and μ → ēee rates. In addition, dimension six Yukawas are
inserted in the diagrams of Figs. 7(b) and 7(c)–7(d), that
give matching contributions to the μeττ tensor and dipole,
respectively. The matching conditions are written in

Eqs. (90) and (91)–(92). μ → eγ is marginally more
sensitive to the μeττ tensor than on the dipole; this is
due to the large tensor-to-dipole mixing and the built-in yμ
Yukawa suppression in the dipole definition, which lead to
the already discussed enhancement mτ=mμ. As a result,
μ → eγ is the most sensitive process, and an upcoming
experimental reach of Brðμ → eγÞ≲ 10−14 gives

jCeτ
eHC

τμ
eHj; jCτe

eHC
μτ
eHj≲ 3 × 10−9: ð107Þ

In the charged lepton mass-eigenstate basis, the dimension
six Yukawas induce flavor-changing interactions of
125 GeV-Higgs boson [see Eq. (89)], so h → τl decays
probe the off-diagonal coefficients Cτl;lτ

eH . The most strin-
gent upper limits on the rates are currently set by CMS [52],
and ILC is expected to improve them by one order of
magnitude [16]. The projected sensitivities to the branching
ratios Brðh→τeÞ<2.3×10−4, Brðh → τμÞ< 2.4 × 10−4,
respectively lead to the bounds,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCeτ

eHj2 þ jCτe
eHj2

q
< 3.2 × 10−4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jCτμ
eHj2 þ jCμτ

eHj2
q

< 3 × 10−4: ð108Þ

The product of the direct limits is larger than 2× the
sensitivity of Eq. (107), so that μ → e probe a region of
parameter space that is beyond the reach of future LFV
Higgs decays (see Fig. 8).

V. SUMMARY

The μ → e experiments under construction are expected
to improve the current branching ratio sensitivities by
several orders of magnitude. In some cases, the improve-
ment is such that the upcoming experiments will be able to
probe products μ → τ and τ → e interactions beyond the
reach of direct τ ↔ l searches (where l ∈ fe; μg).
However, the relationship between τ ↔ l and μ ↔ e
observables is generically model dependent, as we dis-
cussed in Sec. II A. The goal of this paper is to retain the
model-independent contributions to μ → e processes from
τ ↔ l lepton flavor change, although these may be sub-
dominant. To do so, we assume that the new physics
responsible for τ ↔ l LFV is heavy (ΛNP ≳ 4 TeV), and we
parameterize it wigth τ ↔ l dimension six operators in the
“on shell” operator basis of SMEFT. We briefly introduce
our EFT formalism in Sec. II B.
We insert μ → τ and τ → e dimension six interactions

Oð1=Λ2
NPÞ in diagrams that generates μ → e amplitudes at

dimension eight Oð1=Λ4
NPÞ. We only compute the contri-

butions that are phenomenologically relevant, i.e., within
the reach of future experiments. Firstly, we focus on a
subspace of dimension eight operators to which μ → e
observables are sensitive, as given in [25] and presented in
Sec. II C. Secondly, in Sec. II E, we draw and estimate

TABLE XII. Similar to Tables VIII, for dimension eight μ → e
vector operators with SU(2) singlet leptons [see Eqs. (41)–(43)].

Coefficients BðcÞ
τ↔eB

ðcÞ
τ↔μ BðfÞ

μ→e

Ceτ31
eq Cτμ13

eq 2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 2.5 × 10−9

Ceτ13
eq Cτμ31

eq 2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 1 × 10−8

Ceτtu
eu Cτμut

eu − × − 2.5 × 10−9

Ceτut
eu Cτμtu

eu − × − 2.5 × 10−9

ðCτed3
ledqÞ�Cτμd3

ledq
3.4 × 10−4ðcÞ × 2.2 × 10−4ðcÞ 4 × 10−8

ðCð1Þτe1t
lequ Þ�Cð1Þτμ1t

lequ
− × − 2 × 10−8

ðCð1Þτe3u
lequ Þ�Cð1Þτμ3u

lequ
5.8 × 10−5ðcÞ × 4.3 × 10−5ðcÞ 4 × 10−8

ðCð3Þτe1t
lequ Þ�Cð3Þτμ1t

lequ
− × − 1 × 10−10

ðCð3Þτe3u
lequ Þ�Cð3Þτμ3u

lequ
2.4 × 10−4ðcÞ × 2.4 × 10−4ðcÞ 2.5 × 10−10

ðCð1Þτe1t
lequ Þ�Cð3Þτμ1t

lequ
− × − 2 × 10−9

ðCð3Þτe1t
lequ Þ�Cð1Þτμ1t

lequ
− × − 2 × 10−9

ðCð1Þτe3u
lequ Þ�Cð3Þτμ3u

lequ
5.8 × 10−5ðcÞ × 2.4 × 10−4ðcÞ 4 × 10−9

ðCð3Þτe3u
lequ Þ�Cð1Þτμ3u

lequ
2.4 × 10−4ðcÞ × 4.3 × 10−5ðcÞ 4 × 10−9

TABLE XIII. Similar to Tables VIII, to generate μ → e vector
operators with a doublet lepton bilinear [see Eqs. (33)–(39)].

