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We analyze the linear causality and stability of third-order fluid dynamics considering perturbations around
a global equilibrium state. We investigate the formulation derived from kinetic theory, using the Chapman-
Enskog expansion, in [Phys. Rev. C 88, 021903 (2013)] which was shown to be in excellent agreement with
solutions of the microscopic theory. From this analysis, we demonstrate that this theory is linearly acausal and
unstable and that such instabilities cannot be corrected by tuning the transport coefficients. We then propose a
modification of this theory, valid only in the linear regime, that can be constructed to be linearly causal and
stable and obtain the conditions the transport coefficients must satisfy in order for this to be the case.
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I. INTRODUCTION

Relativistic dissipative fluid dynamics has been widely
employed to describe the evolution of the hot and dense
matter created in ultrarelativistic heavy-ion collisions [1–3].
In these collisions a fluid is created under extreme con-
ditions, with gradients of temperature and fluid-velocity that
are not small when compared to the typical microscopic
scales of the system [4,5]. Naturally, the main goal of these
experiments is to study the properties of the novel state of
nuclear matter that is produced at the early stages of the
reaction [6,7]. Nevertheless, such experiments have also
triggered considerable research on how to derive relativistic
formulations of fluid dynamics from microscopic theory—a
topic that remains active until today [3,8].
The most intuitive approach to obtain a relativistic fluid-

dynamical formulation is to extend the nonrelativistic
Navier-Stokes theory, which has been successfully used
to describe a wide range of fluids. However, relativistic
formulations of Navier-Stokes theory [9,10] are known to
be ill-defined, since they contain intrinsic linear instabilities
when perturbed around an arbitrary global equilibrium
state [11–15], which renders the problem ill-posed1 [16].

Such linear instabilities were later shown to be related to the
acausal nature of these theories [11,14,15].
Fluid-dynamical formulations that can be constructed to

be linearly causal and stable were originally derived by Israel
and Stewart [17,18], the so-called second-order theories. In
contrast to Navier-Stokes theory, Israel-Stewart theory takes
into account the transient dynamics of the dissipative
currents, a procedure that can only be systematically
achieved with the inclusion of terms which are of second
order in gradients (Navier-Stokes theory only includes first-
order terms). Such theories are then constructed including all
possible second-order terms [19,20], in such a way that the
asymptotic solutions of the theory exactly matches, up to
second order, the result expected of a gradient expansion.
Israel-Stewart theory has been shown to be linearly causal
and stable, as long as their transport coefficients satisfy a set
of fundamental constraints [11,13–15,21]. More general
constraints for the causality of Israel-Stewart theory, valid
also in the nonlinear regime, were derived in Refs. [22,23].
Recently, it has been argued that the inclusion of terms

that are asymptotically of third order in gradients may be
required to describe the dynamics of a fluid in the extreme
conditions present at the early stages of heavy-ion collisions
[24]. For this purpose, third-order formulations of relativistic
dissipative fluid dynamics were also developed [25–28]. As
a matter of fact, in Ref. [24] it was shown, assuming a
Bjorken flow scenario [29], that the solutions of such third-
order theories are in better agreement with numerical
solutions of Boltzmann equation than the solutions of
Israel-Stewart theory itself when the shear viscosity is large.
So far, the linear causality and stability of relativistic third-

order fluid dynamics have not been fully explored. The goal
of this work is to perform this task, analyzing linear
perturbations of third-order fluid dynamics around an
arbitrary global equilibrium state. For this purpose, we
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1We remark that the authors of Ref. [16] disagree with the

conclusion that the instability and ill-posedness of relativistic
Navier-Stokes theory around global equilibrium renders the theory
unphysical. They argue that the solutions for the perturbations do
not depend continuously on the initial data and therefore do not
meet one of the three mathematical requirements to be posed with
regard to realistic physical problems. So, in their reasoning, it is the
type of the initial-value problem here which is physically unac-
ceptable, and not the instability of the resulting solution.
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follow the procedure outlined in Ref. [21], extending it to
third-order theories when required. We demonstrate that the
current formulation of third-order fluid dynamics shares the
same issues of relativistic Navier-Stokes theory, displaying
intrinsic instabilities when perturbed around global equilib-
rium. We then propose a small modification to these theories
that render them linearly causal and stable, and then derive
conditions that constrain the values the transport coefficients
can assume in order for these properties to be fulfilled.
This paper is organized as follows: in Sec. II we briefly

review the fundamentals of relativistic fluid dynamics.
In Sec. III, we consider perturbations around a global
equilibrium state and linearize the fluid-dynamical equa-
tions, expressing them in Fourier space. We further
decompose these equations into its transverse and longi-
tudinal degrees of freedom, following Ref. [21]. In
Sec. IV, we analyze the linear stability of the third-order
equation of motion for the shear-stress tensor proposed in
Ref. [26] and conclude this theory is linearly acausal and
unstable for perturbations on a moving fluid. Motivated by
this result, in Sec. V, we then propose a modified version
of this theory in order to address these problems, and
obtain the set of conditions the transport coefficients must
satisfy for this novel formulation to be linearly causal and
stable. All our conclusions are summarized in Sec. VI.
Throughout this paper, we use natural units, c ¼
kB ¼ ℏ ¼ 1, and adopt the mostly minus convention for
the Minkowski metric tensor, gμν ¼ diagðþ;−;−;−Þ.

II. CONSERVATION LAWS

The main equations of relativistic fluid dynamics are the
continuity equations related to the conservation of net-
charge and energy-momentum. For the sake of simplicity,
in this work we consider the net-charge to be locally zero
and disregard its dynamics. Furthermore, we shall also
neglect any contribution due to bulk viscous pressure. In
this case, the continuity equation describing energy-
momentum conservation is given by

∂μTμν ¼ ∂μðεuμuν − ΔμνPþ πμνÞ ¼ 0; ð1Þ

with Tμν ¼ εuμuν − ΔμνPþ πμν being the energy-
momentum tensor in the Landau frame [10], in which the
fluid 4-velocity is defined as an eigenvector of the energy-
momentum tensor, uμTμν ¼ εuν.2 Above, we defined the
fluid 4-velocity, uμ ¼ γð1;VÞ, with γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
being

the Lorentz factor, the projection operator onto the 3-space

orthogonal to uμ, Δμν ¼ gμν − uμuν, the energy density, ε,
the thermodynamic pressure, PðεÞ, and the shear-stress
tensor, πμν, which is orthogonal to the fluid 4-velocity,

uμπμν ¼ 0: ð2Þ

It is convenient to further decompose the conservation of
energy and momentum in terms of its components parallel
and orthogonal to the fluid 4-velocity. In this case one
obtains,

uν∂μTμν ¼ _εþ ðεþ PÞθ − παβσαβ ¼ 0; ð3Þ

Δλ
ν∂μTμν ¼ðεþPÞ _uλ−∇λP−πλβ _uβþΔλ

ν∇μπ
μν¼ 0; ð4Þ

where we defined the expansion rate, θ≡ ∂μuμ, the
comoving derivative, _A≡ uμ∂μA, the projected derivative
∇μ ≡ Δμν∂ν ≡ ∂hμi, and the shear tensor as σμν≡
Δμναβ∂αuβ. Here, we made use of the double, symmetric,
and traceless projection operator Δμν

αβ ¼ ðΔμ
αΔν

β þ Δμ
βΔν

αÞ=
2 − ΔμνΔαβ=3. Naturally, the conservation laws provide
equations of motion for the velocity field and energy
density and an additional equation of motion for the
shear-stress tensor is required for closure.

