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Two-boson momentum correlations at fixed particle number constraint are studied in a simple
analytically solvable model of a thermal expanding system. We show that the increase of expansion
rate, as well as increase of particle multiplicity, enhances the ground-state contribution to particle
momentum spectra and leads to suppression of the Bose-Einstein momentum correlations. The relations of
these findings to the multiplicity-dependent measurements of the Bose-Einstein momentum correlations in
high-multiplicity pþ p collision events at the LHC are discussed.
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I. INTRODUCTION

Notwithstanding the evidence of the hydrodynamic
expansion in high-multiplicity pþ p collision events at
the CERN Large Hadron Collider (LHC), for recent
reviews see, e.g., Refs. [1,2], robust interpretation of the
multiplicity-dependent Bose-Einstein momentum correla-
tions of identical particles created in such collisions is still
absent. To a good extent this is due to the fact that some
peculiarities of the data, such as saturation effect in the
multiplicity dependence of the interferometry correlation
radius parameters (so-called HBT radii) for high charged-
particle multiplicity [3,4], as well as low values of the
correlation strength parameter λ [3,4], are at variance with
the expected behavior for emission from hydrodynamically
expanding thermalized systems.1 A systematic and quanti-
tative analysis and theoretical interpretation of the multi-
plicity-dependent Bose-Einstein momentum correlations
may therefore elucidate the nature of the particle emitter
in pþ p collisions at the LHC in crucial ways.
In a recent paper [6], fixed particle number constraint

was applied to a quantum-field thermal state of the non-
relativistic ideal gas of bosons at fixed temperature trapped
by means of a harmonic chemical potential. It was

demonstrated in this paper that increase with N of the
particle number density is accompanied for fairly highN by
the noticeable ground-state Bose-Einstein condensation,
and that such a condensation leads to suppression of the
two-boson momentum correlation function. It is worth
noting that this effect takes place at fixed N in the thermal
ensemble where averaged over all multiplicities mean
particle number density is below the critical one and,
therefore, there is no grand-canonical ground-state con-
densation. In the present work, we further develop the
model of Ref. [6] aiming to account for the system’s
expansion and thereby to bring the model closer to pþ p
collision experiments. We find an exact analytical solution
of the quantum thermal model with the system’s expansion
and show that suppression of the Bose-Einstein momentum
correlations, i.e., decrease of the λ parameter, is increased if
intensity of the flow increases. We attribute such a
suppression to the ground-state contribution to particle
momentum spectra and suggest that certain features of the
multiplicity-dependent two-boson momentum correlations
at high multiplicities in pþ p collisions at the LHC can be
interpreted as a signature of the presence of ground-state
condensate.

II. QUASIEQUILIBRIUM STATE OF EXPANDING
NONRELATIVISTIC BOSON FIELD

We begin with a brief overview of a standard procedure
for constructing a relevant statistical operator ρ (see, e.g.,
Ref. [7]). It has been known for a long time (see Ref. [8])
that for a given set of relevant observables An, the actual
expectation values of which hAniðtÞ are known at some
given time, the statistical operator ρðtÞ, “least biased” as for
unmonitored degrees of freedom, can be found from the
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1Let us make a reservation, however, that a semiquantitative
prediction of the saturation effect for the interferometric radii at
large multiplicities in pþ p collisions, assuming thermalization
and hydrodynamic expansion of the arising system, was under-
taken, in fact, in Ref. [5].
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maximum of the von Neumann entropy, S ¼ −Tr½ρ ln ρ�,
subject to the constraints

hAniðtÞ ¼ Tr½AnρðtÞ�; ð1Þ

Tr½ρðtÞ� ¼ 1: ð2Þ

This can be done by varying the functional S0½ρ0�, where
anðtÞ and ðΦðtÞ − 1Þ are Lagrange multipliers,

S0½ρ0� ¼ −Tr½ρ0 ln ρ0� −
X

n

anðTr½Anρ
0� − hAniÞ

− ðΦ − 1ÞðTr½ρ0� − 1Þ; ð3Þ

with respect to ρ0 and then putting variation δS0½ρ0� equal to
zero,

δS0½ρ0� ¼ −Tr
��

ln ρ0 þΦþ
X

n

anAn

�
δρ0

�
¼ 0: ð4Þ

It yields

ρðtÞ ¼ 1

Z
exp

�
−
X

n

anðtÞAn

�
; ð5Þ

where

Z ¼ expðΦÞ ¼ Tr

�
exp

�
−
X

n

anðtÞAn

��
ð6Þ

is the normalizing factormakingTr½ρðtÞ� ¼ 1. The statistical
operator (5) is sometimes called the relevant statistical
operator. One can see that it corresponds to the generalized
Gibbs state described by some set of observables. If a true
state of a system is unknown or very complicated, then one
can utilize reduced (incomplete) description (5), character-
ized by the knowledge of mean values of some observables
only, to make a reasonable estimate of any other observable
B at that time by means of the equation hBiðtÞ ¼ Tr½BρðtÞ�.
The crucial point here is the choice of the set of relevant
observables, which is adequate for the reduced description
of a system. For example, for a thermalized hydrodynami-
cally expanding system, the relevant observables are the
energy-momentum tensor and currents of conserved quan-
tities. The corresponding relevant statistical operator for
such a system is called sometimes the “quasiequilibrium
statistical operator.”
Here, to make the problem tractable, we choose

