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Study of polarized proton-proton elastic scattering in the Coulomb-nuclear interference region
allows one to measure the forward hadronic single spin-flip amplitude including its phase. However,
in a precision experimental data analysis, a phase-shift correction δC due to the long distance Coulomb
interaction should be taken into account. For unpolarized scattering, δC is commonly considered as well
established. Here, we evaluate the Coulomb phase shifts for the forward elastic proton-proton single spin-
flip electromagnetic and hadronic amplitudes. Only a small discrepancy between the spin-flip and nonflip
phases was found which can be neglected in the high-energy forward elastic pp studies involving
transverse spin. Nonetheless, the effective alteration of the hadronic spin-flip amplitude by the long-
distance electromagnetic corrections can be essential for interpretation of the experimental results.
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I. INTRODUCTION

Since electromagnetic amplitude can substantially con-
tribute to the elastic forward proton-proton (pp) scattering
at high energies, experimental study of the Coulomb-
nuclear interference (CNI) in the pp scattering allows
one to reveal the hadronic amplitude structure. For the
unpolarized scattering, the CNI pp amplitude can be
approximated as [1]

ϕCNI
pp ðs; tÞ ¼ Imϕðs; 0Þ

�
ðiþ ρÞeBt=2 þ tc

t
eiδCþB̃t=2

�
: ð1Þ

Here, ϕðs; tÞ stands for the hadronic amplitude and the
electromagnetic component is identified by tc=t term,
where tc ¼ −8πα=σtotðsÞ, α is the fine structure constant
and σtot is the total pp cross section. Generally, ϕCNI

pp and
the parameters used are functions of total energy squared s
and momentum transfer squared t.
In this paper, numerical estimates will be done for a

100 GeV proton beam (typical for the Relativistic
Heavy Ion Collider and the future Electron Ion Collider)
scattering off a fixed proton target. Therefore, ρ ¼ −0.079
[2], σtot ¼ 39.2 mb [2], tc ¼ −1.86 × 10−3 GeV2, and
B ¼ 11.2 GeV−2 [3]. The electromagnetic form factor is
expressed,

B̃ ¼ 2r2E=3 ¼ 12.1 GeV−2; ð2Þ

via rms charge radius of a proton, rE ¼ 0.841 fm [4].
For the unpolarized scattering, a theoretical understand-

ing of the Coulomb phase shift δCðtÞ was developed in
many works, particularly in [5]. Following Ref. [6] and
neglecting terms ∼t2 ln t,

δCðtÞ=α ¼ − ln ½ðBþ B̃Þjtj=2� − γ ð3Þ

þ B̃t
2

�
ln
B̃jtj
2

þ γ þ ln 2 − 1

�
−

B

Bþ B̃

Bt
2
; ð4Þ

where γ ¼ 0.5772 is Euler’s constant. The leading order
approximation (3) is commonly used in experimental data
analysis for many years. The next to leading order
corrections (4) can be disregarded in this paper.
It was shown in Ref. [7] that the Coulomb phase should

be independent of the helicity structure of the experimen-
tally measured scattering amplitudes though subsequent
determination of the pure hadronic amplitudes may involve
order-α corrections resulting from the spin of the particles
involved.
Recently, long-distance electromagnetic corrections,

including the absorption, to the spin-flip amplitudes were
derived [8] in the eikonal model. However, the results were
presented as Fourier integrals (which were calculated
numerically) and, thus, cannot be implemented, in a simple
way, to an experimental data analysis. Also, it was noted [8]
that the corrections to the spin-flip Coulomb phase “are so
large, that hardly can be treated as a phase shift”, which
may be understood as a suggestion to obsolete a commonly

*poblaguev@bnl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 096039 (2022)