III. LINEARIZED EQUATIONS IN FOURIER
SPACE

We are interested in analyzing the stability of third-order
fluid-dynamical formulations in their linear regime. In
order to achieve this goal, we perform a linear stability
analysis, in which the system is assumed to be initially in a
global equilibrium state and then we perform small
perturbations on the hydrodynamic variables around such
state. These perturbations can be expressed as

ε ¼ ε0 þ δε; uμ ¼ uμ0 þ δuμ; πμν ¼ δπμν; ð5Þ

with ε0 being the energy density of the background system
and uμ0 being the background 4-velocity. Since the system is
taken to be initially in an equilibrium state, the shear-stress
tensor is the perturbation itself.
An essential requirement for a fluid-dynamical formu-

lation is stability, i.e., perturbations are damped with time
and thus the fluid goes back to its initial global equilibrium
state some time after being perturbed. On the other hand, in
an unstable theory, the perturbations would grow exponen-
tially with time and the system will never go back to its
initial equilibrium state.
The first step here is to derive the linearized equations

of motion from the conservation laws, Eqs. (3) and (4),
which read

D0

�
δε

ε0 þ P0

�
þ∇μ

0δuμ ¼ Oð2Þ ≈ 0; ð6Þ

2The Landau frame corresponds to a choice of matching
condition and defines the local rest frame of the fluid. In addition,
one also must define the physical meaning of temperature. This is
done by imposing that the energy density of the fluid in the local
rest frame, ε, is the thermodynamic energy density and is
determined in terms of the temperature by an equation of state,
εðTÞ. We remark that the choice of matching condition is
arbitrary and is usually chosen by convenience.
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D0δuμ −∇μ
0c

2
s

�
δε

ε0 þ P0

�
þ∇ν

0

δπμν
ε0 þ P0

¼ Oð2Þ ≈ 0; ð7Þ

where D0 ≡ uμ0∂μ is the comoving derivative with respect
to the background fluid velocity and ∇μ

0 ≡ Δμν
0 ∂ν is the

linearized projected derivative. It is possible to take the
perturbations to be as small as we desire, and thus second-
order or higher terms in the perturbations are neglected.
Furthermore, it is convenient to express the linearized

fluid-dynamical equations in Fourier space. We adopt the
following convention for the Fourier transform

M̃ðkμÞ ¼
Z

d4x expð−ixμkμÞMðxμÞ; ð8Þ

MðxμÞ ¼
Z

d4k
ð2πÞ4 expðixμk

μÞM̃ðkμÞ; ð9Þ

where kμ ¼ ðω;kÞ, with ω being the frequency and k the
wave vector. As proposed in Ref. [21], we shall write the
equations in terms of the covariant variables,

Ω≡ uμ0kμ; ð10Þ

κμ ≡ Δμν
0 kν; ð11Þ

which correspond to the frequency and wave vector in the
local rest frame of the unperturbed system, respectively. We
also introduce the covariant wave number as

κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−κμκμ

p
: ð12Þ

For the sake of convenience, throughout this work, we shall
always assume that the wave vector is parallel to the
unperturbed fluid velocity. Without loss of generality, we
assume that the background fluid velocity is in the x-axis.
This leads to uμ ¼ γð1; V; 0; 0Þ and kμ ¼ ðω; k; 0; 0Þ, and
hence

Ω ¼ γðω − VkÞ; ð13Þ

κ2 ¼ γ2ðωV − kÞ2: ð14Þ

We can now show that the Fourier transformed versions
of Eqs. (6) and (7) are written as

Ω
�

δε̃

ε0 þ P0

�
þ κμδũμ ¼ 0; ð15Þ

Ωδũμ − κμc2s

�
δε̃

ε0 þ P0

�
þ κν

δπ̃μν
ε0 þ P0

¼ 0: ð16Þ

Note that these equations are valid for any fluid-dynamical
formulation since the explicit form of the shear-stress tensor
was not specified. Therefore, it is now necessary to introduce

an equation of motion for πμν and include its linearized
Fourier transformed version to Eqs. (15) and (16). Then, we
can compute the dispersion relations associated with the
corresponding theory and obtain the conditions that are
required for such formulation to be linearly causal and stable.

IV. THIRD-ORDER FLUID DYNAMICS

This section is dedicated to the linear stability analysis of
the third-order formulation derived in Ref. [26]. In this work,
a third-order equation of motion for the shear-stress tensor is
obtained from the relativistic Boltzmann equation using the
Chapman-Enskog method, leading to the following dynami-
cal equation for the shear-stress tensor

_πhμνi ¼ 2
η

τπ
σμν −

1

τπ
πμν þ 4

35
∇hμðτπ∇απ

νiαÞ

−
2

7
∇αðτπ∇hμπνiαÞ − 1

7
∇αðτπ∇απhμνiÞ þ � � � ; ð17Þ

which corresponds to Eq. (16) of the aforementioned paper.
Note that the dots represent terms that are nonlinear and thus
do not contribute to the linear stability analysis that follows
and, hence, were omitted for the sake of convenience.
Naturally, a third-order equation of motion for the shear-
stress tensor has several additional terms that are not present
in the Israel-Stewart equations. In particular, the last three
terms on the right-hand side of Eq. (17) are linear contri-
butions of third-order which are absent in Israel-Stewart
theory. The primary goal of this section is to analyze the
effects that the inclusion of these terms have in the linear
causality and stability of the theory, since these properties are
well known when such terms are not present [11,13,15,21].
Considering the perturbations introduced in Eq. (5), the

linearized third-order equation of motion for the shear-
stress tensor becomes

D0δπ
μν þ 1

τπ
δπμν ¼ η

τπ

�
2∇ðμ

0 δu
νÞ −

2

3
Δμν

0 ∂λδuλ
�

−
1

7
τπ∇0

λ∇λ
0δπ

μν −
6

35
τπ∇0

λ

×

�
2∇ðμ

0 δπ
νÞλ −

1

3
Δμν

0 ∇0
βδπ

βλ

�
: ð18Þ

The last two terms on the right-hand side of the equation
above are corrections due to third-order contributions in the
equation of motion for the shear-stress tensor. At this point,
one may ask whether the inclusion of third-order terms in the
equation for the shear-stress tensor either maintains the
properties of linear causality and stability observed in Israel-
Stewart theory or yields novel constraints for the transport
coefficients.
In order to study themodes of the theory, it is first necessary

to calculate the linearized third-order equation of motion for
the shear-stress tensor in Fourier space, which reads
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iΩδπ̃μν þ 1