as relevant observables mean values of energy and momen-
tum density, as well as particle number density, of a
free nonrelativistic scalar field defined at some moment
of time. We begin with the Lagrangian density for a
free real relativistic scalar field in Minkowski spacetime
xμ ¼ ðt; rÞ, r ¼ ðx; y; zÞ [we use the convention gμν ¼
diagðþ1;−1;−1;−1Þ],

L ¼ 1

2

�∂ϕ
∂t

�
2

−
1

2

�∂ϕ
∂r

�
2

−
m2

2
ϕ2: ð7Þ

The canonical momentum field is then π ¼ _ϕ, where an
overdot denotes a derivative with respect to time, and the
Hamiltonian density is given by

H ¼ 1

2
π2 þ 1

2
ð∇ϕÞ2 þm2

2
ϕ2; ð8Þ

where ∇ ¼ ð∂1; ∂2; ∂3Þ ¼ ðd=dx; d=dy; d=dzÞ. The corre-
sponding energy-momentum tensor reads

TμνðxÞ ¼ ∂μϕ∂νϕ − gμνL: ð9Þ

There are different methods to arrive at an effective
nonrelativistic description for a real scalar field. Typically
these methods start with an appropriate field redefinition.
Here, for the sake of convenience, we relate the complex
nonrelativistic fieldΨ to the real relativistic field ϕ by using
the relations (see, e.g., Ref. [9])

ϕðt; rÞ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtΨðt; rÞ þ eimtΨ†ðt; rÞÞ; ð10Þ

πðt; rÞ ¼ −i
ffiffiffiffi
m
2

r
ðe−imtΨðt; rÞ − eimtΨ†ðt; rÞÞ: ð11Þ

Equations (10) and (11) give a one-to-one mapping
between the complex-valued Ψ and the real-valued ϕ
and its conjugate momentum π. The quantization prescrip-
tions ½ϕðt; rÞ; πðt; r0Þ� ¼ iδð3Þðr − r0Þ, ½ϕðt; rÞ;ϕðt; r0Þ� ¼
½πðt; rÞ; πðt; r0Þ� ¼ 0 result in the commutation relations

½Ψðt; rÞ;Ψ†ðt; r0Þ� ¼ δð3Þðr − r0Þ; ð12Þ

and

½Ψðt; rÞ;Ψðt; r0Þ� ¼ ½Ψ†ðt; rÞ;Ψ†ðt; r0Þ� ¼ 0: ð13Þ

The Fourier-transformed operators are defined as

Ψðt;pÞ ¼ ð2πÞ−3=2
Z

d3re−iprΨðt; rÞ; ð14Þ

Ψ†ðt;pÞ ¼ ð2πÞ−3=2
Z

d3reiprΨ†ðt; rÞ: ð15Þ

They satisfy the following canonical commutation
relations:

½Ψðt;pÞ;Ψ†ðt;p0Þ� ¼ δð3Þðp − p0Þ; ð16Þ

and
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½Ψðt;pÞ;Ψðt;p0Þ� ¼ ½Ψ†ðt;pÞ;Ψ†ðt;p0Þ� ¼ 0: ð17Þ

In order to take the nonrelativistic limit in the
Hamiltonian density, one can substitute Eqs. (10) and
(11) into Eq. (8). The corresponding expression contains
rapidly oscillating terms proportional to e�2imt. These terms
are usually neglected in the nonrelativistic limit, because in
the limit of large m they average to zero on timescales
larger than 1=m, and the remaining terms are expected to be
slowly varying compared to the timescale 1=m. We then
obtain the following nonrelativistic Hamiltonian density2:

Hðt; rÞ ¼ T00ðt; rÞ ¼ 1

2m
∇Ψ∇Ψ† þmΨΨ†: ð18Þ

In a similar way, using Eq. (9) and neglecting terms with
fast oscillatory factors e�2imt, we obtain that (j ¼ 1, 2, 3)

T0jðt; rÞ ¼ −
i
2
ðΨ∂jΨ† −Ψ†∂jΨÞ: ð19Þ

In the nonrelativistic approximation, the particle number
density is given by

Nðt; rÞ ¼ ΨΨ†: ð20Þ

The quasiequilibrium statistical operator, associated
with the expectation values of the selected observables
(18)–(20), reads3

