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We study the relativistic 2D charge distributions in the case of a spin-1 target. These charge distributions
are based on a phase-space approach allowing one to study their frame dependence, and hence to relate
the familiar rest-frame picture with the light-front picture developed in the last two decades. Like in the
spin-1=2 case, we show that relativistic kinematical effects associated with spin are responsible for the
distortions of the charge distributions seen in a moving frame. Applying our results to the deuteron, we
observe a mild frame dependence compared to the nucleon case.
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I. INTRODUCTION

Over the last decades, the electromagnetic form factors
of hadrons have been measured with impressive precision,
see e.g., [1–4]. Since they describe elastic scattering off a
target, they encode key information about the spatial
distribution of electric charge and magnetization. In order
to define the latter, one usually considers Fourier trans-
forms of the form factors in the Breit frame [5,6], where the
spin structure resembles that of the nonrelativistic theory.
Unfortunately, the relativistic framework appears to be
incompatible with a probabilistic picture in the target rest
frame, and so the interpretation of the Breit-frame distri-
butions is often thought to be plagued by unclear relativistic
corrections [7–9].
The only way to avoid relativistic corrections in this

picture is to consider that the system is moving with almost
the speed of light relative to the observer. This can be
achieved either by working in the infinite-momentum
frame or by using the light-front formalism [10–13].
Besides losing one spatial dimension, the drawback is that
these charge distributions get distorted by effects associated
with the motion of the target [14,15] and sometimes seem
hard to reconcile with the rest-frame picture [16].
Since a strict probabilistic interpretation requires Galilean

symmetry and since relativistic spatial distributions are
necessarily frame-dependent, we recently proposed to
change the perspective by adopting a phase-space approach
and contenting ourselves with a quasiprobabilistic but fully

relativistic picture [17,18]. Once properly normalized, Breit-
frame distributions are then reinstated as meaningful quan-
tities representing physical properties of the system in the
(average) rest frame. Under a Lorentz boost and after
integration over the longitudinal spatial coordinate, these
new relativistic distributions show how the rest-frame picture
gets distorted by kinematical effects associated with the spin
of the target [19]. The phase-space approach therefore allows
one to connect in a smooth way the Breit-frame distributions
to the light-front ones.
In Ref. [19] we studied in detail the structure and frame

dependence of relativistic 2D charge distributions for a
spin-1=2 target, and then applied the formalism to the
nucleon whose electromagnetic form factors are well
measured. The aim of the present work is to extend this
study to the case of a spin-1 target. The reason is that, as the
spin of the target increases, new features associated with
higher multipoles appear and lead to a deeper under-
standing of the underlying physics. Although the focus
of this work is mostly theoretical, it is also of experimental
interest since it clarifies the model-independent physical
interpretation of the deuteron1 electromagnetic form fac-
tors. The unpolarized deuteron form factors AðQ2Þ and
BðQ2Þ are pretty well constrained experimentally, but a
better measurement of the elastic tensor analyzing power
T20ðQ2Þ is needed for a more reliable separation into the
usual Breit-frame multipole form factors [20]. One of
the goals of the C1-approved Jefferson Lab experiment
C12-15-005 [21] is to improve the current situation. There
are also prospects for measuring deuteron electromagnetic
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1Our formalism applies naturally also to the ρ meson, but the
corresponding electromagnetic form factors have not yet been
measured.
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form factors over a larger Q2-range at the future Electron-
Ion Collider (EIC) [22].
The rest of this paper is organized as follows. In Sec. II

we quickly review the phase-space approach and define
relativistic 2D distributions for arbitrary average momen-
tum of the target. Then we remind in Sec. III the para-
metrization of spin-1 matrix elements of the charge current
operator along with the definition of multipole form factors.
Relativistic distortions of the amplitudes induced by the
motion of the target are discussed in Sec. IV, and our results
for a spin-1 target are presented in Sec. V. We then perform
the Fourier transforms in Sec. VI and show the relativistic
charge distributions derived from the phenomenological
deuteron form factors for different values of the deuteron
average momentum. Finally we summarize our findings
in Sec. VII.