τπ
δπ̃μν ¼ i

η

τπ

�
2κðμδũνÞ −

2

3
Δμν

0 κλδũλ
�

−
1

7
τπκ

2δπ̃μν þ 6

35
κλτπ

×

�
κðμδπ̃νÞλ −

1

3
Δμν

0 κβδπ̃
βλ

�
: ð19Þ

The linear stability analyses performed throughout this
work will follow the procedure originally developed in
Ref. [21], in which the linearized fluid-dynamical equations
in Fourier space are decomposed into their transverse
(orthogonal to κμ) and longitudinal (parallel to κμ) compo-
nents. Such components decouple in the linear regime, and
the equations associated to each of them can be solved
independently, considerably simplifying the calculations.
For this purpose, we define the following projection operator
in Fourier onto the 3-space orthogonal to κμ,

Δμν
κ ≡ gμν þ κμκν

κ2
: ð20Þ

Then, a 4-vector can be decomposed in its transverse and
longitudinal components with respect to thewave 4-vector in
the local rest frame of the background system as

Aμ ¼ Akκμ þ Aμ
⊥; ð21Þ

with the longitudinal component being defined as Ak ¼
−κμAμ=κ while the transverse component is Aμ

⊥ ¼ Δμν
κ Aν. A

similar approach can be performed to decompose a traceless
rank two tensor. In this case, it is first essential to introduce
the double, symmetric, and traceless projection operator in
Fourier space as

Δμναβ
κ ¼ 1

2
ðΔμα

κ Δνβ
κ þ Δμβ

κ Δνα
κ Þ − 1

3
Δμν

κ Δαβ
κ : ð22Þ

Wherefore, the decomposition of an arbitrary traceless rank
two tensor Aμν can be performed as follows

Aμν ¼ Ak
κμκν

κ2
þ 1

3
AkΔ

μν
κ þ Aμ

⊥
κν

κ
þ Aν⊥

κμ

κ
þ Aμν

⊥ ; ð23Þ

with its respective projections being defined as Ak≡
κμκνAμν=κ2, Aμ

⊥ ≡ −κλΔμν
κ Aλν=κ, and Aμν

⊥ ≡ Δμναβ
κ Aαβ.

Thereby, the linearized equations for the conservation laws
in Fourier space, Eqs. (15) and (16), and the linearized
equation of motion for the shear-stress tensor in Fourier
space, Eq. (19), can be split into two different components
that decouple and can be solved independently, as it will be
shown in the next sections. It is then possible to obtain the
dispersion relations associated with the transverse and
longitudinal modes.

A. Transverse modes

In this section, we shall obtain and analyze the relevant
transverse modes of the third-order theory. First, note that
Eq. (15) is a scalar equation and therefore it has no
transverse component. On the other hand, the transverse
component of Eqs. (16) is obtained projecting it with Δλ

μ;κ,
and it is given by

Ω̂δũλ⊥ − κ̂
δπ̃λ⊥

ε0 þ P0

¼ 0: ð24Þ

For the sake of convenience, the variables here are rescaled
in terms of the hydrodynamic timescale τη ≡ η=ðε0 þ P0Þ
in order to work only with dimensionless variables,
Â ¼ A½τη�. Note that this equation couples with the partially
transverse component of δπ̃μν. We obtain the equation of
motion for this component by projecting Eq. (19) with
κμΔλ

ν;κ, leading to

�
iτ̂πΩ̂þ 8

35
τ̂2πκ̂

2 þ 1

�
δπ̃λ⊥

ε0 þ P0

− iκ̂δũλ⊥ ¼ 0: ð25Þ

These equations can be written in the following matrix form

�
iτ̂πΩ̂þ 8

35
τ̂2πκ̂

2 þ 1 −iκ̂

−κ̂ Ω̂

�� δπ̃μ⊥
ε0þP0

δûμ⊥

�
¼ 0; ð26Þ

which leads to the following dispersion relation

Ω̂
�
iτ̂πΩ̂þ 8

35
τ̂2πκ̂

2 þ 1

�
− iκ̂2 ¼ 0: ð27Þ

Note that if the quadratic term inside the parentheses—
which accounts for all linear third-order contributions—is
set to zero, one immediately recovers the dispersion
relation satisfied by the transverse modes of Israel-
Stewart theory considering only dissipation via shear-
stress, see Refs. [15,21].
The next step is to analyze whether the modes from the

third-order formulation proposed in Ref. [26] are linearly
stable and if the occurrence of additional terms in the
equation of motion for the shear-stress tensor yields new
constraints for the transport coefficients.

1. Perturbations on a static fluid

The first case that will be studied here is the one for
perturbations performed in a fluid at rest, i.e., when V ¼ 0
in Eqs. (13) and (14). In this case, Ω ¼ ω and κ ¼ k, and
the dispersion relation associated with the transverse modes
becomes simply
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ω̂

�
iτ̂πω̂þ 8

35
τ̂2π k̂

2 þ 1

�
− ik̂2 ¼ 0: ð28Þ

The solutions of this equation are

ω̂shear
T;� ¼ i

�1þ 8
35
τ̂2πk̂

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 8

35
τ̂2π k̂

2Þ2 − 4k̂2τ̂π
q

2τ̂π

�
: ð29Þ

In the small wave number limit, the transverse modes of the
theory can be written as

ω̂shear
T;− ¼ ik̂2 þ iτ̂π

�
1 −

8τ̂π
35

�
k̂4 þOðk̂6Þ; ð30Þ

ω̂shear
T;þ ¼ i

τ̂π
− i

�
1 −

8τ̂π
35

�
k̂2 þOðk̂4Þ: ð31Þ

Thus, there is the occurrence of one hydrodynamic and one
nonhydrodynamic mode and, in the small k̂ limit, they are
identical to the transverse modes of Israel-Stewart theory
[21]. In the large wave number limit, we have the following
asymptotic expansion,

ω̂shear
T;− ¼ 35

8τ̂2π
i −
�
35

8τ̂2π

�
2
�
1 −

35

8τ̂π

�
i

k̂2
þO

�
1

k̂4

�
; ð32Þ

ω̂shear
T;þ ¼ 8

35
iτ̂πk̂

2 þ i
8τ̂π

�
1 −

35

8τ̂π

�
þO

�
1

k̂2

�
: ð33Þ

We thus see that the hydrodynamic mode, ω̂shear
T;− , becomes

constant at asymptotically large values of wave number, a
behavior also observed in Israel-Stewart theory. However,
unlike the shear modes of Israel-Stewart theory, the non-
hydrodynamic mode of the third-order theory proposed in
Ref. [26] does not saturate at large wave number, i.e., it

keeps increasing as the wave number increases. As a matter
of fact, the nonhydrodynamic mode, ω̂shear

T;þ , behaves as
ω ∼ ik2, as k → ∞—a behavior often associated with
parabolic theories. At this point, we can at least conclude
that the theory is not hyperbolic and, thus, should display
an acausal behavior. These modes are displayed in Fig. 1
(red dashed lines), considering τ̂π ¼ 5 [20], where we also
display the shear modes of Israel-Stewart theory (solid
black lines), for the sake of comparison. We finally note
that, for perturbations on a static fluid, the transverse modes
of the third-order theory are purely imaginary and stable.

