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Oscillons are spatially localized, time-periodic, and long-lived configurations that were
primarily proposed in scalar field theories with attractive self-interactions. In this paper, we demonstrate
that oscillons also exist in the low-energy effective theory of an interacting massive (real) vector field. We
provide two types of vector oscillons with vanishing orbital angular momentum, and approximately
spherically symmetric energy density, but not field configurations. These are: (1) “directional” oscillons
(linearly polarized), with vanishing total intrinsic spin, and (2) “spinning” oscillons (circularly
polarized) with a macroscopic intrinsic spin equal to ℏ× number of particles in the oscillon. In contrast
to the case with only gravitational interactions, the two oscillons have different energy at a fixed particle
number even in the nonrelativistic limit. By carrying out relativistic 3þ 1d simulations, we show that
these oscillons can be long-lived (compared to the oscillation time for the fields), and can arise
from a range of Gaussian initial spatial profiles. These considerations make vector oscillons potentially
relevant during the early universe and in dark photon dark matter, with novel phenomenology related to
their polarization.

DOI: 10.1103/PhysRevD.105.096037

I. INTRODUCTION

Nontopological solitons arise due to a balance between
attractive self-interaction and dispersion in field theories.
They have been realized in a broad variety of contexts in
nature, from water waves [1] to Bose-Einstein condensates
(BEC) [2–5]. They might also play a role in astrophysics
and cosmology, with novel signatures in phase transitions
in the early universe [6–10], in the formation of structure
and gravitational clustering [11–17], production of gravi-
tational waves [18–26] and electromagnetic radiation
[27–30], formation of black holes [31–35], and even play
a role in baryogenesis [36,37]. While massive scalar fields
and their solitons have been explored extensively in the
literature (for reviews, see [38–40]), nature provides us
with many examples of higher spin fields. For instance, W
and Z bosons in the Standard Model of particle physics, or
speculatively, as (some or all of) dark matter [41–49].
In this letter we study nontopological solitons in real-

valued massive vector fields with attractive self-interactions.
These spatially localized solitons are “maximally” polarized
(with respect to a particular direction), i.e., either the vector
field configuration is primarily linearly polarized which
we call a “directional” oscillon, or it is mostly circularly
polarized that we refer to as a “spinning” oscillon (see Fig. 1
for a quick description). Such objects might be present in the

postinflationary universe or constitute part of the present-day
dark matter, and can provide novel gravitational and non-
gravitational signatures revealing the intrinsic spin of the
underlying massive (dark) vector field.
Although vector solitons can be supported solely by

gravitational interactions [50,51], self-interactions may
appear naturally in the low-energy limit of an interacting
vector field theory and play an important role in their
phenomenology. For example, in the early universe, they
can have a dominant effect in early structure formation
[9,52–54]. As we will show, self-interactions can also
explicitly lift the degeneracy in energy between the
directional and spinning oscillons, potentially determining
which type of oscillon can form more easily. Furthermore,
matter-wave solitons in BECs [2–5] and electromagnetic
solitons in nonlinear media (optical fibres) [55–59] owe
their existence to attractive self-interactions.
In what follows, we begin by studying vector oscillons

using nonrelativistic approximations, and then perform
fully relativistic numerical simulations to confirm their
stability, longevity, etc. Finally, we summarize our results
and discuss potential implications. Additional details and
results are provided in the Appendixes A–D. We work in
natural units and adopt mostly plus signature for the
metric.

II. MODEL

We study a real-valued massive spin-1 field Wμ with the
Lagrangian
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L ¼ −
1

4
XμνXμν − VðWμWμÞ; ð1Þ

where Xμν ¼ ∂μWν − ∂νWμ and the potential

VðWμWμÞ ¼ m2

2
WμWμ −

λ

4
ðWμWμÞ2 þ γ

6
ðWμWμÞ3

þ � � � ð2Þ

with positive couplings λ and γ. Such effective potentials,
for example, could arise in the low-energy regime of
interacting massive vector fields [60]. The Euler-
Lagrange equations are

∇2W0−∂t∇ ·W−2V 0ðWμWμÞW0¼ 0;

∂2
tW−∂t∇W0þ∇× ð∇×WÞþ2V 0ðWμWμÞW¼ 0: ð3Þ

Using the Noether energy-momentum tensor Tμν ¼
∂νWσXμσ þ ημνL, the energy E≡ R

d3xT00 is given by

E¼
Z

d3x

�
1

2
ð _W−∇W0Þ2þ

1

2
ð∇×WÞ2þ2W2

0V
0 þV

�
;

ð4Þ

where we have used the equations of motion and also
discarded a boundary term to get the explicit expression
above. Furthermore, the conserved four-current associated
with Lorentz invariance is Mμνσ ¼ Lμνσ þ Sμνσ . We have
separated out Lμνσ ¼ xνTμσ − xσTμν and Sμνσ ¼ XμνWσ −
XμσWν so that the orbital and spin angular momentum
densities are Li ¼ ð1=2ÞϵijkL0jk and Si ¼ ð1=2ÞϵijkS0jk,
respectively. In particular, the spin density is

S ¼ W × ð _W −∇W0Þ; ð5Þ

which will play a pivotal role in discriminating the direc-
tional and spinning oscillon configurations.