Coefficients BðcÞ
τ↔eB

ðcÞ
τ↔μ BðfÞ

μ→e

Cð1Þeτ31
lq Cð1Þτμ13

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 1 × 10−8

Cð1Þeτ13
lq Cð1Þτμ31

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 2.5 × 10−9

Cð3Þeτ31
lq Cð3Þτμ13

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 2 × 10−9

Cð3Þeτ13
lq Cð3Þτμ31

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 2.5 × 10−9

Cð3Þeτ13
lq Cð1Þτμ31

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 2.5 × 10−9

Cð1Þeτ13
lq Cð3Þτμ31

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 2.5 × 10−9

Cð3Þeτ31
lq Cð1Þτμ13

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 1 × 10−8

Cð1Þeτ31
lq Cð3Þτμ13

lq
2.3 × 10−3ðcÞ × 1.5 × 10−3ðcÞ 1 × 10−8

Ceτut
lu Cτμtu

lu
− × − 1 × 10−8

Ceτtu
lu Cτμut

lu
− × − 2.5 × 10−9

ðCð1Þeτ3u
lequ Þ�Cð1Þμτ3u

lequ
4.5 × 10−4ðcÞ × 4.5 × 10−4ðcÞ 4 × 10−8

ðCð1Þeτ1t
lequ Þ�Cð1Þμτ1t

lequ
− × − 4 × 10−8

ðCð3Þeτ3u
lequ Þ�Cð3Þμτ3u

lequ
1.8 × 10−3ðcÞ × 1.8 × 10−3ðcÞ 1.25 × 10−10

ðCð3Þeτ1t
lequ Þ�Cð3Þμτ1t

lequ
− × − 1.25 × 10−10

ðCð1Þeτ1t
lequ Þ�Cð3Þμτ1t

lequ
− × − 3 × 10−9

ðCð1Þeτ3u
lequ Þ�Cð3Þμτ3u

lequ
4.5 × 10−5ðcÞ × 1.8 × 10−3ðcÞ 1.6 × 10−9

ðCð3Þeτ1t
lequ Þ�Cð1Þμτ1t

lequ
− × − 3 × 10−9

ðCð3Þeτ3u
lequ Þ�Cð1Þμτ3u

lequ
1.8 × 10−3ðcÞ × 4.5 × 10−5ðcÞ 1.6 × 10−9
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diagrams with two τ ↔ l dimension six interactions gen-
erating the above-mentioned dimension eight operators,
and we disregard the contributions smaller than the
upcoming experimental sensitivity.
Log-enhanced corrections to μ → e dimension eight

coefficients are the result of the ðdimension 6Þ2 →
ðdimension 8Þ mixing which appear in the renormalization
group evolution, that we review in Sec. II B. Calculating
this mixing present some technical challenges. The “on
shell” operator bases we use at dimension six and eight are
reduced using the equation of motion (EOM), i.e., do not
contain operators that are related by applying the classical
EOM on some field. In order to include the dimension 8
contributions that arise from using the EOM up to dimen-
sion 6 in reducing to the on shell basis at dimension 6, we
include some not-1PI diagrams in our calculations. This is
more carefully discussed in Sec. II D.
In Sec. III, we describe the calculation of the interesting

contributions to μ → e processes from τ ↔ l interactions,
depicted in the diagrams of Figs. 6 and 7. Pairs of τ ↔ l
operators are assumed to be generated at a new physics
scale ΛNP ¼ 4 TeV and mix into dimension eight μ → e
interactions when evolved down to the experimental scale
of μ → e observables. Between ΛNP andmW , the running is
performed in SMEFT as described in Sec. III A and
employing the RGEs solution of Eq. (11). The complete
list of the ðdimension 6Þ2 → ðdimension 8Þ anomalous
dimensions that we obtained is given in Appendix B.
The dimension eight SMEFToperators that are generated

in running are matched onto low energy interactions at mW
as described in [25]. We also include the contribution from
pairs of τ ↔ l operators that generate μ ↔ e operators at
tree level in matching, as discussed in Sec. III B. Between
mW and the experimental scale Λexp, the running of low
energy Wilson coefficients is taken from [48], while we
find that μ → τ × τ → e RGEs mixing is negligible in the
EFT below mW, as discussed at the end of Sec. II B.
We thus determined the sensitivity of μ → e processes to

products of τ ↔ l operator coefficients. Sensitivities re-
present the smallest absolute value that is experimentally
detectable and are obtained by considering one nonzero
pair of τ ↔ l operators at a time. They give a hyperbola in
the C½6�τμ − C½6�eτ plane of the dimension six coefficients
(see Fig. 8), outside which μ → e observables can probe. In
the same plane, direct τ ↔ l searches are sensitive to the
region outside an ellipse. In Sec. IV, we discuss two
examples where the hyperbola passes inside the ellipse:
Sec. IVA shows that the contributions of fish diagrams [see
Figs. 6(e)–6(f)] to μ → e observables allow us to probe
products of τ ↔ l coefficients involving third generation
quarks. These same interactions contribute to the rate of
LFV B → τðντÞ meson decays, which can directly probe
the size of the Wilson coefficients [the “limits” arising from
the upper bounds on B → τðντÞ þ… are summarized in
Appendix C]. In most cases, we find that upcoming μ → e

experiments are sensitive to coefficients beyond the reach
of future B → τðντÞ þ… searches. In Sec. IV B, we study
the sensitivity of upcoming μ → e searches to products of
LFV Higgs couplings, which overcomes the projected
reach of the ILC to h → τ�l∓.
In summary, we computed in SMEFT the contributions

to μ → e observables arising from ðμ → τÞ × ðτ → eÞ
interactions. This required calculating a subset of the
RGEs for dimension eight operators, so far missing in
the literature. As a result, we obtained limits on products of
τ ↔ l SMEFT coefficients assuming nonobservation of
μ → e in future experiments. This can give model-inde-
pendent relations among μ ↔ e, τ ↔ e, and τ ↔ μ LFV: in
the event of a detected τ ↔ μ signal, the nonobservation of
μ ↔ e would suggest that some τ ↔ e interactions are
unlikely (if they occur, additional μ ↔ e interactions are
required to obtain a cancellation in the μ ↔ e amplitude).
This could provide theoretical guidance on where to search,
or not, for τ ↔ e.
We find that μ → e processes have a good sensitivity to

products of τ ↔ l operators that involve b quarks. These
mediate leptonic flavor changing B decays, which are a
promising avenue for new physics in light of the recent
anomalies. In most cases, the anomalous rates are below the
SM expectations, requiring destructive interference with
the SM that cannot be addressed by our LFVoperators. An
exception is the RD� anomaly, where the experimental value
is larger than the SM prediction and, as discussed in
Sec. IVA 2 (see Fig. 11), can be fitted by increasing the
rate of B → D�τν with τ ↔ e operators. This is an example
of the above-discussed relations that we can extrapolate
from our calculation; the nonobservation of μ → e proc-
esses can identify values where τ ↔ μ is unlikely to
be seen.
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APPENDIX A: FEYNMAN RULES

