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Worldline instantons have previously been used to study the probability of Schwinger pair production
(both the exponential and preexponential parts) and photon-stimulated pair production (the exponential
part). Previous studies obtained the pair-production probability on the probability level by using
unitarity, i.e., the imaginary part of the effective action for Schwinger pair production or the imaginary
part of the polarization tensor for photon-stimulated pair production. The corresponding instantons are
closed loops in the complex plane. Here, we show how to use instantons on the amplitude level, which
means open instanton lines with start and end points representing fermions at asymptotic times. The
amplitude is amputated with the Lehmann-Symanzik-Zimmermann reduction formula using, in general,
field-dependent asymptotic states. We show how to use this formalism for photon-stimulated/Breit-
Wheeler pair production and nonlinear Compton scattering.
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I. INTRODUCTION

Particle production by a weak field can be studied with
saddle-point methods giving a probability that to leading
order scales as P ¼ ðprefactorÞ expð−exponent=EÞ, where
E is the field strength. For example, for a constant electric
field, one has1 [1,2]

Schwinger∶ P ¼ … exp

�
−
π

E

�
; ð1Þ

or for a time-dependent electric field, one finds, in general
(see, e.g., Refs. [3,4]),

time dependent∶ P ¼ … exp

�
−
FðγÞ
E

�
; ð2Þ

where F is some function which depends on the pulse
shape, γ ¼ ω=E, and ω is some characteristic frequency.
For γ → e−eþ in a constant electric field, one has [5]

P ¼ … exp

�
−
2

E

�
½1þ p2� arctan

�
1

p

�
− p

��
; ð3Þ

where p ¼ χγ=ð2EÞ and χγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFkÞ2

p
. For γ → e−eþ in

a plane-wave Sauter pulse, we have

P ¼ … exp

�
−
4a0
χ

½ð1þ a20Þarccotða0Þ − a0�
�
; ð4Þ

where2 a0 ¼ E=ω ¼ 1=γ. Similar results, in fact with the
same a0 dependence in the exponent, hold for, e.g., non-
linear Compton scattering e− → e−γ [6] or trident pair
production e− → e−e−eþ [7]. There are of course many
other examples. These results have been obtained, e.g., using
Wentzel-Kramers-Brillouin (WKB) approximations or the
saddle-point method for approximating integrals that re-
present the exact result.
Another semiclassical method is to use worldline instan-

tons [3,4,8]. The worldline formalism uses proper-time [2,9]
and path integrals [10–12] to represent amplitudes or
probabilities in terms of path integrals over particle trajec-
tories, and a worldline instanton is a saddle point for such a
path integral and is determined as a solution of the Lorentz
force equation. Since we are interested in “tunneling”
processes,3 the instantons are necessarily complex. The
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1We absorb e into the field, eE → E, and use units with
c ¼ ℏ ¼ me ¼ 1.

2In papers on pair production in a time-dependent electric
field, it is more common to use γ, while papers on processes in
plane waves usually use a0.3By this, we simply mean processes with probabilities that
have exponential scaling.
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instanton method was initially used in Ref. [8] in order to
study the probability for Schwinger pair production for a
constant field but to all orders4 in α. It was later realized [3,4]
that the worldline instanton formalism can also be useful to
study Schwinger pair production by inhomogeneous fields.
Although analytical results can only be obtained for certain
simple fields [e.g., one-dimensional (1D) electric fields
depending only on one coordinate], the instanton approach
offers a powerful method for fields depending on more than
one coordinate5 [15–18]. In fact, a numerical code was
presented in Ref. [17] and allows us to study general fields
depending on all space-time coordinates. This motivates us
to develop the worldline-instanton formalism to other
processes in strong fields.
Our focus is on the worldline instanton formalism,

which gives a saddle-point approximation for more com-
plicated (and in principle general) field shapes. We note,
though, that the worldline formalism [19,20] has also been
used to obtain exact results for various photon amplitudes
in constant fields [21–23] and general plane-wave back-
ground fields [24,25], open fermion lines in constant fields
[26–28], and Schwinger pair production for a class of
fields for which the locally-constant-field (LCF) approxi-
mation is exact [29]. The worldline integrals for various
processes have also been evaluated numerically with a
Monte Carlo method [30–32].
In what could now be called the standard worldline-

instanton approach [3,4], the Schwinger-pair-production
probability is obtained from the imaginary part of the
effective action. The probability of pair production by a
(single) photon in an electric field has been obtained in
Refs. [33–35] from the imaginary part of the polarization
tensor. In all these cases, the pair-production probability P is
obtained by appealing to unitarity, which gives P as the
imaginary part of a single dressed fermion loop, with either
no photons (Schwinger mechanism) or two photons
(γ → eþe−) attached. The fermion loop is represented in
the worldline formalism as a path integral over closed
worldline loops. Thus, in the standard approach, the world-
line instantons are closed loops, which are periodic in all four
coordinates, xμðτstartÞ ¼ xμðτendÞ, where τ is the proper time.
Although the starting point is the effective action (vacuum to
vacuum amplitude) or the polarization tensor (photon to
photon amplitude), when taking their imaginary part, one is
effectively working on the probability level, because the
imaginary part gives directly the probability without having
to take the absolute value squared.
In this paper, we will show how to use worldline

instantons on the amplitude level. The starting point is a
worldline representation that directly gives the amplitude of

the considered process, rather than indirectly via the optical
theorem. We are interested in processes with fermions in the
asymptotic states. Apart from pair production (either sponta-
neous/Schwinger or stimulated/Breit-Wheeler γ → eþe−),
we are also interested in, e.g., nonlinear Compton scattering
e− → e−γ. Compton scattering might perhaps not usually be
thought of as a process with exponential scaling, but if the
emitted photon has high energy, then it has the same type of
exponential scaling as nonlinear Breit-Wheeler. Having
fermions in the asymptotic states means that we have open
instanton trajectories, xμðτstartÞ ≠ xμðτendÞ. For Compton
scattering, xμðτ ∼ τstartÞ describes the electron motion before
it enters the background field; at a complex space-time point
xμðτγÞ, a photon is emitted; and xμðτ ∼ τendÞ describes the
electron after it has left the field (we will also consider, e.g.,
constant fields which are always present). For pair produc-
tion, xμðτ ∼ τstartÞ describes a positron at late times/in the
final state, and xμðτ ∼ τendÞ is an electron in the final state.
So, in this case, the instanton line starts in the future as a
positron, moves backwards in time, enters the region with
the background field, tunnels, and then moves forward in
time. This agrees, of course, with the Stueckelberg-Feynman
interpretation of positrons [36,37]. Open worldlines have
been used to study Schwinger pair production in constant
electric fields in Refs. [38,39].
At very high energies, there are other semiclassical

methods [40,41] that can be used to study, e.g., Breit-
Wheeler pair production in general space time–dependent
fields. With the worldline instanton methods, we do not have
to assume high energies, but instead, we have to assume that
we are in a regime where the probability has an exponential
scaling. These different methods therefore complement
each other.
This paper is organized as follows. In Sec. II, we briefly

introduce the main ingredients. In Sec. III, we consider the
exponential part of the probability of nonlinear Breit-
Wheeler. In Sec. IV, we consider a Sauter pulse as an
example and to illustrate explicitly the instanton solution. In
Sec. V, we show how to calculate the preexponential factor,
by deriving the WKB solution using the Gelfand-Yaglom
method. In Sec. VI, we use the same method to calculate the
preexponential factor of the momentum spectrum of pairs
produced spontaneously in a general time-dependent, lin-
early polarized electric field. In Sec. VII, we show how to
use this method for nonlinear Breit-Wheeler in a nonconstant
field, which vanishes asymptotically, which is an example of
application of the Gelfand-Yaglom method to a case where
the instanton has a kink. In Sec. VIII, we apply the same
method to obtain the preexponential factor of nonlinear
Compton in a time-dependent electric field. Finally, in
Appendix B, we calculate the prefactor for nonlinear
Breit-Wheeler in a constant electric field, which is an
example where the asymptotic fermion states are nontrivial
rather than just plane waves.

4Note that the zeroth order in α still contains all orders in E
(recall that we have absorbed eE → E).

5The WKB method has recently been used to study fields
depending on more than one coordinate in Refs. [13,14].
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II. WORLDLINE INSTANTONS AND LSZ

The amplitude M is obtained by amputating the fermion propagator using the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula (see, e.g., Ref. [42]), either with a manifestly Lorentz invariant form

M ¼
Z

d4xd4x0 eipjxj ūðasympÞ
r ðt;pÞð−iD∞

x þmÞSðx; x0Þð ⃖iD∞
x0 þmÞeip0

jx
0j
vðasympÞ
r0 ðt0;p0Þ; ð5Þ

where pjxj ¼
P

3
i¼1 pjxj, Dμ ¼ ∂μ þ iAμ and D∞

μ ¼ ∂μ þ iAμðt ¼ ∞Þ, or with

M ¼ lim
t→þ∞

lim
t0→þ∞

Z
d3xd3x0 eipjxj ūðasympÞ

r ðt;pÞγ0Sðx; x0Þγ0eip0
jx

0j
vðasympÞ
r0 ðt0;p0Þ; ð6Þ

where Sðx; x0Þ is the dressed fermion propagator, which in an arbitrary background field can be expressed with the following
worldline representation [12] (see Refs. [43–46] for different representations)

Sðx; x0Þ ¼ ðiDx þmÞ 1
2

Z
∞

0

dT
Z

qð1Þ¼x

qð0Þ¼x0
Dq exp

�
−i
�
Tm2

2
þ
Z

1

0

dτ

�
_q2

2T
þ AðqÞ _q

���
P exp

�
−i

T
4

Z
1

0

dτσμν Fμν

�
; ð7Þ

where P means path ordering, i.e., “time ordering” with
respect to proper time τ, and σμν ¼ i

2
½γμ; γν�. Note that in the

standard worldline-instanton approach one would work with
periodic worldlines, qð0Þ ¼ qð1Þ, but for the propagator,
one has qð0Þ ≠ qð1Þ. Proper time has been normalized to
0 < τ < 1, so T is the “actual” total proper time.
The explicitly Lorentz invariant form (5) might be more

common in the absence of a background field. One
approach using (5) would be to take the momenta pμ

and p0
μ temporarily off shell, so that one can perform partial

integration to remove the derivatives acting on Sðx; x0Þ.
However, then we would have two additional integrals
(over t and t0) as well as two nontrivial limits (p2 → 1 and
p02 → 1), while for (6), we only have the limits t; t0 → ∞.
Thus, at least for the time-dependent fields we have focused
on here, we find it more convenient to use (6). This form
has also been used in Ref. [38] to obtain Schwinger pair
production by a constant electric field.
In this paper, we focus on fields that depend on time, but

not on space. In this case, the asymptotic states, uðasympÞ and
vðasympÞ, can be obtained from the t → �∞ limit of the
adiabatic/WKB approximations [47–49]. The (full) WKB
approximations are at any time (not just asymptotic)
given by

Urðt;qÞ ¼ ðγ0π0 þ γiπi þ 1ÞGþðt;qÞRr

Vrðt;−qÞ ¼ ð−γ0π0 þ γiπi þ 1ÞG−ðt;qÞRr; ð8Þ

where π⊥ ¼ q⊥, π3ðtÞ ¼ q3 − AðtÞ, π0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ π23ðtÞ

p
,

m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2⊥

p
, r ¼ 1, 2 denote two spin states,

γ0γ3Rs ¼ Rs, and

G�ðt;qÞ ¼ ½2π0ðπ0 � π3Þ�−1
2 exp

�
∓i
Z

t

tr

dt0π0ðt0Þ
�
; ð9Þ

where tr is some arbitrary real constant. If the electric field
goes to zero asymptotically, then uðasympÞ and vðasympÞ are
simple plane waves, but, since in general Að−∞Þ ≠ Að∞Þ,
the momentum depends on the asymptotic constant value of
the gauge potential, uðasympÞ ¼ const e−iπ0ð∞Þt. One can, of
course, choose a gaugewith Aðþ∞Þ ¼ 0, but then wewould
in general have Að−∞Þ ≠ 0, which would appear in, e.g.,
Compton scattering where we have a fermion in the initial
state. These plane-wave states for fields with A0ð�∞Þ ¼ 0
are, of course, easy to obtain without reference to the WKB
solutions. However, for, e.g., a constant electric field, the
asymptotic states have a genuinely nontrivial dependence on
the field, and in such a case, it is convenient to obtain the
asymptotic states from the t → ∞ limit of U and V. Note,
though, importantly, these nontrivial asymptotic states for,
e.g., constant fields are still much simpler than the full, exact
solutions to the Dirac equation, uðexactÞ and vðexactÞ, which
would involve parabolic cylinder functions for a constant
field. This is an important point because if it had been
necessary to use uðexactÞ and vðexactÞ, or even some approxi-
mation of these at finite times, then there would not really
have been a point in using this worldline formalism.
Fortunately, we only need the asymptotic states, so the only
“difficult” field dependence is represented by the worldline
path integral, which is given by (7) for any space time-
dependent field.
The worldline representation in (7) gives the fermion

propagator in a completely arbitrary space time-dependent
coherent background field. There is a common trick (see,
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e.g., Refs. [19–23,27,28,32]) which allows us to include the
absorption or emission of individual incoherent photons. For
example, for nonlinear Breit-Wheeler, all we have to do is
replace Aμ → Aμ þ ϵμe−ikx and select the term that is linear
in ϵμ. For Compton scattering, we would instead have eþikx,
and the same trick also works for multiple photons.