II. PHASE-SPACE APPROACH

In order to define the internal charge distribution of a
massive system, we first need to define the position of the
latter. In the relativistic context we must also in general
specify the frame in which this position is defined, and
hence specify the momentum of the system. As a result, we
are naturally led to the phase-space perspective.
It has been shown long ago that the expectation value of

an operator O in a physical state jΨi can be written in the
convenient form [23,24]

hOiΨ ¼
Z

d3P
ð2πÞ3 d

3RρΨðR;PÞhOiR;P: ð1Þ

The information about the global wave packet of the system

Ψ̃ðpÞ ¼ hpjΨiffiffiffiffiffiffiffiffi
2Ep

p ; ΨðxÞ ¼
Z

d3p
ð2πÞ3 e

ip·xΨ̃ðpÞ; ð2Þ

where jpi is a four-momentum eigenstate normalized as
hp0jpi ¼ 2Epð2πÞ3δð3Þðp0 − pÞ and Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
is the

on-shell energy of the system with mass M, is lumped into
the quantity

ρΨðR;PÞ ¼
Z

d3ze−iP·zΨ�
�
R −

z
2

�
Ψ
�
Rþ z

2

�

¼
Z

d3q
ð2πÞ3 e

−iq·RΨ̃�
�
Pþ q

2

�
Ψ̃
�
P −

q
2

�
ð3Þ

which plays the role of a phase-space distribution in the
quantum context. The variables R and P are interpreted as
the average position and momentum of the system. Owing
to Heisenberg’s uncertainty relations, the quantum phase-
space (or Wigner) distribution admits only a quasiproba-
bilistic interpretation, the usual probabilistic interpretation
being recovered under integration over one of the con-
jugated variables

Z
d3RρΨðR;PÞ ¼ jΨ̃ðPÞj2;

Z
d3P
ð2πÞ3 ρΨðR;PÞ ¼ jΨðRÞj2: ð4Þ

The matrix element on the right-hand side (rhs) of Eq. (1)

hOiR;P ¼
Z

d3Δ
ð2πÞ3 e

iΔ·R hp0jOjpi
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Ep0Ep

p ð5Þ

with P ¼ 1
2
ðp0 þ pÞ and Δ ¼ p0 − p, does not depend on

the wave packet and can be interpreted as the expectation
value in a state localized (in the Wigner sense) around
average position R with average momentum P.
In the literature, it is often stated that one cannot separate

in relativity the center-of-mass motion from the rest of
the system. This seems at odds with the phase-space
representation in Eq. (1), where the information about
the global motion described by ρΨðR;PÞ is factorized from
the internal information contained in hOiR;P. There is in
fact no contradiction because R does not transform as the
spatial part of a Lorentz four-vector, contrarily to what
is usually implied. It just represents the average position
R ¼ 1

2
ðx0 þ xÞ of a fictive point defining the center of the

system in a given frame (and hence not a material point),
where x and x0 are initial and final eigenvalues of the
Newton-Wigner relativistic position operator [25,26]. For
more details about the problem of defining the center of a
relativistic system, see Refs. [27,28].
The phase-space representation (1) allows one to intro-

duce in a natural way the notion of relativistic 2D spatial
distributions for arbitrary average momentum P [17,18]. In
this work, we will consider the internal distribution of the
charge four-current

JμEFðb⊥;PzÞ¼
Z

drzhjμðrÞiR;Pzez

¼
Z

d2Δ⊥
ð2πÞ2e

−iΔ⊥·b⊥
�hp0;s0jjμð0Þjp;si

2P0

�
Δz¼jP⊥j¼0

ð6Þ

with jμðrÞ ¼ P
f qfψ̄fðrÞγμψfðrÞ the electric charge cur-

rent operator, b⊥ ¼ r⊥ − R⊥ the impact-parameter coor-
dinates, and the z-axis chosen for convenience along the
average momentum P. We have included the dependence of
the state polarization and integrated over the longitudinal
coordinate to ensure that no energy is transferred to the
system. In other words, we restricted ourselves to the
class of elastic frames (EF) characterized by the condition
Δ0 ¼ 0 [17]. In the literature one traditionally considers
particular cases, namely either the Breit frame Pz ¼ 0 [5,6]
or the infinite-momentum frame Pz → ∞ (essentially
equivalent to using the light-front formalism) [11–14].
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It has been observed that charge distributions in the Breit
frame and the infinite-momentum frame can be quite
different [15,16]. Using the interpolating expression in
Eq. (6), we showed in Ref. [19] that the distortions can in
principle be understood in terms of relativistic kinematical
effects associated with spin, and we illustrated this by
studying in detail the spin-independent contribution to the
charge distribution J0EF inside the nucleon. The spin-
dependent contribution has later been worked out
in Ref. [29].
In this work, we will study the EF charge distribution (6)

in the case of a spin-1 target and apply our results to the
deuteron. Even though the complexity of the analysis
increases due to the larger number of allowed multipoles,
we will demonstrate that all the distortions can be under-
stood in terms of the same relativistic kinematical effects as
those identified in the spin-1=2 case.