In this section, we list the Feynman Rules for the
interactions involved in the diagrams of Sec. III A.
Capital letters I; J; L; K… are used to label SU(2) indices,
while lowercase letters i, j, l, k are generation indices. τa

are the Pauli matrices and ϵ12 ¼ −ϵ21 ¼ 1; ϵ11 ¼ ϵ22 ¼ 0 is
the antisymmetric SU(2) tensor. The Feynman rules are
obtained calculating by hand the iM amplitude of the tree-
level processes. We write the Feynman rules for the
renormalizable interactions in Fig. 12, for the dimension
six operators in Figs. 13–14 and for the dimension eight
operators in Figs. 15 and 16.
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FIG. 12. Feynman rules for the dimension four interaction. The Higgs momenta follow the hypercharge arrow.
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FIG. 13. Feynman rules for the dimension six SMEFT four-fermion interaction 4f6 of Sec. II C. In the product Γ1 ⊗ Γ2, the left matrix
Γ1 multiplies the lepton bilinear. Scalar and tensor with opposite chiralities have the same Feynman rules with conjugate coefficients and
exchanged flavor indices within lepton and quark bilinears.
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FIG. 14. Feynman rules for the dimension six SMEFT two fermion operators Y6, P6 of Sec. II C. The Higgs momenta follow the
hypercharge arrows.
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FIG. 15. Feynman rules for the dimension eight SMEFT two fermion operators D8, P8 of Sec. II C. The Higgs momenta directions
follow the hypercharge arrow, while the bosons momentum q is outgoing.
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APPENDIX B: ANOMALOUS DIMENSIONS

In this section, we write the renormalization group
equations for the mixing of a μ → τ dimension six operator,
multiplied by a τ → e dimension six operator, into a
dimension eight μ → e operator. These anomalous dimen-
sions are generated by the diagrams of Sec. III A 1. We
conveniently present the RGEs divided in the “classes”
introduced in the same section. The operator definitions can
be found in Sec. II C. The upper dot _C on the Wilson
coefficient indicate the logarithmic derivative with respect
to the renormalization scaleM. The anomalous dimensions
are written for the dimension eight operators of Sec. II C,

which are relevant for μ → e processes that are otherwise
flavor diagonal, although more general flavor structures can
be obtained with the appropriate substitutions. For non-

Hermitian operators such as Oð1Þ
lequH2 , we write the RGEs

for the μ → e operators Oð1Þeμii
lequH2 ;O

�ð1Þμeii
lequH2 . This is to more

explicitly show the τ ↔ l operator pairs upon which we
obtain limits in Sec. IV.

1. 4f 6 × 4f 6 → 4f 8
Figure 6(f) shows the mixing ∝ ytyτ of pairs of dimen-

sion six τ → l operators into the dimension eight μ → e

FIG. 16. Feynman rules for the dimension eight SMEFT four-fermion interactions 4f8 of Sec. II C. We consider only the dimension
eight operators involved in the diagrams of Sec. III A 1. In the product Γ1 ⊗ Γ2, the left matrix Γ1 multiplies the lepton bilinear. Scalar
and tensor with opposite chiralities have the same Feynman rules with conjugate coefficients and exchanged flavor indices within lepton
and quark bilinears.
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tensor with top legs. We align τ ↔ e; τ ↔ μ Wilson
coefficients, respectively, in row and column vectors to
write the following anomalous dimensions, relevant for the
Bμ→e sensitivity of Table XI.

16π2 _Cð3Þeμ3t
lequH2 ¼

�
Ceτtt
lu Cð1Þeτ33

lq Cð3Þeτ33
lq Cð1Þeτ3t

lequ Cð3Þeτ3t
lequ

�

×

0
BBBBB@

yτyt 0 0 0

0 −yτyt 0 0

0 yτyt 0 0

0 0 0 3yτyt
0 0 3yτyt −8yτyt

1
CCCCCA

0
BBBBB@

Cτμ33
eq

Cτμtt
eu

Cð1Þτμ3t
lequ

Cð3Þτμ3t
lequ

1
CCCCCA

ðB1Þ

16π2 _C�ð3Þμe3t
lequH2 ¼

�
Cτμtt
lu Cð1Þτμ33

lq Cð3Þτμ33
lq C�ð1Þμτ3t

lequ C�ð3Þμτ3t
lequ

�

×

0
BBBBB@

yτyt 0 0 0

0 −yτyt 0 0

0 yτyt 0 0

0 0 0 3yτyt
0 0 3yτyt −8yτyt

1
CCCCCA

0
BBBBB@

Ceτ33
eq

Ceτtt
eu

C�ð1Þτe3t
lequ

C�ð3Þτe3t
lequ

1
CCCCCA

ðB2Þ

16π2 _Cð4Þeμ3t
lequH2 ¼

�
Ceτtt
lu Cð1Þeτ33

lq Cð3Þeτ33
lq Cð1Þeτ3t

lequ Cð3Þeτ3t
lequ

�

×

0
BBBBB@

yτyt 0 0 0

0 −yτyt 0 0

0 −yτyt 0 0

0 0 0 yτyt
0 0 yτyt 8yτyt

1
CCCCCA

0
BBBBB@

Cτμ33
eq

Cτμtt
eu

Cð1Þτμ3t
lequ

Cð3Þτμ3t
lequ

1
CCCCCA

ðB3Þ

16π2 _C�ð4Þμe3t
lequH2 ¼

�
Cτμtt
lu Cð1Þτμ33

lq Cð3Þτμ33
lq C�ð1Þμτ3t

lequ C�ð3Þμτ3t
lequ

�

×

0
BBBBB@

yτyt 0 0 0

0 −yτyt 0 0

0 −yτyt 0 0

0 0 0 yτyt
0 0 yτyt 8yτyt

1
CCCCCA

0
BBBBB@

Ceτ33
eq

Ceτtt
eu

C�ð1Þτe3t
lequ

C�ð3Þτe3t
lequ

1
CCCCCA
ðB4Þ

In Fig. 6(e), we show a representative diagram with the
double insertion of two-lepton two-quark τ → l operators
of dimension six, which renormalizes the coefficient of
μ → e dimension eight four fermion operators. The mixing
is proportional to the square of the top Yukawa y2t . The
RGEs for scalar and tensor with a up-singlet quark (the
sensitivities of μ → e processes that we obtain from this
mixing are summarized in Tables VIII and X) read