III. EXPONENTIAL PART

In order to introduce some of the main ideas, we will
start with the exponential part of the probability. We return
to calculate the prefactor in Sec. V. We start with nonlinear
Breit-Wheeler pair production, where an initial (incoher-
ent) photon with momentum kμ and polarization ϵμ decays
into an electron with momentum pμ and a positron with
momentum p0

μ. We begin by making the replacement
Aμ → Aμ þ ϵμe−ikx in (7) and selecting the term linear in
ϵμ. This gives

M¼ lim
t→∞

lim
t0→∞

Z
d3xd3x0

Z
∞

0

dT
Z

1

0

dσ
Z

qð1Þ¼x

qð0Þ¼x0
Dq

…exp

�
i

�
p0
jx

0jþpjxjþ
Z

t0

tr

π−p0 þ
Z

t

tr

πp

��

×exp
�
−i
�
Tm2

2
þ
Z

1

0

dτ
�
_q2

2T
þAðqÞ _qþJq

���
; ð10Þ

where πpðtÞ ¼ π0ðp; tÞ, the proper time σ integral comes
from selecting the term that is linear in ϵμ, the ellipses
stand for the prefactor part of the integrand, and the
“current” is given by

Jμ ¼ kμδðτ − σÞ; ð11Þ

so σ is the proper time when the photon decays. The
prefactor part of the integrand also includes

P exp

�
−i

T
4

Z
1

0

dτσμνFμν

�
ð12Þ

because, even though it is given by an exponential, it is
slowly varying; i.e., after a suitable rescaling of the
integration variables, the exponential written out in (10)
scales as exp½iðscalar partÞ=E�, where E ≪ 1 is the field
strength, while the exponent in (12) does not lead to terms
with 1=E in the exponent. Thus, the saddle point, i.e., the
worldline instanton, is the same in scalar and spinor QED.
These worldlines can be thought of as electron lines,

where the initial part has been bent into the future. So, the
“initial” condition for qðτÞ is a positron in the future; then,
the path goes backward in time into the field, where it has a
kink due to the photon absorption, turns and goes forward
in time, and ends as an electron in the future.
Since we are considering a field which only depends on

time, half of the spatial integrals give delta functions. We

therefore change variables from x0j and xj to φj ¼ ðxþ
x0Þj=2 and θj ¼ ðx − x0Þj and then make a shift
qjðτÞ → φj þ qjðτÞ. The φ integral gives δ3ðpþ p0 − kÞ.
The boundary conditions for the spatial components of the
path integral are now

qð0Þ ¼ −
θ
2

qð1Þ ¼ θ
2
: ð13Þ

We will perform all the nontrivial integrals with the
saddle-point method. In principle, one can perform them in
any order, and in a future paper, where we plan to develop a
numerical code using discretized worldlines, one would
perform them all together and obtain the prefactor by
calculating the determinant of a large Hessian matrix.
However, for the time-dependent fields we consider here,
we can use the Gelfand-Yaglom method for calculating the
path integral analytically, and for this reason, it is better to
perform the path integral first, while the exponent is still
local in proper time. We therefore make a shift and a
redefinition,

qμðτÞ → qμðτÞ þ δqμðτÞ; ð14Þ

where from now on qμðτÞ is not an integration variable but a
solution to the following Lorentz-force-like equation

q̈μ ¼ TðFμν _qν þ JμÞ; ð15Þ

which for the present case reduces to

q̈0 ¼ TðA0
j _q

j þ J0Þ ð16Þ

and

q̈j ¼ Tð−A0
j _q0 þ JiÞ; ð17Þ

where A0ðtÞ ¼ dA=dt, with boundary conditions (13) for q,
q0ð0Þ ¼ t0 and q0ð1Þ ¼ t. The delta function in Jμ gives the
instanton a kink; i.e., the instanton velocity is discontinuous
at τ ¼ σ. Since the boundary conditions for the original
integration variable have been absorbed into the instanton,
the new integration variable δqμðτÞ has Dirichlet boundary
conditions, δqμð0Þ ¼ δqμð1Þ ¼ 0. qμ has been chosen to be
a solution of this Lorentz-force equation such that the
exponent contains no terms that are linear in δq; i.e., the
instanton qμ is a saddle point of the worldline path integral.
The spatial part of the Lorentz-force equation (17) gives
immediately

_qiðτÞ ¼ Tðci þ kiθτσ − Aiðq0ðτÞÞÞ; ð18Þ

where ci, i ¼ 1, 2, 3, are three constants, and θτσ ¼
θðτ − σÞ is the step function.
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An arbitrary variation of the instanton, qμ → qμ þ δaqμ,
leads to a variation of the instanton action

δa

Z
1

0

dτ

�
_q2

2T
þ A _qþ Jq

�
¼
�
_q
T
þ A

�
δaq

				1
0

; ð19Þ

which is nonzero only if there is a variation of the end points.
Since q0ð0Þ ¼ t0 and q0ð1Þ ¼ t are not integration variables,
only the spatial parts are relevant here. So, if we make a
variation θ → θþ δθ, then δθqð1Þ ¼ δθ=2 ¼ −δθqð0Þ.
Setting the linear variation in δθ to zero gives

�
_qj
T
þ Aj

�
ð0Þ þ

�
_qj
T
þ Aj

�
ð1Þ ¼ ðp − p0Þj: ð20Þ

This together with (18) implies ci ¼ −p0
i.

Setting the variation with respect to σ to zero gives

k _qðσÞ ¼ 0; ð21Þ

so the photon decays at a proper time when its 4-momentum
is orthogonal to the instanton velocity. This together with the
Lorentz-force equation gives _qq̈ ¼ _qðF _qþ JÞ ¼ 0, so _q2 is
independent of τ. Note that without the photon kink, e.g., for
instantons describing Schwinger pair production, the
Lorentz-force equation would directly imply that _q2 is
a constant of motion, but here const ¼ _q2ðτ < σÞ ≠
_q2ðτ > σÞ ¼ const. are in general two different constants
before and after the photon absorption when the integration
variable σ is not equal to its saddle-point value.
The saddle-point equation for T is

T2 ¼
Z

1

0

dτ _q2; ð22Þ

which at the saddle point for σ simplifies to

_q2 ¼ T2: ð23Þ

This is an on-shell condition for the instanton. Substituting
(18) into (23) gives

_q0ðτÞ ¼ −θστT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp0 þAðq0ðτÞÞÞ2

q
þ θτσT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp −Aðq0ðτÞÞÞ2

q
; ð24Þ

where the signs follow from the boundary conditions for
pair production, i.e., the instanton starts and ends in the
asymptotic future. Note that while q is continuous _q cannot
be continuous because there are delta functions in the
Lorentz-force equation. From (24), it is also clear that the
instanton initially moves backward in time (T turns out to
have a large positive real part). But (24) does not auto-
matically solve (16) at τ ¼ σ. Differentiating (24) and

matching the resulting δτσ term with the one in (16) gives an
additional condition,6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp0 þAðt̃ÞÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp −Aðt̃ÞÞ2

q
¼! Ω; ð25Þ

where we have defined t̃ ¼ q0ðσÞ and Ω ¼ k0. This
equation gives us the time t̃ when the photon decays,
and it turns out to be complex.
Now, we have all the (implicit) saddle points, and the

leading part of the probability is obtained by inserting
the saddle points into the exponential. We first rewrite

Z
1

0

dτA _q ¼ p0
jx

0j þ pjxj þ
Z

1

0

dτ

�
_q2i
T

− Jjqj
�
; ð26Þ

where we first used partial integration to obtain qjA0
j _q0,

which is replaced using (17), and then a second partial
integration for the qjq̈j term. The terms in (26) all cancel
against the other terms in the exponent in (10). After this,
we are left with only one nontrivial τ integral, which
we rewrite by changing variable from proper time τ to
time q0ðτÞ,Z

1

0

dτ
_q20
T

¼
�Z

σ

0

þ
Z

1

σ

�
dτ

_q20
T

¼ −
Z

t̃

t0
dt00π−p0 −

Z
t̃

t
dt00πp: ð27Þ

By comparing this with (9), we see that t and t0 drop out
from the exponent. We thus find

M ∼ exp

�
i

�
p0
jx

0j þ pjxj þ
Z

t0

tr

π−p0 þ
Z

t

tr

πp

�

− i

�
Tm2

2
þ
Z

1

0

dτ

�
_q2

2T
þ A _qþ Jq

���				
saddle point

¼ exp

�
i
Z

t̃

tr

½π−p0 þ πp −Ω�
�
: ð28Þ

This is the final result for the exponential part of the
probability amplitude for a general time-dependent electric
field. To evaluate it, one just has to solve (25) to find the
integration limit t̃ and then perform the time integral (the
value of the lower integration limit tr ∈ R is arbitrary).
Equation (28) agrees with the result in Ref. [35], which was
obtained with either WKB or using unitarity (the optical
theorem) to obtain the pair-production probability from
the imaginary part of the photon polarization loop in the
worldline representation. The main difference from the
worldline derivation in Ref. [35] is that Ref. [35] considered

6We use ¼! , e.g., for a condition that is demanded in order to
determine some parameter.
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a closed fermion loop, while here we have considered an
open fermion loop.
Note that we have obtained (28) without actually finding

an explicit solution for the worldline instanton. All we
needed in order to obtain this explicit final result are the
implicit saddle-point/instanton equations. This is possible
because the field only depends on one space-time coordi-
nate. For a general space time–dependent field, we will not
be able to do this; we would have to actually find the
instanton solution. However, considering a simple field can
be very useful as a starting point for more general fields.
In Ref. [17], a numerical code was developed for

obtaining the worldline instantons in a general space
time–dependent electromagnetic field for the case of
Schwinger pair production (i.e., pair production without
the photon) (see also Ref. [50]). The instanton is obtained by
starting with the known, simple instanton in, e.g., a constant
field, and then the instanton in a general field is obtained by a
numerical continuation, where the instanton is changed
gradually by gradually changing the field from a constant
to a general field.
The plan is to derive such a code also for photon-

stimulated pair production, where the instanton in a general
field is obtained from a numerical continuation of the
simpler instanton in, e.g., a purely time-dependent electric
field. Thus, while we could obtain (28) without finding the
instanton explicitly, it is nevertheless expected to be useful
to go back and check what the instanton actually looks like.
To do that, we need to choose a field shape.

IV. SAUTER PULSE

A. Exponential part

Consider a linearly polarized electric field, A3 ¼ AðtÞ.
As an example, we consider a photon momentum k which
is perpendicular to the electric field. The dominant con-
tribution comes from a pair that shares the momentum
equally between the electron and positron, i.e.,
p ¼ p0 ¼ k=2. Equation (25) simplifies to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ A2ðt̃Þ

q
¼ Ω

2
→ Aðt̃Þ ¼ i; ð29Þ

where

m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Ω
2

�
2

s
ð30Þ

is an “effective” mass, which comes from the fact that the
absorbed photon not only provides energy (which enhan-
ces the probability) but also gives the pair momentum. At
this point, we need to choose a field shape. We consider a
Sauter pulse,

AðtÞ ¼ E
ω
tanhðωtÞ: ð31Þ

We have

ωt̃ ¼ i arctan γ; ð32Þ

where γ ¼ ω=E is the Keldysh parameter (or 1=a0).
Performing the integrals in (28), we find

jMj2Sauter∼exp

�
−

4

Eγ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

q
arctan

�
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

q �

−arctan
1

p
−γp arctan γ

��
; ð33Þ

where p ¼ jpj ¼ Ω=2. This result interpolates between
several different limits which can be compared with the
literature. Consider first the soft-photon limit,

lim
Ω→0

ð33Þ ¼ exp

�
−
π

E
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p �
; ð34Þ

which agrees with the results in Refs. [3,4,51] for the
probability of pair production by a Sauter field without the
additional photon. Consider next the slowly-varying-field
limit,

lim
γ→0

ð33Þ ¼ exp

�
−
2

E

�
½1þ p2� arctan

�
1

p

�
− p

��
; ð35Þ

which agrees with Eq. (5) in Ref. [5] for pair production
by a photon in a constant electric field. In the high-
frequency limit, we find

lim
γ≫1

ð33Þ ¼ exp
�
−
2π

ω
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
− pÞ

�
: ð36Þ

Note that the electric-field strength E has dropped out of
the exponent in this limit. In fact, even though the saddle-
point approximation of the preexponential factor breaks
down in this limit, the exponent (36) is what one can
expect from perturbative pair production: The Fourier
transform of a Sauter pulse f̃ðwÞ scales at large Fourier
frequencies w as

f̃ðwÞ ∼ exp

�
−
π

2

w
ω

�
: ð37Þ

It is possible to produce a pair by absorbing the high-energy
photon plus one Fourier photon from the Sauter pulse if
wþ Ω ≥ p0 þ p0

0 ¼ 2m⊥. The exponential suppression of
the probability comes from the fact that the Fourier trans-
form is exponentially suppressed at such high Fourier
frequencies. Inserting the threshold value w ¼ 2m⊥ − Ω
into (37) gives (36). Compare with Ref. [47].
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The high-energy limit might be the most interesting
limit. We find

lim
Ω≫1

ð33Þ¼ exp

�
−

4

γEΩ

��
1þ 1

γ2

�
arccot

�
1

γ

�
−
1

γ

��
: ð38Þ

If we introduce χ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνkνÞ2

q
¼ EΩ and write

a0 ≔ 1=γ, then we see that (38) is exactly the same as
in Eq. (60) in Ref. [7] for trident (e− → e−e−eþ) pair
production in a plane-wave electromagnetic field, up to an
overall process-dependent factor of 2nk=nP, where Pμ is
the momentum of an initial electron and nμ is proportional
to the wave vector of the laser (n2 ¼ 0). The simplest thing
to compare with would of course be the probability of
Breit-Wheeler in a plane wave. However, we are not aware
of such a result in the literature, so we have calculated it by
applying the saddle-point method to the results in Ref. [52]
(we will come back to this). The result agrees exactly with
(38). The reason for this agreement is that a field effectively
behaves as a plane wave in this limit because the field
invariants are much smaller than χ, so one can to leading
order set E2 − B2 ¼ 0 and E · B ¼ 0, which agrees with a
plane-wave field. Or one can make a Lorentz transforma-
tion to a frame where the photon energy is on the order of
the electron mass, in order to make the frequencyOð1Þ (this
means Ω0 ∼ 1 in the new frame since we use units with
me ¼ 1). In such a frame, a general field looks like a plane
wave. If in addition a0 is large, then the plane wave can be
treated as a (locally) constant crossed field [53]. In this
double limit, we have

lim
γ≪1

lim
Ω≫1

ð33Þ ¼ lim
γ≪1

ð38Þ ¼ exp

�
−

8

3χ

�
; ð39Þ

which is the well-known scaling for nonlinear Breit-
Wheeler pair production in the constant-crossed-field
approximation [54,55]. However, we see from (38) that
the high-energy limit agrees with the plane-wave result in
a larger regime, i.e., not just for large a0 but also for
a0 ≳ 1. It is useful to see that our result (33) interpolates to
this high-energy/plane-wave limit as this means that the
instanton approach can be used also for fields that are
closer to plane waves (e.g., single laser beam) rather than
combination of two or more laser beams with significantly
nonzero field invariants.