III. SPIN-1 MATRIX ELEMENTS

Matrix elements of the electric charge current for a
spin-1 target are usually parametrized (in units of the proton
electric charge, i.e., with e ¼ 1) as [30]

hp0; s0jjμð0Þjp; si ¼ −ε�αðp0; s0ÞVμαβðP;ΔÞεβðp; sÞ ð7Þ

with

VμαβðP;ΔÞ ¼ 2PμgαβG1ðQ2Þ þ ðΔαgμβ − ΔβgμαÞG2ðQ2Þ

− Pμ Δ
αΔβ

M2
G3ðQ2Þ ð8Þ

and Q2 ¼ −Δ2. The standard polarization four-vectors are
given by

εμðp; sÞ ¼
�
p · ϵs
M

; ϵs þ
pðp · ϵsÞ

Mðp0 þMÞ
�

ð9Þ

with

ϵ� ¼ 1ffiffiffi
2

p ð∓ 1;−i; 0Þ; ϵ0 ¼ ð0; 0; 1Þ ð10Þ

representing the rest-frame polarization eigenstates along
the z-axis. For higher-spin targets, similar parametrizations
have been obtained in Refs. [31,32].
When expressed in the Breit frame (defined by P ¼ 0),

the matrix elements turn out to exhibit the same spin
structure as in the nonrelativistic limit [30]

hp0
B; s

0jj0ð0ÞjpB; si ¼ 2P0
B

�
ðϵ�s0 · ϵsÞGCðQ2Þ þ

�
ðΔ · ϵ�s0 ÞðΔ · ϵsÞ −

1

3
Δ2ðϵ�s0 · ϵsÞ

�
GQðQ2Þ
2M2

�
;

hp0
B; s

0jjð0ÞjpB; si ¼ 2P0
B½ðΔ · ϵ�s0 Þϵs − ðΔ · ϵsÞϵ�s0 �

GMðQ2Þ
2M

; ð11Þ

where pμ
B ¼ ðP0;−Δ=2Þ and p0μ

B ¼ ðP0;Δ=2Þ with

P0
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Δ2

4

q
. The Breit frame is therefore a natural

frame for defining multipole form factors like in the
nonrelativistic theory. For a spin-1 target, one finds an
electric (or Coulomb) monopole GC, a magnetic dipole GM
and an electric quadrupole GQ, given by the combinations

GCðQ2Þ ¼ G1ðQ2Þ þ 2

3
τGQðQ2Þ;

GMðQ2Þ ¼ G2ðQ2Þ;
GQðQ2Þ ¼ G1ðQ2Þ −G2ðQ2Þ þ ð1þ τÞG3ðQ2Þ; ð12Þ

where τ ¼ Q2=4M2.
Since the multipole form factors have a clearer physical

meaning than those appearing in Eq. (8), it would be
interesting to find an alternative parametrization directly in
terms of GC, GM and GQ displaying in a covariant way the
Breit-frame multipole structure. We indeed found that one
can equivalently write (ϵ0123 ¼ þ1)

VμαβðP;ΔÞ¼2Pμ

�
ΠαβGCðQ2Þ−ΔρΔσðΣρσÞαβ

2M2

P2

M2
GQðQ2Þ

�

−
iϵμρσλΔρPσðΣλÞαβffiffiffiffiffiffi

P2
p GMðQ2Þ; ð13Þ

where we introduced the tensors

Παβ ¼ gαβ −
PαPβ

P2
þ ΔαΔβ

4P2
;

ðΣλÞαβ ¼ −iϵλαβω
Pωffiffiffiffiffiffi
P2

p ;

ðΣρσÞαβ ¼ 1

2
ðΠραΠσβ þ ΠσαΠρβÞ − 1

3
ΠρσΠαβ; ð14Þ

that vanish once contracted with Pα or Pβ owing to the
onshell constraint P · Δ ¼ 0. In the forward limit Δ → 0,
−Πμν reduces to the projector onto the subspace orthogonal
to the four-momentum, while ðΣλÞαβ and ðΣρσÞαβ reduce
to the vector and tensor polarization operators in the
ð1
2
; 1
2
Þ representation, see e.g., Appendix C of Ref. [33].
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Interestingly, Eq. (13) is reminiscent of the well-known
decomposition of the charge current into convection and
magnetization currents J ¼ ρvþ ∇ ×M [7]. It follows
from discrete spacetime symmetries that the convection
(magnetization) contribution can be written as a tower of
electric (magnetic) multipoles of even (odd) order. This
structure is consistent with the results found for spin-0 and
spin-1=2 targets [19], and we expect it to apply also to
higher-spin targets.

