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A model detector undergoing constant, infinite-duration acceleration converges to an equilibrium state
described by the Hawking-Unruh temperature Ta ¼ ða=2πÞðℏ=cÞ. To relate this prediction to experimental
observables, a pointlike charged particle, such as an electron, is considered in place of the model detector.
Instead of the detector’s internal degree of freedom, the electron’s low-momentum fluctuations in the plane
transverse to the acceleration provide a degree of freedom and observables which are compatible with the
symmetry and thermalize by interaction with the radiation field. General arguments in the accelerated frame
suggest thermalization and a fluctuation-dissipation relation but leave underdetermined the magnitude of
either the fluctuation or the dissipation. Lab frame analysis reproduces the radiation losses, described by the
classical Lorentz-Abraham-Dirac equation, and reveals a classical stochastic force. We derive the fluctuation-
dissipation relation between the radiation losses and stochastic force as well as equipartition hp2⊥i ¼ 2mTa

from classical electrodynamics alone. The derivation uses only straightforward statistical definitions to obtain
the dissipation and fluctuation dynamics. Since high accelerations are necessary for these dynamics to
become important, we compare classical results for the relaxation and diffusion times to strong-field quantum
electrodynamics results. We find that experimental realization will require development of more precise
observables. Even wakefield accelerators, which offer the largest linear accelerations available in the lab, will
require improvement over current technology as well as high statistics to distinguish an effect.
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I. INTRODUCTION

The study of detectors in accelerated states was inspired
by the quest to understand Hawking’s prediction of thermal
radiation from a black hole [1]. A detector undergoing
constant acceleration exhibits a thermal excitation spectrum
at temperature [2,3]

Ta ¼
a
2π

ℏ
c
¼ a

m=s2
3.5 × 10−25 eV: ð1Þ

In each case, the detector is coupled to a massless field which
is quantized in the classical spacetime. The thermal spectrum
is manifestly associated with the wave functions of the
quantized field and can be factored out from the transition
probability of the detector. For this reason, it is frequently

said that the massless field viewed by the accelerated
detector is in a thermal state [4–6], as appears to be the
case for the massless field in a black hole spacetime [7,8].
The apparent finding of thermalized behavior in hadronic
collisions, including very small systems, has added a
phenomenological dimension to these speculations, as the
Unruh effect has been advocated as a mechanism under
which a coherent classical field configuration dissipates into
a thermal distribution in a timescale parametrically shorter
than perturbative expectations [9–12].
To understand the apparent thermal state better, we

consider a concrete realization: a specific accelerated detec-
tor and a consequence of the detector’s thermalization that is
measurable in the laboratory inertial frame. Most proposals
for experiments involve accelerating electrons [13–18],
which as the lightest charged particles achieve the highest
accelerations. The problem then is to derive the electron’s
response to the predicted thermal excitation as well as a
dynamical observable measurable in the lab frame.
As a charged particle undergoing high acceleration, the

electron radiates electromagnetically. The massless photon
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field should exhibit a thermal distribution in the rest frame of
an electron in constant acceleration. Therefore, the electron
might reveal an imprint of this thermal bath in some
characteristic of its radiation distribution. This is the basic
idea behind two proposals for experiments, based either on
the stochastic recoil of the probe particle from the radiation
in the accelerated frame [15] or on correlations in 2-photon
emission processes [17].
Nonequilibrium quantum theory methods were developed

to analyze the real-time dynamics of a classical detector or
particle coupled to a quantum field [19–23] and from the
dynamics compute the radiation [24–26] laying to rest
questions raised about whether any radiation survives in
the far field. These real-time calculations are also extended to
nonconstant accelerations to test approximations and
assumptions of the previous proposals [27]. Perhaps most
interesting for experimental observation, the electron trans-
verse momentum “thermalizes,” i.e., after a sufficiently long
time, satisfies equipartition at the temperature Eq. (1) [28],

1

2m
hpi⊥p

j
⊥i ¼

1

2
Taδ

ij þO
�
a
m

�
2

: ð2Þ

This equipartition relation is an element of a fluctuation-
dissipation relation, apparently consistent with the hypoth-
esis of coupling the transverse momentum fluctuations to a
thermal bath at temperature Ta, as we discuss below.
Ultimately, progress on understanding the physics content

of Eq. (1) must be compared to experiment. We show that
equipartition for transverse dynamics arises in a consistent
expansion for small accelerations (aℏ=c ≪ mc2) and small
transverse fluctuations (jp⃗⊥j ≪ mc) around the approxi-
mately constant longitudinal acceleration. The last condition
is the experimental challenge: the acceleration should be
approximately constant long enough for transient effects and
initial state information to be erased, that is several times
longer than the dissipation time. We obtain the dissipation
time from classical radiation theory, finding agreement with
previous calculations. Classical radiation theory also yields
the correct noise, proving the fluctuation-dissipation and
equipartition theorems. Since the classical radiation calcu-
lation involves only a single scale a, hp2⊥i proportional to Ta
is inevitable.What is nontrivial is the correct numerical factor
for the equipartition relation. The ℏ in Eq. (2) arises from the
conversion of the classical wave number k of the radiation to
the momentum it imparts to the electron/detector upon
emission. On the other hand, as acceleration approaches
aℏ=mc3 → 1, quantum electrodynamics can be applied to
determine the radiation emitted by the electron. We evaluate
the dissipation time, noise, and mean-square transverse
momentum using strong-field quantum electrodynamics to
quantify the high-acceleration departure from classical pre-
dictions of radiation response and the thermal fluctuation-
dissipation and equipartition relations. Before closing, we
discuss the timescales in the context of linear accelerator
technology and find that both conventional radio-frequency

accelerators and wakefield accelerators currently provide
gradients that are too small and over too short times to access
directly the “thermalized” state of an accelerating particle.
Throughout this text, we use SI units. Most equations are

written in natural units ℏ ¼ c ¼ ϵ0 ¼ 1, with dimensionful
constants restored in final results for important observable
quantities.

II. ACCELERATED FRAME ANALYSIS

Supposing horizons imply a thermodynamic descrip-
tion of the vacua of a massless field [29–32], we examine
the implications for the dynamics of a probe coupled to
such a massless field. More specifically, lab frame
analysis of the two-point correlation function of the
radiation field proves it equivalent to a thermal two-point
correlator [4,19]. Concretely of course, we are thinking of
describing the dynamics of the electron coupled to the
massless photon field in the accelerated, comoving frame,
but the inferences should be applicable more generally.
We refer to the massless field as the radiation field, as in
later sections, it is identical with the radiation component
of the electromagnetic field.
The simplest consequence is that the expectation value of

the energy of the probe degree of freedom should equilibrate
at Ta,

hEi ¼ Ta: ð3Þ
This result is straightforwardly applied to models in which
the probe degree of freedom is an “internal” state Q to
which the radiation field couples, as in the Unruh-DeWitt
detector [3]. In these models, the probability of excitation
to an internal state with energy E is given by the usual
Bose or Fermi statistics distribution with temperature Ta,
which implies Eq. (3).
However, most experimental proposals using electrons

and electromagnetic radiation involve phase space dynamics
in response to the radiation field (electron spin is a notable
exception [33]). Involving phase space dynamics poses a
potential difficulty in that radiation dynamics generally
change the acceleration. Lab frame analysis (Sec. III) shows
that radiation causes the acceleration in a general state to
decrease to a well-defined nonzero minimum. This dynamic
will shortly be derived in the accelerated state as well.
Clearly we must assume for the moment—and justify
a posteriori—that the accelerated state can be treated as
quasistationary, so that the decay is much slower than the
dynamics we are considering and the acceleration and
temperature can be considered approximately constant.
Without the quasistationary approximation, applying a
thermodynamic description would be nonsense.
Additionally, for the interaction of the probe (electron)

with an accelerated frame radiation field to be described by
classical thermodynamics, the temperature must be much
less than the mass of the probe, Ta ≪ m. Otherwise, the
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radiation field would have enough energy to probe the
internal structure of the probe and create electron-positron
pairs. This condition is equivalent to the lab frame condition
that the probe particle must have negligible recoil from
interactions with the radiation field and supports the a pos-
teriori justification that the accelerated state is at least
quasistationary.
To use the accelerated electron as the probe and its

radiation as a signal accessible in the lab frame, we need
a degree of freedom which interacts with the radiation field
in such a way that the dynamics can be computed in both the
lab frame and the accelerated frame. The simplest choice, if
it exists, is an observable invariant under the change in
frame. Since any point on the accelerated trajectory is related
to the lab frame by a boost (and the accelerated trajectory
itself is boost invariant), we are looking for an observable
invariant under boosts along the direction of the acceleration.
Such longitudinal boosts leave the transverse directions
invariant, so observables describing dynamics in the trans-
verse plane should be equal whether computed in lab or
accelerated frame. Equality of observables has been verified
explicitly for the probability of photon emission per unit
transverse momentum by Refs. [14].
Therefore, we can investigate ðx⃗⊥; p⃗⊥Þ dynamics of the

probe to seek effects of the thermal state of the radiation
field. The first inference is that equipartition Eq. (3) should
be applicable to the transverse kinetic energy. Since we are
limited to the locally nonrelativistic regime Ta ≪ m (in the
instantaneous comoving frame the motion is nonrelativistic
for much longer than equilibration time defined below), we
have E⊥ ≃ p2⊥=2m