2. Perturbations on a moving fluid

In order to analyze a more interesting, and intrinsically
relativistic, case, we now consider perturbations on a
moving fluid. This is the case in which instabilities usually
arise in relativistic Navier-Stokes theory [11,12] and it is
important to verify whether they will appear in the third-
order theory presented here as well. As it was already
mentioned, we assume that the background fluid velocity is
parallel to the wave vector. In this case, the dispersion
relation that must be solved is obtained by inserting
Eqs. (13) and (14) into Eq. (27), leading to

γðω̂ − Vk̂Þ
�
iτ̂πγðω̂ − Vk̂Þ þ 8

35
τ̂2πγ

2ðω̂V − k̂Þ2 þ 1

�
− iγ2ðω̂V − k̂Þ2 ¼ 0: ð34Þ

One can immediately note that perturbations on top of a
moving fluid lead to the occurrence of an additional mode.
This is a remarkably problematic feature usually carried by
parabolic formulations and is also observed in relativistic
Navier-Stokes theory and the relativistic diffusion equation.
The general solutions for these modes can in principle be

found, but are rather complicated in form. For the sake of
convenience, we initially restrict our discussion to the

FIG. 1. Imaginary and real parts of the transverse modes of Israel-Stewart theory (solid black lines) and third-order fluid dynamics (red
dashed lines), considering τ̂π ¼ 5 [20], for perturbations on a static background fluid.
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asymptotic form of these modes. In the small wave number
limit, we obtain the following three solutions,

ω̂shear
T;− ¼ Vk̂þ ik̂2

γ
þOðk̂3Þ; ð35Þ

ω̂shear
T;þ ¼ 35i

16γτ̂2πV2

2
4ðV2 − τ̂πÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2 − τ̂πÞ2 þ

32

35
V2τ̂2π

r 3
5

þOðk̂Þ; ð36Þ

ω̂shear
T;new ¼ 35i

16γτ̂2πV2

2
4ðV2 − τ̂πÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2 − τ̂πÞ2 þ

32

35
V2τ̂2π

r 3
5

þOðk̂Þ: ð37Þ

The first two modes correspond to boosted versions of the
modes found in (30) and (31). This can be immediately seen
by taking the limit V → 0 in the equations above, which
effectively recovers solutions (30) and (31). The mode ωshear

T;new
has no analogue for perturbations around a fluid at rest and, in
this sense, is novel. Linear stability dictates that the imaginary
part of these modes must be positive for all possible physical
values of the background velocity, especially in the vanishing
wave number limit. Otherwise, homogeneous perturbations
in a given system would increase exponentially, a clearly
nonphysical behavior. Since the term inside the square root in

the above equation is positive definite and greater than the
term outside it, this new mode has always a negative
imaginary part at k̂ ¼ 0 and, thus, is unstable.
For the sake of illustration, we plot the transverse modes

for perturbations on a moving fluid, solutions of Eq. (34),
as a function of the wave number k in Fig. 2, considering
τ̂π ¼ 5 [20], for several values of background velocity. We
see that the additional mode that appears for perturbations
on a moving fluid remains unstable not only for vanishing
wave number, but also for a wide range of k.
The acausality and instability observed on the new

nonhydrodynamic mode for perturbations on a moving
fluid, ω̂shear

T;new, occur independently of the choice of transport
coefficients and thus cannot be fixed by simply adjusting
their values.

B. Longitudinal modes

We now study the dispersion relations associated with the
longitudinal modes of the theory. The longitudinal projec-
tions of Eqs. (16) and (19) are obtained by projecting them
with κμ and κμκν, respectively. Note that Eq. (15) is already
written in terms of longitudinal components. Hence, the
equations of motion related to the longitudinal degrees of
freedom can be summarized as follows

Ω̂
δε̃

ε0 þ P0

− κ̂δũk ¼ 0; ð38Þ

FIG. 2. Imaginary and real parts of the transverse modes, considering τ̂π ¼ 5 [20], for three different values of background velocity
V ¼ 0.1, V ¼ 0.4, and V ¼ 0.9.

C. V. BRITO and G. S. DENICOL PHYS. REV. D 105, 096026 (2022)

096026-6



Ω̂δũk − κ̂c2s
δε̃

ε0 þ P0

− κ̂
δπ̃k

ε0 þ P0

¼ 0; ð39Þ
�
iτ̂πΩ̂þ 9

35
τ̂2πκ̂

2 þ 1

�
δπ̃k

ε0 þ P0

−
4i
3
κ̂δũk ¼ 0: ð40Þ

It is possible to write the equations for the longitudinal
modes in the following matrix form

0
B@
iτ̂πΩ̂þ 9

35
τ̂2πκ̂

2þ 1 −i 4
3
κ̂ 0

−κ̂ Ω̂ −c2s κ̂
0 −κ̂ Ω̂

1
CA
0
BBB@

δπ̃k
ε0þP0

δũk
δε

ε0þP0

1
CCCA¼ 0; ð41Þ

where nontrivial solutions are obtained when the determi-
nant vanishes, leading to the following dispersion relation,

ðΩ̂2 − c2s κ̂2Þ
�
iτ̂πΩ̂þ 9

35
τ̂2πκ̂

2 þ 1

�
−
4i
3
Ω̂κ̂2 ¼ 0: ð42Þ

Note that if the term that contains third-order contributions is
set to zero, one immediately recovers the dispersion relation
of Israel-Stewart theory when only dissipation via shear-
stress tensor is considered [15,21]. We shall now analyze in
detail the solutions of this equation.