ρ ¼ 1

Z
ρ̂; ð21Þ

where Z is the partition function,

Z ¼ Tr½ρ̂�; ð22Þ

and

ρ̂ ¼ exp

�
−
Z

d3rβðrÞ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2ðrÞ

p T00

þ ujðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2ðrÞ

p T0j − μðrÞΨΨ†
��

: ð23Þ

Here β ¼ 1=T is inverse temperature, u ¼ ðu1; u2; u3Þ
(uj ¼ −uj) is collective velocity, μ is chemical potential,
j ¼ 1, 2, 3, and summation of repeated indices is implied.
Given (18) and (19), we may now consider the effective

description for such a model in the nonrelativistic limit

when 1ffiffiffiffiffiffiffiffi
1−u2

p ≈ ð1þ 1
2
u2Þ and uffiffiffiffiffiffiffiffi

1−u2
p ≈ u. Then, taking into

account that u2ð 1
2m∇Ψ∇Ψ

† þmΨΨ†Þ ≈ u2mΨΨ† in the
nonrelativistic limit of large m, we obtain

�
1þ 1

2
u2ðrÞ

�
T00 ≈

1

2m
∇Ψ∇Ψ† þm

�
1þ 1

2
u2ðrÞ

�
ΨΨ†:

ð24Þ

Finally, taking into account Eqs. (18), (19), and (24), one
can rewrite (23) in the form

ρ̂ ¼ exp

�
−
Z

d3rβðrÞ
�

1

2m
½−i∇ −muðrÞ�

×Ψ½i∇ −muðrÞ�Ψ† − μ̂ðrÞΨΨ†
��

; ð25Þ

where

μ̂ ¼ μ −m: ð26Þ

If actual expectation values hT0ji ¼ 0, then u ¼ 0 and
the quasiequilibrium statistical operator (25) describes a
nonexpanding system of noninteracting nonrelativistic
bosons. Below we demonstrate that the quasiequilibrium
statistical operator of an expanding system, see Eq. (25),
can be rewritten to such a form by means of a simple
unitary redefinition of Ψ and Ψ† fields, if the collective
velocity u belongs to the class of the potential velocity
fields,

uðrÞ ¼ −
1

m
∇θðrÞ; ð27Þ

where θ is a dimensionless flow potential. For this aim let
us rewrite the operator-valued fields Ψ and Ψ† in terms of
the fields Ψ̂ and Ψ̂† as follows:

ΨðrÞ ¼ e−iθðrÞΨ̂ðrÞ; ð28Þ

Ψ†ðrÞ ¼ eiθðrÞΨ̂†ðrÞ: ð29Þ

One can see that

½Ψ̂ðrÞ; Ψ̂†ðr0Þ� ¼ δð3Þðr − r0Þ; ð30Þ

and

½Ψ̂ðrÞ; Ψ̂ðr0Þ� ¼ ½Ψ̂†ðrÞ; Ψ̂†ðr0Þ� ¼ 0: ð31Þ

Substituting (28) and (29) into (25) and accounting for
Eq. (27), we have

2It is noteworthy that this expression can be also obtained as a
leading term in a low-energy (p2=m2 ≪ 1) expansion by using a
nonlocal field redefinition proposed in Ref. [9] instead of the
local one defined in Eqs. (10) and (11).

3For simplicity, we will suppress the dependence on t.
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ρ̂¼ exp

�
−
Z

d3rβðrÞ
�

1

2m
½−i∇�Ψ̂½i∇�Ψ̂†− μ̂ðrÞΨ̂Ψ̂†

��
:

ð32Þ

Hence, we obtain that the quasiequilibrium statistical
operator ρ ¼ ρ̂=Z describes the expanding state of field
Ψ, see Eq. (25), and nonexpanding state of the transformed
field Ψ̂, see Eq. (32).

III. FIXED PARTICLE NUMBER CONSTRAINT IN
EXACTLY SOLVABLE MODEL OF THE

QUASIEQUILIBRIUM STATE

Calculations of expectation values with statistical oper-
ator are significantly simplified if the corresponding stat-
istical operator can be diagonalized in some representation.
To make it possible with the quasiequilibrium statistical
operator ρ, see Eqs. (21), (25), and (32), below we assume
that β ¼ 1=T is constant and that the chemical potential
μ̂ðrÞ reads

μ̂ðrÞ ¼ −
m
2
ðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ þ μ�; ð33Þ

where μ� ¼ const. Such a choice for the chemical potential
means a “harmonic trap” distribution of particles. Then
Eq. (32) takes the form