1

2m
hpi⊥p

j
⊥i ¼

1

2
Taδ

ij: ð4Þ
The difference between this statement and Eq. (2) is that
this has been obtained from general reasoning about the
accelerated state, whereas Eq. (2) was obtained from a lab
frame calculation [28]. The relativistic correction to the
kinetic energy would imply a correction to the right-hand
side of T2=4m2, which we can compare to T=m corrections
from other calculations.
A second inference is to recall that under these conditions

the dynamics of a heavy probe coupled a thermal bath are
described by Brownian motion. Specifically, according to
Eq. (4) we have a heavy particle with momentum p⊥ ∼ffiffiffiffiffiffiffiffiffi
mTa

p
and velocity v⊥ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ta=m

p
≪ 1. Since p⊥ ≫ T and

collisions with momentum transfer Δp⊥ ∼ T are rare, many
collisions are required to significantly change the momen-
tum. Therefore, we can model the interaction as dominated
by dissipation and uncorrelated kicks. The dynamics are then
described by a (macroscopic) Langevin equation, defined for
the transverse momentum [34],

dpi

ds
¼ −

1

τD
pi þ ξi; hξiðsÞξjðs0Þi ¼ κδðs− s0Þδij; ð5Þ

where τD is the dissipation (or relaxation) time and ξi is a
classical random variable describing the stochastic force.
The time variable s in the accelerated frame is the proper
time of the accelerated probe. The dissipation time τD is the
timescale for the exponential decay of correlations, including
initial data. For a thermal bath, the dynamics of ξi are
completely determined by its two-point function, which
being a δ function in time represents white noise and has no
higher-order correlations. Ndκ is the mean-square momen-
tum transfer per unit time. The number of spatial dimensions
Nd ¼ 2 in our case but we keep it as an explicit factor to
highlight how various thermodynamic relations are affected
by the conversion from usual three-dimensional dynamics to
two dimensions.
The relationship between momentum loss and diffusion

is described by a fluctuation-dissipation theorem, which
follows from the general analysis of thermal equilibrium
between the probe and the thermal bath [34]. Integrating
Eq. (5) leads to the mean-square momentum

hp2⊥i →t≫τD

Nd

2
τDκ: ð6Þ

Since equilibration in the long time limit t ≫ τD requires
Eq. (4), we obtain the fluctuation-dissipation relation

2mTa ¼ κτD; ð7Þ

which is independent of Nd. Since τD is the timescale to
erase initial conditions, it is also the minimum (proper)
duration of the quasiconstant period of acceleration
required for these thermal dynamics to become dominant
(see Ref. [27] for calculations of equilibration times for
nonconstant acceleration).
Integrating the momentum to obtain the mean-square

transverse displacement yields

hΔx⊥ðtÞ2i ¼ 2Nd
Ta

m
τDt ð8Þ

and comparison to the definition of the diffusion constant

hΔxi⊥ðtÞΔxj⊥ðtÞi ¼ 2Dtδij ð9Þ

shows that

D ¼ κ

2m2
τ2D ¼ Ta

m
τD: ð10Þ

The latter equality has the form of an Einstein relation
D ∝ T, modulo temperature dependence of τD, which we
will find is essential.
Thus we have three characteristic quantities for the

fluctuation and dissipation dynamics, and two relations
determined by thermodynamics. We need to compute at
least one of these from the microscopic theory describing
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collisions between the probe and the thermalized particles.
Naively, it appears we could compute the mean-square
momentum transfer per unit time from a standard finite
temperature field theory in the limit of a heavy scatterer (e.g.,
as in Ref. [35]), but as we discuss below, such calculations
will appear in disagreement with the present results since
they result in κ ∝ e4.

III. LAB FRAME ANALYSIS

From the lab frame, the electron is undergoing constant
acceleration. Fluctuations in the transverse momentum
converge to a steady state in which the mean-square
momentum is proportional the temperature Ta, as would
be expected for thermalization [28]. Verifying this steady
state would provide evidence for the thermal character of
the interaction of the electron with the radiation field. In
this section, we show this apparently thermal character is
derived from classical electromagnetic theory. We compare
the classical approach to the quantum dynamical formal-
isms of Refs. [22,23,28]. As the effect of the accelerated
state thermalization is expected to become more important
for high accelerations, we compute the same observables in
quantum electrodynamics in order to obtain corrections
proportional to T=m ∼ a=m.

A. Classical electrodynamics

Classical electrodynamics predicts that any accelerating
charged particle radiates, in general causing the particle to
lose energy. We recall some of the basic equations here for
comparison to the approaches below. The starting point, the
classical action, is

S ¼ −m
Z ffiffiffiffiffiffiffiffiffiffi

uμuμ
p

dτ −
Z

1

4
FμνFμνd4x

−
Z

jμðxÞAμðxÞd4x; ð11Þ

where the classical point-particle current is

jμ ¼ −euμδ4ðx − ξðτÞÞ ð12Þ

with uμ ¼ pμ=m the electron 4-velocity and ξðτÞ its
trajectory. Constant, linear acceleration is provided by a
homogeneous and static electric field, and as usual we are
implicitly splitting the electromagnetic field into a classical,
external field Acl

μ , which is not perturbed by the probe
particle, and a dynamic radiation field Arad

μ , which is
sourced by the particle dynamics. Integrating the Lorentz
force equation for a general electron momentum, we find
the 4-velocity uμ and trajectory ξμ recalled in Appendix A,
and the magnitude acceleration in a constant electric field is

aμaμ ¼ −
jeEj2
m2

p2⊥ þm2

m2
; ð13Þ

which is equal to jeEj=m only for p⊥ ¼ 0. The minus sign is
due to the 4-acceleration being spacelike. Any nonvanishing
transverse momentum perturbs the acceleration from the
naive value. However, even as p2⊥ acquires a nonvanishing
expectation value due to radiation, its magnitude is con-
sistent with the implicit expansion in a=m ∼ Ta=m.
Computing the momentum flux of the Arad

μ field through
a sphere at infinity provides the rate of 4-momentum
radiated by the electron [36,37],

dPμ
rad ¼ −

1

2
sgnðk0Þδðk2ÞkμjðkÞ · jðkÞ�

d4k
ð2πÞ3 ; ð14Þ

where kμ ¼ ðωk; k⃗Þwith jk⃗j ¼ 2π=λ is the wave 4-vector of
the radiation field. After inserting the classical trajectory
and integrating, one finds the usual Larmor formula,

dPμ
rad

dτ
¼ −

e2

6π
aνaνuμ ¼ −

dpμ
loss

dτ
; ð15Þ

which is manifestly positive. The trajectory and other
supporting calculations are found in Appendix A. In this
construction, this momentum loss is not incorporated in the
solution of the trajectory entering the current. It is added to
the Lorentz force equation to obtain a radiation-corrected
equation of motion, known as the Lorentz-Abraham-Dirac
(LAD) equation,

dpμ

dτ

����
LAD

¼ Fμ
ext þ

e2

6πm

�
pμ

�
duμ

dτ

�
2

þ d2pμ

dτ2

�
; ð16Þ

where Fμ
ext is the driving force, here the Lorentz force

Fμ
ext → −eFμνuν. The damping timescale due to radiation

emission is derived from

1

τD
≃
1

E
dP0

rad

dτ
¼ e2

6πm
a2 ¼ τe

a2

c2
; ð17Þ

restoring powers of c in the last equality. τe is the timescale
arising with the LAD equation,

τe ¼
e2

6πϵ0mc3
≃ 6.24 × 10−24 s; ð18Þ

related in turn to the Larmor radiation rate, but is not the
timescale associated with the dissipation of the charged
particle’s energy. As expected, the dissipation time τD is
inversely proportional to the acceleration and is classical.
Considering the acceleration exactly constant daμ=dτ ¼ 0

and ignoring the second term in parentheses in Eq. (16)
leaves an equation of the Langevin form dpμ

dτ ¼ Fμ
ext − pμ=τD.