III. NONRELATIVISTIC LIMIT

It turns out to be sufficient to consider the nonrelativistic
regime of the theory in the sense that j∇2=m2j≲ 10−2. We
express the real vector fieldW in terms of a complex vector
field Ψ, i.e.,

Wðt; xÞ≡
ffiffiffiffi
2

m

r
ℜ½Ψðt; xÞe−imt�; ð6Þ

and W0ðt; xÞ≡
ffiffiffiffiffiffiffiffiffi
2=m

p
ℜ½ψ0ðt; xÞe−imt�, where the depend-

ence of Ψ and ψ0 on time is assumed to be weak. Upon
plugging this expansion into the action, dropping all terms
with the oscillatory factors e�inmt (n ≥ 2), and keeping only
the leading-order terms in time and spatial derivatives ofΨ
(see, for example, [13,50,51,61–63]), we get the following
effective nonrelativistic Lagrangian density:

L ¼ ℜ½iΨ† _Ψ� − 1

2m
∇Ψ† ·∇Ψ − VnlðΨ†;ΨÞ; ð7Þ

where we have solved for the constraint equation (to
working order in j∇2=m2j), ψ0 ¼ i∇ ·Ψ=m and the non-
linear potential is

VnlðΨ†;ΨÞ ¼ −
3λ

8m2
ðΨ†ΨÞ2 þ 5γ

12m3
ðΨ†ΨÞ3

þ
�

λ

8m2
−

γ

4m3
ðΨ†ΨÞ

�
ðS · SÞ: ð8Þ

Note that we are able to write Vnl in terms ofΨ†Ψ, and the
spin density S ¼ iΨ ×Ψ†, which is the nonrelativistic,
slowly varying part of (5). This spin density can also be
obtained directly from the rotational invariance of the
nonrelativistic action for Ψ. The appearance of S · S in
Vnl suggests that the spin density will play a role in
determining the energy of our solutions. This energy is
given by

E ¼
Z

d3x

�
1

2m
∇Ψ† · ∇Ψþ Vnl

�
; ð9Þ

which is the sum of the kinetic and potential energy, and
can be obtained from the nonrelativistic action. The total
energy, E ¼ mN þ E, includes the rest mass energy and
is the appropriate approximation to Eq. (4). Here, N ≡R
d3xΨ†Ψ is the conserved particle number resulting from

the Ψ → eiαΨ symmetry of nonrelativistic Lagrangian (7).
The equation of motion forΨ is a nonlinear Schrödinger

equation i∂tΨ ¼ −∇2Ψ=ð2mÞ þ ∂Ψ†Vnl.

FIG. 1. The directional and spinning oscillons obtained from
relativistic simulations. The energy densities are approximately
spherically symmetric, but the field configurations are not. For
the spinning oscillon (right), the vector field at each point moves
in a circle, resulting in a macroscopic intrinsic spin. For the
directional oscillon (left), the field oscillates along an approx-
imately fixed direction and has zero spin.
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IV. OSCILLON SOLUTIONS

The ground state solution of this nonlinear Schrödinger
equation with a fixed particle number N ¼ N⋆ can be
obtained by extremizing E þ μðN − N⋆Þ where μ is a
Lagrange multiplier. Such a solution must have the form

Ψðt; xÞ ¼ ΨðxÞeiμt; ð10Þ

where the profile Ψ satisfies

−μΨ ¼ −
1

2m
∇2Ψþ ∂Ψ†Vnl: ð11Þ

Note that in a Cartesian basis,ΨðxÞ ¼ P
3
j¼1 ψ jðxÞeiϕjðxÞx̂j,

and ψ j and ϕj are real-valued functions. The profile
equation (11) contains a set of six equations for these
six real functions.
We now hunt for the lowest energy, spatially localized

solutions for a fixed particle number, keeping in mind that
there might be multiple solutions that are the local minima
of the energy. We do not know a prioriwhich one is the true
ground state.
The spatial variation in the phases ϕjðxÞ costs gradient

energy, so we will set these to be spatially independent.
Thereafter, by shifting the time coordinate, we can always
set one of these three phases (say ϕz) to zero. We are then
left with the task of determining two phases ϕx;y and three
spatially varying functions ψx;y;z.
Like the phase, the spatial variation of the direction of the

vector field also costs gradient energy. As a result, we
consider vector field configurations that point in the same
direction at a given instant of time. We will restrict our
attention to configurations with a spherically symmetric
energy density. With these considerations, we focus on the
following form of the field configuration:

ΨðxÞ ¼ ψxðrÞeiϕx x̂þ ψyðrÞeiϕy ŷþ ψ zðrÞẑ; ð12Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

Upon substituting Eq. (12) into Eq. (11), we get strong
restrictions on the phases and profiles. Specifically, only
two distinct classes of oscillons are allowed, which we refer
to as directional and spinning oscillons, respectively. These
classes are represented by

ffiffiffiffi
2

m

r
ΨdðxÞ ¼ fdðrÞẑ; ð13Þ

ffiffiffiffi
2

m

r
ΨsðxÞ ¼ fsðrÞðx̂þ iŷÞ; ð14Þ

where fd and fs satisfy the following profile equations:

−μfd ¼ −
1

2m
∇2fd −

3λ

8m
f3d þ

5γ

16m
f5d; ð15Þ

−μfs ¼ −
1

2m
∇2fs −

λ

2m
f3s þ

γ

2m
f5s : ð16Þ

All other oscillons (with radially symmetric field compo-
nents) in a given class are spatial rotations of these
representative oscillons. The nodeless and spatially local-
ized solutions can be obtained by a numerical shooting
method and are shown in Fig. 2.
These two oscillons are also readily apparent if we

decompose the field Ψ in an orthonormal polarization
basis with respect to a fixed direction (see [51] for an

explicit discussion). That is, ΨðxÞ ¼ P
ms

ψ ðmsÞðxÞϵðmsÞ
ẑ ,

where ms ¼ −1, 0, 1 are the spin multiplicities, and

ϵð0Þẑ ¼ ẑ, ϵð�1Þ
ẑ ¼ ðx̂� iŷÞ= ffiffiffi

2
p

. Then, the directional and

spinning oscillons are the ones with ΨdðxÞ ∝ ϵð0Þẑ and

ΨsðxÞ ∝ ϵðþ1Þ
ẑ , respectively [64].

While the spin density for the directional oscillon is zero,
for the spinning oscillon it is given by Ss ¼ iΨs ×Ψ†

s ¼
mf2s ðrÞẑ. The total spin of the configurations is given by

Stotd ¼ 0; Stots ¼ Nẑ; ð17Þ

whereN is the particle number. Note thatN ¼ O½102�=λ can
be macroscopically large for λ≪ 1 (see Fig. 3). The orbital
angular momentum vanishes for both configurations.
In the nonrelativistic limit, the expressions for the

real-valued vector field for directional and spinning oscil-
lons are

Wdðt; xÞ ¼ fdðrÞ cosðωtÞẑ; ð18Þ

Wsðt; xÞ ¼ fsðrÞ½cosðωtÞx̂þ sinðωtÞŷ�; ð19Þ

FIG. 2. Solid lines show the spatial profiles for directional and
spinning oscillons derived using the nonrelativistic theory. Dots
represent the appropriately averaged profiles extracted from
simulations. For these profiles, we have ω ¼ m − μ ≈ 0.975 m.
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where ω ¼ m − μ. In Appendix B, we also provide an
“ϵ-expansion” scheme to obtain small-amplitude oscil-
lons. Within this expansion, we provide subleading
corrections which show deviations from spherical sym-
metry of the profiles as well as small corrections to the
vector directions. However, this scheme (unlike the non-
relativistic expansion in this section) makes it difficult to
obtain solutions in the stable regime.

V. ENERGY AND STABILITY

The particle number as well as the energy for these
solutions as a function of ω ¼ m − μ are shown in Fig. 3.
From the figures, it is clear that the directional and spinning
solutions have different energy for fixed ω. Furthermore,
for a fixed N ¼ Nd ¼ Ns, we have [65]

Ed < Es: ð20Þ

In contrast, Ed ¼ Es for vector solitons supported by
gravitational interactions alone [51]. The reason for
this degeneracy breaking in energy is the S · S term
in Vnl, which is absent in the gravitational case. It
also prohibits construction of fractionally polarized sol-
utions via linear superpositions of maximally polarized
solitons [51].
As seen in Fig. 3, for each solution, there exist regimes

where dN=dω < 0, as well as E < 0 indicating classical
and “quantum stability,” respectively [66,67]. Classical
stability is the less restrictive of the two. Note that this
assumes the number changing processes are suppressed as
should be the case in the nonrelativistic regime. While
suppressed, these processes are present in the relativistic
theory and lead to a slow decay of the oscillons via
relativistic radiation [68–74].

VI. RELATIVISTIC SIMULATIONS

Foregoing nonrelativistic approximations, we simulate
vector oscillons on a 3þ 1-dimensional lattice by discretiz-
ing the relativistic equations (see Appendix C for details).
We confirm that the directional and spinning oscillons exist
in the fully relativistic theory, and are long-lived compared
to their oscillation period.
In order to see that the existence of vector oscillons is not

too sensitive to the choice of initial conditions, we use a
Gaussian ansatz FðrÞ ¼ Ce−r

2=R2

with C≲m=
ffiffiffi
λ

p
and R ∼

10 m−1 to initialize vector field components for our two
different oscillons. Depending on the choice ofC and R, the
fields latch on to oscillon configurations with different
dominant frequencyω (after an initial transient). For ease of
comparison, we intentionally pick C and R so that in each
case we get an oscillon with approximately the same
ω ≈ 0.975 m. This frequency is consistent with oscillons
being classically stable according to the analysis in the
previous section (see Fig. 2).
For the directional solitons, we start with an initial

profile Wðt; xÞjt¼0 ¼ FðrÞẑ and _Wðt; xÞjt¼0 ¼ 0. Within
t ¼ Oð102Þ m−1, this initial Gaussian profile settles into an
oscillon configuration with frequency ω ≈ 0.975 m and the
energy Ed ≈ 164m=λ. For this ω, the energy of the oscillon
from the nonrelativistic approximation is Ed ¼ mN þ E ≈
171m=λwith a radius R1=e ≈ 6 m−1 as seen in Figs. 2 and 3,
respectively.
As the ansatz (18) is not fully compatible with the

relativistic equations, a small deviation of the field con-
figuration from the ẑ direction is expected, which is indeed
observed in our simulations. See Appendix C for snapshots
of numerical profiles. In the quantities we have checked,
such as profiles, energy, etc., there is typically a few percent
fractional difference between the results of the simulations
and the nonrelativistic solutions. This difference is

