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Worldline instantons have previously been used to study the probability of Schwinger pair production
(both the exponential and preexponential parts) and photon-stimulated pair production (the exponential
part). Previous studies obtained the pair-production probability on the probability level by using
unitarity, i.e., the imaginary part of the effective action for Schwinger pair production or the imaginary
part of the polarization tensor for photon-stimulated pair production. The corresponding instantons are
closed loops in the complex plane. Here, we show how to use instantons on the amplitude level, which
means open instanton lines with start and end points representing fermions at asymptotic times. The
amplitude is amputated with the Lehmann-Symanzik-Zimmermann reduction formula using, in general,
field-dependent asymptotic states. We show how to use this formalism for photon-stimulated/Breit-
Wheeler pair production and nonlinear Compton scattering.
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I. INTRODUCTION

Particle production by a weak field can be studied with
saddle-point methods giving a probability that to leading
order scales as P = (prefactor) exp(—exponent/E), where
E is the field strength. For example, for a constant electric
field, one has! [1,2]

Schwinger: P = ...exp{—g}, (1)

or for a time-dependent electric field, one finds, in general
(see, e.g., Refs. [3.4]),

time dependent: P = ... exp {— z

Lo

where F is some function which depends on the pulse
shape, y = w/E, and w is some characteristic frequency.
For y — e”e™ in a constant electric field, one has [5]

*g degli-esposti@hzdr.de

greger. torgrimsson @umu.se

'We absorb e into the field, eE — E, and use units with
c=h=m,=1.
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P ...exp{—% ([1 + P arctanB] —p)}, 3)

where p = y,/(2E) and y, = \/—(Fk)*. Fory - ¢"¢" in
a plane-wave Sauter pulse, we have

P o {2001 4 acotta - e} 9

where’ ay = E/w = 1/y. Similar results, in fact with the
same a, dependence in the exponent, hold for, e.g., non-
linear Compton scattering e~ — e~y [6] or trident pair
production e~ — e~e~et [7]. There are of course many
other examples. These results have been obtained, e.g., using
Wentzel-Kramers-Brillouin (WKB) approximations or the
saddle-point method for approximating integrals that re-
present the exact result.

Another semiclassical method is to use worldline instan-
tons [3,4,8]. The worldline formalism uses proper-time [2,9]
and path integrals [10-12] to represent amplitudes or
probabilities in terms of path integrals over particle trajec-
tories, and a worldline instanton is a saddle point for such a
path integral and is determined as a solution of the Lorentz
force equation. Since we are interested in “tunneling”
processes,” the instantons are necessarily complex. The

In papers on pair production in a time-dependent electric
field, it is more common to use y, while papers on processes in
plane waves usually use aj.

By this, we simply mean processes with probabilities that
have exponential scaling.
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instanton method was initially used in Ref. [8] in order to
study the probability for Schwinger pair production for a
constant field but to all orders* in a. It was later realized [3.,4]
that the worldline instanton formalism can also be useful to
study Schwinger pair production by inhomogeneous fields.
Although analytical results can only be obtained for certain
simple fields [e.g., one-dimensional (1D) electric fields
depending only on one coordinate], the instanton approach
offers a powerful method for fields depending on more than
one coordinate’ [15-18]. In fact, a numerical code was
presented in Ref. [17] and allows us to study general fields
depending on all space-time coordinates. This motivates us
to develop the worldline-instanton formalism to other
processes in strong fields.

Our focus is on the worldline instanton formalism,
which gives a saddle-point approximation for more com-
plicated (and in principle general) field shapes. We note,
though, that the worldline formalism [19,20] has also been
used to obtain exact results for various photon amplitudes
in constant fields [21-23] and general plane-wave back-
ground fields [24,25], open fermion lines in constant fields
[26-28], and Schwinger pair production for a class of
fields for which the locally-constant-field (LCF) approxi-
mation is exact [29]. The worldline integrals for various
processes have also been evaluated numerically with a
Monte Carlo method [30-32].

In what could now be called the standard worldline-
instanton approach [3,4], the Schwinger-pair-production
probability is obtained from the imaginary part of the
effective action. The probability of pair production by a
(single) photon in an electric field has been obtained in
Refs. [33-35] from the imaginary part of the polarization
tensor. In all these cases, the pair-production probability P is
obtained by appealing to unitarity, which gives P as the
imaginary part of a single dressed fermion loop, with either
no photons (Schwinger mechanism) or two photons
(y — ete™) attached. The fermion loop is represented in
the worldline formalism as a path integral over closed
worldline loops. Thus, in the standard approach, the world-
line instantons are closed loops, which are periodic in all four
coordinates, x*(yq) = ¥*(7enq ), Where 7 is the proper time.
Although the starting point is the effective action (vacuum to
vacuum amplitude) or the polarization tensor (photon to
photon amplitude), when taking their imaginary part, one is
effectively working on the probability level, because the
imaginary part gives directly the probability without having
to take the absolute value squared.

In this paper, we will show how to use worldline
instantons on the amplitude level. The starting point is a
worldline representation that directly gives the amplitude of

*Note that the zeroth order in « still contains all orders in E
(recall that we have absorbed eE — E).

>The WKB method has recently been used to study fields
depending on more than one coordinate in Refs. [13,14].

the considered process, rather than indirectly via the optical
theorem. We are interested in processes with fermions in the
asymptotic states. Apart from pair production (either sponta-
neous/Schwinger or stimulated/Breit-Wheeler y — e*e™),
we are also interested in, e.g., nonlinear Compton scattering
e~ — e~ y. Compton scattering might perhaps not usually be
thought of as a process with exponential scaling, but if the
emitted photon has high energy, then it has the same type of
exponential scaling as nonlinear Breit-Wheeler. Having
fermions in the asymptotic states means that we have open
instanton trajectories, X*(Tyuy) # X*(Tena). For Compton
scattering, x* (7 ~ 7, ) describes the electron motion before
it enters the background field; at a complex space-time point
x*(z,), a photon is emitted; and x*(7 ~ 7,q) describes the
electron after it has left the field (we will also consider, e.g.,
constant fields which are always present). For pair produc-
tion, x*(7 ~ 74,) describes a positron at late times/in the
final state, and x*(7 ~ 7.,q) is an electron in the final state.
So, in this case, the instanton line starts in the future as a
positron, moves backwards in time, enters the region with
the background field, tunnels, and then moves forward in
time. This agrees, of course, with the Stueckelberg-Feynman
interpretation of positrons [36,37]. Open worldlines have
been used to study Schwinger pair production in constant
electric fields in Refs. [38,39].

At very high energies, there are other semiclassical
methods [40,41] that can be used to study, e.g., Breit-
Wheeler pair production in general space time—dependent
fields. With the worldline instanton methods, we do not have
to assume high energies, but instead, we have to assume that
we are in a regime where the probability has an exponential
scaling. These different methods therefore complement
each other.

This paper is organized as follows. In Sec. II, we briefly
introduce the main ingredients. In Sec. III, we consider the
exponential part of the probability of nonlinear Breit-
Wheeler. In Sec. IV, we consider a Sauter pulse as an
example and to illustrate explicitly the instanton solution. In
Sec. V, we show how to calculate the preexponential factor,
by deriving the WKB solution using the Gelfand-Yaglom
method. In Sec. VI, we use the same method to calculate the
preexponential factor of the momentum spectrum of pairs
produced spontaneously in a general time-dependent, lin-
early polarized electric field. In Sec. VII, we show how to
use this method for nonlinear Breit-Wheeler in a nonconstant
field, which vanishes asymptotically, which is an example of
application of the Gelfand-Yaglom method to a case where
the instanton has a kink. In Sec. VIII, we apply the same
method to obtain the preexponential factor of nonlinear
Compton in a time-dependent electric field. Finally, in
Appendix B, we calculate the prefactor for nonlinear
Breit-Wheeler in a constant electric field, which is an
example where the asymptotic fermion states are nontrivial
rather than just plane waves.
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II. WORLDLINE INSTANTONS AND LSZ

The amplitude M is obtained by amputating the fermion propagator using the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula (see, e.g., Ref. [42]), either with a manifestly Lorentz invariant form

M= / dadty’ e AP (1 p) (=B + m)S(x, ') (iDS + m)e? ) (¢ pr), (5)

where px/ =33 | pix/, D, =9, +iA, and D? = 0, + iA,(t = ), or with

M = lim lim
1=>+00 /' >+00

Bxd3x eiri¥ ug‘dsymp) (t.p)7°S(x, x')y e

iplx'i ,Uijasymp) (lt/7 p/)’ (6)

where S(x, x') is the dressed fermion propagator, which in an arbitrary background field can be expressed with the following
worldline representation [12] (see Refs. [43—46] for different representations)

2

1 [e (1)=x T
S(x,x’):(iﬁx+m)§A dT/(qO) Dq exp{—i{%—i—
q

:X’

where P means path ordering, i.e., “time ordering” with
respect to proper time 7, and 6** = £ [y#, y*]. Note that in the
standard worldline-instanton approach one would work with
periodic worldlines, ¢(0) = ¢(1), but for the propagator,
one has ¢(0) # ¢(1). Proper time has been normalized to
0 <7< 1,s0T is the “actual” total proper time.

The explicitly Lorentz invariant form (5) might be more
common in the absence of a background field. One
approach using (5) would be to take the momenta p,
and p), temporarily off shell, so that one can perform partial
integration to remove the derivatives acting on S(x,x’).
However, then we would have two additional integrals
(over ¢ and ') as well as two nontrivial limits (p> — 1 and
p> = 1), while for (6), we only have the limits 7, ¥ — co.
Thus, at least for the time-dependent fields we have focused
on here, we find it more convenient to use (6). This form
has also been used in Ref. [38] to obtain Schwinger pair
production by a constant electric field.

In this paper, we focus on fields that depend on time, but
not on space. In this case, the asymptotic states, «(®Y™) and
p(@Y™P) - can be obtained from the t — oo limit of the
adiabatic/WKB approximations [47—49]. The (full) WKB
approximations are at any time (not just asymptotic)
given by

U,(t.q) = (/°n + v'm; + 1)GT (2, q)R,
V,(t.—q) = (=/°m + ¥'m; + )G~ (t,q)R,.  (8)

where 5. = g, #5(1) = @y =AW, 7 = /o TR,
my =+/1+q¢%, r=1, 2 denote two spin states,
Y*7’R, = R, and

Al df(% +A(61)c'1)] }PeXp {"%Al dro” F"”}’ 7

6= (1.0) = Pao(m £ mo)lHexp 71 [ arm(t)]. 9

t

where ¢, is some arbitrary real constant. If the electric field
goes to zero asymptotically, then u(®Y™P) and p(@ymp) are
simple plane waves, but, since in general A(—o0) # A(o0),
the momentum depends on the asymptotic constant value of
the gauge potential, u®Y™) = const e~(®)!, One can, of
course, choose a gauge with A(4-00) = 0, but then we would
in general have A(—o0) # 0, which would appear in, e.g.,
Compton scattering where we have a fermion in the initial
state. These plane-wave states for fields with A’(+o00) =0
are, of course, easy to obtain without reference to the WKB
solutions. However, for, e.g., a constant electric field, the
asymptotic states have a genuinely nontrivial dependence on
the field, and in such a case, it is convenient to obtain the
asymptotic states from the ¢ — oo limit of U and V. Note,
though, importantly, these nontrivial asymptotic states for,
e.g., constant fields are still much simpler than the full, exact
solutions to the Dirac equation, u(exact) and plexact) which
would involve parabolic cylinder functions for a constant
field. This is an important point because if it had been
necessary to use #(®**Y and v or even some approxi-
mation of these at finite times, then there would not really
have been a point in using this worldline formalism.
Fortunately, we only need the asymptotic states, so the only
“difficult” field dependence is represented by the worldline
path integral, which is given by (7) for any space time-
dependent field.