16π2 _Cð1Þeμii
lequH2 ¼

�
Ceτti
lu Cð1Þeτti

lequ Cð3Þeτ3i
lequ Cð1Þeτit

lequ Cð3Þeτit
lequ Cð1Þeτi3

lq Cð3Þeτi3
lq

�

×

0
BBBBBBBBBBBB@

−2y2t −24y2t 0 0 0 0

0 0 −y2t 0 0 0

0 0 −12y2t 0 0 0

0 0 0 2y2t 0 0

0 0 0 −24y2t 0 0

0 0 0 0 y2t −12y2t
0 0 0 0 −3y2t 36y2t

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

Cð1Þτμit
lequ

Cð3Þτμit
lequ

Cτμi3
eq

Cτμti
eu

Cð1Þτμ3i
lequ

Cð3Þτμ3i
lequ

1
CCCCCCCCCCCCA

ðB5Þ

16π2 _C�ð1Þμeii
lequH2 ¼

�
Cτμit
lu C�ð1Þμτ3i

lequ C�ð3Þμτ3i
lequ C�ð1Þμτit

lequ C�ð3Þμτit
lequ Cð1Þτμ3i

lq Cð3Þτμ3i
lq

�

×

0
BBBBBBBBBBBB@

−2y2t −24y2t 0 0 0 0

0 0 −y2t 0 0 0

0 0 −12y2t 0 0 0

0 0 0 2y2t 0 0

0 0 0 −24y2t 0 0

0 0 0 0 y2t −12y2t
0 0 0 0 −3y2t 36y2t

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

C�ð1Þτeit
lequ

C�ð3Þτeit
lequ

Ceτ3i
eq

Ceτit
eu

C�ð1Þτe3i
lequ

C�ð3Þτe3i
lequ

1
CCCCCCCCCCCCA

ðB6Þ
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16π2 _Cð2Þeμii
lequH2 ¼

�
Cð1Þeτ3i
lequ Cð3Þeτ3i

lequ Cð1Þeτi3
lq Cð3Þeτi3

lq

�
0
BBB@

−y2t 0 0

−12y2t 0 0

0 y2t −12y2t
0 y2t −12y2t

1
CCCA
0
BBB@

Cτμi3
eq

Cð1Þτμ3i
lequ

Cð3Þτμ3i
lequ

1
CCCA ðB7Þ

16π2 _C�ð2Þμeii
lequH2 ¼

�
C�ð1Þμτ3i
lequ C�ð3Þμτ3i

lequ Cð1Þτμ3i
lq Cð3Þτμ3i

lq

�
0
BBB@

−y2t 0 0

−12y2t 0 0

0 y2t −12y2t
0 y2t −12y2t

1
CCCA
0
BBB@

Ceτ3i
eq

C�ð1Þτe3i
lequ

C�ð3Þτe3i
lequ

1
CCCA ðB8Þ

16π2 _Cð3Þeμii
lequH2 ¼

�
Ceτti
lu Cð1Þeτ3i

lequ Cð3Þeτ3i
lequ Cð1Þeτit

lequ Cð3Þeτit
lequ Cð1Þeτi3

lq Cð3Þeτi3
lq

�

×

0
BBBBBBBBBBBB@

−y2t =2 −6y2t 0 0 0 0

0 0 −y2t =4 0 0 0

0 0 −3y2t 0 0 0

0 0 0 −y2t =2 0 0

0 0 0 6y2t 0 0

0 0 0 0 −y2t =4 3y2t
0 0 0 0 3y2t =4 −9y2t

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

Cð1Þτμit
lequ

Cð3Þτμit
lequ

Cτμi3
eq

Cτμti
eu

Cð1Þτμ3i
lequ

Cð3Þτμ3i
lequ

1
CCCCCCCCCCCCA

ðB9Þ

16π2 _C�ð3Þμeii
lequH2 ¼

�
Cτμit
lu C�ð1Þμτ3i

lequ C�ð3Þμτ3i
lequ C�ð1Þμτit

lequ C�ð3Þμτit
lequ Cð1Þτμ3i

lq Cð3Þτμ3i
lq

�

×

0
BBBBBBBBBBBB@

−y2t =2 −6y2t 0 0 0 0

0 0 −y2t =4 0 0 0

0 0 −3y2t 0 0 0

0 0 0 −y2t =2 0 0

0 0 0 6y2t 0 0

0 0 0 0 −y2t =4 3y2t
0 0 0 0 3y2t =4 −9y2t

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

C�ð1Þτeit
lequ

C�ð3Þτeit
lequ

Ceτ3i
eq

Ceτit
eu

C�ð1Þτe3i
lequ

C�ð3Þτe3i
lequ

1
CCCCCCCCCCCCA

ðB10Þ

16π2 _Cð4Þeμii
lequH2 ¼

�
Cð1Þeτ3i
lequ Cð3Þeτ3i

lequ Cð1Þeτi3
lq Cð3Þeτi3

lq

�

×

0
BBB@

−y2t =4 0 0

−3y2t 0 0

0 −y2t =4 3y2t
0 −y2t =4 3y2t

1
CCCA
0
BBB@

Cτμi3
eq

Cð1Þτμ3i
lequ

Cð3Þτμ3i
lequ

1
CCCA

ðB11Þ
16π2 _C�ð4Þμeii

lequH2 ¼
�
C�ð1Þμτ3i
lequ C�ð3Þμτ3i

lequ Cð1Þτμ3i
lq Cð3Þτμ3i

lq

�

×

0
BBB@

−y2t =4 0 0

−3y2t 0 0

0 −y2t =4 3y2t
0 −y2t =4 3y2t

1
CCCA
0
BBB@

Ceτ3i
eq

C�ð1Þτe3i
lequ

C�ð3Þτe3i
lequ

1
CCCA:

ðB12Þ

For scalars with a singlet down quark (sensitivities in
Table IX), the mixing is

16π2 _Cð1Þeμii
ledqH2 ¼

�
Cð1Þeτi3
lq Cð3Þeτi3

lq Ceτi3
ledq

�

×

0
B@

−y2t 0

−3y2t 0

0 y2t

1
CA�Cτμi3

ledq

Cτμ3i
eq

�
ðB13Þ

16π2 _C�ð1Þμeii
ledqH2 ¼

�
Cð1Þτμ3i
lq Cð3Þτμ3i

lq C�μτi3
ledq

�

×

0
B@

−y2t 0

−3y2t 0

0 y2t

1
CA�C�τei3

ledq

Ceτi3
eq

�
ðB14Þ
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16π2 _Cð2Þeμii
ledqH2 ¼