IV. DISTORTIONS OF THE RELATIVISTIC
DISTRIBUTIONS

We have seen that in the Breit frame (interpreted from
the phase-space perspective as the average rest frame of
the target), the charge distribution assumes the same spin
structure as in the nonrelativistic theory. However, as soon
as the system starts moving (i.e., when P ≠ 0) the charge
distribution gets distorted by relativistic kinematical effects
associated with spin [19]. This can be seen from the general
relation [34,35]

hp0; s0jjμð0Þjp;si
¼

X
s0B;sB

D�ðjÞ
s0Bs

0 ðp0
B;ΛÞDðjÞ

sBsðpB;ΛÞΛμ
νhp0

B;s
0
Bjjνð0ÞjpB;sBi:

ð15Þ

The first effect of a boost is to mix the Breit-frame charge
and current distributions via the Lorentz matrix Λμ

ν. The
second effect is to induce spin rotations via the Wigner
rotation matrices DðjÞ for spin-j targets.
In the Breit frame, the charge (current) distribution

defines the electric (magnetic) properties of the system.
Under a Lorentz boost, the charge distribution receives
therefore a magnetic contribution induced by the global
motion of the system. If we ignore the spin rotation effect,
the magnetic dipole distribution simply induces a dipolar
distortion of the charge distribution when the target is
transversely polarized [14,15]. The picture then gets
significantly more complicated when spin rotations are
included, since they mix the multipole moments. Typically,
any individual multipole in the Breit frame will appear as a
superposition of all possible multipoles in a boosted frame.2

As a result, the boosted charge distribution will contain all
multipoles weighted by various combinations of electric
and magnetic contributions [31,38–41]. Note however that
the total electric charge of the system is Lorentz invariant,
and so these relativistic kinematical distortions just reor-
ganize the appearance of the charge distribution in space.

To illustrate this, let us consider the multipole decom-
position of the charge amplitudes in the elastic frame

�hp0; s0jj0ð0Þjp; si
2P0

�
Δz¼jP⊥j¼0

¼ M0δs0s þMi
1ðΣi

0Þs0s þMij
2 ðΣij

0 Þs0s þ � � � ; ð16Þ

where ðΣi
0Þs0s and ðΣij

0 Þs0s are the rest-frame vector and
tensor polarization matrices,3 and the energy is given by
P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ τÞ þ P2

z

p
. For a spin-j target, the multipole

expansion terminates at the (2jþ 1)th term. In the case of a
spin-1=2 target, the expression for M0 has been worked
out in Ref. [19], and the expression forMi

1 in Ref. [29]. We
observe that these results can be put in the simple form

M0¼
M
P0

GEðQ2Þþ P2
z

P0ðP0þMÞF1ðQ2Þ;

Mi
1¼−

iðez×ΔÞi
2M

Pz

P0

�
GMðQ2Þ− P0

P0þM
F1ðQ2Þ

�
; ð17Þ

where GE and GM are the standard Sachs electric and
magnetic form factors [5,6], and

F1ðQ2Þ ¼ 1

1þ τ
½GEðQ2Þ þ τGMðQ2Þ� ð18Þ

is the Dirac form factor. The expression (17) nicely shows
that the spin-independent contribution to the charge ampli-
tude is given in the Breit frame (i.e., when Pz ¼ 0) by
MB

0 ¼ M
P0 GEðQ2Þ and in the infinite-momentum frame

(i.e., when Pz → ∞) by MIMF
0 ¼ F1ðQ2Þ. Moreover, it

indicates that the magnitude of spin-rotation effects is
driven by the sole Dirac form factor. We will see in the
next section that a similar structure shows up in the case of
spin-1 targets.

V. SPIN-1 CHARGE AMPLITUDES

For convenience, we define relativistic charge ampli-
tudes as

As0s ¼ eiðs0−sÞϕΔ

�hp0; s0jj0ð0Þjp; si
2P0

�
Δz¼jP⊥j¼0

ð19Þ

with the momentum transfer written in polar coordinates
Δ⊥ ¼ QðcosϕΔ; sinϕΔÞ and the spin quantized along
the z-axis. For a spin-1 target we found4 using the para-
metrization (13)

2A similar phenomenon is at the origin of model-dependent
relations among transverse-momentum dependent parton distri-
butions [36], and of the link between the pretzelosity distribution
and the orbital angular momentum [37].

3The vector polarization matrices are the generalization of
the Pauli matrices, and are defined as the spin matrices divided by
the spin value.