B. Instanton

To obtain the instanton, we first calculate T. Note that the
saddle-point equation (22) which we obtained by varying
T only gives an implicit equation because the instanton
q depends on T. Instead, we can obtain T from

T ¼ T

�Z
σ

0

þ
Z

1

σ

�
dτ ¼

�Z
t

t̃
þ
Z

t0

t̃

�
dt̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2⊥ þ A2ðt̄Þ
p

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

p
E

�
arcsinh

�
1

m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ 1

γ2

s
sinhðωtÞ

�

þ arcsinh
�
1

m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ 1

γ2

s
sinhðωt0Þ

�

− 2i arcsin

�
1

m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2
1þ γ2

s ��
: ð40Þ

Similarly,

Tσ ¼ T
Z

σ

0

dτ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

p
E

�
arcsinh

�
1

m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ 1

γ2

s
sinhðωtÞ

�

− i arcsin

�
1

m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2
1þ γ2

s ��
: ð41Þ

For asymptotic times t; t0 ≫ 1, we have

T ∼
tþ t0

π0ð∞Þ σ∼
t

tþ t0
π0ð∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥þ 1

γ2

s
; ð42Þ

which is the proper time T required for a positron to start at
t with asymptotic momentum πð∞Þ, go back in time to a
time period where the field is nonzero q0 ∼ 1, turn, and go
back to the future again, where it is an electron. Of course,
even if t and t0 are real and so the real part of T (and σ) is
much larger than the imaginary part, we cannot neglect the
imaginary part because it is needed to tunnel. For t ¼ t0, we
have σ ¼ 1=2 exactly.
Before presenting the explicit instanton solution, we will

first derive a general expression for the final exponential
expressed in terms of the instanton solution, so that we can
check that the explicit instanton gives the correct result
(33). For a completely general space time–dependent field,
the instanton is a solution to the Lorentz-force equation

q̈μ
T

¼ Fμν _qν þ Jμ; ð43Þ

where Fμν ¼ ∂μAν − ∂νAμ. With two partial integrations,
we find

Z
1

0

dτA _q ¼
�
_q
T
þ A

�
q

				1
0

þ
Z

1

0

dτ

�
−qμ∂μAν _qν −

_q2

T
− Jq

�
; ð44Þ
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so

− i

�
Tm2

2
þ
Z

1

0

dτ

�
_q2

2T
þ A _qþ Jq

��

¼ −i
�
_q
T
þ A

�
q

				1
0

þ i
Z

1

0

dτqμ∂μAν _qν: ð45Þ

The boundary terms should cancel against the asymptotic
states. We change variables from τ to u ¼ Tðτ − σÞ and
take the limit t; t0 → ∞, which means T → ∞, and find [we
assume here that A0ð�∞Þ ¼ 0]

jMj2 ∼ exp

�
2Re i

Z
∞

−∞
du qμ∂μ Aν

dqν

du

�
: ð46Þ

Note that u is actually what one would usually call proper
time because instead of (23) the on-shell condition for the
instanton reads ðdq=duÞ2 ¼ 1. In fact, Eq. (46) is repar-
ametrization invariant. We are, of course, free to make a
contour deformation for proper time u; choosing a real or a
complex contour changes of course the instanton path, but
not the integral. Note also that (46) only depends on the
photon implicitly via the instanton solution; i.e., Eq. (46)
works for both photon-stimulated and spontaneous pair
production.
We return now to the Sauter pulse. In terms of u, we have

for u > 0

q0ðuÞ ¼
1

ω
arcsinh

�
m⊥γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2⊥γ2
p

× sinh

�
U þ i arcsin

�
1

m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2
1þ γ2

s ���

q3ðuÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2⊥γ2
p

ω

�
arcsinh

�
m⊥γ

× cosh
�
U þ i arcsin

�
1

m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2
1þ γ2

s ���

− arcsinh

�
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ − 1

1þ γ2

s ��
; ð47Þ

where

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

q
Eu; ð48Þ

and the solution at u < 0 is simply obtained from

qðu<0Þ0 ðuÞ ¼ qðu>0Þ0 ð−uÞ and qðu<0Þ3 ðuÞ ¼ −qðu>0Þ3 ð−uÞ.
The solution in (47) is still exact; i.e., it is obtained by
just changing variables from τ to u without having to take
any T; t; t0 → ∞ limit. By plugging (47) into (46) and
performing the integral numerically, we can check that the
instanton solution indeed gives the correct result (33).

For a photon with high energy, i.e., in the limit where the
time-dependent background field behaves as a plane wave,
the instanton simplifies considerably, and the time compo-
nent is just a straight line before and after the photon
absorption,

lim
Ω≫1

q0ðU > 0Þ ¼ 1

ω
ðU þ i arctan γÞ: ð49Þ

The corresponding approximation for _q3 can be obtained
from (18) and is, up to a constant, just A3ðq0Þ. It is
straightforward to check that by inserting this leading
high-energy approximation of the instanton into (46) we
obtain (38). From (48), we see that _q0 ¼ dq0=du → �Ω=2,
which is expected since the electron and positron share the
energy of the absorbed photon equally and the u < 0 and
u > 0 halves of the instanton correspond, respectively, to the
positron and electron. However, even in thisΩ ≫ 1 limit, the
appropriate integration variable in (46) is U; i.e., the Ω ≫ 1
limit is obtained by expanding the integrand with U rather
than u as independent of Ω, so knowing that _q0 → �Ω=2 is
not enough.
The instanton and its high-energy approximation are

shown in Fig. 1. Note that nowhere in this study has it been
necessary to rotate to euclidean time. Figure 1 also suggests
that such a rotation would not be helpful here, as the time
component of the instanton q0 is neither purely imaginary
nor real.

C. Instantons in a plane-wave background

We have seen that the probability of Breit-Wheeler in a
time-dependent electric field EðtÞ reduces to the one in a
plane-wave background when the photon frequency is
very high. In this section, we will show how to obtain the
plane-wave result by working directly with the instanton
in a plane wave. In the EðtÞ case, we have chosen the field
to point along the z axis and focused on photons with
perpendicular momentum, kμ ¼ Ωð1; 1; 0; 0Þ, so to show
that such a high-energy photon effectively “sees” a plane
wave, we would boost along the x axis. Hence, for
comparison, we will now choose a plane wave traveling
along the x axis and with polarization along the z axis,
with nonzero component A3 ¼ a3ðϕÞ ¼ a0fðϕÞ, where
a0 ¼ E=ω and ϕ ¼ Kx ¼ ωðtþ xÞ. We assume for sim-
plicity a symmetric field að−ϕÞ ¼ −aðϕÞ. Light front
components are given by v� ¼ 2v∓ ¼ v0 � v1 and v⊥ ¼
fv2; v3g for an arbitrary vector vμ. We will show that the
exponent in (46) gives the correct result. We therefore use
proper time u rather than τ,

d2qμ
du2

¼ Fμν
dqν

du
þ kμδðuÞ; ð50Þ

where Fμν ¼ Kμa0ν − a0μKν. As is well known, the Lorentz-
force equation without the current term [kμδðuÞ] has a simple
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exact solution for a general plane wave. The solution is still
simple with the current term,

u > 0∶ ϕ ¼ ϕ̃þ Kpu
dq⊥
du

¼ ðp − aÞ⊥

u < 0∶ ϕ ¼ ϕ̃ − Kpu
dq⊥
du

¼ ð−p − aÞ⊥; ð51Þ

where ϕ ¼ Kq. The remaining component can be obtained
from the on-shell condition,

dqþ
du

¼ 1þ ðdq⊥=duÞ2
4dq−=du

: ð52Þ

Here, we have assumed that the electron and positron
share the absorbed photon momentum equally, p−;⊥ ¼
p0
−;⊥ ¼ k−;⊥=2. The “turning point” ϕ̃ is determined by

(21) and ensures that the δðuÞ term in d2uqþ agrees with (50),

a2⊥ðϕ̃Þ ¼! − 1: ð53Þ

Since að−ϕÞ ¼ −aðϕÞ, this implies that ϕ̃ ¼ iz is imagi-
nary, z > 0. Inserting this instanton into (46), changing
variable from u to ϕ, and performing a partial integration
gives

jMj2 ∼ exp

�
−

4

Kl
Re i

�
−ϕ̃þ

Z
∞

ϕ̃
dϕa2⊥

��

¼ exp

�
−
4z
Kl

�
1þ a20

1

2iz

Z
iz

−iz
dϕ f2ðϕÞ

��
; ð54Þ

where in the second step we have chosen a ϕ contour that
first goes down from ϕ̃ to 0 and then from 0 to ∞ along the
real axis; the second part cancels because it is a pure phase.
Equation (54) agrees with Eq. (93) in Ref. [6],7 which
was obtained using the Volkov solutions. Equation (54)
works for a general symmetric field. For a Sauter pulse, we
recover (38).

V. WKB SOLUTION FROM WORLDLINE
INSTANTON

So far, we have focused on the exponential part of the
probability. We now turn to the problem of calculating
the preexponential part using the worldline formalism and
the Gelfand-Yaglom method.
For one-dimensional fields, one can often do the

calculations conveniently using the WKB approximations
of the Dirac equation. As a first application of open
worldline instantons, we therefore start by deriving these
WKB solutions.

0.5 0.0 0.5

0.0

0.5

1.0

1.5

Re[ q0]

Im
[

q 0
]

=0

0.5 0.0 0.5

0.0

0.5

1.0

1.5

Re[ q0]

Im
[

q 0
]

=1

0.5 0.0 0.5

0.0

0.5

1.0

1.5

Re[ q0]

Im
[

q 0
]

=10

FIG. 1. Streamlines show the velocity (or energy rather) _q0 ¼ �T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ A2ðq0Þ

p
, cf. (24), with p2⊥ ¼ p02⊥ ¼ ðΩ=2Þ2 and

p3 ¼ p0
3 ¼ 0. The red solid lines show the analytical instanton solution (47). The dashed line shows the high-energy approximation

of the instanton (49). γ ¼ 1 in all plots. For Ω ¼ 1, 10, the instanton is plotted with proper time u along the real axis, and T has been
chosen real for the streamlines. However, for Ω ¼ 0, we have chosen u ¼ eiϑr with real r and a small phase, ϑ, in order to prevent the
instanton from going into the pole of the Sauter pulse at ωq0 ¼ iπ=2. For the stream plot, we have similarly chosen T ¼ eiϑjTj. The
precise value of ϑ is not important, but for this particular plot, we have chosen ϑ ¼ −0.001π. Note that the stream arrows sometimes
point in the opposite direction compared to the velocity of an actual trajectory. For example, for u < 0, the plotted analytical instanton
starts at q0 → þ∞ and moves backward to the turning point, i.e., opposite to the direction of the plotted stream arrows, while for u > 0,
it turns back along the same line.

7That equation is for nonlinear Compton, but the only difference
is that r10 there should be replaced with rBW, which is rBW → 4 for
the saddle-point value of the longitudinal momentum Kp.
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We begin with the path integral. Expanding around the
instanton gives a zeroth order which we have already
discussed, a linear term that vanishes, and a quadratic term
on the form

exp

�
−

i
2T

Z
1

0

ð δt δz ÞΛ
�
δt

δz

��
; ð55Þ

where

Λ ¼
�
−∂2 þ TA00 _z TA0∂

−∂TA0 ∂2

�
; ð56Þ

where ∂ ¼ ∂=∂τ. The path integral over δt; δz gives us the
functional determinant of Λ. We will calculate it using the
Gelfand-Yaglom method, which was applied to closed
instantons for spontaneous pair production in Ref. [4].
For this, we need to find the two solutions, ϕð1Þ and ϕð2Þ, of

Λϕ ¼ 0 ϕð0Þ ¼ 0 ð57Þ

with

_ϕð1Þð0Þ ¼
�
1

0

�
_ϕð2Þð0Þ ¼

�
0

1

�
: ð58Þ

The determinant is given by

det Λ ¼ ðϕð1Þ
1 ϕð2Þ

2 − ϕð1Þ
2 ϕð2Þ

1 Þjτ¼1: ð59Þ

The path integral over δqμ gives the free part (this includes
both δt, δz and δq⊥)Z

δqð1Þ¼0

δqð0Þ¼0

Dδq exp

�
−i
Z

1

0

dτ
δ _q2

2T

�
¼ 1

ð2πTÞ2 ð60Þ

times
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΛfree

p
=
ffiffiffiffiffiffiffiffiffiffi
detΛ

p
, but with our normalization, we

have ϕð1Þ
free ¼ fτ; 0g and ϕð2Þ

free ¼ f0; τg, so detΛfree ¼ 1.
To solve (57), we make the ansatz

ϕðτÞ ¼ hðτÞ
�
_t

_z

�
þ dðτÞ

�
0

1

�
; ð61Þ

where h and d are now the functions to be determined. One
of the two components of Λϕ ¼ 0 gives

