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We propose a simple method to identify a continuous Lie algebra symmetry in a dataset through
regression by an artificial neural network. Our proposal takes advantage of the Oðϵ2Þ scaling of the output
variable under infinitesimal symmetry transformations on the input variables. As symmetry trans-
formations are generated post-training, the methodology does not rely on sampling of the full
representation space or binning of the dataset, and the possibility of false identification is minimized.
We demonstrate our method in the SU(3)-symmetric (non-) linear Σ model.
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I. INTRODUCTION

Symmetry principles have drastically simplified the
description of particle physics in the twentieth century.
Famously, the 8-fold way [1] of organizing pions and kaons
into a representation of an approximate SU(3) flavor
symmetry lead to the development of the quark model.
In the same vein, future discovery experiments would
primarily have access to the low-energy particle content
of theories beyond the standard model (BSM): in the case
of a broken approximate global symmetry, this includes the
pseudo-Nambu Goldstone bosons (pNGB), transforming
under the adjoint representation of the unbroken symmetry
(see, e.g., [2] for a relevant review.). If the BSM theory is
confining, the symmetries of the low energy theory provide
a window to the structure of the high energy theory through
the barrier of the strong coupling regime. However, the
pNGB representation need not have a small dimensionality,
or define a simple topology. It may also be broken both
spontaneously and explicitly, and the dataset may be noisy.
Identifying residual (approximate) symmetries is therefore
an interesting problem.
Motivated by this problem, we investigate the use of

artificial neural networks (NN) to identify a symmetry in a
dataset. We work with a simplified version of the problem:
a function VðϕÞ symmetric under a transformation of

coordinates ϕ → fðϕÞ: VðϕÞ ¼ VðfðϕÞÞ. To interpolate
between datapoints we use a NN (recently discussed in the
context of high energy physics in [3]), which allows us to
test the local properties of the manifold and deduce the
presence of a symmetry—or rather, eliminating the pos-
sibility of its absence—from its topology.
Detection of symmetry with the use of machine learning

has a long history [4], though most attempts focus on mirror
or rotational symmetries in image data and within the
domain of computer vision [5–8]. In recent years there has
been an increased interest in learning invariant transforma-
tions of input data which do not change the output of a
specific machine learning task [9–16]. This is useful as the
construction of invariant or equivariant NN reduces the
number of samples of input data required for generaliza-
tion. Machine learning has been used to explore various
features of conformal field theories, including to distin-
guish between scale invariant and conformal symmetries
[17]. It has also been demonstrated that computation of
tensor products and branching rules of irreducible repre-
sentations are machine-learnable [18]. Furthermore, a
recent work has investigated using generative adversarial
networks to learn transformations that preserve the mea-
sured probability density function of a random process
[19]. Here we are interested in a variation to this problem,
testing for the presence of a symmetry in a dataset that
samples a patch of a function whose domain has a high
dimensionality.
The use of NN for the detection of symmetries in such

a context has previously been considered by [20,21] for
translations, discrete symmetries, and SOðNÞ ≃ SUðN − 1Þ
with N < 3. The methodology in this paper differs from the
approaches taken in Refs. [20,21] in two important aspects.
First, points related by a symmetry transformation are
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generated post-training. This implies that the local proper-
ties of the manifold can in principle be studied without
global knowledge of the manifold, or a large number of
close neighbors in the tangent space. Both of these
implications may prove to be a marked advantage in
datasets with large dimensionality. For example, no pre-
training stage of narrow bin definition and data categori-
zation is necessary. The fraction of data which is related
by the action of a single generator roughly scales like
1 − ðΔy=yÞd, where Δy is a narrow bin width in output
variable y and where d is the dimensionality of the dataset.
A further difference is that the methodology here can be
used to demonstrate the absence of a symmetry, such that
the probability of misidentification is minimized. With
sparser sampling the assumptions made about the sym-
metry transformation (for example its direction) may play
an increasingly important role, potentially leading to the
false identification of SOðNÞ symmetry. We demonstrate in
particular that our methodology can be used to show the
absence of SO(8) [and the presence of SU(3)] using the
nonlinear sigma model.