1. Perturbations on a static fluid

As it was done so far in this work, it is convenient to
begin the linear stability analysis by looking at the modes
for perturbations on a static background fluid. In this case,
the dispersion relation associated with the longitudinal
modes, Eq. (42), then reads

ðω̂2 − c2s k̂
2Þ
�
iτ̂πω̂þ 9

35
τ̂2π k̂

2 þ 1

�
−
4i
3
ω̂k̂2 ¼ 0: ð43Þ

In the small wave number, the longitudinal modes of the
theory can be expressed as

ω̂sound
� ¼ �csk̂þ

2i
3
k̂2 � 2ð3τ̂πc2s − 1Þ

9cs
k̂3 þOðk̂4Þ; ð44Þ

ω̂shear
L ¼ i

τ̂π
þ i

�
9τ̂π
35

−
4

3

�
k̂2 þOðk̂4Þ: ð45Þ

Note the occurrence of two hydrodynamic and one
nonhydrodynamic mode, which are identical to the longi-
tudinal modes of Israel-Stewart theory [21] in the small
wave number limit. Furthermore, in the large wave
number limit the longitudinal modes of the third-order
theory read

ω̂sound
� ¼ �csk̂þ

70i
27τ̂2π

� 2450ð3τ̂πc2s − 1Þ
729τ̂4πcsk̂

; ð46Þ

ω̂shear
L ¼ 9i

35
τ̂πk̂

2 þ ið27τ̂π − 140Þ
27τ̂2π

þO
�
1

k̂2

�
: ð47Þ

Surprisingly, due to the inclusion of third-order terms, in the
large wave number limit, the dominant part of the hydro-
dynamic modes, ω̂sound

� , is also �csk̂—thus, the asymptotic
group velocity associated with these modes is always
subluminal. Also, as it was first observed for the transverse
modes of the theory, we see that the nonhydrodynamic mode
behaves as ω̂shear

L ∼ ik̂2 in the large wave number limit and
thus keeps increasing as the wave number is increased, a
behavior commonly displayed by parabolic formulations,
such as the diffusion equation.
The solutions of Eq. (43) are displayed in Fig. 3 (red

dashed lines), where we also display the longitudinal
modes of Israel-Stewart theory (black solid lines), consid-
ering τ̂π ¼ 5, for the sake of a quantitative comparison.

FIG. 3. Imaginary and real parts of the longitudinal modes of Israel-Stewart theory (solid black lines) and third-order fluid dynamics
(red dashed lines), considering τ̂π ¼ 5 [20], for perturbations on a static background, in the ultrarelativistic regime, c2s ¼ 1=3.
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There are two hydrodynamic modes, which have degen-
erated imaginary parts, and a single nonhydrodynamic
mode, as it can be seen in the left panel. As it can be
observed from Figs. 1 and 3, it is possible to conclude that
both transverse and longitudinal modes of the third-order
formulation discussed here, respectively, are well behaved
for perturbations on a static background fluid.

2. Perturbations on a moving fluid

We now consider perturbations on a moving fluid. As it
was done so far in this work, we consider a background
fluid velocity that is parallel to the wave vector, which
further leads to Eqs. (13) and (14). In this case, the
dispersion relation associated with the longitudinal modes
reads

½γ2ðω̂ − Vk̂Þ2 − c2sγ2ðω̂V − k̂Þ2�

×

�
iτ̂πγðω̂ − Vk̂Þ þ 9

35
τ̂2πγ

2ðω̂V − k̂Þ2 þ 1

�

−
4i
3
γ3ðω̂ − Vk̂Þðω̂V − k̂Þ2 ¼ 0: ð48Þ

As it was also observed for the transverse modes, pertur-
bations on top of a moving fluid yield an additional
nonhydrodynamic mode. Thus, there are now two hydro-
dynamic and two nonhydrodynamic modes. Obtaining
these modes for arbitrary values of wave number can be
an extremely complicated task, and we shall retain our-
selves to the study of their asymptotic limits, as it was done
in the analysis of the transverse modes of the theory. In the
small wave number limit, the longitudinal modes read

ω̂sound
� ¼ V � cs

1� csV
k̂þOðk̂2Þ; ð49Þ

ω̂shear
L ¼ 35i

54γ

2
643τ̂π − 4V2 − 3τ̂πV2c2s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3τ̂π − 4V2 − 3τ̂πV2c2sÞ2 þ 324

35
ð1 − c2sV2Þ2τ̂2πV2

q
τ̂2πV2ðc2sV2 − 1Þ

3
75þOðk̂Þ; ð50Þ

ω̂shear
L;new ¼ 35i

54γ

2
643τ̂π − 4V2 − 3τ̂πV2c2s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3τ̂π − 4V2 − 3τ̂πV2c2sÞ2 þ 324

35
ð1 − c2sV2Þ2τ̂2πV2

q
τ̂2πV2ðc2sV2 − 1Þ

3
75þOðk̂Þ: ð51Þ

The hydrodynamic modes for perturbations on a moving
fluid can be understood using the relativistic velocity
addition rule. On the other hand, the nonhydrodynamic
modes are less trivial, since we even see the appearance of a
new solution. As already stated, linear stability dictates that
the imaginary part of these modes must be positive for all
possible values the background velocity can assume, espe-
cially in the vanishing wave number limit. Therefore, the
stability of these modes is guaranteed if both numerator and
denominator have the same sign. We then require that neither
the numerator nor the denominator change their signs for any
value of the background velocity in the causal interval,
0 ≤ V ≤ 1, otherwise leading to a problematic discontinuity
in the modes. In this case, it is straightforward to see that the
denominator must be always negative. Therefore, a stable
mode is obtained if the numerator is negative as well.
However, since the term inside the square root is always
greater than the term outside it, the numerator is positive
definite and thus the mode ω̂shear

L;new is always unstable. This
mode is exactly the new solution that appears when
considering perturbations on a moving fluid. As it was first
observed for the transverse mode ω̂shear

T;new, the instability of

the mode ω̂shear
L;new cannot be fixed by tuning any of the

transport coefficients existing in the theory.
The longitudinal modes for perturbations on a moving

fluid, solutions of Eq. (48), are displayed in Fig. 4,
considering τ̂π ¼ 5 [20], for several values of background
velocity in the ultrarelativistic limit, c2s ¼ 1=3.
As it was expected from the analysis performed for the

transverse modes, the new nonhydrodynamic mode that
appears for perturbations on a moving fluid is unstable not
only in the vanishing wave number limit, but also for any
value of k. On the other hand, the modes that are already
present for perturbations on a static background fluid
remain stable for any value of wave number and back-
ground velocity.
The aforementioned instability is similar to what is

observed in relativistic Navier-Stokes theory. In this con-
text, it is intuitive to employ an approach analogous to the
one proposed by Maxwell–Cattaneo [30,31] in order to
obtain a linearly causal and stable equation of motion for
gradients of shear-stress tensor. In this scenario, one would
obtain an alternative third-order formulation in which these
problems should no be longer present. In the next section
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we analyze how is it possible to modify this theory and the
implications on its linear stability.