The worldline representation in (7) gives the fermion
propagator in a completely arbitrary space time-dependent
coherent background field. There is a common trick (see,
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e.g., Refs. [19-23,27,28,32]) which allows us to include the
absorption or emission of individual incoherent photons. For
example, for nonlinear Breit-Wheeler, all we have to do is
replace A, — A, + ¢,e~"** and select the term that is linear
in € For Compton scattering, we would instead have etikx,
and the same trick also works for multiple photons.

III. EXPONENTIAL PART

In order to introduce some of the main ideas, we will
start with the exponential part of the probability. We return
to calculate the prefactor in Sec. V. We start with nonlinear
Breit-Wheeler pair production, where an initial (incoher-
ent) photon with momentum k,, and polarization ¢, decays
into an electron with momentum p, and a positron with
momentum p),. We begin by making the replacement
A, = A+ eﬂe‘”‘)‘ in (7) and selecting the term linear in

€,. This gives
© 1 q(1)=x
d*xd>x’ / dr / do / Dq
0 0 q(0)=x"
. . 7 t
...exp{i[p}x’f—i—pjx/—k/ n_p/—i—/ np}}
t, t,
T 2 1 52
xexp{—i[lJr/ dr(q—+A(q)61+Jq>}}, (10)
2 0 2T

where 7, (1) = 7(p. ), the proper time ¢ integral comes
from selecting the term that is linear in ¢,, the ellipses
stand for the prefactor part of the integrand, and the
“current” is given by

M =1im lim

t—=00f >0

J, = k,(t—o0). (11)

so o is the proper time when the photon decays. The
prefactor part of the integrand also includes

T [1
Pexp{—iz/ dra"”FﬂD} (12)
0

because, even though it is given by an exponential, it is
slowly varying; i.e., after a suitable rescaling of the
integration variables, the exponential written out in (10)
scales as expli(scalar part)/E], where E < 1 is the field
strength, while the exponent in (12) does not lead to terms
with 1/E in the exponent. Thus, the saddle point, i.e., the
worldline instanton, is the same in scalar and spinor QED.

These worldlines can be thought of as electron lines,
where the initial part has been bent into the future. So, the
“initial” condition for ¢(z) is a positron in the future; then,
the path goes backward in time into the field, where it has a
kink due to the photon absorption, turns and goes forward
in time, and ends as an electron in the future.

Since we are considering a field which only depends on
time, half of the spatial integrals give delta functions. We

therefore change variables from x” and x/ to ¢/ = (x +
x')//2 and ¢ = (x—x')/ and then make a shift
¢’(t) = @’ + ¢/ (z). The @ integral gives 5°(p +p’ — k).
The boundary conditions for the spatial components of the
path integral are now

(13)

We will perform all the nontrivial integrals with the
saddle-point method. In principle, one can perform them in
any order, and in a future paper, where we plan to develop a
numerical code using discretized worldlines, one would
perform them all together and obtain the prefactor by
calculating the determinant of a large Hessian matrix.
However, for the time-dependent fields we consider here,
we can use the Gelfand-Yaglom method for calculating the
path integral analytically, and for this reason, it is better to
perform the path integral first, while the exponent is still
local in proper time. We therefore make a shift and a
redefinition,

4,(7) = qu(7) + 6q,(7), (14)

where from now on ¢, (7) is not an integration variable but a
solution to the following Lorentz-force-like equation

" =T(F"q,+J"), (15)
which for the present case reduces to

Go = T(A}4’ + Jo) (16)
and

4; = T(=Alqo + Ji), (17)

where A’(7) = dA/dt, with boundary conditions (13) for q,
q0(0) =7 and go(1) = t. The delta function in J¥ gives the
instanton a kink; i.e., the instanton velocity is discontinuous
at 7 = o. Since the boundary conditions for the original
integration variable have been absorbed into the instanton,
the new integration variable 6¢,(7) has Dirichlet boundary
conditions, 6¢,(0) = dg,(1) = 0. g, has been chosen to be
a solution of this Lorentz-force equation such that the
exponent contains no terms that are linear in dg; i.e., the
instanton g, is a saddle point of the worldline path integral.
The spatial part of the Lorentz-force equation (17) gives
immediately

qi(7) = T(c; + ks — Ai(qo(7))), (18)
where ¢;, i =1, 2, 3, are three constants, and 6,, =
0(7 — o) is the step function.
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An arbitrary variation of the instanton, g, — ¢, + 6,9,
leads to a variation of the instanton action

o ez aa) = (74)

T +Agq+Jgq T + A |6,9
which is nonzero only if there is a variation of the end points.
Since ¢,(0) = ¢ and g,(1) = ¢t are not integration variables,
only the spatial parts are relevant here. So, if we make a
variation € — 6 + 50, then &pq(1) = 560/2 = —5pq(0).
Setting the linear variation in 660 to zero gives

1
. (19)
0

This together with (18) implies ¢; = —p!.
Setting the variation with respect to ¢ to zero gives

kg(o) =0, (21)

so the photon decays at a proper time when its 4-momentum
is orthogonal to the instanton velocity. This together with the
Lorentz-force equation gives GG = ¢(Fg +J) = 0, so §* is
independent of 7. Note that without the photon kink, e.g., for
instantons describing Schwinger pair production, the
Lorentz-force equation would directly imply that ¢> is
a constant of motion, but here const = ¢*(r < o) #
¢*(z > 6) = const. are in general two different constants
before and after the photon absorption when the integration
variable ¢ is not equal to its saddle-point value.
The saddle-point equation for 7 is

1
T? —/ dr ¢°, (22)
0
which at the saddle point for ¢ simplifies to
q* =T (23)

This is an on-shell condition for the instanton. Substituting
(18) into (23) gives

)= ~0,T\/1+
+ emT\/ 1+

where the signs follow from the boundary conditions for
pair production, i.e., the instanton starts and ends in the
asymptotic future. Note that while ¢ is continuous ¢ cannot
be continuous because there are delta functions in the
Lorentz-force equation. From (24), it is also clear that the
instanton initially moves backward in time (7" turns out to
have a large positive real part). But (24) does not auto-
matically solve (16) at 7 = o. Differentiating (24) and

P+ A(go(7)))?

+ (p - A(qo(2)))>, (24)

matching the resulting d,, term with the one in (16) gives an
additional condition,6

I+ +HAO? /1 p-AGPRLQ  (25)

where we have defined 7= go(c) and Q = k,. This
equation gives us the time 7 when the photon decays,
and it turns out to be complex.

Now, we have all the (implicit) saddle points, and the
leading part of the probability is obtained by inserting
the saddle points into the exponential. We first rewrite

1 , , ,
/0 drAc']:p}x’/—l-pij—l—/ dr(q?'— jqf>, (26)

where we first used partial integration to obtain qu}éIo,
which is replaced using (17), and then a second partial
integration for the g;g; term. The terms in (26) all cancel
against the other terms in the exponent in (10). After this,
we are left with only one nontrivial 7z integral, which
we rewrite by changing variable from proper time 7 to
time ¢y(7),

1 (']% /a /1 q(2)
dr— = dr—
A Tt L)
i i
:—/ dt”n_p/—/ dt”;rp. (27)
I t

By comparing this with (9), we see that r and ¢ drop out
from the exponent. We thus find

. . v t
M~exp{i[p}x’/ + pjx’ —|—/ Ty +/ ﬂ'p:|
I 1,
[Tm +/ld <QZ+A +J )H
—i|— T qg—+Jg
2 2r saddle point
7
= exp {l/ 7y + 1y — Q}} (28)

tr

This is the final result for the exponential part of the
probability amplitude for a general time-dependent electric
field. To evaluate it, one just has to solve (25) to find the
integration limit 7 and then perform the time integral (the
value of the lower integration limit 7, € R is arbitrary).
Equation (28) agrees with the result in Ref. [35], which was
obtained with either WKB or using unitarity (the optical
theorem) to obtain the pair-production probability from
the imaginary part of the photon polarization loop in the
worldline representation. The main difference from the
worldline derivation in Ref. [35] is that Ref. [35] considered

6 ! .. . .
'We use =, e.g., for a condition that is demanded in order to
determine some parameter.
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a closed fermion loop, while here we have considered an
open fermion loop.

Note that we have obtained (28) without actually finding
an explicit solution for the worldline instanton. All we
needed in order to obtain this explicit final result are the
implicit saddle-point/instanton equations. This is possible
because the field only depends on one space-time coordi-
nate. For a general space time—dependent field, we will not
be able to do this; we would have to actually find the
instanton solution. However, considering a simple field can
be very useful as a starting point for more general fields.

In Ref. [17], a numerical code was developed for
obtaining the worldline instantons in a general space
time—dependent electromagnetic field for the case of
Schwinger pair production (i.e., pair production without
the photon) (see also Ref. [50]). The instanton is obtained by
starting with the known, simple instanton in, e.g., a constant
field, and then the instanton in a general field is obtained by a
numerical continuation, where the instanton is changed
gradually by gradually changing the field from a constant
to a general field.

The plan is to derive such a code also for photon-
stimulated pair production, where the instanton in a general
field is obtained from a numerical continuation of the
simpler instanton in, e.g., a purely time-dependent electric
field. Thus, while we could obtain (28) without finding the
instanton explicitly, it is nevertheless expected to be useful
to go back and check what the instanton actually looks like.
To do that, we need to choose a field shape.

IV. SAUTER PULSE
A. Exponential part

Consider a linearly polarized electric field, A; = A(¢).
As an example, we consider a photon momentum k which
is perpendicular to the electric field. The dominant con-
tribution comes from a pair that shares the momentum
equally between the electron and positron, i.e.,
p = p’ = k/2. Equation (25) simplifies to

m} + A%(7) = % - A(l) =i, (29)

where

my, =1+ @)2 (30)

is an “effective” mass, which comes from the fact that the
absorbed photon not only provides energy (which enhan-
ces the probability) but also gives the pair momentum. At
this point, we need to choose a field shape. We consider a
Sauter pulse,

E
A(t) = —tanh(wr). (31)
o)
We have
f = i arctan y, (32)

where y = w/E is the Keldysh parameter (or 1/ag).
Performing the integrals in (28), we find

4 1
|M|§auter NCXP{—EYZ ( 1 —I—miyz arctan [E 1 —I—mi}/2:|
1
_arctan;—yp arctan y) } (33)

where p = |p| = /2. This result interpolates between
several different limits which can be compared with the
literature. Consider first the soft-photon limit,

7 2
lim (33 :exp{——i}, 34
lim(33) e pr o= S
which agrees with the results in Refs. [3,4,51] for the
probability of pair production by a Sauter field without the

additional photon. Consider next the slowly-varying-field
limit,

}i_r)%(33) = exp {—% ([1 + p?] arctan B] - p) } (35)

which agrees with Eq. (5) in Ref. [5] for pair production
by a photon in a constant electric field. In the high-
frequency limit, we find

im(3) = exp { -2 (14 7= | 36)

Note that the electric-field strength E has dropped out of
the exponent in this limit. In fact, even though the saddle-
point approximation of the preexponential factor breaks
down in this limit, the exponent (36) is what one can
expect from perturbative pair production: The Fourier
transform of a Sauter pulse f(w) scales at large Fourier
frequencies w as

Fooy~exp {321, (37)

Itis possible to produce a pair by absorbing the high-energy
photon plus one Fourier photon from the Sauter pulse if
w+ Q > pg + p; = 2m . The exponential suppression of
the probability comes from the fact that the Fourier trans-
form is exponentially suppressed at such high Fourier
frequencies. Inserting the threshold value w = 2m | — Q
into (37) gives (36). Compare with Ref. [47].