ρ̂ ¼ e−βK; ð34Þ

where K is defined by

K ¼
Z

d3rΨ̂†ðrÞ
�
−

1

2m
∇2 − μ̂ðrÞ

�
Ψ̂ðrÞ: ð35Þ

It is worth noting that K does not commute with the
HamiltonianH ¼ R

d3rHðt; rÞ, see Eq. (18). Therefore, the
zero-temperature ground state of the statistical operator is
an eigenstate of K but not of H.
It is well known that K, see Eqs. (33) and (35), can be

diagonalized in the oscillator representation

Ψ̂ðrÞ ¼
X∞

n;k;l¼0

αðn; k; lÞϕnðxÞϕkðyÞϕlðzÞ; ð36Þ

where the creation α†ðn; k; lÞ and annihilation αðn; k; lÞ
operators satisfy the commutation relations

½αðn; k; lÞ; α†ðn0; k0; l0Þ� ¼ δnn0δkk0δll0 ; ð37Þ

and

½αðn; k; lÞ;αðn0; k0; l0Þ� ¼ ½α†ðn; k; lÞ; α†ðn0; k0; l0Þ� ¼ 0:

ð38Þ

Functions ϕnðxÞ, ϕkðyÞ, and ϕlðzÞ are the harmonic
oscillator eigenfunctions, for example,

ϕnðxÞ ¼ ð2nn!π1=2bxÞ−1=2Hn

�
x
bx

�
exp

�
−
1

2

�
x
bx

�
2
�
;

ð39Þ

where Hnðx=bxÞ is the Hermite polynomial, and

ϵn ¼ ωx

�
nþ 1

2

�
; ð40Þ

bx ¼ ðmωxÞ−1=2: ð41Þ

In such a basis, the K reads

K ¼
X∞

n;k;l¼0

ðϵn þ ϵk þ ϵl − μ�Þα†ðn; k; lÞαðn; k; lÞ: ð42Þ

This implies that statistical operator ρ ¼ ρ̂=Z involves
states with a various number of particles N and describes
a grand-canonical ensemble.4 To consider the canonical
subensemble, where the number of particles is fixed, one
needs to make the corresponding projection and define the
canonical statistical operator,

ρN ¼ 1

ZN
ρ̂N; ð43Þ

which corresponds to subensemble of events with fixed
particle number constraint. Here ρ̂N ¼ PN ρ̂PN , where PN
is the projection operator that automatically invokes the
corresponding constraint, and ZN is the corresponding
canonical partition function that is needed to insure the
probability interpretation of the ensemble obtained in the
result of this projection, ZN ¼ Tr½ρ̂N �. Corresponding
formalism was developed in Ref. [6] and the reader is
referred to this paper for details of the calculations. Taking
into account that ρN does not depend on μ� [this depend-
ence is factored out in Eq. (43)], one can rewrite Eq. (43) as

ρN ¼ 1

Z0
N
ρ̂0N: ð44Þ

Here we denote ρ̂N and ZN associated with μ� ¼ 0 as ρ̂0N
and Z0

N , respectively. The canonical partition functions
satisfy the recursive formula [10]

4Note that the mean particle number hNi, defined by the grand-
canonical ensemble, as well as the particle number N, are the
same for Ψ, Ψ̂, and α particles because transformations (28) and
(36) do not mix creation and annihilation operators and preserve
the standard commutation relations.
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nZ0
n ¼

Xn

s¼1

X

j

e−sβϵjZ0
n−s; ð45Þ

where εj ¼ εn;k;l ¼ εn þ εk þ εl, Z0
0 ¼ h0j0i ¼ 1, and

n ¼ 1;…; N.
The goal of this study is to evaluate the two-boson

momentum correlation functions at fixed multiplicities for
an expanding system. Such a correlation function is defined
as the ratio of the two-particle momentum spectrum to one-
particle ones and can be written at fixed multiplicities as

CNðk;qÞ ¼ GN
hΨ†ðp1ÞΨ†ðp2ÞΨðp1ÞΨðp2ÞiN

hΨ†ðp1ÞΨðp1ÞiNhΨ†ðp2ÞΨðp2ÞiN
: ð46Þ

Here and below h…iN ≡ Tr½ρN…�, k ¼ ðp1 þ p2Þ=2,
q ¼ p2 − p1, and GN is the normalization constant.
The latter is needed to normalize the theoretical Bose-
Einstein correlation function in accordance with normali-
zation that is applied by experimentalists: Cexpðk;qÞ → 1
for jqj → ∞.
The assumption of the potential velocity field (27) and

transformations (28) and (29) allow one to apply for
calculations of the one- and two- particle spectra the same
technique that was used in Ref. [6] for a nonexpanding
system. We start by using expectation values of operators α
and α† (these expressions are calculated in Ref. [6] and are
provided below for the reader’s convenience),

hα†ðj1Þαðj2ÞiN ¼ δj1j2
XN

s¼1

e−sβϵj2
Z0
N−s
Z0
N

; ð47Þ

hα†ðj1Þα†ðj2Þαðj3Þαðj4ÞiN

¼ ðδj1j4δj2j3 þ δj1j3δj2j4Þ
XN−1

s¼1

XN−s

s0¼1

e−sβϵj4e−s
0βϵj3

Z0
N−s−s0

Z0
N

;