∂½ _dþ ∂ðh_zÞ − TA0h_t� ¼ 0; ð62Þ

which integrates to

d ¼ c1τ − h_zþ
Z

τ

0

TA0h_t; ð63Þ

where c1 is a constant. For the second component, we have

∂ð _h_t2 − c1TAÞ ¼ 0; ð64Þ

which leads to

ϕ1 ¼ h_t ¼ _t
Z

τ

0

dτ0

_t2
½c1TAþ c2�; ð65Þ

where c2 is an additional constant, and so

ϕ2 ¼ h_zþ d ¼ c1τ þ
Z

τ

0

T A0ϕ1

¼ c1τ þ
Z

τ

0

dτ0

_t2
½c1TAþ c2�T½Aτ − A�: ð66Þ

We determine c1 and c2 from the initial conditions (58)

cð1Þ1 ¼ 0 cð1Þ2 ¼ _t0 cð2Þ1 ¼ 1 cð2Þ2 ¼−TAðt0Þ: ð67Þ

We have three integrals

I0 ¼
Z

1

0

dτ
1

_t2
I1 ¼

Z
1

0

dτ
TA
_t2

I2 ¼
Z

1

0

dτ
ðTAÞ2
_t2

¼ 1þ 2Tp3I1 − T2ðm2⊥ þ p2
3ÞI0: ð68Þ

where we have used

_t ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ ðp3 − AðtÞÞ2

q
: ð69Þ

We find

ϕð1Þ¼
 

_t1ðc1I1þc2I0Þ
c1½1þTAðt1ÞI1−I2�þc2½TAðt1ÞI0−I1�

!
: ð70Þ

The determinant (59) becomes

det Λ ¼ _t0_t1ðI0 þ I21 − I0I2Þ: ð71Þ

For t1 → ∞, we have

I0→
t1

T3π30ð∞Þ I1 →
t1Að∞Þ
T2π30ð∞Þ I2→

t1A2ð∞Þ
Tπ30ð∞Þ : ð72Þ

The terms with I1 and I2 cancel in this limit, and we find

det Λ →
t1π0ðt0Þ
Tπ20ð∞Þ : ð73Þ

Next, we turn to the ordinary integrals. For detΛ, we
could use the final form of the instanton, but now, we need
the instanton as a function of general T and start/end points.
From the Lorentz-force equation, we have
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_q2 ¼ constant≕T2a2; ð74Þ

which defines a constant a. For the spatial components,
we have

_x⊥ ¼ Tc⊥ _z ¼ Tðc3 þ A3Þ; ð75Þ

where cj are three constants determined by the initial and
final points,

c⊥ ¼ Δx⊥
T

c3 ¼ Δz
T

−
Z

1

0

dτA3; ð76Þ

where Δx ¼ xð1Þ − xð0Þ. We define

Gða2; cjÞ ≔
Z

t1

t0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2⊥ þ ðc3 þ A3Þ2

q
; ð77Þ

which gives a function for arbitrary arguments a; cj. The
actual values of a; cj in the instanton can now be determined
from

G0 ≔
∂
∂a2G¼! T

2
Gj ≔

∂
∂cj G¼! − Δxj: ð78Þ

The instanton action can be expressed as e−iS

S ¼ T
2
þ
Z

1

0

_x2

2T
þ A3 _z ¼

T
2
ð1 − a2Þ − cjΔxj þ G: ð79Þ

We have

dS
dT

¼ 1

2
ð1 − a2Þ; ð80Þ

where the terms with da2=dT and dcj=dT cancel due to
(78). Thus,

a2ðT ¼ Tsaddle;ΔxjÞ ¼ 1; ð81Þ

or

TsaddleðΔxjÞ ¼ 2G0ð1; cjÞ: ð82Þ

For the prefactor, we also need the second derivative. To
obtain this, we first differentiate (78) with respect to T,
solve dGj=dT ¼ 0 for dcj=dT in terms of da2=dT, and
substitute into dG0=dT ¼ 1=2, which gives

d2

dT
S ¼ −

1

4
ðG00 −G0jG−1

jk G0kÞ−1; ð83Þ

where G00 ¼ ð ∂
∂a2Þ2G, G0j ¼ ∂

∂a2
∂
∂cj G, and G−1

jk is the j, k

element of the inverse of the matrix Gij ¼ ∂
∂ci

∂
∂cj G. Thus

(up to an irrelevant phase), the contribution from the T
integral to the prefactor is given by

Z
dT → 2

ffiffiffiffiffiffi
2π

p
ð−G00 þG0jG−1

jk G0kÞ1=2; ð84Þ

by which we mean that the full result is obtained by making
this replacement in addition to replacing T → Tsaddle in the
integrand. In the asymptotic limit, we find

ð84Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πt1
π0ð∞Þ

s
: ð85Þ

Now, we turn to the integral over xj ¼ xjð1Þ. The
exponential part of the integrand is given by

ipjxj − iS ¼ iðpjxj − cjΔxj −GÞ: ð86Þ

Upon differentiating with respect to xj, we find that the
terms with dck=dxj vanish due to (78) and hence

d
dxj

ð86Þ ¼ iðpj − cjÞ; ð87Þ

so

cjðxksaddleÞ ¼ pj ð88Þ

or from (78)

xjsaddle ¼ xjð0Þ − Gjð1;pÞ: ð89Þ

By differentiating the second equation in (78), we obtain

d
dxj

d
dxk

ð86Þ ¼ iG−1
jk : ð90Þ

Thus, the spatial integrals give (up to an irrelevant phase)

Z
d3x → ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Gjk

q
; ð91Þ

which in the asymptotic limit gives

lim
t1→∞

ð91Þ ¼ ð2πÞ3=2 t3=21

π5=20 ð∞Þ
: ð92Þ

The final exponent is now obtained from (86) and the
term from the asymptotic state (8),

ð86Þ þ i
Z

t1

tr

π0 ¼ ipjx
j
ð0Þ þ i

Z
t0

tr

π0; ð93Þ

which agrees with the exponential part of the WKB
solution (8).
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For the prefactor, we find

1

ð2πTÞ2
1ffiffiffiffiffiffiffiffiffiffi
detΛ

p
Z

dT
Z

d3x →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π0ðt0Þπ0ð∞Þp : ð94Þ

The spin factor simplifies

P exp

�
−
iT
4

Z
1

0

σμνFμν

�

¼ exp

�
T
2

Z
1

0

dτA0
3ðtÞγ0γ3

�

¼ exp

�
1

2
ln

�
π0ð∞Þ − π3ð∞Þ

π0 − π3

�
γ0γ3

�
; ð95Þ

where the integral was performed by changing the variable
from τ to t. The rest of the spinor part is given by
R̄ð=π∞ þ 1Þγ0ð=π∞ þ 1Þ ¼ 2π0∞R̄ð=π∞ þ 1Þ. Putting every-
thing together, we finally find

R̄ð=π þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π0ðπ0 þ π3Þ

p exp

�
ipjx

j
ð0Þ þ i

Z
t0

tr

dt π0

�
; ð96Þ

which agrees exactly with the WKB solution Ū in (8).

VI. SPECTRUM OF SPONTANEOUS PAIR
PRODUCTION BY A TIME-DEPENDENT FIELD

A. Worldline derivation

A very similar calculation gives us the pair-production
amplitude and so the spectrum. The G function is now
defined as

Gða2; cjÞ≔
Z

1

0

dτ
_t2

T
¼ 2

Z
t1

t̃
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2⊥ þ ðc3 þA3Þ2

q
;

ð97Þ

where we have set t0 ¼ t1 and t̃ ¼ tðσÞ is the (complex)
time where _tðσÞ ¼ 0, i.e., the turning point where the
instanton stops moving backward in time and starts moving
forward. Instead of (71), we find [_t1 ¼ −_t0 ¼ π0ð∞Þ]

detΛ → −
t0 þ t1
Tπ0ð∞Þ ; ð98Þ

instead of (85), we have

ð84Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðt0 þ t1Þ
π0ð∞Þ

s
; ð99Þ

and similarly for (92). Thus (up to an irrelevant phase),

1

ð2πTÞ2
1ffiffiffiffiffiffiffiffiffiffi
detΛ

p
Z

dT
Z

d3x →
1

π0ð∞Þ : ð100Þ

The other spatial integrals give the momentum conserving
delta function,

R
d3x0 → ð2πÞ3δ3ðpþ p0Þ. The spinor part

is also similar to before, but with one important difference,

P exp

�
−
iT
4

Z
1

0

dτ σμνFμν

�

¼ exp

�
ln

�
εim⊥
π0 þ π3

�
γ0γ3

�
; ð101Þ

where ε ¼ �1 is determined by

p3 − A3ðt̃Þ ¼ εim⊥: ð102Þ

We find (up to an irrelevant phase)

M ¼ ð2πÞ3δ3ðpþ p0ÞR†
s0Rsε exp

�
2i
Z

t̃

tr

dt π0

�
; ð103Þ

where R†
s0Rs ¼ δss0 for s; s0 ¼ 1, 2. For a field with only one

maximum, like a Sauter pulse, we only have one saddle
point, and the sign ε is irrelevant. However, for a field with
multiple maxima/minima, we have several saddle points,
and hence in the coherent sum of these, we need to keep the
relative sign given by ε.

B. Instantons

The amplitude in (103) agrees with the result in
Ref. [56], which was obtained by a saddle-point treatment
of the Riccati equation. The momentum spectrum for
time-dependent electric fields was also studied with
worldline instantons in Ref. [57], but with an important
difference: In Ref. [57], a worldline representation was
used for the effective action, which gives directly the
probability rather than the amplitude. Those worldlines
are all closed loops, i.e., xμð0Þ ¼ xμð1Þ, while we are
working with open worldlines. Working on the probability
level increases the number of instantons one has to deal
with. For example, for a field with one maximum and one
minimum, we have two instantons on the amplitude level
but four on the probability level.
As an example, we consider

A3ðtÞ ¼
1

γ

1

1þ ðωtÞ2 : ð104Þ

In contrast to the Sauter pulse, here we have two turning
points with ImðtÞ > 0,

ωtm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

γðp3 þ iÞ − 1

s
ð105Þ

DEGLI ESPOSTI and TORGRIMSSON PHYS. REV. D 105, 096036 (2022)

096036-12



and

ωtp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

γðp3 − iÞ − 1

s
: ð106Þ

For pair production, we need instantons that start and end at
t → þ∞. By simply plotting the streamlines for

_q0 ¼ �jTj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp3 − A3ðq0ÞÞ2

q
; ð107Þ

we can immediately see instantons that wrap around the
turning point tp with Re tp > 0 and Im tp > 0; see Fig. 2.
Note that there is not just one unique instanton because the
instanton does not actually have to go through the turning
point; it just has to wrap around it, and so one can
continuously increase the distance between the instanton
to the turning point (up to the closest pole or branch cut).
In fact, the turning point is also a branch point, so one
might expect that it can in some cases be numerically
advantageous to choose instantons that do not go too close
to the turning point. We can also see instantons that wrap
around the other turning point, tm with Retm < 0 and
Imtm > 0, but they start and end at t → −∞ and therefore
do not satisfy the boundary conditions. The instantons that
follow the streamlines of (107) have real proper time from
start to end.
To find instantons that go around tm but have the correct

boundary conditions, i.e., starting and ending at t → þ∞,
we can use a complex contour for the proper time, i.e., use a
complex einbein; cf. Ref. [57]. We parametrize the complex
proper time contour in terms of a real variable r. We denote
the Jacobian for this change of variable

du
dr

¼ fðrÞ: ð108Þ

When f is real, the instanton follows the streamlines of
(107). When f is imaginary, the instanton instead follows

_q0 ¼ �ijTj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp3 − A3ðq0ÞÞ2

q
; ð109Þ

i.e., streamlines that are orthogonal to (107). As can be
seen in Fig. 2, instantons that follow the streamlines of
(109) can wrap around either tp or tm, but those instantons
also wrap around the turning points in the lower half
complex plane and form closed loops. In other words, if
we choose f imaginary for the whole trajectory, then we
find no instantons that start and end at t → þ∞. Instead,
we can choose a f that is sometimes real and sometimes
imaginary. There is no unique choice of f. We have
chosen

fðrÞ ¼ 1

2

�
1 − tanh

�
r
W

��
þ 1

2

�
1þ tanh

�
r − L
W

��

−
i
4

�
1þ tanh

�
r
W

���
1 − tanh

�
r − L
W

��
; ð110Þ

illustrated in Fig. 2. To find an instanton, we can look at
the streamlines in Fig. 2 and select a point t0 which we

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Re[ q0]

Im
[

q 0
]

Re[f(r)]

Im[f(r)]

2 1 1 2 3 4
r

1.0

0.5

0.5

1.0

FIG. 2. The first plot shows the real and imaginary parts of the
time component of instantons for the field in (104), with γ ¼ 1
and longitudinal momentum p3 ¼ 0.3. The light green stream-
lines, i.e., those that on the real axis are parallel to the real axis,
show (107), while the light orange streamlines are orthogonal
(109). The black dots show the poles of the field at ωq0 ¼ �i and
the four turning points. The dashed purple line shows an example
of an instanton that starts and ends at Re q0 → ∞ and goes around
one of the turning points, with proper time u real throughout the
trajectory. The solid red line shows an example of an instanton for
which proper time follows a complex contour, specifically
parametrized as in (108) and (110) with W ¼ 0.1 and
L ¼ 2.09, as shown in the second plot. The yellow dot-dashed
line shows a similar instanton that goes around the other (upper)
turning point.
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guess should be on the instanton line. Then, we can guess
a point r0 which wound make the instanton go around
either tp or tm. By tuning these parameters as well as L and
W, we can also guide q0 so that it follows the real axis
asymptotically (as r → �∞). Two such instantons are
shown in Fig. 2. By inserting these numerical instanton
solutions into [cf. Eq. (46)]

exp

�
i
Z

∞

−∞
du qμ∂μAν

dqν

du

�
; ð111Þ

we find the same real part of the exponent as in (103) and
the relative phase for the two contributions also agrees
with (103).
We have thus shown explicit examples of instantons in a

case with interference. We emphasize again, though, that the
instanton path for q0 is really rather arbitrary since we have a
great deal of freedom in choosing the complex proper time
contour. Choosing f with (smooth) step-function-like behav-
ior as in (110) is, of course, just one choice that seems
convenient. This arbitrariness corresponds to the arbitrari-
ness in choosing the complex contour for the t integral in
(103) or (28); these t integrals were obtained by changing
integration variable from proper time u to t ¼ q0ðuÞ, but the
resulting t integral can, of course, be deformed in the
complex plane without even having to think about instan-
tons. Of course, this does not make the instanton path
completely arbitrary. One can, for example, not deform the
proper time contour to guide q0 and q3 separately. Also, the
two instantons in Fig. 2 which follow the real axis
asymptotically are not equivalent; they give the same real
part of the exponent in (111) but different imaginary part.
Moreover, here we have focused on purely time-dependent
fields, but for fields that depend onmore than one space-time
coordinate, one might not be able to rewrite the results as
expressions like (103) or (28) that no longer involve the
instanton. In such cases, it might not be as obvious what sort
of arbitrariness in the instanton path one has. However, one
always has the freedom to choose different proper time
contours.
Using open worldlines is a more general approach

because we can reproduce results obtained with closed
worldlines for the effective action, while, e.g., Compton
scattering cannot be treated with such closed lines. It can
also lead to further insights into the process since in the
open worldline instantons we can see real, physical
particles emerging at asymptotic times from complex paths
during the tunneling at finite times.