�
Cð1Þeτi3
lq Cð3Þeτi3

lq Ceτi3
ledq

�

×

0
B@

y2t 0

−y2t 0

0 −y2t

1
CA�Cτμi3

ledq

Cτμ3i
eq

�
ðB15Þ

16π2 _C�ð2Þμeii
ledqH2 ¼

�
Cð1Þτμ3i
lq Cð3Þτμ3i

lq C�μτi3
ledq

�

×

0
B@

y2t 0

−y2t 0

0 −y2t

1
CA�C�τei3

ledq

Ceτi3
eq

�
ðB16Þ

The anomalous dimensions for the mixing into μ → e
vectors with SU(2) lepton singlets are (sensitivities in
Table XII)

16π2 _Cð1Þeμii
e2q2H2 ¼

�
Ceτ3i
eq Ceτi3

eq C�ð1Þτeit
lequ C�ð3Þτeit

lequ

�

×

0
BBB@
−4y2t 0 0 0

0 y2t 0 0

0 0 −y2t =2 −6y2t
0 0 −6y2t −72y2t

1
CCCA

0
BBBBB@

Cτμi3
eq

Cτμ3i
eq

Cð1Þτμit
lequ

Cð3Þτμit
lequ

1
CCCCCA

ðB17Þ

16π2 _Cð2Þeμii
e2q2H2 ¼

�
Ceτ3i
eq Ceτi3

eq

�� 4y2t 0

0 −y2t

��
Cτμi3
eq

Cτμ3i
eq

�

ðB18Þ

16π2 _Ceμii
e2u2H2 ¼

�
Ceτti
eu Ceτit

eu C�ð1Þτe3i
lequ C�ð3Þτe3i

lequ

�

×

0
BBB@

−2y2t 0 0 0

0 8y2t 0 0

0 0 y2t =2 −6y2t
0 0 −6y2t 72y2t

1
CCCA

×

0
BBBBB@

Cτμit
eu

Cτμti
eu

Cð1Þτμ3i
lequ

Cð3Þτμ3i
lequ

1
CCCCCA ðB19Þ

16π2 _Ceμii
e2d2H2 ¼ −

y2t
2
C�τei3
ledqC

τμi3
ledq; ðB20Þ

while for vectors with lepton doublets (sensitivities in
Table XIII) these are

16π2 _Cð1Þeμii
l2q2H2 ¼

�
Cð1Þeτ3i
lq Cð3Þeτ3i

lq Cð1Þeτi3
lq Cð3Þeτi3

lq Cð1Þeτit
lequ Cð3Þeτit

lequ

�

×

0
BBBBBBBBBB@

−y2t 0 0 0 0 0

0 −3y2t 0 0 0 0

0 0 4y2t 0 0 0

0 0 0 12y2t 0 0

0 0 0 0 y2t =4 −3y2t
0 0 0 0 −3y2t 36y2t

1
CCCCCCCCCCA

0
BBBBBBBBBBBB@

Cð1Þτμi3
lq

Cð3Þτμi3
lq

Cð1Þτμ3i
lq

Cð3Þτμ3i
lq

C�ð1Þμτit
lequ

C�ð3Þμτit
lequ

1
CCCCCCCCCCCCA

ðB21Þ

16π2 _Cð2Þeμii
l2q2H2 ¼

�
Cð1Þeτti
lq Cð3Þeτti

lq Cð1Þeτit
lq Cð3Þeτit

lq

�
0
BBB@

0 y2t 0 0

y2t −2y2t 0 0

0 0 0 −4y2t
0 0 −4y2t −8y2t

1
CCCA

0
BBBBBB@

Cð1Þτμi3
lq

Cð3Þτμi3
lq

Cð1Þτμ3i
lq

Cð3Þτμ3i
lq

1
CCCCCCA

ðB22Þ
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16π2 _Cð3Þeμii
l2q2H2 ¼

�
Cð1Þeτ3i
lq Cð3Þeτ3i

lq Cð1Þeτi3
lq Cð3Þeτi3

lq Cð1Þeτit
lequ Cð3Þeτit

lequ

�
0
BBBBBBBBBB@

0 −y2t 0 0 0 0

−y2t −2y2t 0 0 0 0

0 0 0 4y2t 0 0

0 0 4y2t −8y2t 0 0

0 0 0 0 −y2t =4 3y2t
0 0 0 0 3y2t −36y2t

1
CCCCCCCCCCA

0
BBBBBBBBBBBBB@

Cð1Þτμi3
lq

Cð3Þτμi3
lq

Cð1Þτμ3i
lq

Cð3Þτμ3i
lq

C�ð1Þμτit
lequ

C�ð3Þμτit
lequ

1
CCCCCCCCCCCCCA

ðB23Þ

16π2 _Cð4Þeμii
l2q2H2 ¼

�
Cð1Þeτ3i
lq Cð3Þeτ3i

lq Cð1Þeτi3
lq Cð3Þeτi3

lq

�

×

0
BBB@

y2t 0 0 0

−y2t 0 0

0 0 −4y2t 0

0 0 0 4y2t

1
CCCA

0
BBBBBB@

Cð1Þτμi3
lq

Cð3Þτμi3
lq

Cð1Þτμ3i
lq

Cð3Þτμ3i
lq

1
CCCCCCA

ðB24Þ

16π2 _Cð1Þeμii
l2u2H2 ¼

�
Ceτti
lu Ceτit

lu Cð1Þeτ3i
lequ Cð3Þeτ3i

lequ

�

×

0
BBB@
−8y2t 0 0 0

0 2y2t 0 0

0 0 −y2t =4 −3y2t
0 0 −3y2t −36y2t

1
CCCA

0
BBBBBB@

Cτμit
lu

Cτμti
lu

C�ð1Þμτ3i
lequ

C�ð3Þμτ3i
lequ

1
CCCCCCA

ðB25Þ

16π2 _Cð2Þeμii
l2u2H2 ¼

�
Cð1Þeτ3i
lequ Cð3Þeτ3i

lequ

�

×

�
−y2t =4 −3y2t
−3y2t −36y2t

� C�ð1Þμτ3i
lequ

C�ð3Þμτ3i
lequ

!
ðB26Þ

16π2 _Cð1Þeμii
l2d2H2 ¼ y2t

4
Ceτi3
ledqC

�μτi3
ledq

16π2 _Cð2Þeμii
l2d2H2 ¼ −

y2t
4
Ceτi3
ledqC

�μτi3
ledq : ðB27Þ

2. P6 × 4f 6 → 4f 8
Dimension six τ → l four fermion interactions renorm-

alize μ → e dimension eight operators via gauge loops
where one vertex is a flavor changing penguin [Eqs. (13)–
(15)], as depicted in Fig. 6(d). One-particle-irreducible

vertex corrections and “wave-function-like” contributions
(see Sec. II D for a discussion) give the following gauge
invariant anomalous dimensions, where we align four-
fermion interactions and penguins respectively in row
and column vectors,