FIG. 3. (Left panel) Total particle numberN vs frequencyω ¼ m − μ for the two oscillons. The minimum of each curve determines the
respective ω values below which the oscillons start to exhibit classical stability. The dots indicate the values obtained for oscillons from
lattice simulations. (Right panel) The sum of the kinetic and potential energy E as a function of ω. Negative E represents bound objects
and hence “quantum stability” in the nonrelativistic limit.
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consistent with our expectation that relativistic corrections
should be of order j∇2=m2j ∼ 1=ðmR1=eÞ2 ¼ Oð10−2Þ.
Taking advantage of a cylindrical symmetry exhibited by

directional oscillons, we carry out long-time simulations in
effectively 2þ 1 dimensions with absorbing boundary
conditions. After an initial transient, the oscillon does
not show significant energy loss for the duration of the
simulations (∼105 m−1). We note that the lifetimes may be
longer because of nontrivial suppression in the decay rates
as seen in the case of scalar oscillons [72,73].
In order to obtain spinning oscillons, we start the

simulation with Wðt;xÞjt¼0 ¼FðrÞx̂, _Wðt;xÞjt¼0¼FðrÞŷ.
With these initial conditions, the field quickly settles
into a spinning oscillon configuration with frequency
ω ≈ 0.975m and the energy Es ≈ 216m=λ. Our analytic
estimates yield Es ≈ 225m=λ. Along with dominant com-
ponents in the x–y plane, we see small components in the ẑ
direction. Moreover, the energy density deviates slightly
from spherical symmetry. Once again, the analytic esti-
mates from our nonrelativistic theory differ from the results
from relativistic simulations by a few percent, consistent
with our expectations.
Unlike the directional case, we cannot take advantage of

symmetries to do a long-time simulation in effectively
lower dimensions. However, we have verified that with
absorbing boundary conditions, the spinning oscillon does
not decay away for at least ∼103 m−1.

VII. DISCUSSIONS

We have presented two new oscillon solutions in real-
valued vector fields with attractive self-interactions. The
oscillons are maximally polarized: the directional oscillon
has zero intrinsic spin, while the spinning oscillon has
maximum intrinsic spin equal to the occupation number of
the oscillon in the nonrelativistic limit (i.e., Stot ¼ ℏNn̂). In
the case of gravitational interactions alone, the two solitons
(in the nonrelativistic limit) are degenerate in energy for a
fixed particle number, and can be appropriately superposed
to form fractionally polarized solitons [51]. Here, however,
the presence of spin-spin interactions breaks this degen-
eracy, making the directional oscillon lower in energy, and
furthermore prohibits fractionally polarized solitons.
We have confirmed that these oscillons are not too

sensitive to the choice of initial conditions, and furthermore
do not decay away for at least 103 m−1 (see Appendix D for
further discussion of lifetimes as well as model parameters
in two different production mechanisms for the vector field).
A more detailed longer-timescale simulation, as well as an
analytic calculation of the decay rates (similar to [70–73])
are warranted. The lack of detailed sensitivity to initial
conditions and their long lifetimes make them potentially
relevant in astrophysical and cosmological scenarios.
The two oscillon solutions presented in this paper have

approximately spherically symmetric energy densities but
not field configurations. However, there is another oscillon

solution for which both the field and energy density are
exactly spherically symmetric, known as the hedgehog
oscillon [50,75–79]. We find that this solution includes
significant relativistic corrections towards its center, and is
also higher in energy (and likely harder to form from
generic initial conditions) than the two maximally polarized
oscillons presented here. This will be the subject of
future work.
The spin nature of the vector field, manifest in these

oscillons, can lead to novel phenomenological implica-
tions. Collisions and mergers of dense vector oscillons can
lead to gravitational wave production, which might be
distinct from the scalar case [18–21,23–25]. If the massive
(dark) vector field kinetically mixes with the visible
photon, namely L ⊃ ðsin α=2ÞXμνFμν where sin α is the
mixing parameter and Fμν is the field strength of the photon
[80], collisions between polarized vector oscillons, or
interaction with strong magnetic fields, can also lead to
specific outgoing radiation patterns based on oscillon
polarization (see [27–29] for the scalar case). If such vector
oscillons exist today, and interact with terrestrial experi-
ments [81–84], detectable signatures that depend on the
polarization state of the vector field might be possible.
Formation mechanisms and production rates of vector

oscillons, along with their early universe implications,
remain to be explored. The misalignment mechanism for
production of dark photon dark matter [42,44], where an
oscillating inflaton or axion field transfers its energy to dark
photons efficiently via a resonant instability, could produce
vector oscillons resulting in additional small-scale struc-
tures in the early universe. Vector oscillons may also form
naturally at the end of vector field inflation [85–87]
analogous to scalar cases [9,13], from “thermal” initial
conditions [88], or by purely gravitational clustering in the
early and contemporary universe [17,89–91].
Beyond their cosmological context, we are currently

exploring whether nonrelativistic vector oscillons with
isospin can be realized in multicomponent Bose-Einstein
condensates with attractive self-interactions.
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APPENDIX A: A LOW-ENERGY EFFECTIVE
PROCA THEORY