However, the second term is required in the equation of
motion to conserve the norm of the 4-momentum p2 ¼ m2,
and therefore arises in any consistent derivation of dynamics
from the classical electrodynamic action. Consequently, the
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complete two-term LAD correction is obtained from a more
rigorous linearization of the response of the particle to its
radiation field [20,22,23] together with Eq. (17) [28].
The LAD equation (16) has well-known difficulties,

arising from the third-order time derivative. The solutions
are unstable to exponential growth of the particle energy and
exhibit acausal “preacceleration” when modeling switching
on of the external field [38,39]. A variety of alternative
equations have been proposed (see Refs. [40–46] among
many), but it is notable that the LAD equation is universally
derived from the standard electromagnetic action even under
different approaches to the expansion [20,47–50].
Now by interpreting the classical results in terms of

photon emission, we can compute higher-order moments of
the radiation, such as the mean-square momentum transfer,
for comparison to the accelerated frame. To start, the
number of photons emitted is determined (estimated) from
the radiated 4-momentum as

dNcl
γ ¼ dP0

rad

k0
¼ −

1

2
sgnðk0Þδðk2ÞjðkÞ · jðkÞ�

d4k
ð2πÞ3 : ð19Þ

To determine how fluctuations in the radiation contribute to
the electron dynamics, we need the mean-square transverse
momentum transfer from photon emission

Ndκcl ¼
d
dτ

hΔp2⊥i ¼
Z

d2k⊥
dNcl

γ

dτd2k⊥
Δp2⊥; ð20Þ

where Δp⊥ is the momentum transfer during the radiation
process. Clearly the δ function in dNcl

γ Eq. (19) reduces one
of the k integrals, but to obtain a rate per unit (proper) time
dτ, we must convert from the longitudinal momentum dkz.
There are two ways to obtain the emission rate differential

in time and transverse momentum. The first method is to
calculate from first principles. The Fourier transformed
current jμðkÞ in Eq. (19) involves an integral over t, but
instead of evaluating each Fourier integral individually (as in
Refs. [12,14]) the current correlator jðkÞ · jðkÞ� can be
written in terms of average and relative electron rapidity
y, related to proper time by y ¼ aτ=c. Due to the boost
invariance of the source, emitted photon rapidity is deter-
mined only by the average rapidity. Integrating over photon
rapidity therefore eliminates dependence on average rapidity,
yielding the emission rate per unit transverse momentum per
unit rapidity of the source. This procedure is described in
detail in Appendix A.
The second method is perhaps more transparent and

utilizes the same symmetry of the problem, but relies on
a semiclassical estimate of the region of the t integration
contributing for each photon wave number k. Due to the
boost invariance of the source, the fully differential emission
probability

dNcl ¼
dP0

rad

k0

¼ e2m2eπκ⊥

4π3ðeEÞ2
��

E2⊥
m2

�
1 −

κ2⊥
κ2k

�
− 1

�

× Kiκ⊥ðκkÞ2 þ
E2⊥
m2

ðK0
iκ⊥ðκkÞÞ2

�
d3k
2k0

ð21Þ

depends on the photon longitudinal wave number kz only in
the phase space factor dkz=2k0. Consequently, the kz integral
diverges logarithmically, as evidenced by the result for a
finite interval,

Z
kmaxz

−kmaxz

dk3
2k0

¼ asinh
kmax
z

k⊥
: ð22Þ

Now saddle point analysis of the Fourier integral of the
current correlator jðkÞ · jðkÞ� corroborates the reasoning in
the previous paragraph: the dominant contribution to prob-
ability comes from a region of the source’s trajectory
determined by its average momentum, τs:p: ¼ ðpz þ p0

zÞ=
2eE, with width δτs:p: ¼ jpz − p0

zj=eE ¼ jkzj=eE. It follows
that the integrations over τ and kz are equivalent as they are
for spontaneous pair creation [51], with the interval of kz
covered corresponding (up to scaling) to the interval of τ
covered,

asinh
kmaxz

k⊥
≃ ln

2kmaxz

k⊥
¼ ln

eEt
m

þ const: ð23Þ

As the dependence is logarithmic, the differential relation is
known only up to a constant scaling,

dkz
k0

¼ C
eE
mc2

dτ: ð24Þ

No ℏ appears since eE=m has units of acceleration. Compar-
ison with the first-principles calculation (Appendix A)
checks that the constant scaling factor is C ¼ 1.
Applying the variable change Eq. (24), we obtain in the

limit of zero electron transverse momentum

dNðclÞ
γ

d2k⊥dτ
¼ e2

4π3ϵ0

1

a
ðK1ðk⊥=aÞÞ2; ð25Þ

where KνðzÞ is a modified Bessel function of the second
kind. No ℏ appears in the classical emission probability
Ncl

γ =dτd2k⊥. By itself, the second moment of the transverse
wave number, hk2⊥i ¼

R
k2⊥ðdN=dtd2k⊥Þd2k⊥, also remains

a classical quantity. However, to obtain the mean-square
momentum transfer to the electron per unit time, we must
multiply the wave vector k by ℏ to obtain the correct units,
Δp⊥ ¼ ℏk⊥. In fact, we need only one power of ℏ since
kdN ∝ dE Eq. (19). The modified Bessel function diverges
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like KνðzÞ ∼ z−ν for small z, so the transverse wave number
approaches the conformal limit at small k⊥, like that of a free
unaccelerated charge. The distribution Eq. (25) is exponen-
tially suppressed at high k⊥, with a temperaturelike param-
eter proportional but not equal to Ta [12] (because a is the
only scale in the classical radiation problem). The integral of
the modified Bessel functions is analytic and yields a
constant with the result

κcl ¼
dhΔp2⊥i

dτ
¼ 1

ℏ

Z
d2k⊥ðℏk⊥Þ2

dNcl
γ

dτd2k⊥

¼ e2

6π2ϵ0

ℏ
c6

a3: ð26Þ

These properties of the emission probability support a
picture of the radiation dynamics like that in the accelerated
frame, even without the hypothesis of a thermal bath.
Specifically, since collisions with small momentum transfer
are frequent, causing dissipation known as radiation reaction
Eq. (16), and collisions with momentum transfer Δp⊥ ∼ T
are rare, many collisions are required to significantly change
the momentum and we might model the interaction as
dominated by dissipation and uncorrelated kicks. We could
therefore hypothesize a generalized Langevin equation for
the transverse dynamics, with the LAD radiation loss term
replacing the dissipation term −pi=τD in Eq. (5),

dpi

dτ
¼ Fi

ext þ
e2

6πm

�
pi

�
dui

dτ

�
2

þ d2pi

dτ2

�
þ ξi;

hξiðτÞξjðτ0Þi ¼ κclδðτ − τ0Þδij: ð27Þ

The stochastic force ξi has the same form as for the Langevin
equation because the kicks are assumed to be uncorrelated.
In principle, computing higher-order correlation functions of
the radiation, we should find higher-order correlations in the
noise, but these are suppressed by the coupling. Combining
Eq. (26) with Eq. (17), we find

κclτD ¼ 2m
ℏa
2πc

¼ 2mTa; ð28Þ

and integrating Eq. (27) would lead to hp2⊥i ¼ 2mTa upon
using Eq. (28). According to Eq. (10) the diffusion constant
would be

Dcl ¼
κclτ

2
D

2m2
¼ 3ϵ0

e2a
ℏc4; ð29Þ

with the ℏ coming from κ.
The loss term in brackets in Eq. (27) vanishes in the

p⊥ ¼ 0 limit under constant acceleration. This feature has
raised subtle questions about the physics content of the
LAD equation (16) in the constant acceleration limit. When
linearized fluctuations such as the stochastic term ξi in