16π2 _Cð1Þeμii
lequH2 ¼

�
Cð1Þeτii
lequ Cð3Þeτii

lequ Cð1Þτμii
lequ Cð3Þτμii

lequ

�

×

0
BBB@

3g02 0 0

−20g02 0 0

0 6g02 0

0 −20g02 36g02

1
CCCA
0
BBB@

Cτμ
He

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCA

ðB28Þ

16π2 _C�ð1Þμeii
lequH2 ¼

�
C�ð1Þμτii
lequ C�ð3Þμτii

lequ C�ð1Þτeii
lequ C�ð3Þτeii

lequ

�

×

0
BBB@

3g02 0 0

−20g02 0 0

0 6g02 0

0 −20g02 36g02

1
CCCA
0
BBB@

Ceτ
He

Cð1Þτμ
Hl

Cð3Þτμ
Hl

1
CCCA

ðB29Þ

16π2 _Cð2Þeμii
lequH2 ¼

�
Cð1Þeτii
lequ Cð3Þeτii

lequ Cð1Þτμii
lequ Cð3Þτμii

lequ

�

×

0
BBB@

−3g02 0 0

12g02 0 0

0 0 6g02

0 12g2 −20g02

1
CCCA
0
BBB@

Cτμ
He

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCA

ðB30Þ

16π2 _C�ð2Þμeii
lequH2 ¼

�
C�ð1Þμτii
lequ C�ð3Þμτii

lequ C�ð1Þτeii
lequ C�ð3Þτeii

lequ

�

×

0
BBB@
−3g02 0 0

12g02 0 0

0 0 6g02

0 12g2 −20g02

1
CCCA
0
BBB@

Ceτ
He

Cð1Þτμ
Hl

Cð3Þτμ
Hl

1
CCCA ðB31Þ
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16π2 _Cð3Þeμii
lequH2 ¼

�
Cð1Þeτii
lequ Cð3Þeτii

lequ Cð1Þτμii
lequ Cð3Þτμii

lequ

�

×

0
BBB@
−5g02=12 0 0

g02 0 0

0 −5g02=12 3g2=4

0 −4g02 −6g2

1
CCCA
0
BBB@

Cτμ
He

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCA

ðB32Þ

16π2 _C�ð3Þμeii
lequH2 ¼

�
C�ð1Þμτii
lequ C�ð3Þμτii

lequ C�ð1Þτeii
lequ C�ð3Þτeii

lequ

�

×

0
BBB@
−5g02=12 0 0

g02 0 0

0 −5g02=12 3g2=4

0 −4g02 −6g2

1
CCCA
0
BBB@

Ceτ
He

Cð1Þτμ
Hl

Cð3Þτμ
Hl

1
CCCA

ðB33Þ

16π2 _Cð4Þeμii
lequH2 ¼

�
Cð1Þeτii
lequ Cð3Þeτii

lequ Cð1Þτμii
lequ Cð3Þτμii

lequ

�

×

0
BBB@

g2=4 0 0

3g2 0 0

0 g2=4 −5g02=12
0 −2g2 −4g02

1
CCCA
0
BBB@

Cτμ
He

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCA

ðB34Þ

16π2 _C�ð4Þμeii
lequH2 ¼

�
C�ð1Þμτii
lequ C�ð3Þμτii

lequ C�ð1Þτeii
lequ C�ð3Þτeii

lequ

�

×

0
BBB@

g2=4 0 0

3g2 0 0

0 g2=4 −5g02=12
0 −2g2 −4g02

1
CCCA
0
BBB@

Ceτ
He

Cð1Þτμ
Hl

Cð3Þτμ
Hl

1
CCCA

ðB35Þ

16π2 _Cð1Þeμii
ledqH2 ¼

�
Ceτii
ledq Cτμii

ledq

�

×

�
3g02 0

0 6g02

�� Cτμ
He

Cð1Þeτ
Hl

�
ðB36Þ

16π2 _C�ð1Þμeii
ledqH2 ¼

�
C�μτii
ledq C�τeii

ledq

�

×

�
3g02 0

0 6g02

�� Ceτ
He

Cð1Þτμ
Hl

�
ðB37Þ

16π2 _Cð2Þeμii
ledqH2 ¼

�
Ceτii
ledq Cτμii

ledq

�

×

�
−3g2 0

0 6g02

�� Cτμ
He

Cð3Þeτ
Hl

�
ðB38Þ

16π2 _C�ð2Þμeii
ledqH2 ¼

�
C�μτii
ledq C�τeii

ledq

�

×
�
−3g2 0

0 6g02

�� Ceτ
He

Cð3Þτμ
Hl

�
ðB39Þ

16π2 _Cð1Þeμii
l2q2H2 ¼

�
Cð1Þeτii
lq Cð3Þeτii

lq Cð1Þτμii
lq Cð3Þτμii

lq

�

×

0
BBB@
g02 0 0 0

0 9g2 0 0

0 0 g02 0

0 0 0 9g2

1
CCCA

0
BBBBBB@

Cð1Þτμ
Hl

Cð3Þτμ
Hl

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCCCCA

ðB40Þ

16π2 _Cð2Þeμii
l2q2H2 ¼

�
Cð1Þeτii
lq Cð3Þeτii

lq Cð1Þτμii
lq Cð3Þτμii

lq

�

×

0
BBB@

0 g02 0 0

3g2 0 0 0

0 0 0 g02

0 0 3g2 0

1
CCCA

0
BBBBBB@

Cð1Þτμ
Hl

Cð3Þτμ
Hl

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCCCCA

ðB41Þ

16π2 _Cð3Þeμii
l2q2H2 ¼

�
Cð1Þeτii
lq Cð3Þeτii

lq Cð1Þτμii
lq Cð3Þτμii

lq

�

×

0
BBB@

0 3g2 0 0

g02 −10g2 0 0

0 0 0 3g2

0 0 g02 −10g2

1
CCCA

0
BBBBBB@

Cð1Þτμ
Hl

Cð3Þτμ
Hl

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCCCCA

ðB42Þ

16π2 _Cð4Þeμii
l2q2H2 ¼

�
Cð1Þeτii
lq Cð3Þeτii

lq Cð1Þτμii
lq Cð3Þτμii

lq

�

×

0
BBB@
3g2 0 0 0

0 g02 0 0

0 0 3g2 0

0 0 0 g02

1
CCCA

0
BBBBBB@

Cð1Þτμ
Hl

Cð3Þτμ
Hl

Cð1Þeτ
Hl

Cð3Þeτ
Hl

1
CCCCCCA

ðB43Þ

16π2 _Ceμii
e2u2H2 ¼

�
Ceτii
eu Cτμii

eu

�

×

�
4g02 0

0 4g02

��
Cτμ
He

Ceτ
He

�
ðB44Þ

16π2 _Ceμii
e2d2H2 ¼

�
Ceτii
ed Cτμii

ed

�

×

�
−2g02 0

0 −2g02

��
Cτμ
He

Ceτ
He

�
ðB45Þ
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16π2 _Cð1Þeμii
e2q2H2 ¼

�
Ceτii
eq Cτμii

eq

�

×

�
−g02 0

0 −g02

��
Cτμ
He

Ceτ
He

�
ðB46Þ

16π2 _Cð2Þeμii
e2q2H2 ¼

�
Ceτii
eq Cτμii

eq

�

×

�
−3g2 0

0 −3g2

��
Cτμ
He

Ceτ
He

�
ðB47Þ