Owing to the linear growth in energy of the helicity-0
mode of a massive vector degree of freedom, theory of a
self-interacting massive vector field Wμ violates
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perturbative unitarity at high-energy scales [92,93]. In order
to restore it in the most conservative way, we need a new
particle with mass comparable to the energy scales of
unitarity violation, such that it compensates for the afore-
mentioned growth in any scattering process. This can also
be recast (and as is usually done) in the language of gauge
invariance: At high energies, gauge invariance in Wμ

should be restored such that the helicity-0 mode plus this
new degree of freedom reorganize themselves into a local
Uð1Þ symmetric field structure. This is the symmetry
restoration/Higgs mechanism (or the symmetry removal
mechanism when climbing down the energy scales). At
energies well below the mass of the new particle then,
this fetches an effective theory of a massive vector fieldWμ

with self-interactions. In this appendix, we show that the
Abelian-Higgs model indeed produces an attractive poten-
tial for Wμ at energies well below the mass of the Higgs.
This is no surprise since a spin-0 particle mediates an
attractive force.
Working with the Euler representation of the complex

scalar field, and expanding the radial degree of freedom
(Higgs) around the vev v, the Lagrangian density in Unitary
gauge is

L ¼ −
1

4
XμνXμν −

1

2
m2WμWμ −

1

2
∂μh∂μh

−
1

2
M2h2 − gmhWμWμ −

1

2
g2h2WμWμ

−
1

2

gM2

m
h3 −

1

8

g2M2

m2
h4: ðA1Þ

Here m,M, and g are the mass of the vector fieldWμ, mass
of the Higgs field h, and the gauge coupling constant
respectively. The masses are related to the vev v, the Higgs

self-coupling λ̃, and the gauge coupling g as M ¼ v
ffiffiffiffiffi
2λ̃

p
and m ¼ gv. Now, we assume the hierarchy m ≪ M (or

equivalently g ≪
ffiffiffiffiffi
2λ̃

p
), in order to be able to integrate out

the Higgs. Note that this mass hierarchy is consistent with
the quantum theory: Radiative corrections to the gauge
coupling g are proportional to it’s bare value. Therefore, we
can safely assume it to be small. Whereas on the other hand,
even if M were zero, the quartic self-coupling of the Higgs
generates a mass term (through the tadpole diagram),
pushing M away towards the cut-off of the theory. This
can also be seen from the behavior of global symmetries.

In the limit g → 0 while keeping M ¼ v
ffiffiffiffiffi
2λ̃

p
fixed, Wμ

decouples with the two scalars and we recover a global
Uð1Þ (note that there isn’t a global Uð1Þ in the Higgs
phase [94,95]).
To get an effective theory at energies well below M, we

wish to integrate out the Higgs field. At tree level, we can
simply plug back the solution to the Higgs equation of
motion (discarding the derivative term □h) into the

Lagrangian density. Upon doing so we get the following
effective Lagrangian density for the vector field

Leff ¼−
1

4
XμνXμν−

1

2
m2WμWμþ1

4
λðWμWμÞ2þ��� ðA2Þ

where λ ¼ 2g2m2=M2, and the ‘…’ represents derivative
couplings (suppressed by factors of M).
We would like to thank Mark Hertzberg for pointing to

us an error in the previous version of this draft, in that the
abelian Higgs model only generates a quartic interaction
term upon integrating out the heavy Higgs. In this work, we
have assumed a sextic term as well in order to study vector
oscillons. We remain agnostic towards a mechanism that
generates such higher order (sextic and above) self-inter-
action terms. Additionally, different coefficients of higher-
dimensional couplings may be possible under different
symmetry restoration setups in the UV. Besides the Higgs
mechanism, self-interactions could also arise in vector
Galileons [96] and in the nonrelativistic limit of vector
fields that are non-minimally coupled to gravity.
It is also important to point out that in 3þ 1 dimensions,

the long-lived oscillon solutions we find in our simulations
(and also in our nonrelativistic analytic approximation)
have field amplitudes in the center that are not too small,
meaning W ∼m=

ffiffiffi
λ

p
(see Fig. 2). In this case it may no

longer be valid to truncate the potential up to the sextic
coupling, and a further analysis is needed to take higher-
dimensional couplings into account. We leave this for
future work.

APPENDIX B: SMALL-AMPLITUDE
EXPANSIONS

For small-amplitude scalar oscillons, usually an ‘ϵ
expansion scheme’ is employed [97–99]. In this appendix,
we present this for our vector oscillons. Introducing a
dimensionless ϵ parameter, we re-scale space, time and the
field as

x →
x
mϵ

t →
t

m
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p ;

Wμ ¼
mffiffiffi
λ

p ½ϵWð1Þ
μ þ ϵ2Wð2Þ

μ þ ϵ3Wð3Þ
μ þ � � ��: ðB1Þ

We also scale γ → ðλ2=m2Þγ. Note that the new variables
are all dimensionless. By plugging this expansion into the
field Eq. (3) and collecting terms up to the order Oðϵ4Þ, we
obtain

Ẅð1Þ þWð1Þ ¼ 0 ðB2Þ

Ẅð2Þ þWð2Þ ¼ 0 ðB3Þ

Ẅð3Þ þWð3Þ ¼ ½∇2 − ð1 −Wð1Þ ·Wð1ÞÞ�Wð1Þ ðB4Þ
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Ẅð4Þ þWð4Þ ¼ ½∇2 − ð1 −Wð1Þ ·Wð1ÞÞ�Wð2Þ þ ½2Wð1Þ ·Wð2Þ�Wð1Þ ðB5Þ