II. METHODOLOGY

To detect the Lie algebra, we take advantage of the fact
that the symmetry is continuous and locally defined. In the
presence of a symmetry, an infinitesimal transformation of
the fields of the form ϕi → ϕ0

i ¼ ϕi þ ϵTijϕj leads to a
transformation of the effective action of Oðϵ2Þ:

V → V þ ϵ

�∂V
∂ϕi

δϕi þ
∂V

∂ð∂μϕiÞ
δ∂μϕi

�
þOðϵ2Þ

⇒ V → V þOðϵ2Þ: ð1Þ

The Oðϵ2Þ and higher terms remain as the Lie algebra lives
in the tangent space of the Lie group’s manifold. They are
(for simplicity focusing on a single multiplet without
derivative interactions):

V → V þ ϵ2
∂2V
∂ϕi

2
ðδϕiÞ2 þOðϵ3Þ: ð2Þ

A neural network can be used to interpolate a dataset and
make predictions for the transformed fields. Then, if the
symmetry is present, we should find

ðΔVÞNN≡
����VNNðϕ0

iÞ − VðϕiÞ
VðϕiÞ

����
¼ ϵ2

V 00
NNðϕiÞ
VðϕiÞ

ðδϕjÞ2 þ
E%

100%
þOðϵ3Þ; ð3Þ

where

E% ¼
����VNNðϕiÞ − VðϕiÞ

VðϕiÞ
���� × 100% ð4Þ

is the absolute percentage error of the NN on the validation
set, ϕ is a datapoint in the validation set, ϕ0 its image
under the transformation to be tested, and VNNðϕ0

iÞ is the
NN prediction of the transformed field. As ϕi is part of the
dataset, VðϕiÞ is known and does not need to be predicted
by the network. Importantly, the ϵ2 scaling is independent
of the normalization, and V 00

NNðϕiÞðTijϕjÞ2=VðϕiÞ ∼ 1

approximates the a priori unknown coefficients in the
expansion.

III. MODELS

We use as inspiration a BSM scenario of a new scale of
spontaneous symmetry breaking (SSB) that leaves behind
Nambu-Goldstone boson (NGB) fields.1 These would
generically be the lightest fields and a reasonable guess
as the earliest indication of the new physics. The sym-
metries exhibited by NGB interactions would then be a
probe of the structure of the theory at or above the
symmetry breaking scale.
The interactions of the NGBs are parametrized by

low-energy effective theories of spontaneously broken
symmetries. We will focus on two such benchmark models,
the linear and nonlinear Σ models.

A. Nonlinear Σ model

The nonlinear Σ model (NLΣM) is given by:

L ¼ f2

4
trð∂μΣ∂μΣ†Þ; Σ ¼ exp ðiπata=fÞ: ð5Þ

which has a nonlinearly realized SUðNÞL × SUðNÞR chiral
symmetry and a preserved SUðNÞF flavor symmetry below
the SSB scale f.
As the flavor symmetry is manifest order by order in f,

we can expand to Oð1=f2Þ to obtain:

V ¼ −
1

24f2
½∂μπ

aπb∂μπcπd − πa∂μπ
b∂μπcπd�trðtatbtctdÞ:

ð6Þ

The pions of (6) are in the adjoint representation of
SUðNÞF, and transform as

πa → πa þ ϵfabcΘbπc; ð7Þ

1In a realistic model, explicit breaking of the nonlinearly
realized symmetry would lift the NGB masses, and these would
actually be pNGBs. We leave a study of explicit breaking to
future work, and will refer to these fields as NGBs. Note that the
linearly realized flavor symmetry studied here could remain
preserved under such explicit breaking.
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where ϵΘa gives a set of infinitesimal transformation
parameters. The fabc are the structure constants of SUðNÞ

½ta; tb� ¼ ifabctc; ð8Þ

which form the Lie algebra. Under the transformation
in (7), the potential changes as V → V þOðϵ2Þ.
Note that for N ≤ 2, SUðNÞ ≃ SOðN − 1Þ. Our goal is to

identify the SUðNÞ flavor symmetry of the NLΣM, and in
general SUðNÞwill not be isomorphic to any SOðNÞ group.
Consider the NLΣM with the lowest SUðN > 2Þ flavor
symmetry. In this case the pions form an 8-plet in the
adjoint representation of SUð3Þ, but could also be rotated
under SOð8Þ. Acting an SOð8Þ transformation on these
pions gives