VII. PREFACTOR FOR NONLINEAR
BREIT-WHEELER PAIR PRODUCTION IN
TIME-DEPENDENT ELECTRIC FIELDS

In this section, we will calculate the prefactor for
nonlinear Breit-Wheeler pair production in nonconstant
fields.

A. Worldline derivation

Expanding around the instanton gives again (55), and we
again solve (57) using the ansatz in (61). One of the two
components gives

∂½ _dþ ∂ðh_zÞ − TA0h_t� ¼ 0; ð112Þ

which integrates to

d ¼ c1τ − h_zþ
Z

τ

0

TA0h_t; ð113Þ

where c1 is a constant. For the second component, we have
to be careful with the kink at τ ¼ σ. So, we consider first
τ ≠ σ, where the second component gives

∂ð _h_t2 − c1TAÞ ¼ 0; ð114Þ

which leads us to

ϕ1 ¼ h_t¼ _t

�Z
τ

0

dτ0

_t2
½c1TAþ c2þ c3θτ0σ�þ c4θτσ

�
; ð115Þ

where c2, c3, c4 are three additional constants, and

ϕ2 ¼ h_zþ d ¼ c1τ þ
Z

τ

0

TA0ϕ1

¼ c1τ þ c4θτσT½Aτ − Aσ�

þ
Z

τ

0

dτ0

_t2
½c1TAþ c2 þ c3θτ0σ�T½Aτ − A�: ð116Þ

c1 and c2 are again determined from the initial conditions as
(67). c3 and c4 are determined by demanding that ϕ1 and _ϕ1

be continuous at τ ¼ σ. With _tðσ þ δÞ ¼ −_tðσ − δÞ and
̈tðσ þ δÞ ¼ ̈tðσ − δÞ for δ → 0 and δ > 0, we find

c3 ¼ −2ðc1TAσ þ c2Þ þ 2_tþ̈tσðc1I1 þ c2I0Þ
c4 ¼ −2ðc1I1 þ c2I0Þ; ð117Þ

where _tþ ≔ limδ→0_tðσ þ δÞ and

I0 ¼
Z

1=2

0

dτ
1

_t2
I1 ¼

Z
1=2

0

dτ
TA
_t2

I2 ¼
Z

1=2

0

dτ
ðTAÞ2
_t2

¼ 1

2
− T2m2⊥I0: ð118Þ

We are assuming a symmetric field with a saddle point
for the momentum integral at p ¼ k=2 and k3 ¼ 0, so

_t ¼ ετσT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ A2ðtÞ

q
; ð119Þ

σ ¼ 1=2, tð1=2Þ ¼ t̃, where Aðt̃Þ ¼ i, and _tþ ¼ Tω=2. This
gives us all the information we need to obtain ϕð1Þ and
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hence detΛ. However, the expressions for ϕð1Þ are rather
long and complicated. This simplifies significantly, though,
in the asymptotic limit, where we find

det Λ ¼ −
iΩA0ðt̃Þ
2π0ð∞Þ3 t0: ð120Þ

Note that the limit t0 → ∞ does not commute with Ω → 0.
The instanton solution is given by

_x⊥ ¼ Tðc⊥ þ k⊥θτσÞ _z ¼ TðA3 þ c3Þ; ð121Þ

where cj are three constants [which are completely unre-
lated to the constants in (67) and (117), which are only
relevant for the calculation of detΛ] and

τ < σ∶ _t ¼ −T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2− þ c2⊥ þ ðA3 þ c3Þ2

q
τ > σ∶ _t ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ þ ðcþ kÞ2⊥ þ ðA3 þ c3Þ2

q
; ð122Þ

where aþ and a− are two additional constants. _tðσþÞ −
_tðσ−Þ ¼ TΩ gives the extra condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2− þ c2⊥ þ ðA3ðt̃Þ þ c3Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ þ ðcþ kÞ2⊥ þ ðA3ðt̃Þ þ c3Þ2

q
¼ Ω; ð123Þ

where t̃ ¼ tðσÞ. We define

Gða2−;a2þ:cj; t̃Þ≔
Z

t0

t̃
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−þc2⊥þðA3þc3Þ2

q

þ
Z

t1

t̃
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þþðcþkÞ2⊥þðA3þc3Þ2

q
þΩt̃:

ð124Þ

The constants are determined from the remaining integra-
tion variables, σ, T and Δxj ¼ xjð1Þ − xjð0Þ by

∂G
∂a2− ¼ Tσ

2

∂G
∂a2þ ¼ Tð1 − σÞ

2

∂G
∂ t̃ ¼ 0

∂G
∂cj ¼ −Δxj: ð125Þ

The instanton action can be written as e−iS where (recall
k3 ¼ 0)

S ¼ T
2
þ
Z

1

0

dτ

�
_x2

2T
þ A3 _zþ Jx

�

¼ T
2
½σð1 − a2−Þ þ ð1 − σÞð1 − a2þÞ�

− cjΔxj þ G − x⊥ð1Þk⊥: ð126Þ

Now, we perform the σ integral with the saddle-point
method. We have

dS
dσ

¼ T
2
ða2þ − a2−Þ; ð127Þ

where the terms with da2�=dσ, dt̃=dσ, and dcj=dσ cancel
due to (125). Thus, at the saddle point for σ, we have

a2−ðσsaddleÞ ¼ a2þðσsaddleÞ; ð128Þ

i.e., _x2 is continuous at σ even though _xμ is not. To obtain
the second derivative d2S=dσ2, we need da2þ=dσ and
da2−=dσ. We can obtain these by differentiating (125)
and solving for da2þ=dσ and da2−=dσ in terms of
ð∂=∂cαÞð∂=∂cβÞG with α; β ¼ 1;…; 6, where c4 ¼ t̃, c5 ¼
a2− and c6 ¼ a2þ. However, at this intermediate stage, the
result for d2S=dσ2 is quite complicated and not particularly
illuminating. This is not a problem, because d2S=dσ2 goes
into the preexponential, so even tough it depends on the
remaining integration variables T, Δx, and p, we actually
only need it for the saddle-point values T → Tsaddle, etc. It
also simplifies considerably when taking the asymptotic
limit. We will therefore return to d2S=dσ2 once we have
considered the T and Δx integrals.
Now, the exponent becomes

S ¼ T
2
ð1 − a2Þ − cjΔxj þG − x⊥ð1Þk⊥; ð129Þ

where a2 ≔ a2− ¼ a2þ. Note that we do not actually need to
find the explicit solution for the saddle point of σ. Instead of
the first two equations in (125), we have

∂G
∂a2 ¼

T
2
: ð130Þ

We have

dS
dT

¼ 1

2
ð1 − a2Þ; ð131Þ

where again all terms with da2=dT, dcj=dT, and dt̃=dT
cancel. So, at the saddle point for T, we have

a2ðTsaddleÞ ¼ 1; ð132Þ

just as without the photon. Again, the second derivative
d2S=dT2 can be calculated by differentiating the second
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line of equations in (125) and (130) in order to solve for
da2=dT in terms of second-order partial derivatives of G.
But we will again wait with the simplification of d2S=dT2.
Now, the exponent is

ip0
jx

jð0Þ þ ipjxjð1Þ − iS

¼ iðp0 þ p − kÞjXj þ iðp0 þ cÞjΔxj − iG; ð133Þ

where Xj ¼ ðxð1Þ þ xð0ÞÞj=2 and where we have used
δ3ðp0 þ p − kÞ to simplify the term proportional to Δxj.
We have

d
dΔxj

ð133Þ ¼ iðp0 þ cÞj; ð134Þ

where the terms with dck=dΔxj cancel due to (125). Thus,
at the saddle point for Δxj, we have

cjðΔxsaddleÞ ¼ −p0
j: ð135Þ

To obtain the preexponential, we need

d
dΔxj

d
dΔxk

ð133Þ ¼ i
dcj
dΔxk

; ð136Þ

which we will return to shortly.
The final exponent is given by

i
Z

t0

tr

π0ð−p0Þ þ i
Z

t1

tr

π0ðpÞ − iG

¼ i
Z

t̃

tr

dt½π0ð−p0Þ þ π0ðpÞ − Ω�; ð137Þ

which is of course the same as what we have in (28).
We note again that we have obtained the final expo-

nential without actually having to find σsaddle, Tsaddle, and
Δxsaddle. However, we will now turn to the preexponential
contributions from these integrals, and for this, we need
theses saddle points. So far, we have used (125) to
determine the constants a2� and cj and derivatives of
these with respect to σ, T, and Δx. Although we do not yet
have the saddle points, we know now that at these saddle
points the constants are simply given by (128), (132), and
(135). We can now obtain the saddle points by inserting
these values of the constants into (125), e.g.,

Tsaddle ¼ 2

� ∂G
∂a2− þ ∂G

∂a2þ
�				

a2−¼a2þ¼1;c¼−p0
: ð138Þ

Since we are now calculating the preexponential and since
we will for simplicity consider the integrated probability
rather than the momentum spectrum, we can simplify
further by anticipating the saddle point for the momentum

integral; i.e., we set p ¼ k=2 [we have Að−tÞ ¼ −AðtÞ].
With k2 ¼ k3 ¼ 0, we denote p ≔ p1 ¼ Ω=2. Even
though we could calculate all the above quadratic terms
for finite t0, at the end, we only need the asymptotic limit.
For these terms, we only need

G → t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ þ c2⊥ þ ðA3ð∞Þ þ c3Þ2

q
þ t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2− þ ðcþ kÞ2⊥ þ ðA3ð∞Þ þ c3Þ2

q
: ð139Þ

We choose for simplicity t0 ¼ t1. We find

Tsaddle →
2t0

π0ð∞Þ σsaddle →
1

2

Δx3saddle →
2t0Að∞Þ
π0ð∞Þ Δx⊥saddle → 0; ð140Þ

where π0ð∞Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ A2ð∞Þ

p
and m⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
. By

differentiating (125) with respect to σ and solving
for da2þ=dσ and da2−=dσ in terms of ð∂=∂cαÞð∂=∂cβÞG,
we find

Z
dδσ exp

�
−
4ið1þ A2ð∞ÞÞt0

π0ð∞Þ δσ2
�
; ð141Þ

where σ ¼ σsaddle þ δσ, and similarly

Z
dδT exp

�
−
im2⊥π0ð∞Þ

4t0
δT2

�
: ð142Þ

For the δΔx integral, we would, in general, have to
calculate the determinant of (136), but here it becomes
diagonal,

Z
d3δΔx exp

�
iπ30ð∞Þ

4ð1þ A2ð∞ÞÞt0
δΔx21

þ iπ0ð∞Þ
4t0

δΔx22 þ
iπ30ð∞Þ
4m2⊥t0

δΔx23

�
: ð143Þ

The ð1þ A2
∞Þ term might look unexpected, but it cancels8

when collecting all the contributions from the Gaussian
integrals, which gives (up to an irrelevant phase)

1

2

T
ð2πTÞ2

1ffiffiffiffiffiffiffiffiffiffiffi
detΛ

p
Z

dσ
Z

dT
Z

d3Δxj

→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2A0ðt̃ÞΩ
r

1

π0ð∞Þ : ð144Þ

8That contributions from different integrals cancel is not
unexpected [4,58]. In fact, for Schwinger pair production in
the closed-loop/probability-level instanton approach, it has been
shown that the different contributions combine into a single
determinant similar to the Gutzwiller trace formula [59].
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We have included an extra factor of T here compared to
the no-photon case because such a factor comes from
−iϵðkÞ _q → T (−iϵð⊥Þ _q → 0) and from the term linear in ϵ
form the spin factor P expð…Þ. As we already noted, the
limits t0 → ∞ and Ω → 0 do not commute. In particular,
detΛ has a different t0 scaling for ω > 0 and ω ¼ 0. This
different scaling is needed in order to cancel the extra
factors of t0 coming from

R
dσ and the extra overall factor

of T to give a finite limit as t0 → ∞.
For the prefactor, we also need

P exp

�
−
iT
4

Z
1

0

σμνFμν

�
¼ exp

�
T
2

Z
1

0

dτA0
3ðtÞγ0γ3

�

¼ exp

�
− ln

�
iþp

A∞þπ0ð∞Þ
�
γ0γ3

�
;

ð145Þ

and

P exp

�Z
1

0

dτ

�
TA0

2
γ0γ3 −

iT
2
=k=ϵe−ikq

��

→
Z

1

0

dσ exp

�Z
1

σ
dτ

TA0

2
γ0γ3

��
−
iT
2
=k=ϵe−ikq

�

× exp

�Z
σ

0

dτ
TA0

2
γ0γ3

�
; ð146Þ

where

Z
σ

0

TA0

2
¼
Z

1

σ

TA0

2
¼ −

1

2
ln

�
iþ p

A∞ þ π0ð∞Þ
�
: ð147Þ

B. Momentum integrals and final results

We finally find

M ¼ ð2πÞ3δ3ðpþ p0 − kÞA

× exp

�
i
Z

t̃

tr

dt½π0ð−p0Þ þ π0ðpÞ −Ω�
�
; ð148Þ

where A is a preexponential factor which depends on
the photon polarization. For a photon with momentum

kμ¼Ωf1;sinθ;0;cosθg, we can choose ϵðkÞμ ¼ f0;− cos θ;

0; sin θg and ϵð⊥Þ
μ ¼ f0; 0; 1; 0g as a basis for the polarization

vector. A general polarization vector can then be expressed as

ϵμ ¼ cos

�
ρ

2

�
ϵðkÞμ þ sin

�
ρ

2

�
eiλϵð⊥Þ

μ ; ð149Þ

where ρ and λ are two real constants. The reason for choosing
ρ=2 in (149) is because then the polarization dependence on
the probability level can be expressed in terms of the
following Stokes vector (cf. Ref. [6])