Ẅð5Þ þWð5Þ ¼ ½∇2 − ð1 −Wð1Þ ·Wð1ÞÞ�Wð3Þ þ ½2Wð1Þ ·Wð2Þ�Wð2Þ

þ ½∇2 − f1 − ðWð1Þ ·Wð1Þ − ð∇ · _Wð1ÞÞ2 þWð2Þ ·Wð2Þ þ 2Wð1Þ ·Wð3ÞÞg�Wð1Þ

þ γðWð1Þ ·Wð1ÞÞ2Wð1Þ −∇½f∂tðWð1Þ ·Wð1ÞÞ∂t∇þ∇ðWð1Þ ·Wð1ÞÞg ·Wð1Þ�: ðB6Þ

Here we have usedWðnÞ
0 ¼ −∇ · _Wðn−1Þ for n ≤ 3 based on

(3) and Wð0Þ ¼ 0. We find that we can consistently set
WðnÞ ¼ 0 for n ¼ even. Note that solutions of (B2) must
have the formWð1Þ ¼ P

3
j¼1 wjðxÞℜ½eitþϕjðxÞ�x̂j. For lowest

energy, spatially localized solutions, we set ϕjðxÞ ¼ ϕj and
wjðxÞ ¼ wjðrÞ. Once we plug this expression into (B8), and
make sure that the right hand side does contain any terms
proportional to cos t or sin t, we get severe restrictions of
the phases ϕj and profiles wjðrÞ. The reason for removing
terms proportional to sin t and cos t is so thatWð3Þ does not
grow with time via a forced resonance. There are only two
possibilities for Wð1Þðr; tÞ given our assumptions (up to
spatial rotations, or global phase shifts). The first one is
Wð1Þ ¼ vdðrÞ sin tẑ which is the directional oscillon, and
the second is Wð1Þ ¼ vsðrÞ½cos tx̂þ sin tŷ� which is the
spinning oscillon. The profile equations are provided
below.
By repeating this exercise at every order in the ϵ

expansion, we can find profiles to arbitrary order. In this

appendix we provide the small-amplitude profiles up to
sub-leading order for both of our oscillons. The subleading
profiles reveal the departures from spherical symmetry,
which we also see in our 3þ 1 dimensional numerical
simulations (see Fig. 5).
For the directional oscillon,

Wð1Þðr; tÞ ¼ vdðrÞ sin tẑ where ∂2
rvd

þ 2

r
∂rvd − vd þ

3

4
v3d ¼ 0: ðB7Þ

The profile equation can be solved numerically for node-
free, localized solutions. The result in shown in Fig. 4. To
obtain subleading Wð3Þ we make use of (B10) and obtain
profile equations by setting the coefficients of terms
proportional to cos t and sin t on the right hand side equal
to zero. After somework, we find that the only possibility is

Wð3Þðx; tÞ ¼ ρz
r2

f1 sin tρ̂þ
��

z2

3r2
ðf2 þ 2f3Þ þ

ρ2

3r2
ðf2 − f3Þ

�
sin t −

1

32
v3d sin 3t

�
ẑ; ðB8Þ

where fn (assumed to be spherically symmetric) obey the following set of PDEs

�
∇2 − 1 −

6

r2
þ 3

4
v2d

�
f1 ¼

�
4ð∂rvdÞ2 þ 2vd∂2

rvd −
2

r
vd∂rvd

�
vd; ðB9Þ

�
∇2 − 1þ 9

4
v2d

�
f2 ¼

�
9

128
þ 15

8
γ

�
v5d þ

�
17

4
ð∂rvdÞ2 þ 2vd∂2

rvd þ
4

r
vd∂rvd

�
vd; ðB10Þ

�
∇2 − 1 −

6

r2
þ 9

4
v2d

�
f3 ¼

�
17

4
ð∂rvdÞ2 þ 2vd∂2

rvd −
2

r
vd∂rvd

�
vd; ðB11Þ

with ∇2 ¼ ∂2
r þ ð2=rÞ∂r. The localized solutions of these equations for γ ¼ 1 are shown in Fig. 4.

For the spinning oscillon,

Wð1Þ ¼ vsðrÞðcos tx̂þ sin tŷÞ where ∂2
rvs þ

2

r
∂rvs − vs þ v3s ¼ 0: ðB12Þ
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The numerically obtained profile is shown in Fig. 4. To obtain the sub-leading profile, we once again need to make sure that
in , there are no source terms with unit frequency. After lengthy algebra, we find that the only possible ansatz for Wð3Þ is

Wð3Þ ¼ 1

2

��ðx2 − y2Þ
r2

g1 þ
1

3
g2 þ

2z2 − x2 − y2

3r2
g3

�
cos tþ

�
xy
r2

g4

�
sin t

�
x̂

þ 1

2

��
xy
r2

g4

�
cos tþ

�
−
ðx2 − y2Þ

r2
g1 þ

1

3
g2 þ

2z2 − x2 − y2

3r2
g3

�
sin t

�
ŷ

þ
��

xz
r2

g5

�
cos tþ

�
yz
r2

g5

�
sin t

�
ẑ; ðB13Þ

where the gn (assumed to be spherically symmetric) obey the following set of PDEs:

�
∇2 − 1 −

6

r2
þ 2v2s

�
g1 − 2v2s

�
∂2
r −

2

r
∂r

�
vs ¼ 0; ðB14Þ

ð∇2 − 1þ 3v2s Þg2 −
�
10ð∂rvsÞ2 þ 4vs∂2

rvs þ
8

r
vs∂rvs

�
vs − 6γv5s ¼ 0; ðB15Þ

�
∇2 − 1 −

6

r2
þ 3v2s

�
g3 þ

�
5ð∂rvsÞ2 þ 2vs∂2

rvs −
2

r
vs∂rvs

�
vs ¼ 0; ðB16Þ

�
∇2 − 1 −

6

r2
þ 2v2s

�
g4 −

�
7ð∂rvsÞ2 þ 4vs∂2

rvs −
4

r
vs∂rvs

�
vs ¼ 0; ðB17Þ

�
∇2 − 1 −

6

r2
þ v2s

�
g5 −

�
4ð∂rvsÞ2 þ 2vs∂2

rvs −
2

r
vs∂rvs

�
vs ¼ 0; ðB18Þ

FIG. 4. Left: Leading-order profiles, defined in Eqs. (B7) and (B12), for directional and spinning oscillons with small amplitudes.
Right: Functions fn and gn that appear in their sub-leading profiles. As defined in Eqs. (B8) and (B13), fn and gn characterize the
deviation of the spatial profiles from radial symmetry. All quantities shown in the figures are dimensionless. For any ϵ ≪ 1, to recover
the original dimensional vector profiles, vd and vs must be multiplied by ϵm=

ffiffiffi
λ

p
, while the functions fn and gn should be multiplied by

ϵ3m=
ffiffiffi
λ

p
. Similarly the x-axis should be multiplied by ðmϵÞ−1 to get the physical spatial extent. These are small-amplitude (compared to

m=
ffiffiffi
λ

p
) and spatially broad (compared to m−1) profiles.
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and ∇2 ¼ ∂2
r þ ð2=rÞ∂r. The localized solutions of these

equations for γ ¼ 1 are shown in Fig. 4.

APPENDIX C: NUMERICAL ALGORITHMS

In this appendix we describe our numerical algorithms in
some detail. We begin with 3þ 1-dimensional simulations,
which we use for shorter time-scale simulations for both
types of oscillons. We then provide details of the simplified
simulation for directional oscillons by explicitly imposing
cylindrical symmetry.
We first note that besides the Euler-Lagrange equation,

one more useful equation can be obtained by noting that
Xμν is antisymmetric, i.e.

∂ν½2V 0ðWμWμÞWν� ¼ 0: ðC1Þ

This, along with the Euler-Lagrange equation
∂μXμν ¼ 2V 0ðWμWμÞWν, can be re-written for each com-
ponent of Wμ and its time derivative Uμ ≡ _Wμ, i.e.

∂0Wμ ¼ Uμ; ðC2Þ

∂0Ui ¼ ∂iU0 − ∂i∂jWj þ ∂j∂jWi − 2V 0Wi; ðC3Þ

U0 ¼
∂ið2V 0WiÞ − 4V 00W0ðWiUiÞ

2V 0 − 4V 00W2
0

; ðC4Þ

where we get one algebraic equation and seven PDEs that
involve only 1st-order time derivatives. In addition, we may
use the 0-component Euler-Lagrange equation as a con-
straint to check numerical accuracy, i.e.

δ≡ −∂i∂iW0 þ ∂iUi þ 2V 0W0 ¼ 0: ðC5Þ

Among each component ofWμ andUμ, six functions needs
to be specified initially and the other two can be solved for
by using (C4) and (C5). The set of equations can then be
numerically evolved by using centered difference in space
and a modified iterative Crank-Nicholson method for time,
i.e. the type of equation ∂tf ¼ Sðf; ∂ifÞ is integrated in the
following way [100]:

fð1Þ ¼ fm þ dt
3
Sðfm; ∂ifmÞ; ðC6Þ

fð2Þ ¼ fm þ dt
2
Sðfð1Þ; ∂ifð1ÞÞ; ðC7Þ

fmþ1 ¼ fm þ dtSðfð2Þ; ∂ifð2ÞÞ; ðC8Þ

where m is the time index and fðnÞ denotes the n-th
intermediate variables. This is a 2nd-order method. To
improve numerical stability, we add 4th-order Kreiss-
Oliger dissipation terms with a strength parameter ϵKO at
each time step [101]. As for the boundary, we use periodic

boundary conditions to obtain profiles for both oscillons
(see Figs. 2 and 5), and implement absorbing boundary
conditions (i.e. sponge-layer method [102]) to estimate the
lifetime of spinning oscillons. Specifically for the latter, a
damping term is added to the dynamical equation if the
distance to the center r exceeds some damping radius rd
that is far away from the center:

∂tf ¼ Sðf; ∂ifÞ þ ϵdθðr − rdÞðr − rdÞ2∇2f; ðC9Þ

where ϵd is a small parameter that ensures a slow increase
of the damping strength.
Time is discretized with dt ¼ 0.08 m−1, and we perform

the simulation in a periodic box of size 703m−3 with 2813

points (with spatial resolution dxi ¼ 0.25 m−1). Note that
the dominant radiation modes have a wavelength λradj ¼
2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjωÞ2 −m2

p
∼ few × m−1 [72,73]. We have checked

that an Oð1Þ change of parameters (e.g. dt, dxi, ϵKO) does
not affect the final profiles significantly. With this setup,
we are able to simulate the evolution of oscillons for
O½103�m−1. Longer time simulations will be possible by
parallelizing the algorithm, which will be pursued in the
future.
In the directional oscillon case, we can simulate for