16π2 _Cð1Þeμii
l2u2H2 ¼

�
Ceτii
lu Cτμii

lu

�

×

�
−4g02 0

0 −4g02

��
Cð1Þτμ
Hl

Cð1Þeτ
Hl

�
ðB48Þ

16π2 _Cð2Þeμii
l2u2H2 ¼

�
Ceτii
lu Cτμii

lu

�

×

�
−4g02 0

0 −4g02

��
Cð3Þτμ
Hl

Cð3Þeτ
Hl

�
ðB49Þ

16π2 _Cð1Þeμii
l2d2H2 ¼

�
Ceτii
ld Cτμii

ld

�

×

�
2g02 0

0 2g02

��
Cð1Þτμ
Hl

Cð1Þeτ
Hl

�
ðB50Þ

16π2 _Cð2Þeμii
l2d2H2 ¼

�
Ceτii
ld Cτμii

ld

�

×

�
2g02 0

0 2g02

��
Cð3Þτμ
Hl

Cð3Þeτ
Hl

�
ðB51Þ

3. Y6 × Y6 → P8

We here write the RGEs for the mixing of two dimension
six τ → l Yukawa [Eq. (18)] into the dimension eight
μ → e penguins [Eq. (44)]. More details can be found in
Sec. III A 1 of the text.

16π2 _Ceμ
e2H4D ¼ −Cτμ

eHC
�τe
eH ðB52Þ

16π2 _Cð1Þeμ
l2H4D

¼ 1

2
C�μτ
eH Ceτ

eH 16π2 _Cð2Þeμ
l2H4D

¼ 1

4
C�μτ
eH Ceτ

eH

ðB53Þ

APPENDIX C: LIMITS FROM B DECAYS

In thebodyof thepaper,we saw thatμ ↔ e processes have a
good sensitivity to products of τ ↔ l coefficients, which both
involve a top quark, via the fish diagram of Fig. 6(e).When the
topquark is in a doublet, these same τ ↔ l coefficientsmediate
B decays, which is discussed in this section.
We set limits on the τ ↔ l coefficients from their con-

tributions to leptonic and semileptonic B decays. They can

induce “neutral current” processes, such as Bd → τ�l∓,
which are absent in the SM, and also contribute to “charged
current” decays such as Bþ → τ̄ν, to which the SM does
contribute but with a different-flavored neutrino. Since our
coefficients are lepton-flavor-changing, they cannot interfere
with the StandardModel, so necessarily increase the branch-
ing ratios with respect to their SM expectation. This makes it
difficult to fit the current B anomalies with LFV operators,
becausemany of the anomalies are experimental deficitswith
respect to the SM predictions.
The list of decays that are included is given in Table XIV,

along with the value of the branching ratio (BR), which we
use to extract limits (A coefficient at its upper limit gives
this BR). For processes where the SM contribution is
negligible, this value is the experimental 95% C.L. upper
bound on the BR. In the case of SM processes where
prediction ≈ observation, this value is the SM predictionþ
theory uncertaintyþ 2σ experimental uncertainty. This
definition is used because we would like to remove the
SM part and require that the flavor-changing interactions
contribute less than the remainder. However, it can occur
that the SM prediction exceeds the experimental observa-
tion (as in some “B anomalies”).
To extrapolate the limits, we obtain from current exper-

imental constraints into the future, we suppose a factor of
10 improvement in the experimental sensitivity (and in the
theoretical precision), such that the future limits will be a
factor of ∼3 better.
Our limits are obtained using FLAVIO [49]. The limits

obtained from two-body leptonic decays were checked
analytically, using the well-known formula for the rate as a
function of operator coefficients at the experimental
scale mb,

ΓðB0 → τ̄μÞ ¼ E2
μf2B

16πv4
fðjCdbμτ

V;LXj2 þ jCdbμτ
V;RXj2ÞðEτ −EμÞ

þ ðjCdbμτ
S;RXj2þ jCdbμτ

S;LXj2Þ
m2

B

m2
b

ðEτ þEμÞþ…g;

ðC1Þ
where “…” are cross-terms and mμ is neglected. A
numerical limit can be obtained by, for instance, comparing
to the experimental rate for Bþ → τ̄ν.
The coefficients are run from mb → ΛNP ¼ 4 TeV with

the one-loop RGEs of QCD (which shrinks scalar coef-
ficients by a factor ∼3=5), with tree-level matching to
SMEFT operators when passing mW . Electroweak running
is neglected, except in the case of tensor to scalar mixing in
SMEFT6 [where CSðmWÞ ∼ 0.3CTðΛNPÞ], which, for in-

stance, mixes single-top tensors Oð3Þτe3u
lequ into scalars that

induce Bþ → ēν.