πi → Rijπj ¼ πi þ ϵTa
ijΘaπj þOðϵ2Þ; ð9Þ

where Ta are the generators of the SOð8Þ Lie algebra. This
yields

V → V þOðϵÞ; ð10Þ

as one would expect for an infinitesimal transformation not
associated with a symmetry of the theory. The ability to
disentangle SUð3Þ from SOð8Þ is thus required to detect the
correct symmetry present in the NLΣM.
To summarize, the NLΣM with an N ¼ 3 flavor

symmetry changes as:

V ⟶
SUð3Þ

V þOðϵ2Þ symmetry present

V ⟶
SOð8Þ

V þOðϵÞ symmetry absent ð11Þ

under SUð3Þ and SOð8Þ transformations of the πa fields.
This behavior will be exploited in our symmetry detection
strategy below.

B. Linear Σ model

The same symmetry pattern SUðNÞL × SUðNÞR →
SUðNÞF can be described by the linear Σ model (LΣM),
given by

L ¼ trð∂μΣ∂μΣ†Þ þm2
ΣtrΣΣ† þ ðμΣ detΣþ H:c:Þ

−
λ

2
ðtrΣΣ†Þ2 − κ

2
trΣΣ†ΣΣ†; ð12Þ

where

Σij ¼
φþ iη0ffiffiffiffiffiffiffi

2N
p þ Xataij þ iπataij: ð13Þ

Working from the assumption that the NGB fields will
be the lightest, we integrate out the heavy X, φ fields

associated with unbroken generators. For simplicity, we
assume sufficient symmetry breaking effects to lift
the mass of the η0 field enough so that it may also
be integrated out.2 This leaves only the pion field
interactions:

L ¼ 1

2
∂μπ

a∂μπa þ 1

2
m2

Σπ
aπa þ λ

8
ðπaπaÞ2

þ κ

2
trðtatbtctdÞπaπbπcπd: ð14Þ

This potential is again invariant under the SUðNÞ
transformations of (7). Unlike the NLΣM, however,
the potential in (14) is also invariant under an SOð8Þ
symmetry for N ¼ 3 flavors:

VLΣM ⟶
SUð3Þ

VLΣM þOðϵ2Þ

VLΣM ⟶
SOð8Þ

VLΣM þOðϵ2Þ: ð15Þ

We therefore expect to be able to detect the presence
of both symmetries. It will be useful to contrast a
symmetry transformation with a nonsymmetric trans-
formation. For this purpose we use the simple trans-
formation:

πi → πi þ ϵijπj; ϵij ¼ ϵ ×
1

n2
for all i; j; ð16Þ

where n is the number of π fields. This transformation
does not correspond to any symmetry and changes the
potential as VLΣM → VLΣM þOðϵÞ. We will refer to this
transformation as arb(8) in the rest of this paper.

IV. NEURAL NETWORK

The methodology proposed above uses a sequential
feed-forward neural network to perform regression. As a
result of the universal approximation theorem (UAT)
[22,23], there is no theoretical limit to the accuracy
with which a neural network with a single hidden layer
and enough neurons can approximate any function.
Moreover, as was recently demonstrated in [3], hidden
layers can increase the interpolating abilities of the NN
(the LΣM (13) and NLΣM (6) SU(3) potentials contain
80 and 143 terms from 8 and 16 dimensional input
respectively). In this section we report on neural net-
work’s architecture and hyperparameters used in the
analysis below. We motivate these choices in the
Supplemental Material [24].