N ¼ f1; cos λ sin ρ; sin λ sin ρ; cos ρg: ð150Þ

Summing over the fermion spins, we find

X
spins

jAj2¼ 2π

ΩA0ðt̃Þð1þp2Þf1þ3p2;0;0;1−p2g ·N; ð151Þ

where p ¼ Ω=2. We see that the smallest and largest
probabilities are obtained for parallel and perpendicular
linear polarization, N ¼ f1; 0; 0;�1g, while, e.g., both left-
and right-handed circular polarization, N ¼ f1; 0;�1; 0g,
gives the same probability.
Note that, while the exponent contains the full momen-

tum dependence, we have only calculated the prefactor at
the saddle point p ¼ p0 ¼ k=2 (and we have assumed
k3 ¼ 0). It is straightforward to check that (151) agrees
with what one finds with the WKB approach. To obtain the
full prefactor, we have to perform the momentum integrals,
but we can already see that the ratio perpendicular/parallel
is independent of the field. We have assumed A0ð�∞Þ ¼ 0
here, but we have the same ratio for a constant field.
We obtain the total prefactor by expanding the exponent

around the saddle point p ¼ k=2. We change variable from
p ¼ k

2
þ Δ

2
to Δ. The term that is linear in Δ3 vanishes

because t̃ is imaginary and so

Rei
Z

t̃

0

dt
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ A2
p ¼ 0: ð152Þ

We find that the probability can be expressed as

P ¼ M ·N ð153Þ

with

M ¼
ffiffiffi
π

p
αω3=2

4
ffiffiffi
2

p
Ω2m2⊥A0ðt̃Þ f1þ 3p2; 0; 0; 1 − p2g

×
exp f− 4

ω ðJ 0 − pũÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 1ðJ 1 − p2J 2Þðm2⊥J 2 − ω

pA0ðt̃ÞÞ
q ; ð154Þ

where Aðt̃Þ ¼ i and

J n ¼
Z

ũ

0

du

�
m2⊥ −

f̃2ðuÞ
γ2

�1
2
−n
; ð155Þ

where Aðt ¼ iu=ωÞ≕ if̃ðuÞ=γ (γ ¼ ω=E) and f̃ðũÞ ¼ γ.
For example, for a Sauter pulse, AðtÞ ¼ 1

γ tanhðωtÞ and

f̃ðuÞ ¼ tan u.
To obtain all terms, including, e.g., the one with

γE=ðpA0Þ, we expanded
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t̃ðpÞ ¼ 1

ω
f−1
�
γ

�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Δ2

2

�
2

s
þ Δ3

2

��

¼ t̃0 þ δt̃1 þ δ2t̃2; ð156Þ

where AðtÞ≕ fðωtÞ=γ and δ ¼ OðΔjÞ is a bookkeeping
parameter; used

Z
t̃

0

dtFðtÞ≈
Z

t̃0

0

dtFðtÞþFðt̃0Þðδt̃1þ δ2 t̃2Þþ
F0ðt0Þ
2

δ2 t̃21;

ð157Þ

and then expanded the integrand F to second order
in Δj ∼ δ.
Since ũ does not depend on p [in the final result (154)],

we have

J 1 ¼
1

p
dJ 0

dp
J 2 ¼ −

1

p
dJ 1

dp
; ð158Þ

so if we have chosen a field for which we can obtain J 0

analytically, then that is the only integral we need to
perform. We can also obtain J 1 and J 2 by instead
differentiating with respect to γ,

J 1 ¼
1

m2⊥

�
d
dγ

½γJ 0� −
ωp
A0ðt̃Þ

�

J 2 ¼
1

m2⊥

�
ω

pA0ðt̃Þ − γ2
d
dγ

J 1

γ

�
: ð159Þ

For a Sauter pulse we find

MSauter ¼
α
ffiffiffiffiffiffi
πE

p ð1þm2⊥γ2Þ7=4 exp f− 4
Eγ2 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

p
Λ − arccotðpÞ − γp arctanðγÞÞg

8Ωpm⊥γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ffiffiffiffiffiffi
2Λ

p ðm2⊥ð1þ γ2ÞΛ − p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

p
Þ

f1þ 3p2; 0; 0; 1 − p2g; ð160Þ

where

Λ ¼ arctan

�
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

q �
: ð161Þ

In the limit of a slowly varying field, we have for a
general pulse with a maximum at t ¼ 0 [E0ð0Þ ¼ 0]

lim
γ≪1

M ¼
ffiffiffi
π

p
αE2ð0Þf1þ 3p2; 0; 0; 1 − p2g

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E00ð0Þp

Ωpm⊥

×
exp f− 2

Eð0Þ ðm2⊥arccotðpÞ − pÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arccotðpÞp ½m2⊥arccotðpÞ − p� : ð162Þ

We can obtain this from the constant field result (B17) by
replacing the volume factor with a time integral,
V0 →

R
dt; replacing the constant field strength with a

locally constant one, E → EðtÞ; and then performing the
time integral with the saddle-point method, i.e., expanding
1

EðtÞ ≈
1

Eð0Þ −
E00ð0Þ
2E0ð0Þ t

2 in the exponential part of the integrand.

Thus, the usual LCF ideas work also in this case.
In the low-energy limit, we can use (159) to obtain

lim
Ω≪1

M ¼ αE5=2f1; 0; 0; 1g exp f− π
E gg

2
ffiffiffi
2

p
πΩ2A0ðt̃Þω∂γ2ðγ2gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂2

γ2
ðγ2gÞ

q ; ð163Þ

where

gðγÞ ¼ 4

πγ

Z
ũ

0

du
�
1 −

f̃2ðuÞ
γ2

�1
2

¼ 4

π

Z
1

0

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
f̃0

; ð164Þ

where in the second line we have changed the integration
variable to y ¼ f̃ðuÞ=γ. This is exactly the same g as in
Ref. [4] for Schwinger pair production. In fact, g enters (163)
in exactly the same way as Eq. (3.58) in Ref. [4], i.e., both in
the exponential and the preexponential factors. This is related
to the fact that an electric field can produce a pair without the
photon, and many of the integrals will be the same in the
Ω → 0 limit as in the complete absence of this photon. There
is though an additional field dependence in (163) due to A0ðt̃Þ
in the preexponential. For a Sauter pulse, we have

lim
Ω≪1

MSauter ¼
α
ffiffiffiffi
E

p ð1þ γ2Þ1=4
2πΩ2γ

f1; 0; 0; 1g

× exp

�
−
π

E
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p �
; ð165Þ

which can be obtained either by taking the ω → 0 limit of
(160) or by evaluating (163) for a Sauter pulse.
In the high-energy limit, we find

lim
Ω≫1

M ¼
α
ffiffiffiffiffi
πχ

p f3; 0; 0;−1g exp f− 4a0
χ ðũ − a20J PWÞg

32a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ũf̃0ðũÞðũ − a20J PWÞða0ũf̃0ðũÞ − 1Þ

q ;

ð166Þ
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where

J PW ¼
Z

ũ

0

duf̃2ðuÞ: ð167Þ

This agrees exactly with the result for a plane-wave
background field, which can be obtained as follows: The
probability for nonlinear Breit-Wheeler pair production in
an arbitrary plane wave and for arbitrary parameters can be
obtained from Eqs. (35), (36), and (39) in Ref. [52]. Those
expressions contain integrals over two light front–time
variables, ϕ ¼ ðϕ2 þ ϕ1Þ=2 and θ ¼ ϕ2 − ϕ1, and over one
longitudinal momentum s2. For χ < 1, these integrals can
be performed with the saddle-point method, with a saddle
point at s2 ¼ 1=2 (the electron and positron share the initial
longitudinal momentum equally), ϕ ¼ 0 (average light
front time at field maximum) and θ ¼ 2iũ.
For a Sauter pulse, we find

lim
Ω≫1

MSauter¼
α
ffiffiffiffiffiffiffiffiffiffi
πa0χ

p f3;0;0;−1g
32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þa20Þarccotða0Þ
p

×
expf−4a0

χ ½ð1þa20Þarccotða0Þ−a0�g
ð1þa20Þarccotða0Þ−a0

; ð168Þ

which can be obtained either by evaluating (166) for a
Sauter pulse or by taking the high-energy limit of (160).
Perhaps the experimentally most relevant limit is a slow

field and high energy,

lim
γ≪1

lim
Ω≫1

M ¼ 3α
ffiffiffiffiffiffiffi
πΩ

p
E2ð0Þ

32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2E00ð0Þp f3; 0; 0;−1ge− 8

3ΩEð0Þ; ð169Þ

which can be obtained either from the locally-constant-field
(a0 ≫ 1) limit of the high-energy/plane-wave approxima-
tion (166) or from the high-energy limit of the locally-
constant-electric-field approximation (162).
From (163), we see that for low energy Ω ≪ 1 the

probability is maximized by parallel polarization,
N ¼ f1; 0; 0; 1g, but vanishes for perpendicular polariza-
tion,N ¼ f1; 0; 0;−1g. In contrast, in the high-energy limit
(166), the probability for perpendicular polarization is
twice as large, ð3þ 1Þ=ð3 − 1Þ ¼ 2. This is known in
the LCF limit of plane waves (169), see Refs. [53–55],
but we see from (166) that this holds, in general, in the
high-energy limit.

VIII. PREFACTOR FOR NONLINEAR
COMPTON SCATTERING IN TIME-DEPENDENT

ELECTRIC FIELDS

The calculation for nonlinear Compton is very similar.
Before we begin, we mention that nonlinear Compton in a
time-dependent electric field has recently been studied in
Ref. [60], where a WKB approach was used and where the
exponential part of the time integrand was expanded to

cubic order to obtain results in terms of Airy functions and
in particular to compare and check the LCF approximation.
For exact expressions for nonlinear Compton in an electric
field, see Ref. [61].

A. Worldline derivation

We assume the initial electron travels perpendicular to
the field, with p ≔ p1 > 0 and p2 ¼ p3 ¼ 0. Instead of
(6), we have

M ¼ lim
t→−∞

lim
t0→þ∞

Z
d3xd3x0eip

0
jx

0j
ūðasympÞ
r ðt0;p0Þγ0

× Sðx0; xÞγ0e−ipjxjuðasympÞ
r ðt;pÞ; ð170Þ

where the Compton amplitude is obtained by replacing
A → Aþ ϵe−ikx and selecting the term that is linear in ϵμ.
So, for the exponent, we can obtain most results from the
pair-production case by replacing p0 → −p, p → p0 and
kμ → −kμ. Instead of (24), we have

_q0ðτÞ ¼ θστT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp −Aðq0ðτÞÞÞ2

q
þ θτσT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp0 −Aðq0ðτÞÞÞ2

q
; ð171Þ

and instead of (25), we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp0 −Aðt̃ÞÞ2

q
¼!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp −Aðt̃ÞÞ2

q
− Ω: ð172Þ

For the prefactor, we again have (115), (116), and (67).
To calculate the rest of the prefactor we put k2 and k3 (or
equivalently, due to momentum conservation, p0

2;3) equal
to their saddle-point value, which, as we will show, is
k2 ¼ k3 ¼ 0. We keep the general dependence on the
component that is parallel to the initial electron’s momen-
tum, i.e., k1. One reason for not integrating over k1 is that
would in general lead to an IR divergence and, even if IR
finite, the result would receive dominant contribution
from soft photons and would therefore not have an
exponential scaling. In other words, the saddle-point
method only works if we prevent the photon from being
too soft. Exponential approximations for the emission of
hard photons have been considered in Refs. [6,62,63]. We
will focus on the spectrum, but obtaining the probability
integrated over k1 with some lower cutoff, jk1j > kc,
is straightforward to obtain by simply expanding the
integrand around this cutoff. In particular, the exponential
part is the same; i.e., if Pðk1Þ ∼ expð−fðk1Þ=EÞ, thenR
∞
kc

dk1Pðk1Þ ∼ expð−fðkcÞ=EÞ.
At k2 ¼ k3 ¼ 0, Eq. (172) reduces to Aðt̃Þ ¼ i, so we

have the same t̃ as in the pair-production case. We
assume 0 < p −Ω < p.
We once again perform the path integral with the

Gelfand-Yaglom method with (55), (57), and (61). The
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calculation is very similar to the one in the previous section
for Breit-Wheeler. The solution of (57) is again given by
(115) and (116) with c1 and c2 given by (67). We have an
implicit difference due to the fact that the instanton tðτÞ is
different. We also have an explicit difference in the form of
c3 and c4. These two constants are again determined by
demanding that ϕðτÞ and _ϕðτÞ be continuous at τ ¼ σ. For
this, we need

_tðσ−Þ ¼ Tp _tðσþÞ ¼ Tðp −ΩÞ ð173Þ

and ̈tðσ−Þ ¼ ̈tðσþÞ ¼ iT2A0ðt̃Þ, which follows from (171)
and Aðt̃Þ ¼ i. We find

c3 ¼ −Ω
�
iTc1 þ c2

p
þ iT3A0ðt̃Þ

Z
σ

0

dτ
_t2
ðc1TAþ c2Þ

�

c4 ¼
Ω

p −Ω

Z
σ

0

dτ
_t2
ðc1TAþ c2Þ: ð174Þ

The determinant (59) can now be expressed in terms of

In ¼
Z

σ

0

dτ
ðTAÞn
_t2

¼
Z

t̃

t0

dt
ðTAÞn

T3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ A2

p ð175Þ

and

Jn ¼
Z

1

σ
dτ

ðTAÞn
_t2

¼
Z

t1

t̃
dt

ðTAÞn
T3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m02⊥ þ A2

p : ð176Þ

While the intermediate steps involve some rather long
expressions, things simplify considerably in the asymptotic
limit. We have