4Our results have recently been confirmed by Ref. [42].
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A11 ¼ A−1−1 ¼ GCðQ2Þ þ τ

3
GQðQ2Þ − τP2

z

ðP0 þMÞ2GWðQ2; PzÞ;

A00 ¼ GCðQ2Þ − 2τ

3
GQðQ2Þ − 2τP2

z

ðP0 þMÞ2 GWðQ2; PzÞ;

A01 ¼ A−10 ¼ −
ffiffiffi
τ

p
ffiffiffi
2

p Pz

P0

�
GMðQ2Þ þ 2P0½P0 þMð1þ τÞ�

ðP0 þMÞ2 GWðQ2; PzÞ
�
;

A−11 ¼ −τGQðQ2Þ þ τP2
z

ðP0 þMÞ2 GWðQ2; PzÞ; ð20Þ

where

GWðQ2; PzÞ ¼
1

1þ τ

�
GCðQ2Þ − P0 þMð1þ τÞ

P0
GMðQ2Þ þ τ

3
GQðQ2Þ

�

¼ G1ðQ2Þ − P0 þM
P0

G2ðQ2Þ þ τG3ðQ2Þ: ð21Þ

The other charge amplitudes are obtained using the relation As0s ¼ ð−1Þs0−sAss0 . These results can be converted into
multipole amplitudes using the polarization matrices given in the Appendix. We found the expressions

M0 ¼ GCðQ2Þ − 4

3

τP2
z

ðP0 þMÞ2GWðQ2; PzÞ;

Mi
1 ¼

iðez × ΔÞi
2M

Pz

P0

�
GMðQ2Þ þ 2P0½P0 þMð1þ τÞ�

ðP0 þMÞ2 GWðQ2; PzÞ
�
;

Mij
2 ¼ −

ΔiΔj

2M2
GQðQ2Þ − ðez × ΔÞiðez × ΔÞj

2M2

P2
z

ðP0 þMÞ2GWðQ2; PzÞ: ð22Þ

Like in the spin-1=2 case, we observe that the magnitude of the contributions arising due to the Wigner spin rotation is
driven by a single combination of form factors given in Eq. (21). A notable difference, however, is that the combination of
electromagnetic form factors is now Pz-dependent.
The charge amplitudes in Eq. (20) are defined for any value of the target average momentum. In the limit Pz → 0, we

recover the Breit-frame amplitudes with Δz ¼ 0

AB
11 ¼ AB

−1−1 ¼ GCðQ2Þ þ τ

3
GQðQ2Þ;

AB
00 ¼ GCðQ2Þ − 2τ

3
GQðQ2Þ;

AB
01 ¼ AB

−10 ¼ 0;

AB
−11 ¼ −τGQðQ2Þ: ð23Þ

In the infinite-momentum frame given by Pz → ∞, our charge amplitudes coincide with those defined within the light-front
formalism [38]

AIMF
11 ¼ AIMF

−1−1 ¼
1

1þ τ

�
GCðQ2Þ þ τGMðQ2Þ þ τ

3
GQðQ2Þ

�
;

AIMF
00 ¼ 1

1þ τ

�
ð1 − τÞGCðQ2Þ þ 2τGMðQ2Þ − 2τ

3
ð1þ 2τÞGQðQ2Þ

�
;

AIMF
01 ¼ AIMF

−10 ¼ −
ffiffiffiffiffi
2τ

p

1þ τ

�
GCðQ2Þ − 1

2
ð1 − τÞGMðQ2Þ þ τ

3
GQðQ2Þ

�
;

AIMF
−11 ¼ τ

1þ τ

�
GCðQ2Þ −GMðQ2Þ −

�
1þ 2τ

3

�
GQðQ2Þ

�
: ð24Þ
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Parity and time-reversal symmetries imply that all spin-1
charge amplitudes can be expressed in terms of A11, A00,
A01 and A−11. Since there are only three electromagnetic
form factors allowed by Lorentz symmetry, these four
amplitudes must satisfy a linear relation called the angular
condition. In the Breit frame with spin quantized along the
momentum transfer, one concludes from angular momen-
tum conservation that there cannot be any charge or current
amplitude involving a spin-flip of two units [43–46]. Using
the transverse polarization eigenstates given in the
Appendix, one finds that

AB
11 −AB

00 þAB
−11 ¼ 0 ð25Þ

which is indeed satisfied by the amplitudes in Eq. (23). In
terms of light-front or infinite-momentum frame ampli-
tudes, the angular condition becomes [43–47]