V. MODIFIED THIRD-ORDER FLUID DYNAMICS

In the last section, the third-order fluid-dynamical
formulation proposed in Ref. [26] was shown to be linearly
unstable. In this section, we propose a modified version of
this theory that can be constructed to be linearly causal and
stable. Note that the third-order equation of motion for
shear-stress tensor was originally written in Eq. (17) as

_πhμνi ¼ 2
η

τπ
σμν −

1

τπ
πμν þ 4

35
∇hμðτπ∇απ

νiαÞ

−
2

7
∇αðτπ∇hμπνiαÞ − 1

7
∇αðτπ∇απhμνiÞ þ � � � ; ð52Þ

with the dots denoting contribution of nonlinear terms. The
main reason for the occurrence of additional unstablemodes

for perturbations on a moving fluid are the second-order
spacelike derivatives of the shear-stress tensor on the right-
hand side (while the equation only contains first-order
timelike derivatives). If one then performs a Lorentz boost,
such second-order spatial derivatives will lead to the
appearance of second-order time derivatives and modify
fundamental mathematical properties of the partial differ-
ential equation. In Fourier space, this manifests as the
appearance of additional modes in the theory.
One way to remove this problem is to convert all

gradients of the shear-stress tensor into an independent
dynamical variable

∇hαπμνi → ραμν; ð53Þ

with the brackets denoting the contraction with a triple
symmetric traceless projection operator onto the space
orthogonal to the 4-velocity, ∇hμπνλi ≡ Δμνλ

αβγ∇hαπβγi. This
projection operator is a sixth-rank tensor, defined as follows

Δμνλ
αβρ ≡ 1

6
½Δμ

αðΔν
βΔλ

ρ þ Δν
ρΔλ

βÞ þ Δμ
βðΔν

αΔλ
ρ þ Δν

ρΔλ
αÞ þ Δμ

ρðΔν
αΔλ

β þ Δν
βΔλ

αÞ�

−
1

15
½ΔμνðΔλ

αΔβρ þ Δλ
βΔαρ þ Δλ

ρΔαβÞ þ ΔμλðΔν
αΔβρ þ Δν

βΔαρ þ Δν
ρΔαβÞ

þ ΔνλðΔμ
αΔβρ þ Δμ

βΔαρ þ Δμ
ρΔαβÞ�: ð54Þ

FIG. 4. Imaginary and real parts of the longitudinal modes, considering τ̂π ¼ 5 [20], for three different values of background velocity
V ¼ 0.1, V ¼ 0.4, and V ¼ 0.9, in the ultrarelativistic limit c2s ¼ 1=3.
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In this case, Eq. (52) is rewritten in the following form

τπ _π
hμνi þ πhμνi ¼ 2ησμν − τπ∇αρ

αμν þ � � � ; ð55Þ

where the dots once again denote all possible nonlinear
terms that do not contribute to a linear stability analysis.
The next step is to impose that ρμνλ is not simply

proportional to gradients of the shear-stress tensor, but
instead relaxes to such quantities exponentially,

τρ _ρ
hμνλi þ ρμνλ ¼ 3

7
ηρ∇hμπνλi þ nonlinear terms; ð56Þ

with τρ being introduced as a novel relaxation time and ηρ
as an effective viscosity coefficient associated with the new
hydrodynamic variable ρμνλ. Note that if we take τρ → 0
and ηρ → τπ , we recover the original version of the theory
in the linear regime—in particular, the factor 3=7 in the
right-hand side of Eq. (56) is essential to ensure this. Once
again, we remark that a complete nonlinear theory will not
be formally derived in this work, and we shall focus on the
causality and stability of the novel formulation in the linear
regime. Finally, we also remark that an analogous equation
of motion for ρμνλ can be derived from the Boltzmann
equation, see Ref. [20]. Above, we have assumed the
simplest form ηρ can have—one could also assume it to be a
rank-six tensor.
Next, we consider a system initially in a global equi-

librium state and proceed to perform small perturbations
around such state. In this case, we must extend the previous
linear stability analysis to also consider perturbations
in ρμνλ,

ε ¼ ε0 þ δε; uμ ¼ uμ0 þ δuμ;

πμν ¼ δπμν; ρμνλ ¼ δρμνλ: ð57Þ

In this case, the linearized Eqs. (55) and (56) become

τπD0δπ
μν þ δπμν ¼ η

�
∇μ

0δu
ν þ∇ν

0δu
μ −

2

3
Δμν

0 ∂λδuλ
�

− τπ∇0
αδρ

αμν; ð58Þ

τρD0δρ
μνλ þ δρμνλ ¼ ηρ

�
1

7
ð∇λ

0δπ
μν þ∇ν

0δπ
μλ þ∇μ

0δπ
νλÞ

þ −
2

35
ðΔμν

0 ∇0
αδπ

λα þ Δμλ
0 ∇0

αδπ
να

þ Δνλ
0 ∇0

αδπ
μαÞ
�
: ð59Þ

The next step is to calculate the Fourier transform of
Eqs. (58) and (59), which read

ðiΩτπ þ 1Þδπ̃μν ¼ iη
�
κμδũν þ κνδũμ −

2

3
Δμνκλδũλ

�
− iτπκαδρ̃αμν; ð60Þ

ðiΩτρ þ 1Þδρ̃μνλ ¼ iηρ

�
1

7
ðκλδπ̃μν þ κνδπ̃μλ þ κμδπ̃νλÞ

þ −
2

35
ðΔμνκαδπ̃

λα þ Δμλκαδπ̃
να

þ Δνλκαδπ̃
μαÞ
�
: ð61Þ

Note that, on the right-hand side of Eq. (60), only the
projection καδρ̃αμν appears. In order to obtain this projection,
we must contract Eq. (61) with κμ,

ðiΩτρ þ 1Þκμδρ̃μνλ ¼ −
i
7
ηρκ

2δπ̃νλ

þ 3i
35

ηρðκακνδπ̃λα þ κακ
λδπ̃ναÞ

−
2i
35

ηρΔνλκακβδπ̃
αβ: ð62Þ

As it was first performed in the last section, the linear
stability analysis of the novel third-order theory shall
be divided in the study of its transverse and longitudinal
modes, employing the procedure first developed in
Ref. [21].

A. Transverse modes

For the sake of consistency, we shall begin looking at the
transverse modes of the novel formulation. First, we
compute the transverse component of Eq. (62), which is
obtained by the following projection

�
−
κμ
κ
Δα

ν;κ

�
κλδρ̃

μνλ ¼ −
8i
35

ηρκ
2

iΩτρ þ 1
δπ̃α⊥: ð63Þ

Therefore, inserting this equation in the partially transverse
projection of Eq. (60), we obtain

�
iτ̂πΩ̂þ 8

35

η̂ρτ̂πκ̂
2

iΩ̂τ̂ρ þ 1
þ 1

�
δπ̃μ⊥

ε0 þ P0

− iκ̂δũμ⊥ ¼ 0: ð64Þ

Naturally, the transverse projection of Eq. (16) remains
unchanged and is given by Eq. (24). Therefore, the
equations that describe the transverse degrees of freedom
of the modified third-order theory can be written in a matrix
form as

 
iτ̂πΩ̂þ 8

35

η̂ρτ̂π κ̂
2

iΩ̂τ̂ρþ1
þ 1 −iκ̂

−κ̂ Ω̂

! 
δπ̃μ⊥

ε0þP0

δûμ⊥

!
¼ 0; ð65Þ
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In this case, the dispersion relation associated with the
transverse modes read

Ω̂
�
iτ̂πΩ̂þ 8

35

τ̂πη̂ρκ̂
2

iΩ̂τ̂ρ þ 1
þ 1

�
− iκ̂2 ¼ 0: ð66Þ

One can straightforwardly recover the dispersion relation
associated with the transverse modes of the original third-
order formulation by simply taking η̂ρ ¼ τ̂π and τ̂ρ ¼ 0, see
Eq. (27). However, in the last section, we showed that such
theory yields acausal and unstable modes for perturbations
on a moving fluid. In this section, we will analyze whether
the inclusion of the transient dynamics of a hydrodynamic
current defined as ρμνλ is sufficient to render the modified
version of the third-order theory linearly causal and stable.