096036-6
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The high-energy limit might be the most interesting
limit. We find

lim (33) —exp{ ;Q([l+; } arccot H —%> } (38)

\ /—(Fw,k”)2 = EQ
ay = 1/y, then we see that (38) is exactly the same as
in Eq. (60) in Ref. [7] for trident (e~ — e~ e~ e™) pair
production in a plane-wave electromagnetic field, up to an
overall process-dependent factor of 2nk/nP, where P, is
the momentum of an initial electron and n,, is proportional

to the wave vector of the laser (n> = 0). The simplest thing
to compare with would of course be the probability of
Breit-Wheeler in a plane wave. However, we are not aware
of such a result in the literature, so we have calculated it by
applying the saddle-point method to the results in Ref. [52]
(we will come back to this). The result agrees exactly with
(38). The reason for this agreement is that a field effectively
behaves as a plane wave in this limit because the field
invariants are much smaller than y, so one can to leading
order set E2 — B> = 0 and E - B = 0, which agrees with a
plane-wave field. Or one can make a Lorentz transforma-
tion to a frame where the photon energy is on the order of
the electron mass, in order to make the frequency O(1) (this
means Q' ~ 1 in the new frame since we use units with
m, = 1). In such a frame, a general field looks like a plane
wave. If in addition a is large, then the plane wave can be
treated as a (locally) constant crossed field [53]. In this
double limit, we have

If we introduce y := and write

lim lim (33) = lim (38) = exp {—%} (39)

r<<l @1 r<l

which is the well-known scaling for nonlinear Breit-
Wheeler pair production in the constant-crossed-field
approximation [54,55]. However, we see from (38) that
the high-energy limit agrees with the plane-wave result in
a larger regime, i.e., not just for large a, but also for
ay 2 1. Itis useful to see that our result (33) interpolates to
this high-energy/plane-wave limit as this means that the
instanton approach can be used also for fields that are
closer to plane waves (e.g., single laser beam) rather than
combination of two or more laser beams with significantly
nonzero field invariants.

B. Instanton

To obtain the instanton, we first calculate 7. Note that the
saddle-point equation (22) which we obtained by varying
T only gives an implicit equation because the instanton
q depends on 7. Instead, we can obtain 7 from

rer([ e ()

1 1
arcsinh [ m} + — smh(a)t)]
my r?

1+mLy2E{

1 1
+ arcsinh {—1 Im3 + —zsinh(a)t/)}
my 4
1 1 2,2
— 2i arcsin {— \ /—+ LY ] } (40)
m 142
Similarly,
To = T/G dr
0
1 N
= —=—————q arcsinh |— /m7 + — sinh(w?)
1 +m?y’E my Y
1 1 2.2
— i arcsin { M} } (41)
1+

For asymptotic times 7,7 > 1, we have

t+7 t 1
T~ ~ o) = 2 42
”0< ) o l‘—l—t’ 77"0( ) m7 +72’ ( )

which is the proper time 7 required for a positron to start at
t with asymptotic momentum 7z (o), go back in time to a
time period where the field is nonzero g, ~ 1, turn, and go
back to the future again, where it is an electron. Of course,
even if ¢ and 7 are real and so the real part of T (and o) is
much larger than the imaginary part, we cannot neglect the
imaginary part because it is needed to tunnel. For t = 7, we
have ¢ = 1/2 exactly.

Before presenting the explicit instanton solution, we will
first derive a general expression for the final exponential
expressed in terms of the instanton solution, so that we can
check that the explicit instanton gives the correct result
(33). For a completely general space time—dependent field,
the instanton is a solution to the Lorentz-force equation

qﬂ

b P+ 43)

where F,
we find

1 . q
/ dtAg = (——i—A)q
0 r 0
1 6'12
—I—/ dr <—q”8ﬂAl,E1” — Jq), (44)
0

=0d,A, — 0,A,. With two partial integrations,

1
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SO

TmZ 1 qZ
| Tm” LY
l|: 7 +/) dr<2T+ q+Jq)]
AV .
= —i<T —|—A>q + i/ dzq*0,A,q". (45)
0

The boundary terms should cancel against the asymptotic
states. We change variables from 7z to u = T(z — ¢) and
take the limit ¢, ¥ — oo, which means T — oo, and find [we
assume here that A’(+o0) = 0]

0

S dag?
M ~ exp {2Rei/ du qﬂaﬂAydi}. (46)
oo u

Note that u is actually what one would usually call proper
time because instead of (23) the on-shell condition for the
instanton reads (dg/du)? = 1. In fact, Eq. (46) is repar-
ametrization invariant. We are, of course, free to make a
contour deformation for proper time u; choosing a real or a
complex contour changes of course the instanton path, but
not the integral. Note also that (46) only depends on the
photon implicitly via the instanton solution; i.e., Eq. (46)
works for both photon-stimulated and spontaneous pair
production.

We return now to the Sauter pulse. In terms of u, we have
foru>20

myy

1
u) = —arcsinh ————
() = avsinh{ o

1 1 2,2
x sinh { U + i arcsin |— lj‘zy
m 1+]/

1

q3(U) = —————— arcsinh{m 4
o mw[ -

1 1 2.2
x cosh | U + i arcsin |— llzy
m 1+}’

mi—lH, (47)

— arcsinh { y

where

U=/1+miy*Eu, (48)

and the solution at u <0 is simply obtained from
q(()u<0)<u) _ q(()u>0)(_u) and qgu<0)<u) _ _qgu>0)(_u).
The solution in (47) is still exact; i.e., it is obtained by
just changing variables from 7 to u without having to take
any T,r,f — oo limit. By plugging (47) into (46) and
performing the integral numerically, we can check that the
instanton solution indeed gives the correct result (33).

For a photon with high energy, i.e., in the limit where the
time-dependent background field behaves as a plane wave,
the instanton simplifies considerably, and the time compo-
nent is just a straight line before and after the photon
absorption,

. 1 .
S121;111 qo(U > 0) = w(U + i arctan y). (49)
The corresponding approximation for ¢; can be obtained
from (18) and is, up to a constant, just As(gg). It is
straightforward to check that by inserting this leading
high-energy approximation of the instanton into (46) we
obtain (38). From (48), we see that g, = dgo/du - £Q/2,
which is expected since the electron and positron share the
energy of the absorbed photon equally and the u < 0 and
u > 0 halves of the instanton correspond, respectively, to the
positron and electron. However, even in this > 1 limit, the
appropriate integration variable in (46) is U; i.e., the Q > 1
limit is obtained by expanding the integrand with U rather
than u as independent of Q, so knowing that g, — +Q/2 is
not enough.

The instanton and its high-energy approximation are
shown in Fig. 1. Note that nowhere in this study has it been
necessary to rotate to euclidean time. Figure 1 also suggests
that such a rotation would not be helpful here, as the time
component of the instanton g is neither purely imaginary
nor real.

C. Instantons in a plane-wave background

We have seen that the probability of Breit-Wheeler in a
time-dependent electric field E(7) reduces to the one in a
plane-wave background when the photon frequency is
very high. In this section, we will show how to obtain the
plane-wave result by working directly with the instanton
in a plane wave. In the E() case, we have chosen the field
to point along the z axis and focused on photons with
perpendicular momentum, k, = Q(1,1,0,0), so to show
that such a high-energy photon effectively “sees” a plane
wave, we would boost along the x axis. Hence, for
comparison, we will now choose a plane wave traveling
along the x axis and with polarization along the z axis,
with nonzero component A; = az(¢) = agf(¢$), where
ap=E/w and ¢ = Kx = o(t + x). We assume for sim-
plicity a symmetric field a(—¢) = —a(¢). Light front
components are given by v* =20, =" £ 0! and v, =
{v,. v3} for an arbitrary vector v,. We will show that the
exponent in (46) gives the correct result. We therefore use
proper time u rather than z,

d’q dg”
azu = F”DE-F kﬂé(l/{), (50)
where F,, = K,a, — a,K,. As is well known, the Lorentz-

force equation without the current term [k,,6(u)] has a simple
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0= Q=1 0=10
e T A\ S =\~ T
15 == M= 18l TN
= ! /}/. S ﬂ\\f [ .
—— X0\ g i Sl e
— \\%‘ \\' ; f gl T
N\ = T
—~1.0 — 3N \\\ ff/ o e e
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g o~ N / A g
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3 TN\ | 3
E N el I =
e e s = —
05 e e e 05
0.0 0.0
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Re[wao] Re[wdo] Re[wqo]
FIG. 1. Streamlines show the velocity (or energy rather) gy = +T+\/m3 + A%*(qq), cf. (24), with p? = p? = (Q/2)? and

p3 = p4 = 0. The red solid lines show the analytical instanton solution (47). The dashed line shows the high-energy approximation
of the instanton (49). y = 1 in all plots. For Q = 1, 10, the instanton is plotted with proper time u along the real axis, and 7 has been
chosen real for the streamlines. However, for Q = 0, we have chosen u = ¢®r with real r and a small phase, 9, in order to prevent the
instanton from going into the pole of the Sauter pulse at wq, = iz/2. For the stream plot, we have similarly chosen T = ¢’|T|. The
precise value of 9 is not important, but for this particular plot, we have chosen & = —0.0017z. Note that the stream arrows sometimes
point in the opposite direction compared to the velocity of an actual trajectory. For example, for u < 0, the plotted analytical instanton
starts at g, — +oo0 and moves backward to the turning point, i.e., opposite to the direction of the plotted stream arrows, while for u > 0,

it turns back along the same line.
2 4o 5 « 2
|M|* ~exps ——Rei| —¢ + depa’
Kl s

4 1 [z
—en{- (14 a5 [Cawrw)}

exact solution for a general plane wave. The solution is still
simple with the current term,

~ d
u>0:¢p=¢+Kpu ﬂ_( a),
du
u<0:¢p=¢—Kpu ddq—l =(-p—a),, (51) where in the second step we have chosen a ¢ contour that
u

first goes down from ¢ to 0 and then from 0 to co along the
real axis; the second part cancels because it is a pure phase.
Equation (54) agrees with Eq. (93) in Ref. [6],” which
was obtained using the Volkov solutions. Equation (54)
works for a general symmetric field. For a Sauter pulse, we
recover (38).

where ¢ = Kq. The remaining component can be obtained
from the on-shell condition,

du  4dg_/du (52)

V. WKB SOLUTION FROM WORLDLINE
INSTANTON

So far, we have focused on the exponential part of the
probability. We now turn to the problem of calculating
the preexponential part using the worldline formalism and
the Gelfand-Yaglom method.

For one-dimensional fields, one can often do the
calculations conveniently using the WKB approximations
of the Dirac equation. As a first application of open
worldline instantons, we therefore start by deriving these
WKB solutions.