2If (13) describes the low energy theory behavior of QCD-like
confinement of some non-Abelian gauge field, the corresponding
η0 would generically acquire a mass of the order of mX;φ due to
explicit Uð1ÞA breaking from instanton effects.
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To create our neural networks we used the Keras [25]
library. The neural networks used had 8 hidden layers
with 512 neurons, with hyperparameters as in Table I
but we observed no strong dependence on this archi-
tecture. We found the best performance with an adaptive
learning rate activation function with a small initial
learning rate. No markers of overtraining were observed.
The training data was generated using uniform sampling

in jϕj1=4, where ϕ ¼ fπ; ∂μπg represents an input field.
This distribution of input points was chosen to get an
approximately Gaussian distribution in VðϕÞ. We found
that the network’s Ē% performance scaled monotonically
with the training set size, as expected. Notably, the
performance was inversely correlated with batch size >8,
which we attribute to the network effectively averaging out
important features of the manifold.

V. SYMMETRY DETECTION

After training, we use the neural network to predict
ðΔVÞNN (3) for the validation data. In the presence of a
symmetry, the converged neural network should predict
ðΔVÞNN ∝ ϵn with n ≥ 2 at leading order in ϵ; in its
absence, the leading term is n ¼ 1. We can therefore
deduce the presence of a symmetry from the absence of
linear scaling for a large enough ϵ-range of predictions.
The noise due to the neural network loss function is

typically correlated with the magnitude of the input
vectors jϕj and depends on details of the sampling.3 As
the magnitude of the transformation ϵ is chosen inde-
pendently of the input data, the neural network noise is
in principle uncorrelated with ϵ. Then, the “error” in the
prediction (3) for a converged network is given by

error ¼ ðΔVÞNN − ðΔVÞtruth ¼
VNNðϕ0Þ − Vðϕ0Þ

VðϕÞ

∼ ð1þ ϵnÞVNNðϕÞ − VðϕÞ
VðϕÞ þOðϵnþ1Þ

¼ ð1þ ϵnÞ Ē%

100%
þOðϵnþ1Þ ð17Þ

We point out in particular that in the case of a symmetry
transformation, no linear scaling is introduced in the
error. Furthermore, we expect the scaling to become flat
in ϵ for ϵn ≲ Ē%=100%.
We demonstrate the scaling of our converged network

with a simple polynomial fit ðΔVÞNN ¼ P
2
i¼0 aiϵ

i on a
test set of 100 evenly spaced points in logspace in the
interval ϵ ¼ ½10−3; 1�. For each value in ϵ, we find ΔV
by averaging over 2000 transformations where the
original points in field space are randomly chosen from
our validation set. We plot the data points corresponding
to the obtained values for ðΔVÞNN and ðΔVÞtruth from
SO(8) and SU(3) transformations in the NLΣM in
Fig. 1. We give the resulting fits for both models
(NLΣM and LΣM) in Table II.
Both Fig. 1 and the fit coefficients in Table II demon-

strate that there is a constant error in ðΔVÞNN which
approximately corresponds to the value of Ē% for the
network. Even by eye one can identify the linear or
quadratic scaling in ΔV from Fig. 1. We find that we
can correctly show that a1 ≪ a2 for the SU(3) trans-
formations in the NLΣM, and for both SU(3) and SO(8)
in the LΣM model. We also correctly exclude a1 ¼ 0 for
SO(8) in the NLΣM, and for the arbitrary transformation
(16) in the LΣM.
We also check that linear scaling in ϵ doesn’t appear

for the ϵ range we consider. To test this, we construct a
sliding window in ϵ with a width corresponding to an
order of magnitude in logspace. On this window we
evaluate our simple polynomial fit on our data points for

FIG. 1. The value of ðΔVÞtruth or ðΔVÞNN as a function of ϵ for
the NLΣM (6). The horizontal red line indicates the converged
Ē%=100%, which corresponds to the expected noise floor for
ðΔVÞNN. Near ϵ → 1 higher order terms in the expansion (3)
become important. Error bars on the data points correspond to the
standard error on the mean of ΔV obtained from all trans-
formations performed with a given ϵ. Note that the error bars on
most data points are very small.

TABLE I. Neural network hyperparameters.