ð1þ 2τÞAIMF
11 −AIMF

00 þ 2
ffiffiffiffiffi
2τ

p
AIMF

01 þAIMF
−11 ¼ 0 ð26Þ

as a result of the Melosh-Wigner rotation (i.e., the Wigner
rotation in the limit Pz → ∞). One can easily check that
this condition is satisfied by the amplitudes in Eq. (24).
Using a generic Wigner rotation matrix for spin-1

targets, we found that the angular condition in the class
of elastic frames takes the form

ð1þ2 tan2θÞA11−A00−2
ffiffiffi
2

p
tanθA01þA−11¼0; ð27Þ

and we concluded from the results in Eq. (20) that the
Wigner rotation angle relative to the z-axis5 is given by

tan θ ¼ −
ffiffiffi
τ

p
Pz

P0 þMð1þ τÞ : ð28Þ

In the limits Pz → 0 and Pz → ∞, the conditions (25)
and (26) are respectively recovered.

VI. DEUTERON RELATIVISTIC 2D CHARGE
DISTRIBUTIONS

Charge distributions in the elastic frame are obtained by
considering the component μ ¼ 0 of Eq. (6) for a given
polarization of the target, and can therefore be expressed
in terms of the 2D Fourier transforms of electromagnetic
form factors. For the deuteron form factors, we follow the
parametrization “fit II” of Ref. [48] with the parameters
given explicitly in Table 1 of Ref. [38].
For a longitudinally polarized deuteron, the 2D charge

distributions are axially symmetric and hence simply
depend on the radial distance b ¼ jb⊥j. We can then write

ρLszðb;PzÞ ¼
Z

∞

0

dQ
2π

QJ0ðbQÞAszsz ; ð29Þ

where JnðbQÞ is the order-n Bessel function of the first kind.
In Figs. 1 and 2 we show the radial charge distributions with
deuteron polarization sz ¼ 1 and sz ¼ 0 for different values
of the average momentumPz. We also provide the individual
electric (ρC;QLsz

) and magnetic (ρMLsz) contributions associated
with the corresponding Breit-frame multipole form factors.
Like in the nucleon, the electric contributions slightly
decrease for increasing values of Pz as a result of the spin
rotation. The magnetic contribution (which vanishes by
definition at Pz ¼ 0) increases with Pz but remains here
significantly smaller than the electric part. So, contrary to the
nucleon case, we do not observe significant Pz-dependence
in the relativistic 2D charge distributions for a longitudinally
polarized deuteron. This can be understood heuristically
from the observation that the large relativistic distortions
(essentially due to the magnetic contribution) seen in the
proton and the neutron charge distributions go in opposite
directions, and hence tend to cancel each other in the
deuteron case. Another reason is that the deuteron mass
and charge radius are both about twice as large as in the
nucleon, so that typical values of τ (which measures
relativistic effects) are smaller.
When the deuteron is polarized along the transverse

direction S⊥ ¼ ðcosϕS; sinϕSÞ, axial symmetry is broken
and the relativistic 2D charge distributions are given by

ρT1ðb⊥;PzÞ ¼
Z

∞

0

dQ
2π

QJ0ðbQÞ 1
2
ðA11 þA00Þ

þ sinðϕb − ϕSÞ
Z

∞

0

dQ
2π

QJ1ðbQÞ
ffiffiffi
2

p
A01

− cos 2ðϕb − ϕSÞ
Z

∞

0

dQ
2π

QJ2ðbQÞ 1
2
A−11;

ρT0ðb⊥;PzÞ ¼
Z

∞

0

dQ
2π

QJ0ðbQÞA11

þ cos 2ðϕb − ϕSÞ
Z

∞

0

dQ
2π

QJ2ðbQÞA−11;

ð30Þ

using the polarization eigenstates from the Appendix and a
polar representation for the relative transverse position
b⊥ ¼ bðcosϕb; sinϕbÞ. In Figs. 3 and 4 we show the charge
distributions along the y-axis with deuteron polarization
sx ¼ 1 and sx ¼ 0 for different values of the average
momentum Pz, along with the individual electric (ρC;QTsx

)
and magnetic (ρMTsx) contributions. Similarly to the longitu-
dinally polarized case, we observe a mild Pz-dependence.
The dipolar distortion is naturally absent for the polarization
sx ¼ 0 because of parity symmetry. In Fig. 5 we show the
relativistic charge distributions in the transverse plane with
deuteron polarization sx ¼ 1 and sx ¼ 0 for Pz ¼ 1 GeV.

5In Ref. [46] the angle θ was defined relative to the negative
x-axis leading to tan θ ¼ 1=

ffiffiffi
τ

p
in the limit Pz → ∞.
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FIG. 2. Relativistic 2D charge distribution at bx ¼ 0 for a deuteron with longitudinal polarization sz ¼ 0. From upper-left to bottom-
right panel: electric monopole contribution, magnetic dipole contribution, electric quadrupole contribution, and total distribution for
selected values of the deuteron average momentum Pz. Based on the parametrization “fit II” from [48].