ð48Þ

where for notational simplicity we write j instead of
ðn; k; lÞ. The next step is to utilize Eqs. (47), (48), and
(36) to obtain expectation values hΨ̂†ðr1ÞΨ̂ðr2ÞiN and
hΨ̂†ðr1ÞΨ̂†ðr2ÞΨ̂ðr3ÞΨ̂ðr4ÞiN . Then, for example,

hΨ̂†ðr1ÞΨ̂ðr2ÞiN

¼
XN

s¼1

Z0
N−s
Z0
N

X∞

n¼0

X∞

k¼0

X∞

l¼0

ϕ�
nðx1Þϕ�

kðy1Þϕ�
l ðz1Þϕnðx2Þ

× ϕkðy2Þϕlðz2Þe−3
2
sβωe−sβωðnþkþlÞ; ð49Þ

where the eigenfunctions are defined by Eq. (39). In order
to keep things as simple as possible, here and below we
assume that ωx ¼ ωy ¼ ωz ¼ ω, then bx ¼ by ¼ bz ¼ b
and

b ¼ ðmωÞ−1=2; ð50Þ

see Eqs. (39) and (41). Utilizing the integral representation
of the Hermite function,

Hn

�
x
b

�
¼

�
b
i

�
n b
2

ffiffiffi
π

p e
x2

b2

Z þ∞

−∞
vne−

1
4
b2v2þixvdv; ð51Þ

one can simplify corresponding expressions. This was done
in Ref. [6], and the results can be written as

hΨ̂†ðr1ÞΨ̂ðr2ÞiN ¼
XN

s¼1

Z0
N−s
Z0
N

Φ̂ðr1; r2; βωsÞ; ð52Þ

and

hΨ̂†ðr1ÞΨ̂†ðr2ÞΨ̂ðr3ÞΨ̂ðr4ÞiN

¼
XN−1

s¼1

XN−s

s0¼1

Z0
N−s−s0

Z0
N

ðΦ̂ðr1; r3; βωsÞΦ̂ðr2; r4; βωs0Þ

þ Φ̂ðr1; r4; βωsÞΦ̂ðr2; r3; βωs0ÞÞ; ð53Þ

where

Φ̂ðr1; r2; βωsÞ ¼
1

ð2πÞ3=2
1

b3
ðsinhðβωsÞÞ−3=2

× exp

�
−

r21 þ r22
2b2 tanhðβωsÞ

�

× exp

�
r1r2

b2 sinhðβωsÞ
�
: ð54Þ

To evaluate particle momentum spectra for an expanding
system, one needs first to specify the velocity profile. Here,
for the purpose of illustration, we chose flow profile in the
linear isotropic form,

uðrÞ ¼ κr: ð55Þ

Then the solution of Eq. (27) can be written as

θðrÞ ¼ −
mκr2

2
: ð56Þ

Equation (56) allows us to relate Ψ with Ψ̂, see Eqs. (28)
and (29), and thereby to define the expectation values
hΨ†ðr1ÞΨðr2ÞiN and hΨ†ðr1ÞΨ†ðr2ÞΨðr3ÞΨðr4ÞiN for an
expanding system. It is then a simple matter to perform
Fourier transformations and calculate one- and two-particle
momentum spectra, which are defined as corresponding
expectation values for Fourier-transformed field operators
(14) and (15). The results are
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hΨ†ðp1ÞΨðp1ÞiN ¼
XN

s¼1

Z0
N−s
Z0
N

Φðp1;p1; βωs; κÞ; ð57Þ

and

hΨ†ðp1ÞΨ†ðp2ÞΨðp1ÞΨðp2ÞiN

¼
XN−1

s¼1

XN−s

s0¼1

Z0
N−s−s0

Z0
N

ðΦðp1;p1; βωs; κÞΦðp2;p2; βωs0; κÞ

þΦðp1;p2; βωs; κÞΦðp2;p1; βωs0; κÞÞ; ð58Þ

respectively. Here we introduce notation

Φðp1;p2; βωs; κÞ

¼ b3ð1þm2κ2b4Þ−3=2
ð2π sinhðβωsÞÞ3=2 exp

�
−

b2

4ð1þm2κ2b4Þ

×

�
ðp1 þ p2Þ2 tanh

�
βωs
2

�
þ ðp2 − p1Þ2

tanhðβωs
2
Þ

þ 2iðp2
2 − p2

1Þmκb2
��

: ð59Þ

One can see that, for a nonexpanding system, i.e., for κ ¼ 0,
Eqs. (57)–(59) are reduced to the corresponding expres-
sions presented in Ref. [6].5 Furthermore, one can easily see
that

jΦðp1;p2; βωs; κÞj ¼ ξ3jΦðξp1; ξp2; βωs; 0Þj; ð60Þ

where

ξ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2κ2b4

p ≤ 1: ð61Þ

Finally, to completely specify the two-boson correlation
function (46), one needs to estimate the normalization
constant GN . It can be realized by means of the limit
jqj → ∞ at fixed k in the corresponding expression. One
can readily see that proper normalization is reached if