Here, we have assumed that the electron and positron
share the absorbed photon momentum equally, p_, =

p_ | =k_ /2. The “turning point” ¢ is determined by
(21) and ensures that the 5(u) term in d2q, agrees with (50),

(@) =-1. (53)

Since a(—¢) = —a(¢), this implies that ¢ = iz is imagi-

nary, z> 0. Inserting this instanton into (46), changing "That equation is for nonlinear Compton, but the only difference

variable from u to ¢, and performing a partial integration
gives

is that r there should be replaced with rgy, which is rgw — 4 for
the saddle-point value of the longitudinal momentum K p.
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We begin with the path integral. Expanding around the
instanton gives a zeroth order which we have already
discussed, a linear term that vanishes, and a quadratic term
on the form

exp{_%ﬂ(at 5Z)A<Z>}, (55)

A (—62 +TA"; TA’8>
-\ -ara * )

where
(56)

where 0 = 0/0r. The path integral over 6t, 6z gives us the
functional determinant of A. We will calculate it using the
Gelfand-Yaglom method, which was applied to closed
instantons for spontaneous pair production in Ref. [4].

For this, we need to find the two solutions, ¢! and ¢, of

$(0) =0 (57)

with

The determinant is given by

det A = (¢1"¢5) — o)y (59)

The path integral over 6q, gives the free part (this includes
both 6¢, 6z and 6¢q )

8q(1)=0 Y 1
/q Déq exp{—i/ dri} —— (60)
5q(0)=0 o 2T (22T)
times +/det Age./Vdet A, but with our normalization, we

have ¢!} = {z,0} and ¢Z. = {0.7}, s0 det A = 1.
To solve (57), we make the ansatz

s =no(;)+a@(]). on

where /i and d are now the functions to be determined. One
of the two components of A¢ =0 gives

dld + d(hz) — TA'ht] = 0, (62)

which integrates to
d= clr—hi+/TTA’hi, (63)
0

where ¢, is a constant. For the second component, we have

A(hi? — ¢;TA) =0, (64)
which leads to
.. frdd
b _m_r/ laTa+e) (65)
0
where ¢, is an additional constant, and so
¢2—hi+d—€17+/ TA/¢1
0
=d7
:CIT+ i_z[ClTA+62]T[AT_A] (66)
0
We determine ¢; and ¢, from the initial conditions (58)

=0 Ay @ =1 =oTa). ()

We have three integrals

Lo I TA
10 :/ dT—2 11 :/ dT—2
0 t 0 t

1 TA)?
0

7

where we have used

= T\/m + (s = A1) (69)
We find
ti(c1ly +calo)
¢(1)= - (70)
ci[1+TA(t) 1 = L]+ ¢ [TA(t) o —11]
The determinant (59) becomes
detA:ioil(Io‘Fl%—Iolz) (71)
For t; - oo, we have
t t1A(o0 t A% (o0
IO—)T3 31 1 ; 3( ) 5 1 3( ) (72)
(o) T my(0) Tmy(0)

The terms with /; and I, cancel in this limit, and we find

170 (to)

det A .
T TR (o)

(73)

Next, we turn to the ordinary integrals. For det A, we
could use the final form of the instanton, but now, we need
the instanton as a function of general 7" and start/end points.
From the Lorentz-force equation, we have
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¢* = constant=: T?a?, (74)

which defines a constant a. For the spatial components,
we have
t=Tct =T+ Ay), (75)

where ¢/ are three constants determined by the initial and
final points,

A 1
A== B= —Z—/ deA;,  (76)
T T Jo

where Ax = x(1) — x(0). We define

. il
Ga, ¢l = / diyJa + ¢ + (¢ + A2 (77)
)

which gives a function for arbitrary arguments a, ¢/. The
actual values of a, ¢/ in the instanton can now be determined
from

0

T .0
2%~ 2

Gj = a—CG:—ij (78)

J

GO =

The instanton action can be expressed as e~

T [1& . T
S_TLA St At =S (1-a) - cAx+ G, (79)

We have

s 1
= (1=42

where the terms with da?/dT and dc ;/dT cancel due to
(78). Thus,

az(T = Taddie> ij) =1, (81)
or
Tadaie(Ax;) = 2Go(1, ¢/). (82)

For the prefactor, we also need the second derivative. To
obtain this, we first differentiate (78) with respect to 7,
solve dG;/dT = 0 for dc;/dT in terms of da?/dT, and
substitute into dG,/dT = 1/2, which gives

d? 1
d_TS = —Z(Goo ~ GoiG3 Go) ™' (83)

where Gy = (%)2& Go; = %%G, and G;kl is the j, k
o o

element of the inverse of the matrix G;; = 3555 G. Thus
(up to an irrelevant phase), the contribution from the T
integral to the prefactor is given by

/ dT — 2V2r(—=Gy + GOjGJTkIGOk)l/27 (84)

by which we mean that the full result is obtained by making
this replacement in addition to replacing 7' — T,qq. in the
integrand. In the asymptotic limit, we find

Zﬂ'll

(84) = my(0)

. (85)

Now, we turn to the integral over x/ = x/(1). The
exponential part of the integrand is given by

ipix) —iS =i(px/ —c;Ax - G). (86)

Upon differentiating with respect to x/, we find that the
terms with dc;/dx/ vanish due to (78) and hence

d

1 (86) =i(p;—c)). (87)
SO
¢j(xSade) = P, (88)
or from (78)
Tadae = %(0) = G;(1.p). (89)

By differentiating the second equation in (78), we obtain

d d .

Thus, the spatial integrals give (up to an irrelevant phase)

/ Bx > (222, [det Gy, (91

which in the asymptotic limit gives

t3/2
lim (91) = (27)3/2 —1
thoo( ) = (27) (o)

(92)

The final exponent is now obtained from (86) and the
term from the asymptotic state (8),

C[n . ) [t
(86) + l[ o = ipjx(p + t[ 7o, (93)

which agrees with the exponential part of the WKB
solution (8).
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For the prefactor, we find

1

! I S
(2xT)? \/detA/ aryd mo(to)mo(0)

The spin factor simplifies

T 1
Pexp{—l—/ o-””FW}
4 Jo
T [1
=exp {—/ drAg(t)y0y3}
2 Jo

—p [

o — 73

where the integral was performed by changing the variable
from 7 to t. The rest of the spinor part is given by
R(fe + 1)/ (foo + 1) = 272% R(#so + 1). Putting every-
thing together, we finally find

R(#+1) {- j ~/“ }
— L eXpRip X, + i dtrmyp, (96
271'0(71'() +ﬂ3) P p] (0) t, 0 ( )

which agrees exactly with the WKB solution U in (8).

VI. SPECTRUM OF SPONTANEOUS PAIR
PRODUCTION BY A TIME-DEPENDENT FIELD

A. Worldline derivation

A very similar calculation gives us the pair-production
amplitude and so the spectrum. The G function is now
defined as

2

2 bt " 2, 2 3 2
G(a*,¢/):== | dr—==2 dt\/a +c] +(c?+A43)%,
o T P
(97)

where we have set #, = #; and 7 = #(o) is the (complex)
time where #(c) =0, i.e., the turning point where the
instanton stops moving backward in time and starts moving
forward. Instead of (71), we find [t;, = —t; = 7y(o0)]

tot+t

detA —» — 8
etA — Tro(e0)’ (98)
instead of (85), we have
(84) — [ZZlo 1) (99)
mo(o0)

and similarly for (92). Thus (up to an irrelevant phase),

1 1 1
(2xT)? \/detA/dT/dzx ” my(o0)

The other spatial integrals give the momentum conserving
delta function, [d*x’ — (27)8*(p + p’). The spinor part
is also similar to before, but with one important difference,

T
Pexp{—%[) dra/“’Fﬂ,,}

(100)

= exp {m <ﬂ> y0y3}, (101)
Ty -+ T3
where € = £1 is determined by
P3 —A3(;) = €imJ_. (102)

We find (up to an irrelevant phase)

M = (27)383(p + )R\ R,e exp {Zi/[dmo}, (103)

[

where RI,RS = 6,y fors, s’ = 1, 2. For a field with only one
maximum, like a Sauter pulse, we only have one saddle
point, and the sign ¢ is irrelevant. However, for a field with
multiple maxima/minima, we have several saddle points,
and hence in the coherent sum of these, we need to keep the
relative sign given by e.

B. Instantons

The amplitude in (103) agrees with the result in
Ref. [56], which was obtained by a saddle-point treatment
of the Riccati equation. The momentum spectrum for
time-dependent electric fields was also studied with
worldline instantons in Ref. [57], but with an important
difference: In Ref. [57], a worldline representation was
used for the effective action, which gives directly the
probability rather than the amplitude. Those worldlines
are all closed loops, i.e., x*(0) = x*(1), while we are
working with open worldlines. Working on the probability
level increases the number of instantons one has to deal
with. For example, for a field with one maximum and one
minimum, we have two instantons on the amplitude level
but four on the probability level.

As an example, we consider

(104)

In contrast to the Sauter pulse, here we have two turning
points with Im(¢) > 0,

(105)
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and

(106)

[ 1
wt, = (| ———1.
r y(ps— 1)

For pair production, we need instantons that start and end at
t — +o0. By simply plotting the streamlines for

do=£TI/1+ (P~ As(qo)®.  (107)

we can immediately see instantons that wrap around the
turning point z, with Rez, > 0 and Im¢, > 0; see Fig. 2.
Note that there is not just one unique instanton because the
instanton does not actually have to go through the turning
point; it just has to wrap around it, and so one can
continuously increase the distance between the instanton
to the turning point (up to the closest pole or branch cut).
In fact, the turning point is also a branch point, so one
might expect that it can in some cases be numerically
advantageous to choose instantons that do not go too close
to the turning point. We can also see instantons that wrap
around the other turning point, ¢, with Rer,, <0 and
Imz,, > 0, but they start and end at + — —oo and therefore
do not satisfy the boundary conditions. The instantons that
follow the streamlines of (107) have real proper time from
start to end.

To find instantons that go around ¢,, but have the correct
boundary conditions, i.e., starting and ending at t — +oo,
we can use a complex contour for the proper time, i.e., use a
complex einbein; cf. Ref. [57]. We parametrize the complex
proper time contour in terms of a real variable r. We denote
the Jacobian for this change of variable

du_

S50, (108)

When f is real, the instanton follows the streamlines of
(107). When f is imaginary, the instanton instead follows

do = £lTI\/1+ (py - As(q0)®.  (109)

i.e., streamlines that are orthogonal to (107). As can be
seen in Fig. 2, instantons that follow the streamlines of
(109) can wrap around either 7, or t,,, but those instantons
also wrap around the turning points in the lower half
complex plane and form closed loops. In other words, if
we choose f imaginary for the whole trajectory, then we
find no instantons that start and end at t — +o0. Instead,
we can choose a f that is sometimes real and sometimes
imaginary. There is no unique choice of f. We have
chosen

1.5F 7

1.0+ .

0.5+

0.0+

Imlwqp]

-0.5+

-1.5 | ‘ ‘ ‘ ‘
-1.0 -0.5 0.0 0.5 1.0
Re[wqg]

— Reff(n]

0.5 Imf(r)]

-0.5

-1.0

FIG. 2. The first plot shows the real and imaginary parts of the
time component of instantons for the field in (104), with y =1
and longitudinal momentum p3 = 0.3. The light green stream-
lines, i.e., those that on the real axis are parallel to the real axis,
show (107), while the light orange streamlines are orthogonal
(109). The black dots show the poles of the field at wg, = +i and
the four turning points. The dashed purple line shows an example
of an instanton that starts and ends at Re g, — oo and goes around
one of the turning points, with proper time u real throughout the
trajectory. The solid red line shows an example of an instanton for
which proper time follows a complex contour, specifically
parametrized as in (108) and (110) with W =0.1 and
L =2.09, as shown in the second plot. The yellow dot-dashed
line shows a similar instanton that goes around the other (upper)
turning point.

sty =4 (1w [21) 4 (1 ann 2]
_2 (1 + tanh {%D <1 _ tanh [%D (110)

illustrated in Fig. 2. To find an instanton, we can look at
the streamlines in Fig. 2 and select a point 7, which we
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guess should be on the instanton line. Then, we can guess
a point r, which wound make the instanton go around
either 7, or 1,,. By tuning these parameters as well as L and
W, we can also guide g, so that it follows the real axis
asymptotically (as r — +o0). Two such instantons are
shown in Fig. 2. By inserting these numerical instanton
solutions into [cf. Eq. (46)]

o0 dag?
exp {1/ dug’d,A, di}’
o u

we find the same real part of the exponent as in (103) and
the relative phase for the two contributions also agrees
with (103).