σT ¼ T
Z

σ

0

dτ ¼
Z

t̃

t0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ A2

p →
−t0

π0ð∞Þ ð177Þ

and

ð1 − σÞT ¼ T
Z

1

σ
dτ ¼

Z
t1

t̃

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m02 þ A2

p →
t1

π00ð∞Þ ; ð178Þ

so

T →
−t0

π0ð∞Þ þ
t1

π00ð∞Þ ð179Þ

and

σ →
−t0

π0ð∞Þ
�

−t0
π0ð∞Þ þ

t1
π00ð∞Þ

�
−1
; ð180Þ

where [we have assumed Að−tÞ ¼ −AðtÞ]

π0ð∞Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ A2ð∞Þ

q
π00ð∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp −ΩÞ2 þ A2ð∞Þ

q
: ð181Þ

Similarly,

In →
−t0ðTAÞn
T3π30ð∞Þ Jn →

t1ðTAÞn
T3π030 ð∞Þ : ð182Þ

If we let L be a large parameter such that −t0 ¼ OðLÞ
and t1 ¼ OðLÞ, then we can expand (59) by taking into
account _tðτ ¼ 0; 1Þ ¼ OðLÞ, T ¼ OðLÞ, In ¼ OðLn−2Þ,
and Jn ¼ OðLn−2Þ. We find

detΛ ¼ iΩA0ðt̃Þt0t1
Tπ20π

02
0

: ð183Þ

When calculating detΛ, we could replace the remaining
integration variables with their saddle-point values since
detΛ only contributes to the preexponential factor. Now,
we turn to the remaining integrals. Instead of (171), we
need the instanton solution before replacing T → Tsaddle,
etc., which is given by

_x⊥ ¼ Tðc⊥ − k⊥θτσÞ _z ¼ TðA3 þ c3 − k3θτσÞ ð184Þ

and

τ < σ∶ _t ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2− þ c2⊥ þ ðA3 þ c3Þ2

q
τ > σ∶ _t ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ þ ðc − kÞ2⊥ þ ðA3 þ c3 − k3Þ2

q
; ð185Þ

where _tðσþÞ − _tðσ−Þ ¼ −TΩ gives the extra condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2− þ c2⊥ þ ðA3ðt̃Þ þ c3Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ þ ðc − kÞ2⊥ þ ðA3ðt̃Þ þ c3 − k3Þ2

q
þ Ω; ð186Þ

where t̃ ¼ tðσÞ. We define

Gða2−;a2þ:cj; t̃Þ

≔
Z

t̃

t0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−þc2⊥þðA3þc3Þ2

q

þ
Z

t1

t̃
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þþðc−kÞ2⊥þðA3þc3−k3Þ2

q
−Ωt̃: ð187Þ

The constants are again determined from σ, T, and Δxj by
the same equations as in (125). We have
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S ¼ T
2
þ
Z

1

0

dτ

�
_x2

2T
þ A3 _zþ Jx

�

¼ T
2
½σð1 − a2−Þ þ ð1 − σÞð1 − a2þÞ�

− cjΔxj þGþ xjð1Þkj: ð188Þ

This exponent has the same form as in the Breit-Wheeler
case, and so the σ and T integrals are performed in exactly
the same way as before, i.e., by differentiating (125) with
respect to the integration variables and solving for,
e.g., da2=dT.
Instead of (133), we have

− ipjxjð0Þ þ ip0
jx

jð1Þ − iS

¼ ið−pþ p0 þ kÞjXj þ iðc − pÞjΔxj − iG; ð189Þ

where Xj ¼ ðxð1Þ þ xð0ÞÞj=2 and where we have used
δ3ðp0 þ k − pÞ to simplify the term proportional to Δxj.
We have

d
dΔxj

ð189Þ ¼ iðc − pÞj; ð190Þ

where the terms with dck=dΔxj cancel. Thus,

cjðΔxsaddleÞ ¼ pj ð191Þ

at the saddle point for Δxj.
The final exponent for Compton scattering is given by

− i
Z

t0

tr

π0ðpÞ þ i
Z

t1

tr

π0ðp0Þ − iG

¼ i
Z

t̃

tr

dt½−π0ðpÞ þ π0ðp0Þ þ Ω�; ð192Þ

which agrees, as it should, with what one finds with the
WKB approach.
To perform the Δx integral, we need the second

derivatives, given by

d
dΔxj

d
dΔxk

ð133Þ ¼ i
dcj
dΔxk

; ð193Þ

which can be obtained by differentiating (125). The Δxj
integral gives ð2πÞ3=2= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðð193ÞÞp
. The intermediate

results for the σ, T, and Δx integrals are even more
complicated for Compton scattering compared to the results
for Breit-Wheeler, which were already rather complicated.
However, this again simplifies considerably in the asymp-
totic limit and when replacing all the integration variables
with their saddle points. We can obtain these from (125)
since we know that at these saddle points we have a2− ¼
a2þ ¼ 1 and c ¼ p. We have also assumed p2 ¼ p3 ¼ 0,

and we set p1 ¼ p. For the preexponential factor, we can
also set k2 ¼ k3 ¼ 0 and k1 ¼ Ω. To obtain the asymptotic
limit, we can use

G → −t0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2− þ c2⊥ þ ðc3 − AÞ2

q
þ t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ þ ðc − kÞ2⊥ þ ðc3 − k3 þ AÞ2

q
; ð194Þ

where A ¼ A3ð∞Þ [recall that we have assumed
Að−tÞ ¼ −AðtÞ]. From (125), we find Tsaddle and σsaddle
as in (179) and (180), and

Δx1 →
−t0

π0ð∞Þpþ t1
π00ð∞Þp

0; ð195Þ

where p0 ¼ p −Ω, Δx2 → 0 and

Δx3 → −
�

t0
π0ð∞Þ þ

t1
π00ð∞Þ

�
Að∞Þ: ð196Þ

While the dynamics at finite times gives a nontrivial
contribution to Δx, for −t0; t1 → ∞, the dominant con-
tribution comes just from the asymptotic parts of the
instanton, where it is outside the electric field A0ðtÞ. So,
Eq. (195) is the distance one should expect for a particle
that initially has momentum p for a proper-time interval of
length Δτ ∼ −t0=π0ð∞Þ and then momentum p0 for the
second half with Δτ ∼ t1=π00ð∞Þ.
Collecting the contributions from all the integrals, we

find

1

2

T
ð2πTÞ2

1ffiffiffiffiffiffiffiffiffiffi
detΛ

p
Z

dσ
Z

dT
Z

d3Δxj

→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2A0ðt̃ÞΩπ0ð∞Þπ00ð∞Þ
r

: ð197Þ

This is very similar to the Breit-Wheeler case, as we obtain
(144) by simply replacing π00 → π0 in (197) (note that in the
Breit-Wheeler case we calculated the prefactor at the saddle
point where p ¼ p0).
To calculate the spin part of the preexponential as in

(145) and (146), we need

Z
σ

0

TA0

2
¼ 1

2
ln

�
iþ p

−Að∞Þ þ π0ð∞Þ
�

ð198Þ

and

Z
1

σ

TA0

2
¼ −

1

2
ln

�
iþ p0

Að∞Þ þ π00ð∞Þ
�
: ð199Þ
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B. Results

We finally find

M ¼ ð2πÞ3δ3ðp0 þ k − pÞA

× exp

�
i
Z

t̃

tr

dt½−π0ðpÞ þ π0ðp0Þ þ Ω�
�
; ð200Þ

where averaging over the initial spin and summing over the
final spin gives

1

2

X
spins

jAj2 ¼ π

2m⊥m0⊥ΩA0ðt̃Þ
× fm2⊥ þm02⊥ þ Ω2; 0; 0; m2⊥ þm02⊥ −Ω2g ·N;

ð201Þ

where N is the Stokes vector for the photon polarization in
(150). From here on, the calculations are the same as in a
WKB approach.
To avoid IR/soft photon contributions, we will keep one

component of the photon momentum fixed and integrate

over the other two. One option would be to keep k1 fixed and
integrate over k2 and k3, with a saddle point at k2 ¼ k3 ¼ 0.
However, noting that χγ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFkÞ2

p
¼ Eðk21 þ k22Þ, we

will instead change to cylindrical coordinates, k1 ¼
k cosφ and k2 ¼ k sinφ and perform the k3 and φ integrals
with the saddle-point method, with a saddle point at
k3 ¼ φ ¼ 0. We define the longitudinal momentum spec-
trum as the integrand in the total probability

P ¼
Z

dkPðkÞ: ð202Þ

Since we do not integrate over one momentum variable, the
final results will depend on one more parameter compared to
the Breit-Wheeler results in the previous section, which
therefore leads to more complicated expressions. So, we
consider for simplicity a Sauter pulse. The polarization
dependence can be expressed in terms of a Stokes vector as
PðkÞ ¼ N ·MðkÞ, where

MSauterðkÞ ¼
αð1þ ðγm0⊥Þ2ÞÞ1=4fm2⊥ þm02⊥ þ k2; 0; 0; m2⊥ þm02⊥ − k2g exp½fðp0Þ − fðpÞ�

8m⊥m0⊥kð1þ γ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p arctan½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðγm0⊥Þ2

p
p0 �

r

×

�
arctan γ

γ
þ kðγm0⊥Þ2

arctan½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðγm0⊥Þ2

p
p0 �

ð1þ ðγm0⊥Þ2Þ3=2
þ 1

p0

�
k

1þ ðγm0⊥Þ2
−

p
1þ γ2

��−1=2

; ð203Þ

where

fðpÞ ¼ −
2

Eγ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

q
arctan

�
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2⊥γ2

q �

− arctan

�
1

p

�
− γp arctanðγÞ

�
: ð204Þ

Note that the pair-production exponential in (33), where we
considered p ¼ p0, can be expressed with the same
function as expð2fðpÞÞ. From (203), it is immediately
obvious that the exponential vanishes in the limit of low
photon energy, Ω → 0, as it must since the probability to
emit a soft photon is not exponentially suppressed (the
saddle-point approximation breaks down in this limit).
This rather complicated expression simplifies in the

high-energy limit,

lim
p;Ω≫1

MSauterðkÞ ¼
αa0fκ − 1; 0; 0; 1g

4r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a20Þarccotða0Þ

p
×
exp f− ra0

χ ½ð1þ a20Þarccotða0Þ − a0�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a20Þarccotða0Þ − a0

p ;

ð205Þ

where r ¼ ð1=sÞ − 1, κ ¼ ð1=sÞ þ s and (in the high-energy
limit) χ ≔

ffiffiffiffiffiffiffiffiffiffiffiffi
ðFpÞ2

p
→ Ejpj, and s → ðjpj − ΩÞ=jpj. The

first component of (205) (which gives the probability
summed over the photon polarization,

P
pol P ¼

2f1; 0; 0; 0g ·M) agrees with Eq. (93) in Ref. [6] for
nonlinear Compton scattering in a plane-wave field, where
s ≔ np0=npwith nμ being proportional to the wave vector of
the plane wave.9 To check the other components in (205), we
perform the integrals in Eqs. (24), (25), and (28) in Ref. [52]
with the saddle-point method as described after (166). The
result agrees exactly with (205).

C. Instanton

As already mentioned for the pair-production case, while
we have for these fields been able to obtain the final results

9Equation (93) in Ref. [6] actually gives the probability for a
large class of symmetric fields, of which the Sauter pulse is one
example. In comparing with the light front longitudinal spectrum
in Ref. [6], one should also note that there the longitudinal
momenta have been normalized to the initial momentum, so in
this case, we should write dk ¼ pdk̂ and include this extra factor of
p into the spectrum.
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for the probability without actually having to find the
instantons explicitly, it is nevertheless useful to consider
these instantons since they serve as a starting point for more
complicated fields, for which one has to find the instantons
explicitly. We consider a Sauter pulse for simplicity. Instead
of τ, we parametrize the first part of the instanton (before
photon emission) with

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγm⊥Þ2

q
ETðτ − σÞ ð206Þ

and the second part (after emission) with

U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγm0⊥Þ2

q
ETðτ − σÞ: ð207Þ

For U < 0, we find

ωq0ðUÞ ¼ arcsinh

�
γm⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðγm⊥Þ2
p

× sinh

�
Uþ i arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγm⊥Þ2

p
m⊥

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ���
ð208Þ

and

ωq3ðUÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγm⊥Þ2

p �
arcsinh

�
γm⊥

× cosh

�
U þ i arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγm⊥Þ2

p
m⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ���

− arcsinh

�
γpffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ��
: ð209Þ

The second part (U0 > 0) is obtained from (208) and (209)
by simply replacing U → U0 and p → p0. By inserting this
solution into (46), we find agreement with the exponent in
(203), where the integral from U ¼ −∞ to U ¼ 0 gives
exp½−fðpÞ� and the integral from U0 ¼ 0 to U0 ¼ ∞ gives
exp½fðp0Þ�. The instanton is illustrated in Fig. 3.

IX. CONCLUSIONS

We have shown how to use worldline instantons on the
amplitude level rather than the probability level, which
has been the focus of previous studies.10 The worldline
instantons are then open lines rather than closed loops. We
have shown how to amputate the amplitude with respect
to the asymptotic fermion states and how to calculate
both the exponential part of the probability as well as how
to use the Gelfand-Yaglom method to obtain the full
preexponential part.

Working with instantons on the amplitude level is a new
approach even if one only considers spontaneous pair
production. We expect that it can be a useful alternative
for obtaining the momentum spectrum. But we have also
shown how to use the instanton formalism for nonlinear
Breit-Wheeler pair production and nonlinear Compton
scattering. For such processes, the instanton has a kink,
i.e., a discontinuous velocity, at the point where the
(incoherent, high-energy) photon is absorbed or emitted.
We have found that the Gelfand-Yaglom method still works.
While the probability of nonlinear Breit-Wheeler can also be
obtained from probability-level instantons, i.e., by working
with the imaginary part of the photon polarization tensor, the
probability of nonlinear Compton scattering is not the
imaginary part of some closed fermion loop. Thus, our
amplitude-level approach allows us to consider more general
processes.
While we have focused on time-dependent electric fields,

we have shown that our results for nonlinear Breit-Wheeler
and Compton reduce to the corresponding results in a plane-
wave background field in the high-energy limit, which were
obtained using the standard approach, i.e., with Volkov’s
wave functions (solution to the Dirac equation) in the Furry
picture. The Volkov solutions are very simple, but as soon as
one considers backgrounds other than plane waves, the
solutions to the Dirac equation become much more com-
plicated. But for a time-dependent electric field, the WKB

0.5 0.0 0.5

0.0

0.5

1.0

1.5

Re[ q0]

Im
[

q 0
]

p=2 p =0.5

FIG. 3. The real and imaginary parts of the time component of
instantons for nonlinear Compton scattering. The momenta are
perpendicular to the electric field, p1 ¼ p, p2 ¼ p3 ¼ 0 and
p0
1 ¼ p0, p0

2 ¼ p0
3 ¼ 0, and γ ¼ 1. The streamlines showffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2⊥ þ A2ðωtÞ
p

for Re t < 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m02⊥ þ A2ðωtÞ

p
for Re t > 0,

corresponding to before and after the photon emission. The red
solid line shows the analytical solution in (208).