GN ¼ Z0
N

Z0
N−2

�
Z0
N−1
Z0
N

�
2

: ð62Þ

This value coincides with normalization constant calculated
in Ref. [6] for a nonexpanding system. Equations (46),
(57)–(59), and (62) serve in the next section as the starting
point for the investigation of multiplicity and flow depend-
encies of two-particle Bose-Einstein momentum correla-
tions at fixed particle number constraint.

IV. TWO-BOSON MOMENTUM CORRELATIONS
AT FIXED MULTIPLICITIES IN THE THERMAL

MODEL OF AN EXPANDING SYSTEM

In the following, we focus on the multiplicity and flow
dependencies of the correlation function (46). Below we
assume that the model provides qualitatively reasonable
estimations of these dependencies beyond the nonrelativ-
istic region p2=m2 ≪ 1. To discuss relations to pþ p
collisions at the LHC, we utilize for numerical calculations
the set of parameters corresponding roughly to the values at
the system’s breakup in pþ p collisions at the LHC
energies. For specificity, we take the particle’s mass as
of a charged pion, m ¼ 139.57 MeV, and the temperature
T ¼ 150 MeV. Following Ref. [6], we introduce parameter
R such as

ω ¼ 1

R
ffiffiffiffiffiffiffi
βm

p ð63Þ

and treat R as a free parameter instead of ω. For R we use
1.5 fm. Using Eq. (63), one gets

βω ¼ 1

R

ffiffiffiffi
β

m

r
¼ ΛT

R
; ð64Þ

and

b ¼ 1ffiffiffiffiffiffiffi
mω

p ¼
ffiffiffiffiffiffiffiffiffi
ΛTR

p
; ð65Þ

where ΛT is the thermal wavelength, which we defined as

ΛT ¼ 1ffiffiffiffiffiffiffi
mT

p : ð66Þ

It is convenient to relate parameter κ in Eq. (55) with a
physically meaningful parameter in relativistic particle and
nucleus collisions, namely, with mean flow velocity of the
system at fixed particle number constraint

ffiffiffiffiffiffiffiffiffi
hu2i

p
N , where

hu2iN ¼
R
dxdydzu2hΨ†ðrÞΨðrÞiNR
dxdydzhΨ†ðrÞΨðrÞiN

: ð67Þ

Substituting (55) into the right-hand side of Eq. (67), we
have

hu2iN ¼ κ2hr2iN ¼ 3κ2hx2iN; ð68Þ

where

hx2iN ¼
R
dxdydzx2hΨ†ðrÞΨðrÞiNR
dxdydzhΨ†ðrÞΨðrÞiN

: ð69Þ

Because of relations (28) and (29), hΨ†ðrÞΨðrÞiN ¼
hΨ̂†ðrÞΨ̂ðrÞiN , thereby the mean spatial size of the system

5Note that here we slightly simplified and optimized the
notations as compared to Ref. [6].
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at fixed multiplicity
ffiffiffiffiffiffiffiffiffiffiffi
hx2iN

p
does not depend on intensity

of flow. A corresponding expression has been calculated in
Ref. [6]. For the used set of parameter values,

ffiffiffiffiffiffiffiffiffiffiffi
hx2iN

p
is

close to R. Figure 1 shows mean flow velocity at fixed
multiplicity

ffiffiffiffiffiffiffiffiffi
hu2i

p
N as a function of N for several different

values of the strength of the expansion parameter κ. For κ
we use 0.0, 0.1, and 0.2 fm−1.
Then we investigate how the two-boson momentum

correlation function (46) is affected by the flow. The
results are plotted in Fig. 2 for various values of κ at
k ¼ 0.25 GeV=c. One can see that the intercept of the
correlation function CNðk; 0Þ decreases when the strength
of the expansion parameter κ increases.
To have some insight into why it happens, it is useful to

calculate the ground-state contribution to particle momen-
tum spectra, n0Nðp; κÞ. To derive this expression, one needs

to take k ¼ l ¼ n ¼ 0 in Eq. (49), and then follow the
derivation of the one-particle momentum spectrum
nNðp; κÞ ¼ hΨ†ðpÞΨðpÞiN , see Eq. (57). The result is

n0Nðp;κÞ¼
XN

s¼1

Z0
N−s
Z0
N

b3e−
3
2
βωs

π
3
2ð1þm2κ2b4Þ3=2exp

�
−

b2p2

1þm2κ2b4

�
:

ð70Þ

While nNðp; κÞ and n0Nðp; κÞ both depend on ξ and thereby
on κ,

nNðp; κÞ ¼ ξ3nNðξp; 0Þ; ð71Þ

n0Nðp; κÞ ¼ ξ3n0Nðξp; 0Þ; ð72Þ

see Eqs. (57), (59)–(61), and (70), the occupation of the
ground state N0 ¼

R
d3pn0Nðp; κÞ and the ground-state

condensate fraction N0=N do not depend on κ at fixed
N. On the other hand, because n0Nðp; 0Þ=nNðp; 0Þ is a
decreasing function of particle momentum, we obtain
that n0Nðξp; 0Þ=nNðξp; 0Þ increases when ξ decreases.
Accounting for Eq. (61), we then conclude that an increase
of κ results in an increase of the n0Nðp; κÞ=nNðp; κÞ ratio,
because

n0Nðp; κÞ
nNðp; κÞ

¼ n0Nðξp; 0Þ
nNðξp; 0Þ

; ð73Þ

see Eqs. (71) and (72). In Fig. 3 we plot this ratio as a
function of particle momentum for several different values
of the κ parameter. The curves show that the ground-state
fraction of the particle momentum spectra increases at
moderately high momenta when κ increases, signaling the

FIG. 2. Correlation functions with k ¼ 0.25 GeV=c, N ¼ 20,
R ¼ 1.5 fm at different κ. See the text for details.

FIG. 1. The
ffiffiffiffiffiffiffiffiffiffiffiffi
hu2iN

p
dependence on N at different κ.

FIG. 3. The n0NðpÞ=nNðpÞ ratio as a function of particle
momentum p for N ¼ 20, R ¼ 1.5 fm, and for several different
values of κ. See the text for details.
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increasing importance of the ground-state contribution to
particle momentum spectra. This implies that particle
emission at such momenta becomes more coherent when
intensity of flow increases, leading thereby to the decrease
of the intercept of the two-boson momentum correlation
function: It is well known that the intercept of the two-
boson momentum correlation function for a chaotic emis-
sion is equal to 2, and that the intercept is equal to 1 for a
coherent emission; see, e.g., Ref. [11].
One observes from Fig. 2 the essential non-Gaussianity

of the correlation functions beyond the region of the
correlation peak. Such a non-Gaussianity was discussed
for a nonexpanding system in Ref. [6], where it was
demonstrated that CNðk;qÞ can be rather well fitted by
the two-Gaussian expression. If the fitting procedure is
restricted to the correlation peak region, then the correlation
function is well fitted by the one-Gaussian expression

C1g
N ðk;qÞ ¼ 1þ λðk; NÞe−q2R2

HBTðk;NÞ; ð74Þ

where 1þ λðk; NÞ is equal to the intercept of the corre-
lation function CNðk; 0Þ. In order to make contact with the
previous findings of Ref. [6], one can relate correlation
functions of an expanding systemCNðk;q; κÞwith the ones
for a nonexpanding system CNðk;q; 0Þ. This can be
accomplished using Eqs. (46) and (57)–(60). The result is

CNðk;q; κÞ ¼ CNðξk; ξq; 0Þ: ð75Þ

This relation means, in particular, that

λðk; N; κÞ ¼ λðξk; N; 0Þ; ð76Þ

RHBTðk; N; κÞ ¼ ξRHBTðξk; N; 0Þ: ð77Þ

It follows from Eq. (77) that increase of κ at fixed ξk results
in decrease of RHBT.
Figure 4 displays the λ parameter as a function of N for

various values of κ. All three curves reveal a consistent
trend: increase of N results in decrease of the λ parameter,
i.e., the intercept of the correlation function is reduced.
Reasons for such a behavior were discussed in detail in
Ref. [6]. In short, increase of N results in an increase of the
value of the ground-state fraction N0=N, leading for fairly
high N to the noticeable Bose-Einstein condensation in the
corresponding ground state of the fixed N canonical
ensemble state. Such a condensation strengthens the
coherent properties of the canonical ensemble state and
results in the decrease of the intercept of the two-boson
momentum correlation function when N increases.
Figure 5 shows RHBT for κ ¼ 0.0 and κ ¼ 0.2 fm−1 as a

function on k for several different values of N. One can see
that, unlike the mean spatial size, RHBT depends on the
intensity of flow.6 Also, one observes from this figure that,
similar to zero flow results presented in Ref. [6], the
interferometry radii are independent of N at moderately
high pair momenta.
Finally, let us discuss possible relations of this model