2470-0010=2022=105(9)=096039(5) 096039-1 Published by the American Physical Society

https://orcid.org/0000-0003-3755-8270
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.096039&domain=pdf&date_stamp=2022-05-31
https://doi.org/10.1103/PhysRevD.105.096039
https://doi.org/10.1103/PhysRevD.105.096039
https://doi.org/10.1103/PhysRevD.105.096039
https://doi.org/10.1103/PhysRevD.105.096039
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


used expression for the analyzing power ANðtÞ given in
Eq. (7) and, consequently, to reanalyze all previous
measurements of ANðtÞ.
Here, we found compact algebraic approximations for

the long-distance electromagnetic corrections, separately,
to the spin-flip Coulomb phase and to the hadronic spin-flip
amplitude parameter r5 [Eq. (6)]. It was shown that the
difference between the spin-flip and nonflip Coulomb
phases is small. Although, the effective correction to Re
r5 was found to be essential for the experimental accuracy
already achieved [9], it can be applied directly to the value
of r5 obtained in experimental data fit. The corresponding
changes in the Regge fit [9] of the measured values of r5ðsÞ
will be discussed.

II. HIGH-ENERGY FORWARD ELASTIC pp
ANALYZING POWER

For elastic scattering p↑p of a vertically polarized proton
beam off a proton target, the analyzing power AN is defined
by the interference of the nonflip (nf) and spin-flip (sf)
helicity amplitudes [7,10,11]

AN ¼ 2Im½ϕ̃sfϕ
�
nf þ ϕsfϕ̃

�
nf þ ϕsfϕ

�
nf �

jϕnf þ ϕ̃nf j2
: ð5Þ

Here, hadronic ϕ and electromagnetic ϕ̃ parts of an
amplitude are discriminated by tilde symbol.
For t → 0, there is a simple relation between sf and nf

amplitudes [11],

ϕ̃sf=ϕ̃nf ¼
κp
2

ffiffiffiffiffi
−t

p
=mp; ϕsf=ϕnf ¼

r5
iþρ

ffiffiffiffiffi
−t

p
=mp; ð6Þ

where mp is a proton mass, κp ¼ μp − 1 ¼ 1.793 is
anomalous magnetic moment of a proton, and complex
r5 ¼ R5 þ iI5, jr5j ∼ 0.02 [9], parameterize hadronic spin-
flip amplitude [11]. Omitting some small corrections [12],
the analyzing power can be approximated [11] as

ANðtÞ¼
ffiffiffiffiffi
−t

p
mp

×
½κpð1−δemC ρÞ−2ðI5−δhCR5Þ�tc=t−2ðR5þρI5Þ

ðtc=tÞ2−2ðρþδCÞtc=tþ1þρ2
;

ð7Þ

where δC is given in Eq. (3) while δemC and δhC are spin-flip
phase shifts in the ϕ̃sfϕ

�
nf and ϕsfϕ̃

�
nf interference terms,

respectively.
All recent experimental studies [9,13–15] of the forward

elastic proton-proton ANðtÞ had been done using Eq. (7)
and assuming δemC ¼ δhC ¼ δC.

III. SPIN-FLIP COULOMB PHASES IN ELASTIC
p↑p ANALYZING POWER

Spin-flip phases, δemC and δhC, can be evaluated in a simple
way using expressions derived in Ref. [6] to study δCðtÞ. To
provide a framework for the calculations, some results of
Ref. [6] are briefly overviewed in Sec. III A.

A. Theoretical approach used [6] to calculate Coulomb
corrections to the nonflip amplitudes

Considering multiple photon exchange in the elastic pp
scattering and neglecting the higher order corrections
Oðα3Þ, the net long-range Coulomb (C) amplitude (see
Fig. 1) can be presented as [6]