We have thus shown explicit examples of instantons in a
case with interference. We emphasize again, though, that the
instanton path for g, is really rather arbitrary since we have a
great deal of freedom in choosing the complex proper time
contour. Choosing f with (smooth) step-function-like behav-
ior as in (110) is, of course, just one choice that seems
convenient. This arbitrariness corresponds to the arbitrari-
ness in choosing the complex contour for the ¢ integral in
(103) or (28); these ¢ integrals were obtained by changing
integration variable from proper time u to 1 = g,(u), but the
resulting ¢ integral can, of course, be deformed in the
complex plane without even having to think about instan-
tons. Of course, this does not make the instanton path
completely arbitrary. One can, for example, not deform the
proper time contour to guide g, and g5 separately. Also, the
two instantons in Fig. 2 which follow the real axis
asymptotically are not equivalent; they give the same real
part of the exponent in (111) but different imaginary part.
Moreover, here we have focused on purely time-dependent
fields, but for fields that depend on more than one space-time
coordinate, one might not be able to rewrite the results as
expressions like (103) or (28) that no longer involve the
instanton. In such cases, it might not be as obvious what sort
of arbitrariness in the instanton path one has. However, one
always has the freedom to choose different proper time
contours.

Using open worldlines is a more general approach
because we can reproduce results obtained with closed
worldlines for the effective action, while, e.g., Compton
scattering cannot be treated with such closed lines. It can
also lead to further insights into the process since in the
open worldline instantons we can see real, physical
particles emerging at asymptotic times from complex paths
during the tunneling at finite times.

(111)

VII. PREFACTOR FOR NONLINEAR
BREIT-WHEELER PAIR PRODUCTION IN
TIME-DEPENDENT ELECTRIC FIELDS

In this section, we will calculate the prefactor for
nonlinear Breit-Wheeler pair production in nonconstant
fields.

A. Worldline derivation

Expanding around the instanton gives again (55), and we
again solve (57) using the ansatz in (61). One of the two
components gives

dld + d(hz) — TA'hi] = 0, (112)
which integrates to
d:clr—hz+/TTA’hi, (113)
0

where ¢, is a constant. For the second component, we have
to be careful with the kink at 7 = 6. So, we consider first
7 # o, where the second component gives

d(hi* — ¢,TA) =0, (114)

which leads us to

.. rdr’
¢l—ht—t{/ }—Z[C]TA‘I‘CQ‘FC:;QT/O—]+C4€.m-}, (115)
0
where c¢,, c3, ¢4 are three additional constants, and

¢2—h2+d—clr+/ TA'¢,
0

=cr+ 64915T[A1 _AG]

de
+ / = [c1TA 4 ¢y + ¢30.,]TIA, — A]l.  (116)
0
¢, and ¢, are again determined from the initial conditions as
(67). c3 and ¢, are determined by demanding that ¢, and ¢,
be continuous at 7 = ¢. With #(¢ + &) = —t(c — ) and
t(c +6) = (o —68) for 6 - 0 and § > 0, we find

c3 = =2(c1TA, + ¢3) + 2t i,(c11; + caly)

¢y = =2(ciy + e2ly), (117)
where 7, := lims_ot(c + ) and
/2 1 12 " TA
10:/ dfillz/ dTT
0 t 0 t
12 (TA)? 1
I, = / dT( i‘2) =5- szilo. (118)
0

We are assuming a symmetric field with a saddle point
for the momentum integral at p = k/2 and k; = 0, so

t=e,T\/m3 +A%(1),

o=1/2,1(1/2) =7, where A(7) = i,and i, = Tw/2. This
gives us all the information we need to obtain ¢(1) and

(119)
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hence det A. However, the expressions for ¢ (1) are rather
long and complicated. This simplifies significantly, though,
in the asymptotic limit, where we find

QA (7
det A = — W

3o (120)

Note that the limit t, — oo does not commute with Q — 0.
The instanton solution is given by

it =T(ct+k0,) z1=T(A3+ %), (121)

where ¢/ are three constants [which are completely unre-
lated to the constants in (67) and (117), which are only
relevant for the calculation of det A] and

<o i:—T\/a%+ci+(A3+c3)2

> 01 =T\ +(c+ kR + (A + 2 (122)

where a, and a_ are two additional constants. 7(c+) —
1(6—) = TQ gives the extra condition

V& + A+ (40 + )2

+ \/az+ +(c+ k)i +AH+3)?=qQ, (123)

where 7 = (). We define

- 1
G(d?,a% .c;.%) :=/ Odt\/az +c + (A3 +?)?
1

t 5
+/ dt\/a2++(c+k)2l+(A3+c3)2+£2t.
t

(124)

The constants are determined from the remaining integra-
tion variables, o, T and Ax/ = x/(1) — x/(0) by

9 T 0G _T(-0)
da> 2 da*. N 2

oG oG ‘

9 o 99 v, 12
R (125)

The instanton action can be written as e~ where (recall
ks = 0)

! X2 .
S = +A dT<ﬁ+A3Z+JﬁC>
I -a)+ (-0 -@)

- CjAXj + G- XJ_(I)kJ_.

N RN

[\

(126)

Now, we perform the ¢ integral with the saddle-point
method. We have

ds T
@ zz(ai —Cl%),

(127)
where the terms with da2 /de, d7/de, and dc ;/do cancel
due to (125). Thus, at the saddle point for ¢, we have
a2 (Ggaadie) = @7 (Cuaadie); (128)
i.e., X% is continuous at ¢ even though i is not. To obtain
the second derivative d’S/ds?, we need da%/dc and
da® /de. We can obtain these by differentiating (125)
and solving for da?/dc and da?/dc in terms of
(0/0c,)(0/0cs)G witha, f = 1,...,6, where ¢* =7, ¢ =
a* and ¢® = a%. However, at this intermediate stage, the
result for d>S/de? is quite complicated and not particularly
illuminating. This is not a problem, because d*S/de? goes
into the preexponential, so even tough it depends on the
remaining integration variables 7, Ax, and p, we actually
only need it for the saddle-point values 7" — T gqqie, €tc. It
also simplifies considerably when taking the asymptotic
limit. We will therefore return to d?S/de? once we have
considered the 7" and Ax integrals.
Now, the exponent becomes

T
S = E(1 —a*)—c;Ax; + G —x (1)ky, (129)

where a® := a? = a7. Note that we do not actually need to

find the explicit solution for the saddle point of . Instead of
the first two equations in (125), we have

oG T
We have
ds 1
—=_(1-a% 131

where again all terms with da?/dT, dc;/dT, and d7/dT
cancel. So, at the saddle point for 7, we have

az(Tsaddle) =1, (132)

just as without the photon. Again, the second derivative
d?>S/dT? can be calculated by differentiating the second

096036-15



DEGLI ESPOSTI and TORGRIMSSON

PHYS. REV. D 105, 096036 (2022)

line of equations in (125) and (130) in order to solve for

da?/dT in terms of second-order partial derivatives of G.

But we will again wait with the simplification of d*S/d7>.
Now, the exponent is

ip’x/(0) +ip;x/ (1) = iS

=i(p'+p—k);X +i(p' +c);Ax; —iG,  (133)

where X; = (x(1) +x(0));/2 and where we have used
8 (p' +p — k) to simplify the term proportional to Ax;.
We have

d
dA.xJ

(133) = i(p’ +¢);, (134)

where the terms with dc,/dAx; cancel due to (125). Thus,
at the saddle point for Ax;, we have

cj(Axsaddle) = _p;" (135)
To obtain the preexponential, we need
d d dc;
133) = i—L, 136
dAx; dAx, (133) = 95, (136)
which we will return to shortly.
The final exponent is given by
to t
[ w4 [ ) -G
t, 1,
7
=i [ dtimo(p) +molp) -2 (137)
1

»

which is of course the same as what we have in (28).

We note again that we have obtained the final expo-
nential without actually having to find 6,4q1e> Tsaddie, and
AXaqq1e- However, we will now turn to the preexponential
contributions from these integrals, and for this, we need
theses saddle points. So far, we have used (125) to
determine the constants a3 and ¢/ and derivatives of
these with respect to o, T, and Ax. Although we do not yet
have the saddle points, we know now that at these saddle
points the constants are simply given by (128), (132), and
(135). We can now obtain the saddle points by inserting
these values of the constants into (125), e.g.,

(138)

oG  0G
Tsaddle = 2( )

2 2
daZ aa+ a2 =a’=l.c=—p
Since we are now calculating the preexponential and since
we will for simplicity consider the integrated probability
rather than the momentum spectrum, we can simplify
further by anticipating the saddle point for the momentum

integral; i.e., we set p = k/2 [we have A(—t) = —A(7)].
With k, = k3 =0, we denote p:=p; =Q/2. Even
though we could calculate all the above quadratic terms
for finite #,, at the end, we only need the asymptotic limit.
For these terms, we only need

G — t0\/a% + ¢ + (As(c0) + )

Fiyfal + e+ k% + (As(o0) + A2 (139)

We choose for simplicity 7, = ;. We find

21, 1
Tsaddle - m Osaddle — 5
2l0A(OO)

Axgaddle - ijz_iddle -0, (140)

7p(e0)
where 7(00) = \/m? + A*(0) and m, = /1 + p>. By

differentiating (125) with respect to ¢ and solving
for da% /do and da?/do in terms of (0/8c,)(8/dc;)G,
we find

/déo exp{—‘”(l“‘w’aaz}, (141)

my(0)

where 6 = 0,qqc + 00, and similarly

)
/déT exp {—maﬂ}.

142
4t (142)
For the 6Ax integral, we would, in general, have to
calculate the determinant of (136), but here it becomes
diagonal,

3
/ d35Ax exp %5Ax?
4(1 4+ A%*())1g

. . 3
1 m0(00) spp  0(20) 5p 0
4l0 4leo N

(143)

The (1 4+ A2) term might look unexpected, but it cancels®
when collecting all the contributions from the Gaussian
integrals, which gives (up to an irrelevant phase)

1 T 1 .
——— | do [ dT | dBAX
2(2aT)? \/detA/ / /

T 1
TN 24 () Qme(00)”

®That contributions from different integrals cancel is not
unexpected [4,58]. In fact, for Schwinger pair production in
the closed-loop/probability-level instanton approach, it has been
shown that the different contributions combine into a single
determinant similar to the Gutzwiller trace formula [59].