Eq. (27) are included, interference between the inhomo-
geneous solutions (perturbations from the charged particle)
and homogeneous solutions (vacuum) of the electromag-
netic field are important [52]. Reference [28] has shown
that the radiation field is nonzero when the linearized
transverse fluctuations are included in the dynamics.
However, the resulting finite radiation field is higher order
∼e4. This suppression motivates looking at the recoil of the
electron, which is lower order.
Given the difficulties with physically sensible solutions

to the LAD equation, we may need a different starting point
for solutions to the stochastic differential equation (27). To
this end, we use the insight of the previous section that the
accelerated frame dynamics are consistent as an expansion
in Ta=m ≪ 1 or equivalently a=m ≪ 1. We may therefore
replace the LAD loss term Eq. (16) by the Landau-Lifshitz
reduction of order procedure [48,49,53], letting

d2pμ

dτ2
≃

d
dτ

�
dpμ

dτ

����
LF

�
þO

�
a2

m2

�
ð30Þ

with the result that the stochastic differential equation
becomes

dpi

dτ
¼ Fi

ext þ
e2

6πm
ð−uν∂νeFiμuμ þ eFiμeFμνuν

− uνeFνμeFμβuβuiÞ þ ξi; ð31Þ

in which the stochastic force ξi remains the same as in
Eq. (27). As an equation of motion, this form is equally
accurate at first order in a=m and thus can be regarded as
equivalent effective theories in the relevant regime [50,54].
As an ordinary differential equation, the solutions of the
Landau-Lifshitz equation coincide with the stable subset of
solutions of the LAD equation [53]. We may compare
solutions of the ordinary and stochastic differential equations
in future work.
While the justification for Eq. (27) is a bit hand-waving

at this point, we can derive it rigorously with guidance from
a different but closely related approach to the electron-
radiation interaction, namely considering Arad

μ as a quantized
photon field.

B. Quantized photon dynamics

The original black hole and accelerated detector prob-
lems were formulated as the interaction of a classical
object or detector with a quantized field, and therefore it
has been natural for most authors to study the dynamics of
the quantized radiation field, which is easily compared
between frames. However, for the massless and uncharged
photon field, it turns out that calculations of the radiation
distribution with a quantized radiation field from a
classical point source are equivalent to calculations within
classical radiation theory [55].
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The equivalence is highlighted by computing the prob-
ability of photon emission. The action is the same as the
classical action Eq. (11), modulo a gauge fixing term which
we do not need for the tree-level calculations here. Only the
photon is quantized. The probability of photon emission
differential in photon wave number is related to the squared
matrix element for photon emission,

dW ¼
X
ϵ;ϵ0

jMj2 d3k

ð2πÞ32jk⃗j
; ð32Þ

M ¼
Z

d4xhk⃗; ϵ⃗jjðxÞ · ÂðxÞj0i

¼
Z

d4xðjðxÞ · ϵÞe−ijk⃗jtþk⃗·x⃗: ð33Þ

The current is classical, so the matrix element is straight-
forwardly evaluated in terms of plane waves and the
polarization vector ϵμ of the photon field, which satisfies
k · ϵ ¼ 0. Rewriting the photon wave number phase space
using a δðk2Þ, we have

dW ¼
X
ϵ;ϵ0

Z
d4x

Z
d4x0ðϵ · jðxÞÞðϵ0 · jðx0ÞÞe−ikðx−x0Þ 1

2
sgnðk0Þδðk2Þ

d4k
ð2πÞ3 : ð34Þ

Then using the usual polarization sum identity
P

ϵ;ϵ0 ϵμϵ
0
ν ¼

−gμν and the definition of the Fourier transform, we are
back to the classically obtained expression Eq. (19).
Neither classical radiation theory nor the quantized

radiation field have the power to compute all observables.
While Eq. (19) or (32) can be used to compute the spectrum
and moments of the photon distribution, they cannot
compute the radiation intensity, which relies on considering
the emission as a continuous process and the radiation as
a continuous field. Extensions of the quantized photon
approach using nonequilibrium quantum theory methods
enable investigation of the system-environment separation
and the conditions and dynamics of decoherence. Such more
powerful methods are necessary to determine more quanti-
tatively when the intuitive picture of dynamics obtained here
is valid.
Sacrificing some rigor for clarity, we can simplify the

calculation of the feedback of the radiation on the classical
source to obtain a generalized Langevin equation of the
form Eq. (27). The leading-order equation of motion for the
current is the Lorentz force,

dpμ

dτ
¼ qFμνuν; ð35Þ

which if we separate Fμν into an external field and the
photon field, Fμν ¼ Fμν

ext þ F̂μν, can be rewritten

dpμ

dτ
¼ Fμ

ext þ qF̂μνuν; Fμ
ext ≡ qFμν

extuν: ð36Þ

The external field generates the leading-order classical
trajectory, around which we will perturb. From the action,
we construct an iterative solution for the photon field Âμ.
With the Lorenz gauge condition

∂μÂ
μ ¼ 0; ð37Þ

the equation of motion for Aμ is the Maxwell equation,

jν ¼ ∂μFμν ¼ ∂2Aν ð38Þ

with jν the classical current Eq. (12).
The general solution to Eq. (38) is AμðxÞ ¼ Aμ

hðxÞþ
Aμ
inhðxÞ, the sum of a homogeneous solution Aμ

h, which
brings in the vacuum (free field) dynamics of the photon, and
an inhomogeneous solution Aμ

inh, which brings in the
excitation of the photon field by the classical source current.
Assuming the initial state of the radiation field is Gaussian,
consistent with a free field state uncoupled to the charge, the
homogeneous solution contributes a stochastic field with a
nominally classical probability distribution, whereas the
inhomogeneous solution contributes the history-dependent
dissipation [20,56]. The reason for this separation is analy-
ticity: the propagator for the radiation field can be separated
into real and imaginary parts, which under causal construc-
tion devolve respectively to the Hadamard and retarded
propagators.
Formally, we obtain the same result by inserting the

homogeneous solution and inhomogeneous solution into
Eq. (36) [28]. The homogeneous solution, solving
∂2A ¼ 0, is a complete set of plane waves,

Aμ
hðxÞ ¼

Z
d3k
ð2πÞ3

1ffiffiffiffiffiffiffi
2k0

p ðϵμkake−ik
νxν þ ϵ�μk a†ke

ikνxνÞ; ð39Þ

satisfying the usual on-shell condition k0 ¼ jk⃗j. The polari-
zation vectors satisfy k · ϵk ¼ 0 and the mode functions
ak; a

†
k are classical amplitudes. The inhomogeneous solution

is constructed from the retarded Green’s function,

Aμ
inhðxÞ ¼

Z
d4x0GRðx; x0Þjμðx0Þ ð40Þ

where Green’s function satisfies
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∂2
xGRðx; x0Þ ¼ δ4ðx − x0Þ: ð41Þ

With this ansatz for AμðxÞ, using the δ functions in Eq. (12)
to reduce the x0 integral and regularizing the singular
contributions from the τ0 → τ limit [22,23], we obtain

dpμ

dτ
¼ Fμ

ext þ qð∂μÂν
h − ∂νÂμ

hÞuν

þ e2

6πm

�
pμ

�
duμ

dτ

�
2

þ daμ

dτ

�
: ð42Þ

Like the Langevin equation, this equation describes the
dynamics of an observable; physical quantities are expect-
ation values of the observable and its moments. The
expectation value defines the contribution of the stochas-
tic field Âh, which has the properties of a noise field
hÂhðxÞi ¼ 0 and must be symmetrized before evaluating
the two-point function hÂhðxÞÂhðyÞi → 1

2
hfÂhðxÞ; ÂhðyÞgi

corresponding to the Hadamard propagator arising in the
more rigorous derivation.
To investigate small transverse fluctuations, we linearize

around the zeroth-order solution, pμ ¼ pμ
ð0Þ þ δpμ, that

satisfies the external force dpμ
ð0Þ=dτ − Fμ

ext ¼ 0. In agree-

ment with the classical estimate, the solution to the stochastic
equation of motion for transverse motion shows the damping
timescale for transverse dynamics to be τD ¼ c2=a2τe
identical to Eq. (17). Further, it is verified by explicit
calculation that mean-square momentum converges after
long times τ ≫ τD to [Eq. (5.15) of Ref. [28] ]

1

2m
hδpiδpji ¼ 1

2
TUδ

ij

�
1þO

�
a2

m2

��
: ð43Þ

By analysis similar to the Langevin dynamics, we obtain the
diffusion constant from the long time dynamics of the mean-
square transverse displacement. The result is

D ¼ 3

e2a
ð44Þ

in agreement with Eq. (29) [57]. The mean-square momen-
tum transfer κ is not explicitly defined as such in this
approach, but it can be read off from from the calculation of
the field correlator [Eq. (3.11) of [28]] and multiplying by
factors of e2 (for the coupling) and 2 (for the two polar-
izations of the photon)

κ ¼ e2a3

6π2
ð45Þ

in agreement with Eq. (26).
Although this approach yields the same observable results

as classical radiation theory, it provides a more rigorous basis
for introducing the Langevin dynamics and understanding its

origin in neglecting higher-order correlations in the radia-
tion field.