fCðqTÞ ¼
i
2π

Z
d2beiq⃗T b⃗½1 − eiχ

nf
C ðbÞ�; ð8Þ

¼ f̂CðqTÞ þ
i
2π

Z
d2beiq⃗T b⃗½χCðbÞ�2=2 ð9Þ

where qT ≈
ffiffiffiffiffi
−t

p
is transverse momentum and the eikonal

phase

χnfC ðbÞ ¼
1

2π

Z
d2qTf̂CðqTÞe−iq⃗T b⃗; ð10Þ

is a Fourier transform of the Coulomb part of the amplitude
calculated in Born approximation [6]

f̂CðqTÞ ¼
−2α

q2T þ λ2
e−B̃q

2
T=2: ð11Þ

Here, f̂C is defined as sum of two nonflip helicity
amplitudes hþ þ j þ þi and hþ − j þ −i [11]. A small
photon mass λwas included to Eq. (11) to keep the integrals
finite.
The multiphoton exchange results in an acquired

Coulomb phase ΦCðqTÞ

fCðqTÞ ¼ f̂CðqTÞeiΦCðqTÞ: ð12Þ

Assuming ΦCðqTÞ ≪ 1, one finds

ΦCðqTÞ ¼ −i½fCðqTÞ=f̂CðqTÞ − 1� ð13Þ

(C) (N) (NC)

FIG. 1. Three types of the elastic pp scattering: (C) electro-
magnetic including multiphoton exchange, (N) bare hadronic,
and (NC) combined hadronic and electromagnetic.
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¼ 1

4π

Z
d2q1d2q2δðq⃗T − q⃗1 − q⃗2Þ

f̂Cðq1Þf̂Cðq2Þ
f̂CðqTÞ

; ð14Þ

Similarly, to calculate the Coulomb corrections to the
hadronic amplitude,

f̂NðqTÞ ¼
ðiþ ρÞσtot

4π
e−Bq

2
T=2; ð15Þ

one can use the following relations,

fNCðqTÞ ¼
i
2π

Z
d2beiq⃗T b⃗γnfN ðbÞeiχnfC ðbÞ ð16Þ

¼ f̂NðqTÞ þ
i
2π

Z
d2beiq⃗T b⃗γnfN χ

nf
C ; ð17Þ

γnfN ðbÞ ¼
−i
2π

Z
d2qTe−iq⃗T b⃗f̂NðqTÞ; ð18Þ

ΦNCðqTÞ ¼ −
α

π

Z
d2q1

q21 þ λ2
exp ½−ðBþ B̃Þq21=2þ Bq⃗1q⃗T �:

ð19Þ

Equations (14) and (19) were analytically integrated in
Ref. [6]. Both, ΦCðqTÞ and ΦNCðqTÞ, contain the divergent
term ln q2=λ2 which, however, cancels in final expression
(3) for the Coulomb phase difference

δCðtÞ ¼ ΦCðtÞ −ΦNCðtÞ: ð20Þ

B. Calculation of the spin-flip Coulomb phase

To find the Coulomb corrected spin-flip amplitudes
fsfCðqTÞ and fsfNCðqTÞ, one can use the following eikonal
phases [16]

χsfCðbÞ ¼
1

2π

Z
d2qe−iq⃗ b⃗ ×

κp
2mp

ðn⃗ q⃗Þf̂CðqÞ=2 ð21Þ

and

γsfNðbÞ ¼
−i
2π

Z
d2qe−iq⃗ b⃗ ×

r5
ðiþ ρÞmp

ðn⃗ q⃗Þf̂NðqÞ=2; ð22Þ

respectively. Here, f̂C=2 and f̂N=2 correspond to the
nonflip amplitudes used in Eq. (6), and the azimuthal
dependence of the scattering is defined by n⃗, a unit vector
orthogonal to the beam momentum and the proton spin.
Considering the spin flip amplitudes for q⃗T ¼ n⃗qT, one

can readily determine the spin-flip phase Φsf
CðqTÞ by

including factor 2ðq⃗T q⃗1Þ=q2T or 2ðq⃗T q⃗2Þ=q2T to integral
(14). Since q⃗1q⃗T þ q⃗2q⃗T ¼ q2T , we immediately find