1. Perturbations on a static fluid

Once again, we begin looking at the transverse modes for
perturbations on a static background fluid, V ¼ 0. In this
case, the dispersion relation, Eq. (66), reads simply

ω̂

�
iτ̂πω̂þ 8

35

τ̂πη̂ρk̂
2

iω̂τ̂ρ þ 1
þ 1

�
− ik̂2 ¼ 0: ð67Þ

As it was done in the previous analysis, we shall look at the
asymptotic form of these modes. In the small wave number
limit, these modes can be written as

ω̂shear
T;− ¼ ik̂2 þ iτ̂π

�
1 −

8η̂ρ
35

�
k̂4 þOðk̂6Þ; ð68Þ

ω̂shear
T;þ ¼ i

τ̂π
þ i

�
1 −

8τ̂πη̂ρ
35ðτ̂π − τ̂ρÞ

�
k̂2 þOðk̂4Þ; ð69Þ

ω̂shear
T;new ¼ i

τ̂ρ
−

8iτ̂πη̂ρ
35ðτ̂π − τ̂ρÞ

k̂2 þOðk̂4Þ: ð70Þ

As expected, the inclusion of the nonconserved current
defined as ρμνλ leads to the occurrence of a new non-
hydrodynamic mode already for perturbations on a static
background fluid, in which there is an additional mode in
comparison to the transverse modes of the previous theory.
In particular, this new mode behaves as ω̂ ∼ i=τ̂ρ in the
small wave number limit. Furthermore, note that we
immediately recover the modes of the original third-order
theory by taking τρ → 0 and ηρ → τπ .
In the large wave number limit, the transverse modes of

this theory are

ω̂shear
T;− ¼ 35i

35τ̂ρ þ 8τ̂πη̂ρ
− 9800iτ̂πη̂ρ

35τ̂ρ þ τ̂πð8η̂ρ − 35Þ
ð35τ̂ρ þ 8τ̂πη̂ρÞ4

1

k̂2

þO
�
1

k̂4

�
; ð71Þ

ω̂shear
T;þ ¼ k̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35τ̂ρ þ 8τ̂πη̂ρ

35τ̂π τ̂ρ

s
þi

35τ̂2ρ þ 8τ̂2πη̂ρ þ 8τ̂π τ̂ρη̂ρ
2τ̂π τ̂ρð35τ̂ρ þ 8τ̂πτ̂ρÞ

þO
�
1

k̂2

�
; ð72Þ

ω̂shear
T;new ¼ −k̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35τ̂ρ þ 8τ̂πη̂ρ

35τ̂π τ̂ρ

s
þi

35τ̂2ρ þ 8τ̂2πη̂ρ þ 8τ̂π τ̂ρη̂ρ
2τ̂π τ̂ρð35τ̂ρ þ 8τ̂π τ̂ρÞ

þO
�
1

k̂2

�
: ð73Þ

Unlike what is observed for the third-order theory
discussed in Sec. IV, in which the modes have a diffusion-
like behavior in the large wave number limit, i.e., ω̂ ∼ ik̂2,
this is not the case for the novel formulation.
Furthermore, in the small wave number limit, the trans-
verse modes are purely imaginary, while at large values of
k̂ they become propagating, i.e., their real parts are no
longer zero. Therefore, it is now necessary to impose
constraints on the linear causality of this theory. The
asymptotic group velocity must be subluminal [32], and
we thus obtain

lim
k̂→∞

				 ∂Reðω̂Þ∂k̂
				 ≤ 1 ⇒ τ̂ρðτ̂π − 1Þ ≥ 8

35
τ̂πη̂ρ: ð74Þ

The solutions of Eq. (67) are displayed in Fig. 5 in
comparison to the transverse modes of Israel-Stewart
theory for perturbations on a static background fluid,
assuming τ̂π ¼ 5 [20] and τ̂ρ ¼ 2. The novel third-order
formulation has three transverse modes, while both the
third-order formulation and Israel-Stewart theory have two
transverse modes each. Considering the values for the
transport coefficients employed here, the modes are stable
not only in the vanishing wave number regime, but also for
any value of k. Furthermore, while the transverse modes of
the original third-order theory have vanishing real parts for
perturbations on a static background fluid, the modes of the
modified formulation have nonzero real parts, and thus are
propagating.

2. Perturbations on a moving fluid

We now consider the case of perturbations on a moving
fluid. Once again, we assume that the background fluid
velocity is parallel to the wave vector. In this case, one must
insert Eqs. (13) and (14) into the dispersion relation for the
transverse modes, Eq. (66), leading to

γðω̂ − Vk̂Þ
�
iτ̂πγðω̂ − Vk̂Þ þ 8

35

τ̂πη̂ργ
2ðω̂V − k̂Þ2

iγðω̂ − Vk̂Þτ̂ρ þ 1
þ 1

�

− iγ2ðω̂V − k̂Þ2 ¼ 0: ð75Þ
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Naturally, the solutions of this equation are rather complicated and shall not be written here. Instead, once again we resort to
the analysis of the asymptotic form of these modes. In the small wave number limit, the modes can be written as

ω̂shear
T;− ¼ Vk̂þ i

γ
k̂2 þOðk̂3Þ; ð76Þ

ω̂shear
T;þ ¼ i

2γ

2
64τ̂π þ τ̂ρ − V2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ̂π þ τ̂ρ − V2Þ2 þ 32

35
τ̂πη̂ρV2 þ 4τ̂ρðV2 − τ̂πÞ

q
τ̂ρðτ̂π − V2Þ − 8

35
η̂ρτ̂πV2

3
75þOðk̂Þ; ð77Þ

ω̂shear
T;new ¼ i

2γ

2
64τ̂π þ τ̂ρ − V2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ̂π þ τ̂ρ − V2Þ2 þ 32

35
τ̂πη̂ρV2 þ 4τ̂ρðV2 − τ̂πÞ

q
τ̂ρðτ̂π − V2Þ − 8

35
η̂ρτ̂πV2

3
75þOðk̂Þ: ð78Þ

As it was also observed for perturbations on a static fluid,
there is one hydrodynamic mode, and two nonhydrody-
namic modes. In particular, the hydrodynamic mode is
identical to the one obtained for the third-order theory, see
Eq. (35). Furthermore, we recover the modes given by
Eqs. (36) and (37) by simply taking τ̂ρ → 0 and η̂ρ → τ̂π. We
shall not study the behavior of these modes at large values of
k, since the expansion for small wave number is enough to
provide us constraints on the linear stability of this theory.
These modes are stable if their imaginary part is

positive, which is guaranteed if both numerator and
denominator have the same sign. Once again, we impose
neither change their signs for any causal value of the
background velocity V, otherwise resulting in a disconti-
nuity in the modes. We note that both the denominator and
the numerator are positive for V ¼ 0. Thus, they must
remain positive for all causal values of velocity.
In order for the denominator to be positive for