6The tensor to scalar mixing below mW in QED is negligible
for “charged-current” tensors involving a b and a ν.
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APPENDIX D: TABLE OF SENSITIVITIES

In Tables XV–XVI we compare the sensitivities of τ ↔ l processes and μ → e processes on the product of two dimension
six operator coefficients in cases where the difference in sensitivity is marginal. More details are provided in the captions.

TABLE XIV. Current limits (c) on τ ↔ e and τ ↔ μ coefficients of SMEFToperators, at 4 TeV, arising from the B
decays given in the third column. The limits saturate the branching ratio given in the last column (which may not be
the cited experimental limit, see discussion in Appendix C). Limits on vector coefficients apply for permuted lepton
and quark flavor indices, scalars apply as given.

Coefficient Limit Process BR

Ceτ32
eq ,Cð1Þeτ32

lq þ Cð3Þeτ32
lq

2.3 × 10−3ðcÞ Bþ → K þ τ�e∓ <4.4 × 10−5 [53]

Ceτ31
eq ,Cð1Þeτ31

lq þ Cð3Þeτ31
lq

2.3 × 10−3ðcÞ B0
d → τ�e∓ <3.0 × 10−5 [54]

Cμτ32
eq ,Cð1Þμτ32

lq þ Cð3Þμτ32
lq

2.3 × 10−3ðcÞ B0
s → τ�μ∓ <4.3 × 10−5 [55]

Cμτ31
eq ,Cð1Þμτ31

lq þ Cð3Þμτ31
lq

1.5 × 10−3ðcÞ B0
d → τ�μ∓ <1.2 × 10−5 [55]

Ceτd3
ledq; C

τed3
ledq 3.4 × 10−4ðcÞ B0

d → e�τ∓ <3.0 × 10−5 [54]

Cμτd3
ledq; C

τμd3
ledq

2.2 × 10−4ðcÞ B0
d → μ�τ∓ <1.2 × 10−5 [55]

Cμτs3
ledq; C

τμs3
ledq

3.3 × 10−4ðcÞ B0
s → μ�τ∓ <4.3 × 10−5 [55]

Cð1Þlτ3u
lequ

4.5 × 10−4ðcÞ B− → τν̄ 1.4 × 10−4 [49,56]

Cð1Þτe3u
lequ

5.8 × 10−5ðcÞ B− → eν̄ ≤1.2 × 10−6 [57]

Cð1Þτμ3u
lequ

4.3 × 10−5ðcÞ B− → μν̄ ≤1.0 × 10−6 [58]

Cð1Þlτ3c
lequ

1.0 × 10−2ðcÞ B−
c → τν̄ 0.1[49]

Cð1Þτe3c
lequ

9.0 × 10−3ðcÞ B0
d → Deν̄ ≤3.0 × 10−2 [49]

Cð1Þτμ3c
lequ

9.0 × 10−3ðcÞ B0
d → Dμν̄ ≤3.1 × 10−2 [49]

Cð3Þlτ3u
lequ

1.8 × 10−3ðcÞ B− → τν̄ 1.4 × 10−4 [49,56]

Cð3Þτe3u
lequ

2.4 × 10−4ðcÞ B− → eν̄ ≤1.2 × 10−6 [57]

Cð3Þτμ3u
lequ

1.8 × 10−4ðcÞ B− → μν̄ ≤1.0 × 10−6 [58]

Cð3Þlτ3c
lequ

5.0 × 10−3ðcÞ Rτ=lðB → D�lν̄Þ 0.28 [49]

Cð3Þτe3c
lequ

5.3 × 10−3ðcÞ B0
d → D�eν̄ ≤7.3 × 10−2 [49]

Cð3Þτμ3c
lequ

6.4 × 10−3ðcÞ B0
d → D�μν̄ ≤7.7 × 10−2 [49]

TABLE XV. Pair of τ ↔ lpenguin and four fermiondimension six operators that generateμ → e scalar/tensor dimension eight operators

witha singletuanddquark.The future (f)“limits”BðfÞ
τ↔l on τ ↔ lvectorsandscalars are fromtheupperboundson theLFVdecays τ → lρðηÞ

andτ → πl, respectively(adapted from[48]).The limitsonpenguins followfromtheircontribution tofour-leptonvector interactionsτ → 3l.

The sameboundapplies to thedimension sixoperatorswithμ ↔ e interchanged.The sensitivitiesBðfÞ
μ→e arise fromfutureμ → e conversion.

Bolded pairs indicate that the sensitivity of μ → e is better than the one arising from direct τ ↔ l searches [see Eq. (101)].

Coefficients BðfÞ
τ↔eB

ðfÞ
τ↔μ BðfÞ

μ→e

Cð1Þeτ1u
lequ Cτμ

He
8.3 × 10−5ðfÞ × 1.2 × 10−4ðfÞ 5 × 10−9

Cð3Þeτ1u
lequ Cτμ

He
7.7 × 10−5ðfÞ × 1.2 × 10−4ðfÞ 2 × 10−9

ðCð1Þτe1u
lequ Þ�Cτμ

Hlð1Þ 8.3 × 10−5ðfÞ × 1.0 × 10−4ðfÞ 1 × 10−8

ðCð3Þτe1u
lequ Þ�Cτμ

Hlð1Þ 7.7 × 10−5ðfÞ × 1.0 × 10−4ðfÞ 2 × 10−9

ðCð1Þτe1u
lequ Þ�Cτμ

Hlð3Þ 8.3 × 10−5ðfÞ × 1.0 × 10−4ðfÞ 1 × 10−8

ðCð3Þτe1u
lequ Þ�Cτμ

Hlð3Þ 7.7 × 10−5ðfÞ × 1.0 × 10−4ðfÞ 3 × 10−10

Ceτd1
ledqC

τμ
He 8.3 × 10−5ðfÞ × 1.2 × 10−4ðfÞ 5 × 10−9

ðCτed1
ledqÞ�Cτμ

Hlð1Þ 8.3 × 10−5ðfÞ × 1.0 × 10−4ðfÞ 1 × 10−8

ðCτed1
ledqÞ�Cτμ

Hlð3Þ 8.3 × 10−5ðfÞ × 1.0 × 10−4ðfÞ 1 × 10−8
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