(144)
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We have included an extra factor of 7" here compared to
the no-photon case because such a factor comes from
—ielg — T (=ie)§ — 0) and from the term linear in e
form the spin factor Pexp(...). As we already noted, the
limits fy — oo and Q — 0 do not commute. In particular,
det A has a different 7, scaling for ® > 0 and @ = 0. This
different scaling is needed in order to cancel the extra
factors of 7, coming from [ do and the extra overall factor
of T to give a finite limit as ¢, — oo.
For the prefactor, we also need

T [1 T [
Pexp{—l—/ o-”’“FW} :exp{—/ drAg(t)y°y3}
4 Jo 2 Jo

i+p
— -1 0,3 ,
o))

(145)
and
1 TA T .
Pexp / dr 7oy - l—k¢e"kq
0 2 2
1 I TA' T .
N / doexp {/ dr—yoy3} <—l—k¢e"’“’)
0 - 2 2
o TA
X exp {/ drTy0y3}, (146)
0

where
o TA LTA' 1 i+p
= —=—In|——"—+—]. 147
Az /,2 ZH{Amﬂo(oo)} (147)

B. Momentum integrals and final results
We finally find

M= (2z)’8*p+p -k)A

<o {i [ atse) < o) - alf.

where A is a preexponential factor which depends on
the photon polarization. For a photon with momentum

k,=Q{1,sind,0,cosd}, we can choose e,(,H) = {0, —cos 6,

0, sin 6} and ef,“ = {0,0, 1,0} as a basis for the polarization
vector. A general polarization vector can then be expressed as

€, = cos F] el + sin B} eitel), (149)

2

where p and / are two real constants. The reason for choosing
p/2 in (149) is because then the polarization dependence on
the probability level can be expressed in terms of the
following Stokes vector (cf. Ref. [6])

N = {1, cosAsinp,sinAsinp,cosp}. (150)

Summing over the fermion spins, we find

2
S A = g (14320012 N, (1)

spins

where p = Q/2. We see that the smallest and largest
probabilities are obtained for parallel and perpendicular
linear polarization, N = {1,0,0, =1}, while, e.g., both left-
and right-handed circular polarization, N = {1,0, £1,0},
gives the same probability.

Note that, while the exponent contains the full momen-
tum dependence, we have only calculated the prefactor at
the saddle point p =p’ =k/2 (and we have assumed
ky = 0). It is straightforward to check that (151) agrees
with what one finds with the WKB approach. To obtain the
full prefactor, we have to perform the momentum integrals,
but we can already see that the ratio perpendicular/parallel
is independent of the field. We have assumed A’(4-c0) =0
here, but we have the same ratio for a constant field.

We obtain the total prefactor by expanding the exponent
around the saddle point p = k /2. We change variable from
p Z%—I-% to A. The term that is linear in A3 vanishes
because 7 is imaginary and so

i A
Rei [ dt———==0. 152
o (152)
We find that the probability can be expressed as
P=M-N (153)
with
Jraw? ) )
=———>——-{1+3p~,0,0,1-
4\/§QZmiA/(;){ p p }
_4 R
8 exp{—1(Jo— pit)} ’ (154
\/jl(jl - p*T2)(m1 T, — )
where A(7) =i and
it P ln
e
0 14

where A(t = iuj/w)=:if(u)/y (y = w/E) and f(it) =y.
For example, for a Sauter pulse, A(z) = %tanh(a)t) and
f(u) = tanu.

To obtain all terms, including, e.g., the one with
yE/(pA’), we expanded
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w2 (6 2)
= 7y + 61y + 6%, (156)

where A(f)=: f(wt)/y and 6 = O(4,) is a bookkeeping
parameter; used

/ " (1) ~ / " 4F (1) + F (i) (57, + 6% +w522§;
0 0

_ 147,
p dp

j b
: p dp

so if we have chosen a field for which we can obtain 7
analytically, then that is the only integral we need to
perform. We can also obtain J; and [J, by instead
differentiating with respect to y,

1= (70l - )

(157) m7 \dy A'(7)
1 ® dJg
and then expanded the integrand F to second order Jr=— (ﬁ -7 ——1> . (159)
j~ 0.
Since it does not depend on p [in the final result (154)],
we have For a Sauter pulse we find
|
aVrE(1 +miy?)"* exp{—25 (/1 + miy*A — arccot(p) — yp arctan(y)) }
MSauter = L {1 + 3])2,0, 0,1- pz}, (160)
8Qpm y\/1 +y*V2A(m% (1 + y*)A — py/1+ m’y?)
|
where 4 [ F2u)\?
9(r) =—/ du<1— (2 ))
Yy Jo 4
1
A:arctan{—\/l—l-miyz]. (161) 4/1d V1-y 164
p =— [ dy———. (164)
T Jo f

In the limit of a slowly varying field, we have for a
general pulse with a maximum at t = 0 [E'(0) = 0]

. VaaE*(0){1 +3p2,0,0,1 - p?}
IimM =
r<l1 8v/—E"(0)Qpm,
L oxP {~ &0 (mi arccot(p) - p)}
arccot(p) [m? arccot(p) — p]

(162)

We can obtain this from the constant field result (B17) by
replacing the volume factor with a time integral,
Vo — [ dt; replacing the constant field strength with a
locally constant one, E — E(¢); and then performing the
time integral with the saddle-point method, i.e., expanding
ﬁ ~ ﬁo) - %(;)0)) #? in the exponential part of the integrand.
Thus, the usual LCF ideas work also in this case.
In the low-energy limit, we can use (159) to obtain

(163)

where

where in the second line we have changed the integration
variable to y = f(u)/y. This is exactly the same g as in
Ref. [4] for Schwinger pair production. In fact, g enters (163)
in exactly the same way as Eq. (3.58) in Ref. [4], i.e., both in
the exponential and the preexponential factors. This is related
to the fact that an electric field can produce a pair without the
photon, and many of the integrals will be the same in the
Q — 0 limit as in the complete absence of this photon. There
is though an additional field dependence in (163) due to A’(7)
in the preexponential. For a Sauter pulse, we have

_ aVE(1 +72)1/4
lim MSauter = #

Q<1 - 27[927/ {1’ Oa Oa 1}

_Z (165)

b2 2
X exp —
{ E1+\/1+y2}

which can be obtained either by taking the @ — 0 limit of
(160) or by evaluating (163) for a Sauter pulse.
In the high-energy limit, we find

ay/mr{3,0,0,—1} exp{—*2 (it — aj Tpw)}
32a0\/ﬁf'(ﬁ)(ﬁ — @3 Tpw)(apitf (i) — 1)

Iim M =
Q>1

’

(166)
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where

Tpw = Aﬁdufz(u). (167)

This agrees exactly with the result for a plane-wave
background field, which can be obtained as follows: The
probability for nonlinear Breit-Wheeler pair production in
an arbitrary plane wave and for arbitrary parameters can be
obtained from Eqgs. (35), (36), and (39) in Ref. [52]. Those
expressions contain integrals over two light front—time
variables, ¢ = (¢, + ¢;)/2 and 0 = ¢, — ¢, and over one
longitudinal momentum s,. For y < 1, these integrals can
be performed with the saddle-point method, with a saddle
point at s, = 1/2 (the electron and positron share the initial
longitudinal momentum equally), ¢ = 0 (average light
front time at field maximum) and 6 = 2ii.
For a Sauter pulse, we find

. a\/magy{3,0,0,—1}
lim Mg, ye; = 2
sl 32\/ (1+af)arccot(ag)

exp {~2 (1 +a3)arccot(ag) — ay]}

(14 ad)arccot(ay) —ay

. (168)

which can be obtained either by evaluating (166) for a
Sauter pulse or by taking the high-energy limit of (160).

Perhaps the experimentally most relevant limit is a slow
field and high energy,

 3aVzQE?
lim lim ayrQE (0 ){ 3,0,0,—1}e @0, (169)
<<l @>1 32 2E”( )

which can be obtained either from the locally-constant-field
(ap > 1) limit of the high-energy/plane-wave approxima-
tion (166) or from the high-energy limit of the locally-
constant-electric-field approximation (162).

From (163), we see that for low energy Q <1 the
probability is maximized by parallel polarization,
N ={1,0,0, 1}, but vanishes for perpendicular polariza-
tion, N = {1, 0,0, —1}. In contrast, in the high-energy limit
(166), the probability for perpendicular polarization is
twice as large, (34 1)/(3 —1) =2. This is known in
the LCF limit of plane waves (169), see Refs. [53-55],
but we see from (166) that this holds, in general, in the
high-energy limit.

VIII. PREFACTOR FOR NONLINEAR
COMPTON SCATTERING IN TIME-DEPENDENT
ELECTRIC FIELDS

The calculation for nonlinear Compton is very similar.
Before we begin, we mention that nonlinear Compton in a
time-dependent electric field has recently been studied in
Ref. [60], where a WKB approach was used and where the
exponential part of the time integrand was expanded to

cubic order to obtain results in terms of Airy functions and
in particular to compare and check the LCF approximation.
For exact expressions for nonlinear Compton in an electric
field, see Ref. [61].

A. Worldline derivation

We assume the initial electron travels perpendicular to
the field, with p := p; > 0 and p, = p3 = 0. Instead of
(6), we have

M= lim lim d3 d3 , zp’x”u(aSymp)(

t—>—00 {400

7.p)y’

x S(x, x)ye= P ™) (1 ), (170)
where the Compton amplitude is obtained by replacing
A — A + ee™™ and selecting the term that is linear in €y
So, for the exponent, we can obtain most results from the
pair-production case by replacing p’ — —p, p — p’ and
k, — —k,. Instead of (24), we have

do(r) = 0,.T\/1 + (b — Algo(0)))?

10,7\ 1+ (0 = Algo(e)2. (171)

and instead of (25), we have

\/1+(p’ \/1 p—A>F)*-Q.

For the prefactor, we again have (115), (116), and (67).
To calculate the rest of the prefactor we put k, and k5 (or
equivalently, due to momentum conservation, p5 ;) equal
to their saddle-point value, which, as we will show, is
ky = k3 = 0. We keep the general dependence on the
component that is parallel to the initial electron’s momen-
tum, i.e., k;. One reason for not integrating over k; is that
would in general lead to an IR divergence and, even if IR
finite, the result would receive dominant contribution
from soft photons and would therefore not have an
exponential scaling. In other words, the saddle-point
method only works if we prevent the photon from being
too soft. Exponential approximations for the emission of
hard photons have been considered in Refs. [6,62,63]. We
will focus on the spectrum, but obtaining the probability
integrated over k; with some lower cutoff, o
is straightforward to obtain by simply expanding the
integrand around this cutoff. In particular, the exponential
part is the same; i.e., if P(k;) ~exp(—f(k;)/E), then
Jg2 dki P(ky) ~ exp(=f (k) /E).

At ky = k3 = 0, Eq. (172) reduces to A(7) =i, so we
have the same 7 as in the pair-production case. We
assume 0 < p —Q < p.