Φsf
CðqTÞ ¼ ΦCðqTÞ; ð23Þ

which leads to

δemC ðtÞ ¼ δCðtÞ: ð24Þ

To calculate Φsf
NCðqTÞ, factor ðq⃗2q⃗TÞ=q2T ¼ 1 −

ðq⃗1q⃗TÞ=q2T should be applied in Eq. (19), which gives

Φsf
NCðqTÞ ¼ ΦNCðqTÞ þ

αB

Bþ B̃
× Δsf

NCðηÞ; ð25Þ

Δsf
NCðηÞ ¼

Z
∞

0

du
η
e−u

2=4η

Z
π

−π

dφ
2π

cosφeu cosφ; ð26Þ

η ¼ B

Bþ B̃
×
Bq2T
2

≈ Bq2T=4: ð27Þ

Expanding

eu cosφ cosφ →
X∞
k¼0

uk

k!
coskþ1 φ; ð28Þ

and using following definite integrals [17]

Z
π

−π
cos2nþ1 xdx ¼ 0; ð29Þ

Z
π

−π
cos2n xdx ¼ π

22n−2
ð2n − 1Þ!
ðn − 1Þ!n! ; ð30Þ

Z
∞

0

x2nþ1e−px
2

dx ¼ n!
2pnþ1

; ð31Þ

one arrives at

Δsf
NCðηÞ ¼

X∞
k¼0

ηk

ðkþ 1Þ! ¼
eη − 1

η
: ð32Þ

Thus,

δhCðtÞ ¼ δCðtÞ −
αB

Bþ B̃

eη − 1

η
: ð33Þ

Evaluating δemC and δhC, we did not distinguish between
nonflip B and spin-flip Bsf hadronic slopes as well as
between B̃ [Eq. (2)] and

B̃sf ¼ ðr2E þ r2MÞ=3 ¼ 12.25� 0.25 GeV−2; ð34Þ

where rM ¼ 0.851� 0.026 fm [18] is rms magnetic radius
of a proton.
For small t, i.e., omitting terms approaching zero if

t → 0, one finds
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δemC ðt; B̃sf ; BÞ ¼ δCðtÞ þ α ln
Bþ B̃

Bþ B̃sf
; ð35Þ

δhCðt; B̃; BsfÞ ¼ δCðtÞ −
αBsf

Bsf þ B̃
þ α ln

Bþ B̃

Bsf þ B̃
; ð36Þ

Since rM ¼ rE within the current experimental accuracy of
about 2%, we cannot distinguish between B̃ and B̃sf . Also,
there are arguments [8] to assume that Bsf ≈ B. Although in
an extreme case, Bsf ¼ 2B (e.g., considered in Ref. [19] for
proton-carbon scattering), δhC − δC can be increased by
about a factor of 2, the effect will be invisible in the
expression for analyzing power due to the strong suppres-
sion of term δhCR5 in (7) by a small value of jR5j≲ 0.02.

C. The electromagnetic correction to r5
In Ref. [8], it was pointed out that the hadronic spin-flip

amplitude should also include the spin-flip photon
exchange, i.e., one should replace

γsfNðbÞ → γsfNðbÞ þ iχsfCðbÞγnfN ðbÞ: ð37Þ

The effective spin-flip amplitude rγ5 can be related to the
integral

rγ5 − r5
iþ ρ

n⃗ q⃗
2mp

¼ i
2π

Z
d2beiq⃗T b⃗χsfCðbÞγnfN ðbÞ; ð38Þ

which is similar to that of calculated in (25)–(32). Thus,

rγ5 ¼ r5 þ iðiþ ρÞΔγ ≈ r5 − Δγ; ð39Þ

Δγ ¼
κp
2

αB

ðBþ B̃sfÞ
≈ 0.003: ð40Þ

For the modified rγ5, Coulomb phase Φsf
NCðtÞ is the same as

in Eq. (25).
Actually rγ5 had being determined in all previous

measurements of r5.