significantly longer times by taking advantage of the
cylindrical symmetry of the oscillon field configurations.
Effectively, this reduces our problem to 2þ 1 dimensions.
For directional oscillons, it is convenient to work with

cylindrical coordinates such that W0 ≡Wt and
W ≡Wρρ̂þWzẑ, and rewrite numerical equations
(C2)–(C5) for Wt, Wρ, Wz and their time derivatives Ut,
Uρ,Uz. We then discretize the spatial grid by ρn ¼ ndρ and
zn ¼ ndz where n ¼ 0; 1; 2;…; N with N ¼ 500, and set
dt ¼ dρ=4 ¼ dz=4 ¼ 0.025 m−1. Spatial derivatives are
approximated by the 2nd-order centered difference every-
where except at boundaries where a special treatment is
needed for obtaining Ut, Uρ, Uz. At the inner boundary,
Utjz¼0 ¼ Uρjρ¼0 ¼ Uρjz¼0 ¼ 0 since they are odd func-
tions of either ρ or z, and we obtain Utjρ¼0 and Uzjρ¼0

through the Lagrange interpolation with four data points.
For better stability performance, values of Uzjz¼0 are
calculated by discretizing the constraint (C5) with a finite
difference method. At the outer boundary, Uρ and Uz are
assumed to behave like spherical waves so that the
following radiative boundary condition is implemented
[103]

xj

r
∂tUρ þ ∂jUρ þ

xj

r2
Uρ ¼ 0; ðC10Þ

where xj ¼ ρ or z. In reality, the outgoing radiation is not
necessarily spherically symmetric. The above condition,
however, is sufficient if the boundary is far enough from the
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origin so that the angular derivative is much smaller than
the radial one [101]. The equation for Ut becomes

Ut ¼ ∂ρWρ þ
1

ρ
Wρ þ ∂zWz: ðC11Þ

These equations are discretized by 2nd-order finite differ-
ence methods.
We find that the lifetime of directional oscillons is

> 105 m−1. We have checked that an Oð1Þ change of
parameters (e.g. dt, dρ, dz, N, ϵKO) and the number of
interpolation points does not affect final results signifi-
cantly. However, there are still some limitations. For
instance, the Gibbs phenomenon is observed for initial
profiles with large amplitudes or widths, which limits our
ability to probe vector oscillons with large amplitudes
(smaller frequencies). A possible solution could be imple-
menting higher-order methods, or using an adaptive grid to
evolve the system instead of a fixed one.

APPENDIX D: LIFETIMES OF OSCILLONS

In general, lifetimes of oscillons go as τ ∼ α m−1 ∼
ðα=105Þð10−21 eV=mÞ103 yrs where α can be extremely
large depending upon the oscillon configuration and the

exact shape of the potential (see [74] for the case of scalar
oscillons where the authors find it to be as large as∼1018). In
our simulations (with the choice γ ¼ λ2=m2), we find αd ≳
105 for directional oscillons, while αs ≳ 103 for classically
stable spinning oscillons, at the very least. We note that αs is
expected to be even larger for oscillons that are “quantum
mechanically stable” (Es < 0 in the non-relativistic limit).
Here we provide rough estimates for the lifetimes of the

dark photon oscillons in two different possible scenarios:
(i) A misaligned scalar that topologically couples to a dark
spin-1 field, starts to oscillate around its minimumwhen the
Hubble drops below its own mass, and dumps its energy
into the latter owing to a tachyonic instability [42–44];
(ii) Gravitational particle production of spin-1 particles
during/towards the end of inflation [41,104,105]. In both
cases, H ∼m at the time of dark photon production,
dictating that the lifetimes of oscillons are huge as
compared to the age of the Universe at that time:

τ ∼ α m−1 ∼ α H−1 with α ≫ 1: ðD1Þ

Therefore, and specifically owing to the polarization of
these vector oscillons, they could play an important
phenomenological role.

FIG. 5. Left: The top panel is a snapshot of the profile of the z component of a directional oscillon (withW pointing predominantly in
the ẑ direction). The time is chosen so that the field component has a maximal central value. Bottom panel is the profile for the y
component of the field at this same time. Note that these profiles are provided on the y ¼ 0 plane. On the z ¼ 0 plane, the x, y
components vanish. Right: Snapshot of spatial profiles of the x(top) and y(bottom) components of W for spinning oscillons, with W
rotating predominantly in the x-y plane. In the first column, the time is chosen so that theWx is at its maximum in the center, whereas for
the second column Wy is at its maximum. Note that the deviation from spherical symmetry of the profile of dominant component is
small. The subdominant component is small, and does not have spherically symmetric profiles. These results are consistent with both the
nonrelativistic solutions used in the main body of the letter. They are also qualitatively consistent with the small-amplitude expansions in
appendix B, in particular, the relative amplitude and shape of the subdominant components.
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Assuming that the spin-1 field constitutes the whole of
dark matter, there is an absolute bound on its mass,
m≳ 10−21 eV, from Lyman-α observations. In scenario
(i) there is no additional bound on m, while an additional
lower bound exists in scenario (ii), m≳ 10−5 eV, to evade

overproduction of curvature perturbations. An interesting
feature of these scenarios is that in the former it is the
transverse mode that is dominantly populated, while in the
latter it is the longitudinal mode. We leave the detailed
analysis to a future study.
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