FIG. 1. Relativistic 2D charge distribution at bx ¼ 0 for a deuteron with longitudinal polarization sz ¼ 1. From upper-left to bottom-
right panel: electric monopole contribution, magnetic dipole contribution, electric quadrupole contribution, and total distribution for
selected values of the deuteron average momentum Pz. Based on the parametrization “fit II” from [48].
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FIG. 3. Relativistic 2D charge distribution at bx ¼ 0 for a deuteron with transverse polarization sx ¼ 1. From upper-left to bottom-
right panel: electric monopole contribution, magnetic dipole contribution, electric quadrupole contribution, and total distribution for
selected values of the deuteron average momentum Pz. Based on the parametrization “fit II” from [48].

FIG. 4. Relativistic 2D charge distribution at bx ¼ 0 for a deuteron with transverse polarization sx ¼ 0. From upper-left to bottom-
right panel: electric monopole contribution, magnetic dipole contribution, electric quadrupole contribution, and total distribution for
selected values of the deuteron average momentum Pz. Based on the parametrization “fit II” from [48].
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The peanut shape is a signature of the large value of the
electric quadrupole moment GQð0Þ ¼ 25.84ð3Þ [49].
The (induced) electric dipole moment associated with

transversely polarized charge distributions is defined as

d⊥s⊥ðPzÞ ¼
Z

d2b⊥b⊥ρTs⊥ðb⊥;PzÞ: ð31Þ

For a spin-1 target, we found (reinstating explicitly the unit
of electric charge e)

d⊥s⊥ðPzÞ¼ s⊥ðez×S⊥Þ
Pz

EP

�
GMð0Þ−

2EP

EPþM
GCð0Þ

�
e
2M

;

ð32Þ

where GCð0Þ ¼ 1 and EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þM2

p
. Since for the

deuteron GMð0Þ ¼ 1.71 and M ¼ 1.875 GeV [50], the
electric dipole moment vanishes and changes sign when

Pz ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð GMð0Þ
2−GMð0ÞÞ2 − 1

q
≈ 11 GeV. Similarly, the electric

quadrupole tensor is defined as

Qij
⊥s⊥ðPzÞ ¼

Z
d2b⊥ð2bi⊥bj⊥ − δij⊥b2⊥ÞρTs⊥ðb⊥;PzÞ: ð33Þ

For a spin-1 target polarized along the x-axis, we found

Qxx⊥1ðPzÞ¼−
1

2
Qxx⊥0ðPzÞ

¼1

2

��
GQð0Þþ

P2
z

ðEPþMÞ2GCð0Þ
�

þ P2
z

EPðEPþMÞ
�
GMð0Þ−

2EP

EPþM
GCð0Þ

��
e
M2

:

ð34Þ

Once again, these results agree in the limit Pz → ∞ with
those obtained within the light-front formalism [38]. In the
limit Pz → 0, the value of the 2D quadrupole is half as large
as the 3D one, which is in agreement with the general
argument given in Ref. [39]. Since GQð0Þ is much larger
than GCð0Þ and GMð0Þ, the electric quadrupole moment of
the deuteron has a weak Pz-dependence. We show in Fig. 6
the Pz-dependence of the transverse electric dipole and
quadrupole moments of the deuteron.
We stress that the results presented in this section

are based for illustrative purposes on the parametrization
of the experimental data given in Ref. [48] two decades
ago. As mentioned in the introduction, a more reliable
extraction of GCðQ2Þ, GMðQ2Þ, and GQðQ2Þ requires a

FIG. 5. Relativistic 2D charge distributions for a deuteron with transverse polarization sx ¼ 1 (left panel) and sx ¼ 0 (right panel) at
the average momentum Pz ¼ 1 GeV. Based on the parametrization “fit II” from [48].

FIG. 6. Transverse electric dipole (left panel) and quadrupole (right panel) moments as functions of the average momentum Pz for a
deuteron with transverse polarization sx ¼ 1. Based on the values GMð0Þ ¼ 1.71 [50] and GQð0Þ ¼ 25.84 [49].
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better measurement of the tensor analyzing power in elastic
electron-deuteron scattering [20], which should be
addressed in a near future by the C1-approved Jefferson
Lab experiment C12-15-005 [21]. Moreover, the future EIC
offers a unique and exciting opportunity for measuring
these form factors over a larger Q2 range [22], and hence
for reducing the uncertainties associated with current
extrapolations.