IV. SUMMARY

The technique developed in Ref. [6] was adapted for
calculation of the Coulomb phase shifts in the spin-flip
terms ϕ̃sfϕ

�
nf (24) and ϕsfϕ̃

�
nf (33) of ANðtÞ.

Small difference, δhC − δC ∼ −α=2, was found for the
forward elastic pp scattering, jtj≲ 0.05 GeV2 (η < 0.1).
Since jr5j≲ 0.02, such a discrepancy can be neglected
in Eq. (7).
Thus, assuming spin-dependent measurements at high

energies, we can agree with the approximation for the
Coulomb phases

δemC ¼ δhC ¼ δC ¼ −α ×

�
ln
ðBþ B̃Þjtj

2
þ γ

�
; ð41Þ

suggested in Ref. [11].
Spin-flip photon exchange (37) results in an effective

correction Δγ ≈ 0.003 to real part of the hadronic spin-flip
parameter r5 in Eq. (7). The correction found is about triple
of the experimental accuracy for R5 in the HJET measure-
ments [9]. Since Δγ is independent of the experimental data
analysis, any already published experimental value rγ5 of the
hadronic spin-flip amplitude, in particular given in [9,15],
can be easily adjusted to a bare one,

Rer5 ¼ Rerγ5 þ
κp
2

αB

Bþ B̃sf
: ð42Þ

This might be especially important for a study of r5ðsÞ
dependence on energy, e.g., in the Regge fit [8,9].
To illustrate a possible effect of corrections (42), the

Regge fit [9] of the HJET values of r5 (for
ffiffiffi
s

p ¼ 13.76 and
21.92 GeV),

σtotðsÞ × r5ðsÞ ¼
X

R¼P;R�
fR5 RðsÞ; ð43Þ

was revisited. In Ref. [9], the spin-flip Reggeon, RþðsÞ and
R−ðsÞ, and Pomeron (in a Froissaron parametrization),
PðsÞ, functions were approximated by the nonflip ones [2].
After applying corrections (42), the fit χ2 ¼ 2.2 (NDF ¼ 1)
was improved to χ2 ¼ 0.9 and the central values of
couplings fR5 were shifted to

fP5 ¼ 0.045� 0.002stat � 0.003syst → 0.053; ð44Þ

−fRþ
5 ¼ 0.032� 0.007stat � 0.014syst → 0.069; ð45Þ

fR
−

5 ¼ 0.622� 0.023stat � 0.024syst → 0.654: ð46Þ

A thorough refit of the r5 measurements, including
the STAR

ffiffiffi
s

p ¼ 200 GeV result [15], will be done
elsewhere.
It is interesting to note that an absorptive correction,

asf ¼ αB=ðBþ B̃sfÞ; ð47Þ

to the electromagnetic spin-flip form factor,
F sf

ppðtÞ → F sf
ppðtÞ × ð1þ asft=tcÞ, results [12] in the same

effective alteration of r5 as shown in Eq. (42).
In Ref. [8], to calculate absorptive corrections, graphs in

Fig. 1 were regrouped. In this approach, a spin-flip photon
contribution [Eq. (37)] to hadronic spin-flip amplitude fsfN
was not considered. Nonetheless, the term χsfCðbÞγnfN ðbÞ
appeared as an absorptive correction to electromagnetic
spin-flip amplitude fsfCðqTÞ. The corresponding equation
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was integrated numerically in [8]. However, using result of
calculation (38), one can readily find absorption parameter
asf to be in exact agreement with Eq. (47). Thus, we come
to a conclusion [8] that Coulomb corrections to the
hadronic spin-flip amplitude (42) and hadronic (absorption)
correction to the spin-flip Coulomb amplitude (47) are
two equivalent descriptions of the same final-state electro-
magnetic interaction of polarized protons.
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