10Recall that the effective action or the photon polarization
tensor are effectively probability level when their imaginary parts
are used to consider pair production.
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approximations of the wave functions are still simple. We
have used these WKB approximations to check our results
obtained with the instanton formalism. It is fair to say that for
such simple background fields the WKB approach often
involves shorter calculations. One reason for this is simply
that in the worldline approach we start at a higher level, i.e.,
the starting point comes before the LSZ reduction, while in
the WKB approach, this has essentially already been done.
One aspect of the worldline instanton approach is that it
gives nice semiclassical illustrations of particle trajectories.
On the probability level, these are complex loops, but on
the amplitude level, the complex, tunneling segments of the
instanton at finite times are connected with asymptotic ends
that can be easier to interpret as actual particle trajectories
of fermions before and after going through the back-
ground field.
However, the real advantage of the worldline instanton

formalism comes when one goes beyond simple fields to
more realistic space time–dependent fields. This has been
demonstrated in Ref. [17], in which a numerical instanton
code was developed which allows one to consider general
fields for spontaneous pair production. For example, the
code was applied to an e-dipole pulse [64], which is an
exact solution to the Maxwell’s equation with finite length
in all four space-time coordinates. After having laid the
groundwork with the present paper, in the future, we plan to
develop a code similar to that in Ref. [17] but for processes
such as nonlinear Breit-Wheeler and Compton.
Another future application of this instanton approach

would be to apply it to obtain the probability of an electron
tunneling through a classically forbidden field region, with
a space time–dependent electromagnetic field (see Ref. [65]
for a recent study of dynamically assisted tunneling)
including relativistic effects, or to tunneling in a space
time-dependent field assisted by high-energy incoherent
photons.
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APPENDIX A: WKB APPROACH

In this Appendix, we will briefly explain how to
calculate, e.g., nonlinear Breit-Wheeler or Compton scat-
tering using the WKB approach.
We treat the photon field as in Ref. [42]

AμðxÞ ¼
Z

d3l
ð2πÞ32l0

aμðlÞe−ilx þ a†μðlÞeilx; ðA1Þ

with

½aμðlÞ; a†νðl0Þ� ¼ −2l0ð2πÞ3δ3ðl0 − lÞgμν: ðA2Þ

The initial state jini contains a photon described by a wave
packet fðkÞ and polarization vector ϵμ,

jini ¼
Z

d3k
ð2πÞ32k0

fðkÞϵðkÞaðkÞj0i; ðA3Þ

where the normalization hinjini ¼ 1 implies

Z
d3k

ð2πÞ32k0
jfðkÞj2 ¼ 1: ðA4Þ

Thewave packet is sharply peaked. Note that we are using a
different normalization for the mode operators of the Dirac
and the photon field. For the Dirac field, we follow
Refs. [47–49,66], which in particular means no factors
of 2p0 in the integration measure and the commutation
relations. The pair-production probability is thus given by

P ¼
Z

d3p
ð2πÞ3

d3p0

ð2πÞ3 jh0jb
out
s0;p0aouts;pUjinij2

¼ e2

2Ω

Z
d3p
ð2πÞ3 jMj2; ðA5Þ

where Ω ¼ k0, U is the time evolution operator and

ð2πÞ3δ3ðpþ p0 − kÞM ≔ h0jbouts0;p0aouts;pUϵðkÞa†ðkÞj0i

¼
Z

d4xψ̄ ðþÞ=ϵe−ikxψ ð−Þ: ðA6Þ

We are only interested here in the saddle-point regime.
In this regime, we could simply replace the exact wave
functions ψ ðþ=−Þ with the WKB approximations U;V in (8).
The spatial integrals are trivial,

R
d3xeiðpþp0−kÞjxj ¼

ð2πÞ3δ3ðpþ p0 − kÞ. The time integral can be performed
with the saddle-point method. The saddle point ts is
determined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp0 þAðtsÞÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp −AðtsÞÞ2

q
¼! Ω: ðA7Þ

Comparing (A7) with (25), we see that the saddle point for
the time integral in the WKB approach coincides with the
point t̃ on the instanton where the photon is absorbed.

APPENDIX B: PREFACTOR FOR NONLINEAR
BREIT-WHEELER PAIR PRODUCTION
IN A CONSTANT ELECTRIC FIELD

In this section, we will calculate the prefactor of the
probability of nonlinear Breit-Wheeler in a constant field
using the worldline formalism. This is an example where
the asymptotic fermion states are nontrivial, in contrast to
the time-dependent fields we considered in Sec. VII for
which the asymptotic states are just plane waves. For a
general field, one can use the instanton method to perform
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the path integral, but for a constant field A3ðtÞ ¼ Et, this is
the same as performing the path integral exactly. So, we
start by making the shift and redefinition in (14), where the
Lorentz-force equation simplifies to

q̈0 ¼ TðE _q3 þ J0Þ
q̈3 ¼ TðE _q0 þ J3Þ
q̈⊥ ¼ TJ⊥ ðB1Þ

with qμð0Þ ¼ x0μ and qμð1Þ ¼ xμ. Since we already know
that all the nontrivial functional behavior can be obtained
with a perpendicular photon, and since this also gives the
maximum probability, we will for simplicity set k3 ¼ 0.
After this shift, the path integral becomes (up to an
irrelevant phase)

Z
δqð1Þ¼0

δqð0Þ¼0

Dδq exp

�
−i
Z

1

0

dτ

�
δ _q2

2T
þ Eδq0δ _q3

��

¼ 1

ð2πTÞ2
ET=2

sinhðET=2Þ : ðB2Þ

This is the same as without the photon.
It is straightforward to solve (B1) by first solving in

the regions 0 < τ < σ and σ < τ < 1 separately and then
matching the two parts at τ ¼ σ with qμðσ þ δÞ ¼ qμðσ − δÞ
and _qμðσ þ δÞ − _qμðσ − δÞ ¼ Tkμ, where δ > 0 and δ → 0.
We then plug this instanton solution into the exponent and
perform the remaining, ordinary integrals. We change var-
iables to φj ¼ ðxþ x0Þj=2 and θj ¼ ðx − x0Þj. The φj

integral gives ð2πÞ3δ3ðpþ p0 − kÞ. At this point, we can
take the t derivative, coming from ðiDx þmÞ, but in the end,
it turns out that in the asymptotic limit t → ∞ this is the same
as the asymptotic limit with ð=πðtÞ þmÞ. We can now put
t0 ¼ t, and then we shift Et → Etþ p3, which removes p3

from the entire expression. We perform the θj integrals with
the saddle-point method. All this is done without taking
t → ∞. For the remaining σ and T integrals, it helps to
anticipate their scaling with respect to t before finding the
saddle points. We anticipate that T → ∞ as t → ∞, because
it takes an infinite proper time to travel from two infinitely
separated space-time points. Contrast this with the instanton
calculation for the imaginary part of the effective action
(i.e., for a closed fermion loop), where T is finite. At this
point, the exponential part of the integrand for these variables
is given by

exp

�
−

i
4E

�
2ETðm2⊥ þ σk⊥ðk − 2pÞ⊥Þ −Ω2 coth

�
ET
2

�

þ
�
2Et0 þΩ

cosh ½ETðσ − 1
2
Þ�

sinh½ET=2�
�

2

tanh

�
ET
2

���
: ðB3Þ

When performing integrals with the saddle-point method, one
has to note the scaling of the integration variables with respect

to E. Here, ET ∼ E0, and Eq ∼ E0. From the above
exponential, we see that in order to take the asymptotic
limit we can change variables from σ → 1

2
þ V

ET toV and from
ET ¼ 2 ln½ EtΩX� to X. After this change of variables, we can
take the limit t → ∞ of the integrand. The divergent terms
from (B3) cancel against the terms in the exponential part of
the asymptotic states (8),

i
Z

t
πp →

i
2E

½ðEt0Þ2 þm2⊥ lnðEt0Þ�

þ constant imaginary terms: ðB4Þ

The total exponential becomes

exp

�
−

i
2E

½k⊥ðk − 2pÞ⊥V þ 4Ω2ðX coshðVÞ − X2Þ

− ðm2⊥ þm02⊥Þ lnðXÞ�
�
: ðB5Þ

It is now much easier to perform these integrals with the
saddle-point method than if we had done so before changing
variables and taking the asymptotic limit. For V, we have a
saddle point at

V ¼ arcsinh

�
−

1

4X
k⊥ðk − 2pÞ⊥

Ω2

�
: ðB6Þ

For simplicity, and in order to compare with Ref. [5], we
consider the total probability; i.e., we perform the momen-
tum integrals. For a constant field, the longitudinal momen-
tum integral has a constant integrand and gives a volume
factor

R
dp3 ¼ EV0, which is a standard relation. For the

perpendicular integrals, we have a saddle point at
p⊥ ¼ k⊥=2. It is convenient to expand the exponential to
quadratic order around this saddle point already on the
amplitude level and before performing the X integral, and
afterward, we use p⊥ for the saddle-point value p⊥ ¼ k⊥=2
rather than the integration variables. After this, we find a
simpler exponential and a saddle point atX ¼ ðiþ pÞ=ð4pÞ,
where p ¼ jpj. At the end, we find

P ∼… exp

�
−
2

E

�
½1þ p2� arctan

�
1

p

�
− p

��
; ðB7Þ

which agrees with Ref. [5]. To obtain the rest of the
prefactor, we just have to calculate the quadratic variation
around each of the above saddle points and collect the
contributions from the corresponding Gaussian integrals.
For the spin- and polarization-dependent parts of the

prefactor, we just have to replace the integration variables
with their saddle points. For the contribution from the
asymptotic electron state, we have
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lim
t→∞

ð=π þ 1ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π0ðπ0 þ π3Þ

p ¼ 1

m⊥
ðp⊥γ⊥ þ 1ÞR; ðB8Þ

and for the positron (note different momentum),

lim
t→∞

ð−π0γ0 þ πjγ
j þ 1þ 1ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π0ðπ0 − π3Þ
p → −γ0R: ðB9Þ

We should take the linear part in ϵ. This can come from
either ϵ _q or from =k=ϵ; we call these the scalar and spinor
parts, respectively. A potential term coming from making
the shift Aμ → Aμ þ ϵμe−ikx in ðiDx þmÞ does not con-
tribute. For the scalar part, we have

P exp

�
−i

T
4

Z
1

0

σμνFμν

�
R

¼ exp
�
ET
2

γ0γ3
�
R ¼ exp

�
ET
2

�
R ðB10Þ

and then

1

m⊥
R̄rðp⊥γ⊥þ1Þγ0ðiDxþmÞRr0

→
1

m⊥
R̄rðp⊥γ⊥þ1Þγ0ðp⊥γ⊥þ1ÞRr0 ¼m⊥R†

rRr0 : ðB11Þ

Inserting the saddle points gives −iϵ _qðσÞ → ϵ3T. Hence,
the scalar part is only nonzero (at this leading order in E) if
the photon polarization has a nonzero longitudinal com-
ponent, but vanishes for perpendicular polarization. Since
we should take the limit t → ∞, it is important to keep track
of how different terms scale. For this scalar part, we have,
with the saddle point for T,

T exp

�
ET
2

�
∼Oðt ln tÞ: ðB12Þ

For the spinor part, we have

P exp

�Z
1

0

dτ

�
ET
2

γ0γ3 −
iT
2
=k=ϵe−ikq

��

→
Z

1

0

dσ exp

�
ET
2

ð1 − σÞγ0γ3
�

×

�
−
iT
2
=k=ϵe−ikq

�
exp

�
ET
2

σγ0γ3
�
: ðB13Þ

The part to the right of =k=ϵ again simplifies as in (B10). The
part to the left of =k=ϵ simplifies to

1

m⊥
R†
r

�
ð∂t − π3Þγ0ðp⊥γ⊥ þ 1Þ exp

�
−
ET
2

ð1 − σÞ
�

þm2⊥ exp
�
ET
2

ð1 − σÞ
��

: ðB14Þ

With ∂t − π3 → 2Et and σ → 1=2, we have

ðB14Þ exp
�
ET
2

σ

�
T

→
1

m⊥
R†
�
2Etγ0ðp⊥γ⊥ þ 1Þ þm2⊥ exp

�
ET
2

��
T: ðB15Þ

Since ET ¼ 2 ln½ EtΩX�, all the terms in (B15) areOðt ln tÞ, the
same scaling as the scalar contribution (B12). As t → ∞,
the only other t-dependent contribution comes from
ðB2Þ ∼Oð1=½t ln t�Þ, which hence gives a finite limit
as t → ∞.
We have used γ0γ3R ¼ R. We can choose a basis with

iγ1γ2Rn ¼ ð−1ÞnRn n ¼ 1; 2 ðB16Þ

to calculate the rest of the spinor part. We sum for
simplicity over the spins.
We finally obtain P ¼ N ·M with

M ¼ αEV0

4Ωpm⊥
exp f− 2

E ðm2⊥arccotðpÞ − pÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arccotðpÞðm2⊥arccotðpÞ − pÞ

p
× f1þ 3p2; 0; 0; 1 − p2g: ðB17Þ

For parallel and perpendicular polarization, N ¼ f1; 0; 0; 1g
and N ¼ f1; 0; 0;−1g, N ·M agrees with Eqs. (5)–(8)
in Ref. [5].
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