VII. CONCLUSIONS

Based on the phase-space formalism, we introduced the
relativistic 2D electric charge distributions in a deuteron
and studied their dependence on the deuteron average
momentum. Contrary to the nucleon case we found a mild
frame dependence, reflecting the fact that a deuteron is
intrinsically less relativistic than a nucleon. We showed that
the two relativistic kinematical effects responsible for the
distortions of the charge distributions in a moving frame
can nicely be distinguished using a multipole decomposi-
tion. Interestingly, we observed that the magnitude of the
Wigner spin rotation effects for spin-1=2 and spin-1 targets
is driven by a single combination of electromagnetic form
factors. In the limit where the target has infinite momen-
tum, and hence moves almost at the speed of light, all our
results reduce to those found earlier within the light-front
formalism. We demonstrated once more that the phase-
space approach allows one to interpolate between the
familiar rest-frame picture (corresponding to the Breit
frame) and the light-front picture, where strict probabilistic
interpretation is justified.

APPENDIX: SPIN-1 POLARIZATION MATRICES

Polarization matrices for spin-1 targets read

ðΣi
0Þs0s ¼ −iϵijkϵ�js0 ϵ

k
s;

ðΣij
0 Þs0s ¼

1

2
ðΣi

0Σ
j
0 þ Σj

0Σi
0Þs0s −

1

3
δijðΣ0 · Σ0Þs0s

¼ −
1

2
ðϵ�is0 ϵjs þ ϵ�js0 ϵ

i
sÞ þ

1

3
δijδs0s; ðA1Þ

and are related to the covariant polarization tensors as
follows

ε�αðprest; s0ÞðΣμÞαβεβðprest; sÞ ¼ ð0; ðΣi
0Þs0sÞ;

ε�αðprest; s0ÞðΣμνÞαβεβðprest; sÞ ¼
�
0 0

0 ðΣij
0 Þs0s

�
ðA2Þ

with prest ¼ ðM; 0Þ the rest four-momentum. Using the
polarization vectors (10), one finds more explicitly

Σx
0 ¼

1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; Σy

0 ¼
1ffiffiffi
2

p

0
B@

0 −i 0

i 0 −i
0 i 0

1
CA;

Σz
0 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ðA3Þ

and

Σxx
0 ¼1

6

0
B@
−1 0 3

0 2 0

3 0 −1

1
CA; Σyz

0 ¼Σzy
0 ¼ 1

2
ffiffiffi
2

p

0
B@
0 −i 0

i 0 i

0 −i 0

1
CA;

Σyy
0 ¼1

6

0
B@
−1 0 −3
0 2 0

−3 0 −1

1
CA; Σzx

0 ¼Σxz
0 ¼ 1

2
ffiffiffi
2

p

0
B@
0 1 0

1 0 −1
0 −1 0

1
CA;

Σzz
0 ¼1

3

0
B@
1 0 0

0 −2 0

0 0 1

1
CA; Σxy

0 ¼Σyx
0 ¼1

2

0
B@
0 0 −i
0 0 0

i 0 0

1
CA: ðA4Þ

Polarization eigenstates along a general direction S⊥ ¼
ðcosϕS; sinϕSÞ in the transverse plane are given by

j þ 1iS⊥ ¼ 1

2

0
B@

1ffiffiffi
2

p
eiϕS

e2iϕS

1
CA; j0iS⊥ ¼ 1ffiffiffi

2
p

0
B@

−1
0

e2iϕS

1
CA;

j − 1iS⊥ ¼ 1

2

0
B@

1

−
ffiffiffi
2

p
eiϕS

e2iϕS

1
CA: ðA5Þ
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[19] C. Lorcé, Phys. Rev. Lett. 125, 232002 (2020).
[20] R. J. Holt and R. Gilman, Rep. Prog. Phys. 75, 086301

(2012).
[21] E. Long et al., JLab C12-15-005, https://www.jlab.org/

exp_prog/proposals/16/C12-15-005.pdf.
[22] R. Abdul Khalek, A. Accardi, J. Adam, D. Adamiak, W.

Akers, M. Albaladejo, A. Al-bataineh, M. G. Alexeev, F.
Ameli, P. Antonioli et al., arXiv:2103.05419.

[23] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[24] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner,

Phys. Rep. 106, 121 (1984).
[25] T. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400

(1949).
[26] M. Pavsic, Adv. Appl. Cliord Algebras 28, 89 (2018).
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[36] C. Lorcé and B. Pasquini, Phys. Rev. D 84, 034039 (2011).
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