with high-multiplicity pþ p collision events at the LHC.
For the purpose of illustration, we show in Fig. 6 some
experimental data presented by the ATLAS [3] and CMS
[4] Collaborations. It is worth noting that analysis proce-
dures applied by the ATLAS and CMS Collaborations are
quite different, therefore additional adjustment (which is
not done in Fig. 6) is needed for direct comparison of the
results, see Ref. [4] for details. First of all, one can deduce
from the published data (see Fig. 6, left) that the two-boson
momentum correlation radius parameters are small,7 com-
patible with the pion thermal wavelength, and do not
change much with the collision energy. The latter seems
to be natural if the actual size of the system is related to the
mean multiplicity,8 because at high energies, where
increase of the collision energy might be accompanied
by the increase of the expansion rate, the mean multiplicity
increases rather weakly with energy of collisions. Notice
that small size of the system, together with the high rate of
expansion (see, e.g., Ref. [13]), allow one to expect that
there is no prolonged post-thermal stage of hadronic kinetic
evolution, and therefore observed particle momentum
spectra are not strongly influenced by the final-state
hadronic rescatterings (apart from the Coulomb final-state

FIG. 4. The λ at k ¼ 0.25 GeV=c for several different values of
κ. See the text for details.

6Note that decrease of interferometry radii when intensity
of flow increases can be interpreted as the decrease of “homo-
geneity lengths” [12] (sizes of the effective emission region).

7The results for exponential fits are shown. To compare the
values of the radius parameters obtained from exponential and
Gaussian fits, the R value of the Gaussian should be compared
with R=

ffiffiffi
π

p
of the exponential form, see Ref. [3].

8We do not consider here effects conditioned by shape
fluctuation of nucleon, see, e.g., Ref. [2] and references therein.
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interactions, decays of resonances, etc.). Then, the satu-
ration of the radius parameter with charged-particle multi-
plicity (see Fig. 6, left, and Refs. [3,4]) can indicate
increase of the particle number density at momentum
freeze-out for large values of charged-particle multiplicity.
The latter, according to our analysis, results in the ground-
state condensation. Such a condensation enhances the
coherent properties of particle emission and, therefore,
leads to decrease of the λ parameter. Interestingly enough,
the experimental λ (see Fig. 6, right, and Refs. [3,4]) are
rather small and, in fact, smaller than in relativistic heavy
ion collisions, indicating the possibility of the formation of
condensates in high-multiplicity pþ p collision events.
This observation is not conclusive, however, because the λ
parameter absorbs and reflects many effects, in particular,
particle misidentification, contribution from decay of
long-lived resonances, etc. Because of these complications,

theoretical description and model fitting of the λ parameters
have so far received little attention, especially in compari-
son with the HBT radii. It seems, however, that in order to
reveal ground-state condensate contribution to particle
momentum spectra one needs to discriminate different
contributions to the λ, and fit the λ parameters for various
energies of collisions.

V. CONCLUSIONS

In the present paper we study two-boson momentum
correlations at fixed particle number constraint in a simple
analytically solvable model of a small thermal expanding
system. For specificity, we use parameter values that
correspond roughly to the values at the system’s breakup
in pþ p collisions at the LHC energies. We show that
correlation strength parameter λ decreases with multiplicity

FIG. 5. HBT radii obtained from the one-Gaussian fit of the two-boson correlation function for several different values of N, as a
function of the pair average momentum k.

FIG. 6. The radius parameters obtained from exponential fits (left) and λ parameters (right), as a function of multiplicity. See
Refs. [3,4] for details.
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and that the HBT radius parameter tends to a constant at
moderately large momenta when multiplicity increases.
Both effects take place also at zero expansion velocity, see
Ref. [6], and are associated with the increase of the ground-
state fraction N0=N at fairly large N when N increases.
Furthermore, we find that the interferometry radius param-
eter at fixed multiplicity decreases when the flow increases
and that the same is valid for correlation strength parameter
λ. While the decrease of the interferometry radius param-
eter takes also place for averaged over multiplicities
inclusive measurements of emission from thermalized
expanding systems [12], the decrease of the λ parameter
is specific for multiplicity-dependent measurements. We
argue that the decrease of the λ parameter is conditioned by
the increase of the ground-state contribution to the particle
momentum spectra when the flow increases, i.e., by the
increasing values of the n0NðpÞ=nNðpÞ ratio. We expect the
main points of our analysis, such as N dependencies
of particle momentum spectra and correlations, to hold
if relativistic corrections are taken into account and
suggest that certain features of the multiplicity-dependent
measurements of the Bose-Einstein momentum correlations

in high-multiplicity pþ p collision events at the LHC
can be conditioned by the presence of ground-state
condensates.
We do not discuss here momentum dependencies of the

correlation parameters at fixed multiplicity. For such an
analysis considered simple nonrelativistic quantum-field
model of the quasiequilibrium state cannot be applied, and
relativistic extension of the model should be necessary. We
hope that our paper will help stimulate research efforts in
this and related directions.
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