C. Quantum electrodynamics

To obtain corrections at high acceleration a=m → 1 we
must start from a theory that accounts for recoil from photon
emission. The electron must be quantized in order to
conserve momentum at each emission. As the constant
electric field generates dynamics identical to uniform accel-
eration, we quantize the electron in the classical gauge
potential Aμ

cl ¼ −eEtδμ3 corresponding to a homogeneous
and static electric field in the ẑ direction. The time-dependent
gauge is chosen for this time-dependent problem. The hard
work of constructing wave functions and simplifying the
matrix element has been done [37] and salient aspects of the
calculation reviewed in Appendix B. The fully differential
probability, at p⊥ ¼ 0, is

dW ¼ d3k
ð2πÞ32k0

1

2

X
σ;σ0
ϵ;ϵ0

Z
d3p0

ð2πÞ32Ep0
jM½ep⃗ → ep⃗0γk⃗�j2

≡ d3k
k0

1

jeEjwðk
2⊥; jeEjÞ; ð46Þ

wðk2⊥; jeEjÞ ¼
α

2π

e−π
k2⊥
eE

ð1 − e−π
k2⊥þm2

eE Þ2 sinhðπm2

eE Þ
k2⊥

k2⊥ þm2

×

��
2þ k2⊥

m2

�
jΨ0j2 þ jΨj2 þ 2Re½Ψ0Ψ��

�
;

Ψ ¼ Ψ
�
im2

2eE
; 1 −

ik2⊥
2eE

;
−ik2⊥
2eE

�
; ð47Þ

where Ψða; b; zÞ is the second confluent hypergeometric
[see Eq. (B15)] and the prime denotes differentiation with
respect to the argument z, Ψ0ða; b; zÞ ¼ dΨ=dz. For nota-
tional brevity, we have suppressed the ℏ’s in this expres-
sion. From this, we need to compute two quantities for
comparison, the dissipation time τD and the mean-squared
momentum transfer per unit time κ.
The first, τD encounters the difficulty pointed out in the

previous section: in quantized radiation dynamics, we do not
have a definition of continuous momentum flux in the
radiation field, since it is composed of the probabilities of
finding quanta in a given mode. To obtain a definition of the
energy loss rate, we extend the semiclassical analysis of
Sec. III A. The discussion above Eq. (24) showed that the
probability of emission in a given kz mode is dominated by a
saddle point on the electron’s trajectory determined by the
electron’s momentum. Therefore, we can say that the energy
lost over a given finite interval is given by integrating over
the corresponding kz (and all k⊥) and dividing by the
duration of the interval [37],
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ΔE
Δt

¼
Z

d2k⊥
1

Δts:p:

Z
kmaxz

−kmaxz

dkz
1

jeEjwðk
2⊥; jeEjÞ;

Δts:p: ¼
m
eE

2kmaxz

k⊥
: ð48Þ

Since this is an estimate expected to be valid to within a
constant of order unity, we introduce a constant in the time
interval Δt → CtΔt with which we match to the classical
result. Since k0dNγ is independent of kz, the integral
yields 2kmax

z , which cancels with the same factor in Δts:p:.
The result is

ΔE
Δt

����
QED

¼ 1

Ctm

Z
d2k⊥k⊥wðk2⊥; jeEjÞ: ð49Þ

To determine the constant Ct, we take the classical limit
ℏ → 0. The limit is clarified by writing all parameters in
terms of the dimensionless quantities k⊥la and λe=la where
la ¼ c2=a ¼ mec2=eE is the length scale associated with
the classical acceleration and λe ¼ ℏ=mec. Thus the ℏ → 0
limit is manifestly the limit of a pointlike electron, i.e., the
Compton wavelength vanishes relative to the acceleration
length scale, λe=la¼ðℏ=mecÞ=ðmec2=eEÞ→0. As expected
from the Euler-Heisenberg effective action, quantum effects
become important as a=m ∼ 1 [58], which is equivalent
to the electric field approaching the “critical field”
eE ∼m2

ec3=ℏ. Using Eq. (8.14) of Ref. [37], the limit is

lim
ℏ→0

ΔE
Δt

����
QED

¼ e2

2π2
1

Cta

Z
∞

0

ðK1ðk⊥=aÞÞ2k2⊥dk⊥

¼ 9π

32Ct

e2

6π
a2; ð50Þ

which fixes Ct ¼ 9π=32. The relaxation time is then defined
paralleling the classical estimate Eq. (17),

τ−1Dq ¼
1

E
ΔE
Δt

����
QED

; ð51Þ

which we evaluate numerically below.
Second, to evaluate the mean-square transverse momen-

tum transfer, we need dN=dτd2k⊥. The derivation proceeds
in parallel to the previous. We use the change of variables
described in the classical case Eq. (24). We keep the scaling
constant C, this time determining its value by taking the
classical limit with the result that C ¼ 1 (again). Thus we
obtain

dW
dtd2k⊥

¼ 1

m
wðk2⊥; jeEjÞ: ð52Þ

Then the mean-square transverse momentum transfer is
simply

2κq ¼
Z

dW
dtd2k⊥

k2⊥d2k⊥: ð53Þ

The classical limit commutes with the small k⊥ limit, which
could also be used to determine the scaling constant. In the
small k⊥ region, k2⊥ ≪ m2; eE, we find that QED predicts
greater emission probability,

dW=dtd2k⊥
dNcl

γ =dtd2k⊥
¼ 1

1 − e−πm
2c3=eEℏ

ð1þ � � �Þ; ð54Þ

which is a quantum effect (disappearing with ℏ → 0) and
only becomes significant for eEℏ=m2c3 ¼ a=m ∼ 1. Similar
to the Bose factor in the accelerated detector calculations [3],
it arises from the normalization of the wave functions, which
in turn is related to the hyperbolic functions in the classical
particle action as recognized in analysis of spontaneous pair
production [59,60].
As we shall see in numerical evaluations of the differential

emission rate, the phenomenology of photon emission does
not change qualitatively with inclusion of electron recoil in
QED. As a ∼m, the rate of small k⊥ emission is slightly
enhanced Eq. (54). For this reason—and ignoring the novel
phenomena at strong fields E ≃m2

ec3=eℏ especially pair
creation—we argue that a Langevin equation should con-
tinue to model the electron-radiation dynamics. We define
the diffusion constant from the Langevin relation,

Dq ¼
κqτ

2
Dq

2m2
: ð55Þ

IV. COMPARISON OF RESULTS AND
DISCUSSION

We now make quantitative comparisons of the observ-
ables computed in the previous section. To establish intuition
for the diffusion-related observables, we start with the
photon emission rate differential in transverse momentum.
As shown in Fig. 1, the small k⊥ behavior is the same
dN=dtd2k⊥ ∼ k−2⊥ for classical and QED calculations, with
the normalization of the QED result enhanced by the Bose-
like factor Eq. (54) visible for larger acceleration a=m > 1.
However, for high k⊥ ≳ 1=la, QED predicts a significantly
lower emission probability especially for a=m≳ 0.1.
In classical calculations, the acceleration is the only

variable scale and quantities such as the rate of energy loss
and transverse momentum transfer should vanish as a → 0.
The only other scale that can be involved is the LAD
timescale τe Eq. (18). Considering first the damping time τD
in Fig. 2, we find that QED predicts an enhancement from
the classical result for a=m < 40 and a suppression for
a=m≳ 40. Since the differential emission rate Eq. (46) is
isotropic in transverse wave number, d2k⊥ ¼ 2πk⊥dk⊥, and
the resulting k2⊥ weight in the integrand cancels the 1=k2⊥
divergence of the emission rate at small k⊥. This increases
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the importance of larger k⊥ to the integral, where the QED
differential probability is smaller, thus decreasing the energy
loss rate. The keen reader may notice small variations in the
calculated value of τD around a=m ≃ 0.1 and later in κ and
derived quantities; these are numerical artifacts that seem to
arise from challenges in finding a sufficiently accurate
representation of the confluent hypergeometric functions
in the differential QED emission rate.
In dimensionful units, the damping time is of order 1 fs for