We once again perform the path integral with the
Gelfand-Yaglom method with (55), (57), and (61). The

(172)
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calculation is very similar to the one in the previous section
for Breit-Wheeler. The solution of (57) is again given by
(115) and (116) with ¢; and ¢, given by (67). We have an
implicit difference due to the fact that the instanton #(z) is
different. We also have an explicit difference in the form of
c3 and c4. These two constants are again determined by
demanding that ¢(z) and qﬁ(r) be continuous at 7 = ¢. For
this, we need

tlo+)=T(p-Q) (173)
and 7(6—) = i(o+) = iT*>A’(7), which follows from (171)
and A(7) = i. We find

T . [ed
. __Q<m+iT3A/(,) / __j<clTA+c2>>
p o f
Q odr
= [T TA + ¢y). 174
Cq -0 ), tz(C1 +¢3) (174)

The determinant (59) can now be expressed in terms of

o (TA)" / (TA)"
I, = dr———= dt————F—— 175
s e
and
1 (TA)" /n (TA)"
J, = di——= dt ————. 176
[ [ 07

While the intermediate steps involve some rather long
expressions, things simplify considerably in the asymptotic
limit. We have

c i dr —to
ol =T dr = — 177
A /zo Vm? + AT mp(o0) {177)
and
1 f dt [1
1-6)T=T dr = - , (178
(-or=7 [far= [" o 2l 07
)
—1y 51
T — + 179
moloo) | (o) (179)
and
—1y < —ly I >_1
c — + , 180
7o(o0) \o(o0) (o) (180)

where [we have assumed A(—t) = —A(7)]

mo(00) = /14 p* + A%(c0)

mh(o0) = /14 (p— QP+ A%c0).  (181)
Similarly,
ty(TA)" (TA)"
1,_»% e% (182)

If we let L be a large parameter such that —zy = O(L)
and t; = O(L), then we can expand (59) by taking into
account #(z =0,1)=O(L), T=0(L), I, = O(L"?),
and J, = O(L""?). We find

iQA'(T)tyt,

detA =
Tﬂ(z)ﬂ'g

(183)

When calculating det A, we could replace the remaining
integration variables with their saddle-point values since
det A only contributes to the preexponential factor. Now,
we turn to the remaining integrals. Instead of (171), we
need the instanton solution before replacing T — T gqdies
etc., which is given by

AL =T(ct—k0,) i=T(As+3-k0,) (184)

and

7<o0: i:T\/a%+ci+(A3+c3)2

> 01 =T/ +(c— k3 + A+ 2 (185)

where #(o+) — t(c—) = —TQ gives the extra condition

Vat + A+ (40 + )2

= @+ (c— kP + (As() + S~ PR+ Q. (186)
where 7 = (). We define
G(da?.,a% .c;.7)
7
==/ dt\/a3+ci+(A3+c3)2
Iy

t
+/‘dt\/a3+(c—k)1+(A3+c3—k3)2-szz.
7

(187)

The constants are again determined from ¢, T, and Ax/ by
the same equations as in (125). We have
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T 1 x2
=_ dr| == + As?
S 2+/0 1<2T+ 3Z+Jx>

zg[g(l —a2)+(1-0o)(1-a})]

—¢;Ax; + G + x;(1)k;. (188)
This exponent has the same form as in the Breit-Wheeler
case, and so the ¢ and T integrals are performed in exactly
the same way as before, i.e., by differentiating (125) with
respect to the integration variables and solving for,
e.g., da®/dT.
Instead of (133), we have

—ip;x/ (0) +ipjx/(1) = iS

=i(=p+p' +k)X +i(c—p)Ax;—iG, (189)

where X; = (x(1) +x(0));/2 and where we have used
8 (p’ + k —p) to simplify the term proportional to Ax;.
We have

d
189) =i(c—p);, 190
dar 189 = ie=p), (190)
where the terms with dc;/dAx; cancel. Thus,
Cj(Axsaddle) =Dj (191)

at the saddle point for Ax;.
The final exponent for Compton scattering is given by

1, t
—i/oﬂo(p)ﬂ/lﬂo(p’)—iG
t, t,

=i / dil-mo(p) + mo(0) + Q.

[

(192)

which agrees, as it should, with what one finds with the
WKB approach.

To perform the Ax integral, we need the second
derivatives, given by

d d de;

133) = i 193
dijdAxk( )= A (193)

which can be obtained by differentiating (125). The Ax;

integral gives (27)%/2/,/det((193)). The intermediate
results for the o, 7, and Ax integrals are even more
complicated for Compton scattering compared to the results
for Breit-Wheeler, which were already rather complicated.
However, this again simplifies considerably in the asymp-
totic limit and when replacing all the integration variables
with their saddle points. We can obtain these from (125)
since we know that at these saddle points we have a? =
ai =1 and ¢ = p. We have also assumed p, = p3 =0,

and we set p; = p. For the preexponential factor, we can
also set ky = k3 = 0 and k; = Q. To obtain the asymptotic
limit, we can use

G- —to\/az +ci + (P —A)?

+1 \/a?F +(c—k)? + (=K +A)?2  (194)

where A = A3(c0) [recall that we have assumed
A(—[) = —A([)] From (125), we find T c.adie and Ogaddle
as in (179) and (180), and

—ly I

Ax; — p+
my(0)

)p’, (195)

7y (oo

where p’ = p — Q, Ax*> - 0 and

Y I N YO
Ax; (no<oo>+ns<oo>>*‘( - (196)

While the dynamics at finite times gives a nontrivial
contribution to Ax, for —ty,#; — oo, the dominant con-
tribution comes just from the asymptotic parts of the
instanton, where it is outside the electric field A’(¢). So,
Eq. (195) is the distance one should expect for a particle
that initially has momentum p for a proper-time interval of
length Az~ —ty/7my(o0) and then momentum p’ for the
second half with Az ~ 1, /7((c0).

Collecting the contributions from all the integrals, we
find

1 T 1 .
——— [ do [ dT | BAX
2 (22T)? \/detA/ / /

” \/ 247 (7)o (00) 7 (00)

(197)

This is very similar to the Breit-Wheeler case, as we obtain
(144) by simply replacing z;, = 7 in (197) (note that in the
Breit-Wheeler case we calculated the prefactor at the saddle
point where p = p’).

To calculate the spin part of the preexponential as in
(145) and (146), we need

[TTA/_%IH[W} (198)
and
KTTN——%IH[W]. (199)
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B. Results
We finally find

M= (2z)’8*(p +k —p)A

X exp{i/tr7 dt[—mo(p) + 7o (p’) + Q]} (200)

where averaging over the initial spin and summing over the
final spin gives

1 2 T
EZV” " 2m m' QA'(7)

spins
x {m? +m’? +Q2,0,0,m> +m'? —Q?} - N,
(201)

where N is the Stokes vector for the photon polarization in
(150). From here on, the calculations are the same as in a
WKB approach.

To avoid IR/soft photon contributions, we will keep one
component of the photon momentum fixed and integrate
|

over the other two. One option would be to keep k; fixed and
integrate over k, and k3, with a saddle point at k, = k3 = 0.
However, noting that y, := \/—(Fk)* = E(k{ + k3), we
will instead change to cylindrical coordinates, k; =
kcos ¢ and k, = ksin ¢ and perform the k5 and ¢ integrals
with the saddle-point method, with a saddle point at
ks = ¢ = 0. We define the longitudinal momentum spec-
trum as the integrand in the total probability

P= / dkP(K). (202)

Since we do not integrate over one momentum variable, the
final results will depend on one more parameter compared to
the Breit-Wheeler results in the previous section, which
therefore leads to more complicated expressions. So, we
consider for simplicity a Sauter pulse. The polarization
dependence can be expressed in terms of a Stokes vector as
P(k) = N-M(k), where

a(l+ (ym' )" H{m3 +m? +K,0,0.m3 +mf — K} explf(p') - f(p)]

Mgauer(K) = -
> 1+(ym'))
8m m' k(1 +y )\/p arctan[— —]
1+ (i )2 -1/2
arctan y arctan[Y—"—=] | k p
x +km) ) ——am + - , 203
( T T A A 209

where

2 1
f(p)= —E—yz{\/l +miyzarctan[;\/l +m2ly2]

— arctan B] — yp arctan(y) } (204)
Note that the pair-production exponential in (33), where we
considered p =p’, can be expressed with the same
function as exp(2f(p)). From (203), it is immediately
obvious that the exponential vanishes in the limit of low
photon energy, Q — 0, as it must since the probability to
emit a soft photon is not exponentially suppressed (the
saddle-point approximation breaks down in this limit).

This rather complicated expression simplifies in the
high-energy limit,

B aag{k—1,0,0,1}
B 4ry/(1 + ad)arccot(ay)
exp {—2[(1+ aj)arccot(ag) — ao)}
/(1 + ad)arccot(ay) — ag
(205)

pklgilMSauter (k)

s

|
where r = (1/s) — 1,k = (1/s) + s and (in the high-energy
limit) y == \/(Fp)* — Elp|, and s — (|p| = Q)/|p|. The
first component of (205) (which gives the probability
summed over the photon polarization, ) P =
2{1,0,0,0} - M) agrees with Eq. (93) in Ref. [6] for
nonlinear Compton scattering in a plane-wave field, where
s = np' /np with n, being proportional to the wave vector of
the plane wave.” To check the other components in (205), we
perform the integrals in Egs. (24), (25), and (28) in Ref. [52]
with the saddle-point method as described after (166). The
result agrees exactly with (205).

C. Instanton

As already mentioned for the pair-production case, while
we have for these fields been able to obtain the final results

Equation (93) in Ref. [6] actually gives the probability for a
large class of symmetric fields, of which the Sauter pulse is one
example. In comparing with the light front longitudinal spectrum
in Ref. [6], one should also note that there the longitudinal
momenta have been normalized to the initial momentum, so in
this case, we should write dk = pdk and include this extra factor of
p into the spectrum.
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for the probability without actually having to find the
instantons explicitly, it is nevertheless useful to consider
these instantons since they serve as a starting point for more
complicated fields, for which one has to find the instantons
explicitly. We consider a Sauter pulse for simplicity. Instead
of 7, we parametrize the first part of the instanton (before
photon emission) with

U=1/1+(ym)?ET(z - o) (206)
and the second part (after emission) with
U =/1+ (ym')?ET(z - o). (207)

For U < 0, we find

wq’(U) = arcsinh [}'m4l2
L+ (ymy)
1 2
x sinh <U + i arcsin {M} )] (208)
mi\/ 1+ 72

1

0wt (V)= ————
O = )

X cosh (U + iarcsin[

el

(arcsinh {ym n

(209)

—arcsinh | ——| |.
v1+ 7/2

The second part (U’ > 0) is obtained from (208) and (209)
by simply replacing U — U’ and p — p’. By inserting this
solution into (46), we find agreement with the exponent in
(203), where the integral from U = —oco0 to U = 0 gives
exp[—f(p)] and the integral from U’ = 0 to U’ = o gives
exp[f(p')]. The instanton is illustrated in Fig. 3.

IX. CONCLUSIONS

We have shown how to use worldline instantons on the
amplitude level rather than the probability level, which
has been the focus of previous studies.'® The worldline
instantons are then open lines rather than closed loops. We
have shown how to amputate the amplitude with respect
to the asymptotic fermion states and how to calculate
both the exponential part of the probability as well as how
to use the Gelfand-Yaglom method to obtain the full
preexponential part.

""Recall that the effective action or the photon polarization
tensor are effectively probability level when their imaginary parts
are used to consider pair production.

- - J p'=0'5
) NS

—
ia——

15 e ]
— /7
iz
\Q \\ ///:/

Im[wqo]

0.0
-0.5 0.0 0.5
Relwaqo]
FIG. 3. The real and imaginary parts of the time component of

instantons for nonlinear Compton scattering. The momenta are
perpendicular to the electric field, p; = p, p» = p3 =0 and
py=p, py=p5y=0, and y=1. The streamlines show

m?% + A%(wt) for Ret < 0 and \/m'? + A*(wt) for Ret > 0,
corresponding to before and after the photon emission. The red
solid line shows the analytical solution in (208).