Hyperparameter Value

Hidden layers 8
Neurons=layer 512
Optimizer Adam
Learning rate 10−3, β1 ¼ 0.9, β2 ¼ 0.99
Loss function MAPE
Training epochs 215
Training set size 106 × 0.9
Batch size 16

3This can in principle be utilized by only computing ðΔVÞNN
on data points ϕ for which the NN error VNNðϕÞ − VðϕÞ is
smaller than some tolerance δ < Ē%=100%.
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ΔV. In Fig. 2 we plot the resulting values for a1 as a
function of ϵ. In both the NLΣM and LΣM we find that
for transformations that preserve a symmetry, both
ðΔVÞtruth and ðΔVÞNN are consistent with a1 ¼ 0 for
all ϵ≲ 1, whereas for other transformations a1 ¼ 0 is
excluded for a significant range of ϵ ≪ 1.

VI. RESULTS AND DISCUSSION

In this work we have proposed and demonstrated a
method to detect a Lie group symmetry in a dataset using
regression by an artificial NN. The NN was trained to
replicate Vðϕ; ∂μϕÞ given training data in the form of
fϕ; ∂μϕ; Vg. The symmetry was then tested by measuring
the NN response to an OðϵÞ transformation of the input
fields according to the Lie algebra associated with the Lie
group symmetry, effectively augmenting the dataset. We
used this method to test for SOð8Þ and SUð3Þ symmetries
in the NLΣM and LΣM, see Fig. 1. As expected, we found
the NLΣM is symmetric under SUð3Þ transformations, but

is not invariant under SOð8Þ. For the LΣM, we detected the
presence of both SUð3Þ and SOð8Þ symmetries.
The method presented here takes advantage of the fact

that the Lie algebra lives in the tangent space of the group’s
manifold. This mitigates the importance of perfect inter-
polation as well as exact invariance under the full symmetry
group: a symmetric system’s true potential will not be
exactly invariant under the Lie algebra transformation, but
instead will exhibitOðϵ2Þ scaling. In contrast, a system that
lacks the symmetry will instead exhibit linearOðϵÞ scaling.
By ruling outOðϵÞ scaling, we can rule out the absence of a
symmetry.
The power of the neural network lies in the ability

to extend this method to more realistic scenarios in which
the symmetry is obscured. The next steps are to apply this
technique to recover the same symmetry from more
realistic data limited by minimal experimental signals or
contaminated by noise. Data from more realistic exper-
imental signals would not in general provide an ordering
for the NGB fields. The generators of SUðNÞ do not
commute with the operator that shuffles these fields, and so

TABLE II. Polynomial fit ðΔVÞNN ¼ P
2
i¼0 aiϵ

i over the full interval ϵ ¼ ½10−3; 1� quoted with 1σ error bars. It is
seen that a0 ∼ Ē%=100% and a1 is nonzero in the absence of symmetry.

Model Ē% fTag Truth? a0 a1 a2

LΣM 0.05% SO(8) ✓ ð4.18� 0.02Þ × 10−4 ð0.00� 9.07Þ × 10−5 0.390� 0.001
SU(3) ✓ ð4.14� 0.02Þ × 10−4 ð0.00� 1.13Þ × 10−4 0.588� 0.001
arb(8) ð2.19� 0.02Þ × 10−4 0.4001� 0.0001 ð6.50� 0.02Þ × 10−2

NLΣM 0.7% SO(8) ð6.74� 0.03Þ × 10−3 0.215� 0.002 0.691� 0.008
SU(3) ✓ ð6.71� 0.03Þ × 10−3 ð0.00� 1.02Þ × 10−3 0.758� 0.005

FIG. 2. Value of the coefficient a1 from the polynomial fit ðΔVÞNN ¼ P
2
i¼0 aiϵ

i in the NLΣM (6) (left) and LΣM (13) (right) applied
on a sliding window of ϵ. The size of the window is one order of magnitude in ϵ. We plot the value of a1 against the median value of ϵ
used in the fit. The shaded region corresponds to �1σ for the fit parameter.
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this method would only recover the symmetry in one of the
ðN2 − 1Þ! combinations of shuffled NGB fields.4 For
SUð3Þ, we are able to reorder the shuffled fields by
exploiting properties of members of the Cartan subalgebra,
T3 and T8. This trick may be formalized and extended to
general SUðNÞ or even general Lie groups, but we leave
this for future study. In future work we will also study the

use of this method to recover approximate symmetries in
the presence of explicit breaking.
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