an acceleration a=m ≃ 0.01 corresponding to an electric
field jEj ≃ 1016 V=m. As observed in Ref. [28], this is the
timescale and therefore the electric field strength that would
be required if thermalization were desired within a single
cycle of a laser pulse, as proposed by Ref. [15]. However,
more recent calculations for oscillating trajectories show that

a model detector does not converge to equilibrium at the
temperature Ta [27]. Laser wakefield acceleration utilizes
(comoving) quasistationary longitudinal electric fields,which
persist over ∼10 cm of propagation or 0.3 ns. If we require
thermalization within half of that acceleration time (150 ps),
the electric field should be jEj ≃ 2.4 × 1013 V=m. The
longitudinal fields generated during laser wakefield accel-
eration ∼1011 V=m remain orders of magnitude lower.
Conversely, for jE⃗j ≃ 1011 V=m, the accelerationwould have
to persist for ∼10 ms to exceed the dissipation time, corre-
sponding to an acceleration length of 3 km. Conventional
radio-frequency accelerators that are actually 3 km long fare
worse, with maximum accelerating gradients of ∼108 V=m,
which due to the a−2 scaling of τD would require an
acceleration time of 10 s or length of 3 × 106 km. This
estimate obviously assumes that focusing elements inter-
spersed between ∼1 and 2 m accelerator chambers do not
interfere with considering the acceleration approximately
constant, and every accelerator chamber provides the same
accelerating gradient.
In the classical limit, the mean-square momentum transfer

per unit time is a function of only a. In the comparison to
QED, the k3⊥ weight in the integrand ensures that the high-k⊥
region is still more important in determining the integral and
the QED result κq is less than the classical result κcl for all
values of a.
Aside from the dissipation time setting the scale for the

required duration of the acceleration, the diffusion constant
is the next most important step toward a measurement. For a
heavy particle in a thermal bath, the diffusion constant
describes the linear growth of the mean-square displacement
in time. In the present dynamics, it describes the linear
growth of the transverse size of a hypothetical electron beam
being accelerated. However, in accelerator physics the mean-
square displacement alone is typically not measured, and the

FIG. 2. Left: the dissipation time τD as a function of acceleration, classical radiation Eq. (17) and QED Eq. (51) predictions. Right: the
mean-square momentum transfer to the electron obtained from classical Eq. (26) and QED Eq. (53).

FIG. 1. The rate of photon emission per unit transverse
momentum. The wave number is normalized to the acceleration
length scale la ¼ c2=a ¼ m=eE, with curves comparing differ-
ent magnitude of acceleration, normalized to m.

HEGELICH, LABUN, LABUN, TORRIERI, and TRURAN PHYS. REV. D 105, 096034 (2022)

096034-10



calculation here should be considered a stepping stone to
more specialized observables.
The diffusion constant is a combination of τD and κ, and

since τD ∝ a−2 and κ ∝ a3 the diffusion constantD ∼ a−1 ¼
T−1. This inverse proportionality contrasts with diffusion
associated with nonrelativistic Brownian motion but is
typical for diffusion in massless gauge theories. An intuitive
reason for this inverse proportionality is that, as massless
particles, the number density of photons increases with
temperature. Therefore, the density of scatterers rises with
temperature and increases the rate of soft, largely dissipative
scattering events. This picture is consistent with the finding

that QED further enhances the emission rate at small k⊥ and
results in a smaller diffusion constant, shown in Fig. 3.
However, electron diffusion in a low-temperature

(T ≪ me) QED plasma or heavy quark diffusion in a
QCD plasma (ΛQCD ≪ T ≪ mQ) differ from the results for
constant acceleration in their manifest dependence on the
coupling constant e2. Statistical definitions of the dissipa-
tion time and mean-square momentum transfer involve
squared matrix elements (as they did implicitly in Secs. III
B and III C), schematically [35,61,62]

1

τD
¼ 1

2p0

Z
½dk�½dk0�½dp0�ðp0

0 − p0ÞjMj2nbðk⃗⊥Þð1þ nbðk⃗0⊥ÞÞ; ð56Þ

Ndκ ¼ 1

2m

Z
½dk�½dk0�½dp0�ðp⃗0⊥ − p⃗⊥Þ2jMj2nbðk⃗⊥Þð1þ nbðk⃗0⊥ÞÞ; ð57Þ

where the phase space integrals ½dk�≡ d3k=ð2πÞ3 come
also with momentum conserving δ functions. The matrix
elements are 2 → 2 scattering amplitudes, e.g., linear
Compton scattering for an electron in a QED plasma.
The phase space integrals therefore involve an incoming
photon momentum k and outgoing photon momentum k0,
each matrix element is proportional to e2, and the observ-
ables τ−1D ; κ are proportional to α2. In Eq. (29), one power of
e is hidden in the acceleration,D ∝ ðe2aÞ−1 ∼ ðe3EÞ−1, and
one might argue that the missing power of e would be
restored on considering the source of the E⃗ field from
Maxwell’s equation ∂μFμν ¼ jν ∼ enuν.
Last, we plot the product of the damping time and mean-

square momentum transfer, τDκ=2mTa. In the classical limit,

this combination is a constant equal to 1, Eq. (28).
Combining the QED results, we find that the ratio is
suppressed from the classical value for all values of a,
approaching zero for a ≫ m. This combination of observ-
ables, related by the Langevin dynamics to the mean-squared
transverse momentum in equilibrium hp2⊥i, shows the fastest
deviation from the classical result as a increases.
The mean-square transverse momentum (Fig. 4) or the

transverse diffusion (Fig. 3) likely provide the most useful
observables to study experimentally. Though we have found
quite small QED corrections, we could with sufficient
statistics and precise control at least verify the classical
radiation predictions. An experiment based on laser wake-
field acceleration requires substantial improvements in the
control and consistency of the acceleration dynamics to be
successful. Transverse momentum oscillations, which can

FIG. 3. Diffusion constant derived from classical Eq. (29) and
QED Eq. (55) radiation dynamics. FIG. 4. The product κqτq normalized to its classical value 2mTa.
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approach jp⊥j ∼m in magnitude, will have to be accounted
for, though it is possible that radiation reaction Eq. (16)
gradually suppresses the oscillations in the absence of a
driving force.
The description here of particle dynamics in strong-

field QED regime is of course incomplete. The character-
istic timescale for the dissipation of field energy into
electron-positron pairs is exponential in the electric field
strength, with a field providing an acceleration a≳ 0.2m
decaying on the order of 3 ps [63]. Higher order in α
processes, such as the direct bremsstrahlung of a pair by
the electron, are not likely to be important until a ∼m.
These dynamics are expected to correct the calculations
here in the a ≳m regime.
In summary, we have found that thermalization of a

probe particle (electron) undergoing constant acceleration
is due to its classical radiation. Nonzero variance in the
mean-square transverse momentum (chosen for being
invariant under boosts compatible with the symmetry of
constant acceleration) is explained by computing the second
momentum of the radiation distribution, and ℏ only enters as
a matter of converting units of photon wave number to
electron momentum. We expect that the diffusion-related
observables obtained here by way of the classical photon
number can also be obtained from the appropriate correlator
of the classical radiation field, similar to QED and QCD
calculations [64]. Such a calculation would be interesting
in revealing how ℏ enters. Building on the work of
Refs. [22,28], our discussion emphasizes the origin of the
characteristic features of a thermal system in the model of the
radiation dynamics. Specifically, the uncorrelated nature of
the noise is valid in the classical regimewhere most emission
is soft and dissipative while rarer hard emissions drive the
momentum fluctuations. It follows that any more nuanced
description of the radiation dynamics, e.g., bringing in
higher-order correlations from the trajectory, will gener-
ally break the perfectly thermal relations obtained here.
The quantitative results give an idea of the experimental
challenge in observing effects of the acceleration temper-
ature. Laser wakefield accelerators provide the best
combination of field strength and acceleration length,
but are still a factor ∼100 too weak field or too short
duration. Although some increase of both may be possible
in wakefield accelerators, e.g., by using “flying focus”
laser wakefield schemes or a combination of laser and
beam-driven wakefields, these numbers suggest that we
will require more precise calculations of well-defined
electron beam observables and high-statistics measure-
ments to distinguish the impact of this “thermalization”
effect for constant acceleration.
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APPENDIX A: TRANSVERSE PHOTON
EMISSION RATE: CLASSICAL CALCULATION