Working with instantons on the amplitude level is a new
approach even if one only considers spontaneous pair
production. We expect that it can be a useful alternative
for obtaining the momentum spectrum. But we have also
shown how to use the instanton formalism for nonlinear
Breit-Wheeler pair production and nonlinear Compton
scattering. For such processes, the instanton has a kink,
i.e., a discontinuous velocity, at the point where the
(incoherent, high-energy) photon is absorbed or emitted.
We have found that the Gelfand-Yaglom method still works.
While the probability of nonlinear Breit-Wheeler can also be
obtained from probability-level instantons, i.e., by working
with the imaginary part of the photon polarization tensor, the
probability of nonlinear Compton scattering is not the
imaginary part of some closed fermion loop. Thus, our
amplitude-level approach allows us to consider more general
processes.

While we have focused on time-dependent electric fields,
we have shown that our results for nonlinear Breit-Wheeler
and Compton reduce to the corresponding results in a plane-
wave background field in the high-energy limit, which were
obtained using the standard approach, i.e., with Volkov’s
wave functions (solution to the Dirac equation) in the Furry
picture. The Volkov solutions are very simple, but as soon as
one considers backgrounds other than plane waves, the
solutions to the Dirac equation become much more com-
plicated. But for a time-dependent electric field, the WKB
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approximations of the wave functions are still simple. We
have used these WKB approximations to check our results
obtained with the instanton formalism. It is fair to say that for
such simple background fields the WKB approach often
involves shorter calculations. One reason for this is simply
that in the worldline approach we start at a higher level, i.e.,
the starting point comes before the L.SZ reduction, while in
the WKB approach, this has essentially already been done.
One aspect of the worldline instanton approach is that it
gives nice semiclassical illustrations of particle trajectories.
On the probability level, these are complex loops, but on
the amplitude level, the complex, tunneling segments of the
instanton at finite times are connected with asymptotic ends
that can be easier to interpret as actual particle trajectories
of fermions before and after going through the back-
ground field.

However, the real advantage of the worldline instanton
formalism comes when one goes beyond simple fields to
more realistic space time—dependent fields. This has been
demonstrated in Ref. [17], in which a numerical instanton
code was developed which allows one to consider general
fields for spontaneous pair production. For example, the
code was applied to an e-dipole pulse [64], which is an
exact solution to the Maxwell’s equation with finite length
in all four space-time coordinates. After having laid the
groundwork with the present paper, in the future, we plan to
develop a code similar to that in Ref. [17] but for processes
such as nonlinear Breit-Wheeler and Compton.

Another future application of this instanton approach
would be to apply it to obtain the probability of an electron
tunneling through a classically forbidden field region, with
a space time—dependent electromagnetic field (see Ref. [65]
for a recent study of dynamically assisted tunneling)
including relativistic effects, or to tunneling in a space
time-dependent field assisted by high-energy incoherent
photons.
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APPENDIX A: WKB APPROACH

In this Appendix, we will briefly explain how to
calculate, e.g., nonlinear Breit-Wheeler or Compton scat-
tering using the WKB approach.

We treat the photon field as in Ref. [42]

d3l —ilx T ilx
1,0 = [ sz D - alet. (A
with

a,(0). (1) = ~2p22) ([ ~ g, (A2)

The initial state |in) contains a photon described by a wave
packet f(k) and polarization vector €,

. &k
in) = [ G (ealo).  (43)
where the normalization (in[in) = 1 implies
&k
| G R = 1. (A4)

The wave packet is sharply peaked. Note that we are using a
different normalization for the mode operators of the Dirac
and the photon field. For the Dirac field, we follow
Refs. [47-49,66], which in particular means no factors
of 2p, in the integration measure and the commutation
relations. The pair-production probability is thus given by

d3 d3 /
P—/ PP 10[bo a9uudfin)

(2r)? (27)3 s.P
e’ d*p
=25 )7 |M|?, (A5)

where Q = k, U is the time evolution operator and

(27)’8*(p+p' — k)M := <O|bf;}f;,a§’}‘p‘Ue(k)aT(k)|O)

_ / dhxp ety (A6)
We are only interested here in the saddle-point regime.
In this regime, we could simply replace the exact wave
functions y(*/~) with the WKB approximations U, V in (8).
The spatial integrals are trivial, | Bxe! PP —
(27)38°(p + p’ — k). The time integral can be performed
with the saddle-point method. The saddle point 7, is
determined by

VIO +A@)2+ 1+ -A@))P e (A7)

Comparing (A7) with (25), we see that the saddle point for
the time integral in the WKB approach coincides with the
point 7 on the instanton where the photon is absorbed.

APPENDIX B: PREFACTOR FOR NONLINEAR
BREIT-WHEELER PAIR PRODUCTION
IN A CONSTANT ELECTRIC FIELD

In this section, we will calculate the prefactor of the
probability of nonlinear Breit-Wheeler in a constant field
using the worldline formalism. This is an example where
the asymptotic fermion states are nontrivial, in contrast to
the time-dependent fields we considered in Sec. VII for
which the asymptotic states are just plane waves. For a
general field, one can use the instanton method to perform
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the path integral, but for a constant field A;(7) = Et, this is
the same as performing the path integral exactly. So, we
start by making the shift and redefinition in (14), where the
Lorentz-force equation simplifies to

¢ =T(Eq’ +J°)
& = T(EQ" + )
Gt =TJ*+

(B1)

with ¢#(0) = x* and ¢#(1) = x*. Since we already know
that all the nontrivial functional behavior can be obtained
with a perpendicular photon, and since this also gives the
maximum probability, we will for simplicity set k> = 0.
After this shift, the path integral becomes (up to an
irrelevant phase)

5q(1)=0 1 562
/ T Dég exp {—i / de (i + E5q05q3> }
5¢(0)=0 0 2T
1 ET/2

~ (22T)?sinh(ET/2) (B2)

This is the same as without the photon.

It is straightforward to solve (B1) by first solving in
the regions 0 < 7 < ¢ and ¢ < 7 < 1 separately and then
matching the two parts at 7 = ¢ with ¢*(¢ + §) = ¢"(c — )
and ¢* (6 + ) — ¢* (6 — 8) = Tk*, where 5§ > 0 and § — 0.
We then plug this instanton solution into the exponent and
perform the remaining, ordinary integrals. We change var-
iables to ¢/ = (x +x')//2 and @ = (x —x')/. The ¢’
integral gives (27)35°(p + p’ — k). At this point, we can
take the 7 derivative, coming from (i, + m), but in the end,
it turns out that in the asymptotic limit # — oo this is the same
as the asymptotic limit with (#(¢) + m). We can now put
' = t, and then we shift Et — Et + p5, which removes p;
from the entire expression. We perform the @/ integrals with
the saddle-point method. All this is done without taking
t — oo. For the remaining ¢ and T integrals, it helps to
anticipate their scaling with respect to ¢ before finding the
saddle points. We anticipate that 7 — oo as ¢t — oo, because
it takes an infinite proper time to travel from two infinitely
separated space-time points. Contrast this with the instanton
calculation for the imaginary part of the effective action
(i.e., for a closed fermion loop), where T is finite. At this
point, the exponential part of the integrand for these variables
is given by

2

+ <2Et0 + Q%ﬁ)zmh [%H } (B3)

; ET
exp - [2E70 + ok, - 20),) - o[

When performing integrals with the saddle-point method, one
has to note the scaling of the integration variables with respect

to E. Here, ET ~E°, and Eq~ E°. From the above
exponential, we see that in order to take the asymptotic
limit we can change variables from ¢ — % + % to V and from
ET =2In[£L] to X. After this change of variables, we can
take the limit + — oo of the integrand. The divergent terms
from (B3) cancel against the terms in the exponential part of
the asymptotic states (8),

! i
l/ ﬂ'p d ﬁ [(Eto)z + mi ln(Eto)]

+ constant imaginary terms. (B4)
The total exponential becomes
exp{—i [k (k—2p), V+4Q*(X cosh(V) — X?)
SGRTGECII (B5)

It is now much easier to perform these integrals with the
saddle-point method than if we had done so before changing
variables and taking the asymptotic limit. For V, we have a
saddle point at

1 k, (k=2
V = arcsinh —ﬁ% .

(B6)

For simplicity, and in order to compare with Ref. [5], we
consider the total probability; i.e., we perform the momen-
tum integrals. For a constant field, the longitudinal momen-
tum integral has a constant integrand and gives a volume
factor f dp; = EV,, which is a standard relation. For the
perpendicular integrals, we have a saddle point at
p1 =k, /2. It is convenient to expand the exponential to
quadratic order around this saddle point already on the
amplitude level and before performing the X integral, and
afterward, we use p | for the saddle-point value p, =k, /2
rather than the integration variables. After this, we find a
simpler exponential and a saddle pointat X = (i + p)/(4p),
where p = |p|. At the end, we find

P~ ...exp{—z ([1 + p? arctan[;] —p)}, (B7)

which agrees with Ref. [5]. To obtain the rest of the
prefactor, we just have to calculate the quadratic variation
around each of the above saddle points and collect the
contributions from the corresponding Gaussian integrals.

For the spin- and polarization-dependent parts of the
prefactor, we just have to replace the integration variables
with their saddle points. For the contribution from the
asymptotic electron state, we have
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1)R 1
tim—EEUR L, ik (s)
1= 271’0(71'0 + 7[3) my
and for the positron (note different momentum),
— Y v+ 1+ 1R
lim (ror” +mip £ 141 - —y'R. (B9)

=0 \ 2my(7o — 73)

We should take the linear part in €. This can come from
either eq or from K¢; we call these the scalar and spinor
parts, respectively. A potential term coming from making
the shift A, - A, +€,e7* in (iD, + m) does not con-
tribute. For the scalar part, we have

T [1
Pexp{—i—/ a””FW}R
4 Jo

ET ET
=exp|—7y"7’|R = exp|—|R (B10)
2 2
and then
1 -
_Rr(plyl+1)y0(12§x+m)Rr/
my
1 -
=——R,(pur* +1)7°(pur* +1)Ry =m RIRy.  (B11)
1

Inserting the saddle points gives —ieg(c) — e3T. Hence,
the scalar part is only nonzero (at this leading order in E) if
the photon polarization has a nonzero longitudinal com-
ponent, but vanishes for perpendicular polarization. Since
we should take the limit  — oo, it is important to keep track
of how different terms scale. For this scalar part, we have,
with the saddle point for 7,

T exp [%] ~O(tnt). (B12)
For the spinor part, we have
P exp{/ dr<EzTy % ——k¢e"’“1)}
—>/ do-exp{ (1-0)y y3}
x <—%k¢e‘”“7> exp{%ayoﬁ}. (B13)

The part to the right of ¥¢ again simplifies as in (B10). The
part to the left of }¢ simplifies to

R0 -m)P a4 Do (- (1-0)}

L+ m2 exp {%(1 —J)H.

With 0, — 73 —» 2Et and ¢ — 1/2, we have

(B14)

(B14) exp{%a}T

1 ET
- —R' [ZEtyO(plyl + 1) +m? exp {THT. (B15)
my

Since ET = 2In[£L], all the terms in (B15) are O(¢In ), the
same scaling as the scalar contribution (B12). As ¢t — oo,
the only other #-dependent contribution comes from
(B2) ~O(1/[tInt]), which hence gives a finite limit
as t — oo.

We have used 7’y R = R. We can choose a basis with

(B16)

to calculate the rest of the spinor part. We sum for
simplicity over the spins.
We finally obtain P = N - M with

_ aEV, exp {=2 (m}arccot(p) — p)}

4Qpm, \/arccot(p)(m? arccot(p) — p)
x {1 +3p2,0,0,1 - p*}.

(B17)

For parallel and perpendicular polarization, N = {1, 0,0, 1}
and N={1,0,0,—1}, N-M agrees with Egs. (5)—(8)
in Ref. [5].
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