The calculation of the photon emission rate is available
from many references [12,14,37], so we here just highlight
the small refinements in our derivations with respect to
present goals. For an electron in a constant electric field
E⃗ ¼ jE⃗jẑ, the 4-velocity uμ and trajectory ξμ is equivalent
to that under constant acceleration,

uμ ¼ ðcoshðaτ=cÞ; uxð0Þ; uyð0Þ; c sinhðaτ=cÞÞ; ðA1Þ

ξμðτÞ ¼ ððc=aÞ sinhðaτ=cÞ; uxð0Þτ; uyð0Þτ; ðc2=aÞ
× coshðaτ=cÞÞ: ðA2Þ

For notational simplicity we continue with the electron
p⊥ ¼ 0 case. We start from the classical formula for the
emitted photon number [65]

dNcl
γ ¼ e2

8π2cjk⃗j2
jA⃗ðk⃗Þj2d3k ðA3Þ

with the Fourier transformed vector potential determined
by the Lienard-Wiechert potentials,

Aðk⃗Þ ¼
Z

eiφðtÞ
d
dt

�
n⃗ × ðn⃗ × β⃗Þ
1 − n⃗ · β⃗

�
dt;

φðtÞ ¼ kðct − n⃗ · ξ⃗Þ; cβ⃗ ¼ dξ⃗
dt

; ðA4Þ

where β⃗ ¼ u⃗=u0 is the normalized 3-velocity of the
electron, n⃗ is the unit vector in the direction of the emission,
and k ¼ jk⃗j is the magnitude of the wave vector. It is
convenient to change variables to electron rapidity y,
linearly related to the proper time τ, and photon rapidity
η, related to the angle of emission,

tanh y ¼ jβ⃗j ¼ tanhðaτ=cÞ; ðA5Þ

tanh η ¼ n⃗ · β⃗ ¼ kz=k; ðA6Þ

so that the phase factor in Eq. (A4) reads simply

φðyÞ ¼ c2k⊥
a

sinhðy − ηÞ: ðA7Þ
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Changing integration variables dt → dy, the vector cross product in the integrand is written in terms of (constant) transverse
polarization vectors on the unit sphere ϵ⃗Ω, such that vector in square brackets in Eq. (A4) is

d
dy

�
n⃗ × ðn⃗ × β⃗Þ
1 − n⃗ · β⃗

�
¼ ϵ⃗Ω

cosh η
cosh2ðy − ηÞ : ðA8Þ

Rather than using these two expressions to evaluate the integral in Eq. (A4), we write out the squared vector potential in
Eq. (A3),

dNcl
γ ¼ e2

4π2cjk⃗j2
d3k

Z
dydy0

exp ðiðk⊥=aÞðsinhðy − ηÞ − sinhðy0 − ηÞÞ
cosh2ðy − ηÞ cosh2ðy0 − ηÞ ðA9Þ

and change variables to average 2ȳ ¼ yþ y0 and relative rapidity r ¼ y − y0. After some algebra, the integrand depends
only ȳ − η,

dNcl
γ ¼ e2

4π2cjk⃗j2
d2k⊥dkz

Z
dȳdr

exp ð2iðk⊥=aÞ sinhðr=2Þ coshðȳ − ηÞÞ
ðcoshð2ðȳ − ηÞÞ þ coshðrÞÞ2 ; ðA10Þ

where kz ¼ k⊥ sinh η. Changing the integration variable for the photon longitudinal wave number to the photon rapidity,
dkz ¼ ck⊥ cosh ηdη, we integrate over η first, shifting η → ȳ − η with no change to the integrand since the integration
domain is ð−∞;∞Þ. Having eliminated dependence on ȳ, we undo much of the algebra and change variables ðr; ηÞ ↦
ðz ¼ ηþ r=2; z0 ¼ η − r=2Þ to obtain two decoupled complex conjugate integrals. The result is

dNcl
γ ¼ e2

4π2
d2k⊥dȳ

����
Z

∞

−∞
dz

exp ðiðk⊥=aÞ sinh zÞ
cosh2ðzÞ

����
2

: ðA11Þ

The integral then yields the modified Bessel function K0
0ðk⊥=aÞ ¼ −K1ðk⊥=aÞ.

The mean-square momentum transfer integral is made dimensionless by scaling k⊥ ¼ jk⃗⊥j → k⊥=a,

2κcl ¼
1

ℏ

Z
d2k⊥ðℏk⊥Þ2

dNcl
γ

dτd2k⊥
¼ 2α

π
a3

ℏ2

c

Z
∞

0

x3jK1ðxÞj2dx ðA12Þ

and evaluated using Eq. (6.576) of Ref. [66],

Z
∞

0

x−λKμðaxÞKνðbxÞdx ¼ 2−2−λa−νþλ−1bν

Γð1 − λÞ Γ
�
1 − λþ μþ ν

2

�
Γ
�
1 − λ − μþ ν

2

�

× Γ
�
1 − λþ μ − ν

2

�
Γ
�
1 − λ − μ − ν

2

�

× 2F1

�
1 − λþ μþ ν

2
;
1 − λ − μþ ν

2
; 1 − λ; 1 −

b2

a2

�
;

× Reðaþ bÞ > 0 Reλ < 1 − jReμj − jReνj: ðA13Þ

Since the a ¼ b ¼ 1 in our case, the confluent hypergeometric function is evaluated at zero, which for all values of the
parameters reduces to one. The product of ΓðzÞ functions and 2−1 reduces to the constant 2=3, to arrive at the result quoted
in the text [Eq. (26)].

APPENDIX B: TRANSVERSE PHOTON EMISSION RATE: QED CALCULATION

We wish to compute the emitted photon distribution fully differential in photon momentum,

dW ¼ d3k
ð2πÞ32k0

1

2

X
σ;σ0

X
ϵ;ϵ0

Z
d3p0

ð2πÞ32Ep0
jM½ep⃗ → ep⃗0γk⃗�j2; ðB1Þ
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summed over final electron spin and photon polarization and
averaged over initial electron spin. The matrix element is

−iM½ep → ep0γk� ¼−ie
Z

d4xψ̄ ðþÞ
σ0;p0 ðxÞ=ϵ� eikxffiffiffiffiffiffiffi

2k0
p ψσ;pðþÞðxÞ;

ðB2Þ

where ψσ;pðþÞðxÞ is the incoming electron wave function and
ψ̄ ðþÞ
σ0;p0 ðxÞ is the outgoing electron wave function. The wave

functions are solutions to the Dirac equation with a classical
external vector potential corresponding to an electric field in
the ẑ direction,

ði=∂x − e=AclðxÞ −mÞψðxÞ ¼ 0; Aμ
clðxÞ ¼ δμ3Et: ðB3Þ

Going to the second-order equation with the ansatz ψðxÞ ¼
ði=∂ − e=Acl þmÞψ ð2ÞðxÞ and changing variables to u ¼ffiffiffiffiffiffiffiffiffiffiffi
2=eE

p ðpz − eEtÞ leads to the parabolic cylinder differ-
ential equation

�
∂2
u þ λ� i

2
þ u2

4

�
fλðuÞ ¼ 0: ðB4Þ

The complete set of solutions is Diλð−e−iπ=4uÞ;
Diλ−1ðe−iπ=4uÞ; D−iλð−eiπ=4uÞ; D−iλ−1ðeiπ=4uÞ. A detailed
derivation of the wave functions with updated notation in
Ref. [67] and the results are [37]

ψσλð�ÞðxÞ ¼ Nλ

ffiffiffiffiffiffiffiffi
2eE

p
e−πλ=4�iζλeip⃗·x⃗χσλð�ÞðuÞ; ðB5Þ

ffiffiffiffiffiffiffiffi
2eE

p
χλ;1ðþÞðxÞ ¼ eiπ=4ðiλÞDiλ−1ð−ξÞu2 þ

p1u3 þ ðm − ip2Þu1ffiffiffiffiffiffiffiffi
2eE

p Diλð−ξÞ; ðB6Þ

ffiffiffiffiffiffiffiffi
2eE

p
χλ;2ðþÞðxÞ ¼ −eiπ=4Diλð−ξÞu1 þ

p1u4 þ ðmþ ip2Þu2ffiffiffiffiffiffiffiffi
2eE

p Diλ−1ð−ξÞ; ðB7Þ

ffiffiffiffiffiffiffiffi
2eE

p
χλ;1ð−ÞðxÞ ¼ e−iπ=4D−iλð−ξ�Þu2 þ

p1u3 þ ðm − ip2Þu1ffiffiffiffiffiffiffiffi
2eE

p D−iλ−1ð−ξ�Þ; ðB8Þ

ffiffiffiffiffiffiffiffi
2eE

p
χλ;2ð−ÞðxÞ ¼ e−iπ=4iλD−iλ−1ð−ξ�Þu1 þ

p1u4 þ ðmþ ip2Þu2ffiffiffiffiffiffiffiffi
2eE

p D−iλð−ξ�Þ; ðB9Þ

where we have defined for notational simplicity,
ξ ¼ e−iπ=4u, ζλ ¼ ðλ=2Þð1 − ln λÞ and an orthogonal and
complete basis of spinors,

u1¼

0
BBB@
1

0

0

1

1
CCCA; u2¼

0
BBB@
0

1

1

0

1
CCCA; u3¼

0
BBB@

1

0

0

−1

1
CCCA; u4¼

0
BBB@

0

1

−1
0

1
CCCA:

ðB10Þ

Using that the outgoing electron solution is equivalent to
the time-reversed incoming positron solution, ψ ðþÞðt; x⃗Þ ¼
ψ ð−Þð−t; x⃗Þ, we have

−iM ¼ −ieffiffiffiffiffiffiffi
2k0

p NλN�
λ0 ð2eEÞe−ðλþλ0Þπ=4þiðζλ0þζλÞ

×
Z

d4xeikxeiðp⃗0−p⃗Þ·x⃗χ†σ0λ0ð−Þð−uÞγ0=ϵ�χσ;λðþÞðuÞ:

ðB11Þ

The spatial integrals can be done immediately to yield

3-momentum conservation p⃗0 ¼ p⃗ − k⃗. Integrating over the
final state momentum with the δ function, and after
extensive algebra to reduce the remaining t integral, the
fully differential rate is [37]
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dW ¼ d3k
ð2πÞ32k0

Z
d3p0

ð2πÞ32p0
0

1

2

X
ϵ;ϵ0;σ;σ0

jMj2

¼ d3k
ð2πÞ32k0

N πe−
3π
4

k2⊥−2p⊥ ·k⊥
eE

�
ð2E2⊥ þ k2⊥ − 2p⊥ · k⊥Þ

k2⊥
E2⊥

jΨ0j2

þð2p2⊥ þ k2⊥ − 2p⊥ · k⊥ÞjΨj2 −
�
2p2⊥k2⊥
E2⊥

þ 2ð2p⊥ · k⊥ − k2⊥Þ
E2⊥

ðE2⊥ − p⊥ · k⊥Þ
�
Re½Ψ0Ψ��

	
; ðB12Þ

where E2⊥ ¼ p2⊥ þm2. The wave function normalizations
have been combined into

N ¼ 2e2 expð−πðλþ λ0Þ=2ÞÞ
2λ0ðeEÞ2ð1 − e−2πλÞð1 − e−2πλ

0 Þ ; ðB13Þ

and Ψ is the confluent hypergeometric of the second kind,
evaluated at

Ψ≡Ψ
�
iE2⊥
2eE

; 1 −
iðk2⊥ − 2p⊥ · k⊥Þ

2eE
;
−ik2⊥
2eE

�
; ðB14Þ

which is related to the confluent hypergeometric

1F1ða; b; zÞ by

Ψða;b;zÞ¼ Γð1−bÞ
Γða−bþ1Þ1F1ða;b;zÞ

þΓðb−1Þ
ΓðaÞ z1−b1F1ða−bþ1;2−b;zÞ: ðB15Þ

The ℏ → 0 limit yields the classical result [37].

APPENDIX C: RESULTS FOR A SCALAR
RADIATION FIELD

The number of particles emitted by a classical source
JðxÞ on a general scalar field φ can be found in standard
textbooks ([68], Chap. 2), and is given by

Z
dN ¼

Z
d3p
ð2πÞ3

1

2Ep
jJðpÞj2: ðC1Þ

For a classical charged particle source following an
accelerated trajectory Eq. (A1), we have

Jðx; ξÞ ¼ e
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffi
u2ðτÞ

q
δ4ðx − ξðτÞÞ; ðC2Þ

and the Fourier transform of the source for the localized
particle is given by

JðpÞ ¼ e
Z

dτ expðiðEp=aÞ sinh aτ − iðpz=aÞ cosh aτÞ:

ðC3Þ

We are interested in the number of photons emitted per unit
transverse momentum and per unit proper time dN=dτd2p⊥,
which can be obtained from the evaluation of the differential
in 3-momentum

dN
d3p

¼ 1

ð2πÞ32Ep
jJðpÞj2: ðC4Þ

Changing into relative coordinates τ̄≡ 1=2ðτ þ τ0Þ and
δτ ≡ 1=2ðτ − τ0Þ, we can write the expression for the square
of the current’s Fourier transform as

jJðpÞj2 ¼ e2
Z

dτdτ0 exp ½ð2i=aÞ sinh aδτðEp coshaτ̄ − pz sinh aτ̄Þ�: ðC5Þ

Now we parametrize the particle’s momentum by new hyperbolic variables Ep ¼ p⊥ cosh η, pz ¼ p⊥ sinh η, and obtain the
alternative representation

jJðpÞj2 ¼ 2e2
Z

dδτdτ̄ exp ½ð2ip⊥=aÞ sinhðaδτÞ coshðη − aτ̄Þ�; ðC6Þ

which makes clear that the integral is independent of the rapidity η. We can remove η directly from the integral, which would
yield an exact expression [Eq. (8.432-5) in [66]] for jJðpÞj2 as
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jJðpÞj2¼ e2
����
Z

dτexpðiðp⊥=aÞsinhaτÞ
����
2

¼ 4e2

a2
K2

0ðp⊥=aÞ;

ðC7Þ

whereK0 is a modified Bessel function of the second kind.
In terms of the η coordinate, the dN differential takes the
form

dN
dηd2p⊥

¼ 1

2ð2πÞ3 jJðp⊥Þj2; ðC8Þ

and the final expression is given by

dN
dηd2p⊥

¼ e2

4π3a2
K2

0ðp⊥=aÞ: ðC9Þ

We can also obtain the same expression in terms of a
differential on the mean proper time τ̄. First we integrate
over all longitudinal momenta

Z
dpz

dN
d3p

¼ 1

ð2πÞ3
Z

dpz

2Ep
jJðpÞj2: ðC10Þ

In terms of the momentum rapidity η, we get

dN
d2p⊥

¼ e2

ð2πÞ3
Z

dηdδτdτ̄ exp ½ð2ip⊥=aÞ sinhðaδτÞ coshðη − aτ̄Þ�: ðC11Þ

Changing variables for the η integral and extracting the linearly divergent total proper time
R
dτ̄, we get

dN
dτ̄d2p⊥

¼ e2

ð2πÞ3
Z

dηdδτ exp ½ð2ip⊥=aÞ sinhðaδτÞ coshðηÞ�: ðC12Þ

Again from Eq. (8.432-5) of Ref. [66], we get an exact expression for the integral in terms of another modified Bessel
function of the second kind

Z
dδτ exp ½ð2ip⊥=aÞ sinhðaδτÞ coshðηÞ� ¼

2

a
K0ð2ðp⊥=aÞ cosh ηÞ; ðC13Þ

and the remaining η integral can be evaluated to [cf. Eq.
(6.663-1) of [66]]

Z
dηK0ð2ðp⊥=aÞ cosh ηÞ ¼ K2

0ðp⊥=aÞ: ðC14Þ

The final result for the distribution of scalar particles
created per transverse momentum and proper time is thus

dN
dτ̄d2p⊥

¼ e2

4π3a
K2

0ðp⊥=aÞ; ðC15Þ

which coincides with the previous direct calculation from
the “momentum rapidity” η by the direct substitution
η ↔ aτ̄.
We are interested in the mean-squared transverse

momentum transfer for the theory, so we calculate

2κscalar ¼
Z

d2p⊥p2⊥
dN

dτ̄d2p⊥

¼ e2

4π3a

Z
d2p⊥p2⊥K2

0ðp⊥=aÞ: ðC16Þ

From Eq. (6.576-4) of Ref. [66], we get

Z
d2p⊥p2⊥K2

0ðp⊥=aÞ ¼ 2π

Z
dp⊥p3⊥K2

0ðp⊥=aÞ

¼ 2πa4

3
; ðC17Þ

which yields the final expression

κ ¼ e2a3

12π2
; ðC18Þ

in agreement with the previous results when taking into
account the spin degrees of freedom of the underlying field.
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