0 ≤ V ≤ 1, the transport coefficients must satisfy,

τ̂ρðτ̂π − 1Þ > 8

35
τ̂πη̂ρ: ð79Þ

Note that this relation is identical to the linear causality
condition obtained in Eq. (74). This relation also guaran-
tees that if the term inside the square root is positive, it is
smaller than the term outside it. Furthermore, in order for
the numerator to be positive for all physical values of
velocity, the relaxation times must satisfy the condition

τ̂π þ τ̂ρ > 1; ð80Þ

which guarantees that the term outside the square root in the
numerator is always positive. We note that this constraint
reduces to the linear causality and stability conditions
obtained for Israel-Stewart theory if τρ ¼ 0, see
Refs. [15,21]. However, we further remark that the stability
condition given by Eq. (79) forbids this limit—a linearly
causal and stable theory can only be obtained if τρ is not

FIG. 5. Imaginary and real parts of the transverse modes of Israel-Stewart theory (solid black lines) and modified third-order fluid
dynamics (red dashed lines) for perturbations on a static background fluid, considering τ̂π ¼ η̂ρ ¼ 5 [20] and τ̂ρ ¼ 2.
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zero. Finally, note that Eqs. (79) and (80) combined
guarantee that the square root in the numerator, if real,
is always smaller than τ̂π þ τ̂ρ − V2, leading to a stable
transverse mode. If the square root in the numerator is not
real, then it does not contribute to the stability of the mode.
For the sake of illustration, the solutions of Eq. (75) are

displayed as function of wave number in Fig. 6, considering
η̂ρ ¼ τ̂π ¼ 5 [20] and τ̂ρ ¼ 2, for three values for the
background velocity and transport coefficients that satisfy
the linear stability conditions for the transverse modes,
Eqs. (79) and (80). Here, one can see that, for perturbations
on a moving background fluid, the imaginary part of the
nonhydrodynamic modes (upper panels) no longer merge
for large values of the wave number.
The analysis developed so far in this section is restricted

to the transverse modes of the modified third-order theory.
Even though we obtained the conditions the novel transport
coefficients must satisfy in order to guarantee the theory’s
linear causality and stability, it is still necessary to look at
the conditions that arise from the longitudinal modes.

B. Longitudinal modes

Naturally, the longitudinal projections of Eqs. (15) and
(16) remain the same, as given by Eqs. (38) and (39),
respectively. Furthermore, the longitudinal component of
Eq. (62) is obtained by contracting it with κμκν, thus
leading to

ðiΩτρ þ 1Þ
�
κμκν
κ2

�
κλδρ̃

μνλ ¼ −
9i
35

ηρκ
2δπ̃k: ð81Þ

Inserting this result in the longitudinal projection of
Eq. (60), we obtain

�
iτ̂πΩ̂þ 9

35

η̂ρτ̂πκ̂
2

iΩ̂τ̂ρ þ 1
þ 1

�
δπ̃k

ε0 þ P0

−
4i
3
κ̂δũk ¼ 0: ð82Þ

It is possible to write the equation for the longitudinal
modes in the following matrix form

0
BB@

iτ̂πΩ̂þ 9
35

η̂ρτ̂π κ̂
2

iΩ̂τ̂ρþ1
þ 1 −i 4

3
κ̂ 0

−κ̂ Ω̂ −c2s κ̂
0 −κ̂ Ω̂

1
CCA
0
BB@

δπ̃k
ε0þP0

δũk
δε

ε0þP0

1
CCA ¼ 0:

ð83Þ

Therefore, the dispersion related to the longitudinal
degrees of freedom of the novel third-order formulation
reads

ðΩ̂2− c2s κ̂2Þ
�
iτ̂πΩ̂þ 9

35

τ̂πη̂ρκ̂
2

iΩ̂τ̂ρþ 1
þ 1

�
−
4i
3
Ω̂κ̂2 ¼ 0: ð84Þ

Once again, one can straightforwardly recover the
dispersion relation for the longitudinal modes using the

FIG. 6. Imaginary and real parts of the transverse modes for τ̂π ¼ η̂ρ ¼ 5, τ̂ρ ¼ 2, considering three different values for the background
velocity V ¼ 0.1, V ¼ 0.4, and V ¼ 0.9, respectively.
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formulation developed in Ref. [26], see Eq. (42), by
simply taking the novel relaxation time to zero, τρ ¼ 0,
and ηρ ¼ τπ . As it was also observed for the transverse
modes of this theory, the dispersion relation associated
with the longitudinal modes is an one degree higher
polynomial when compared to the original third-order
theory. This is expected, since including the dynamics of a
nonconserved hydrodynamic current ρμνλ leads to the
occurrence of an additional nonhydrodynamic mode.
However, unlike what we observed for the original
third-order theory, the number of modes of the modified
theory does not increase when considering perturbations
on a moving fluid.

1. Perturbations on a static fluid

We first look at the longitudinal modes of the theory for
perturbations on a static fluid. In this case, the dispersion
relation associated with the longitudinal modes, Eq. (84),
simply reads

ðω̂2− c2s k̂
2Þ
�
iτ̂πω̂þ 9

35

τ̂πη̂ρk̂
2

iω̂τ̂ρþ 1
þ 1

�
−
4i
3
ω̂k̂2 ¼ 0: ð85Þ

As before, let us analyze the asymptotic form of the modes.
In the small wave number limit, they read

ω̂sound
� ¼ �csk̂þ

2i
3
k̂2 � 2ð3τ̂πc2s − 1Þ

9cs
k̂3 þOðk̂4Þ; ð86Þ

ω̂shear
L ¼ i

τ̂π
þ i

27
35
τ̂πη̂ρ þ 4ðτ̂ρ − τ̂πÞ

3ðτ̂π − τ̂ρÞ
k̂2 þOðk̂4Þ; ð87Þ

ω̂shear
L;new ¼ i

τ̂ρ
− i

9τ̂πη̂ρ
35ðτ̂π − τ̂ρÞ

k̂2 þOðk̂4Þ: ð88Þ

We identify two hydrodynamic modes and two nonhydro-
dynamic modes. The hydrodynamic modes correspond to the
usual sound modes and their small wave number limit remain
identical to the corresponding results obtained in Israel-
Stewart theory or in the original version of the third-order
theory, see Eq. (44). In the small wave number limit, the
nonhydrodynamic mode ω̂shear

L becomes identical to the
nonhydrodynamic mode found in Israel-Stewart theory and
in the original third-order theory, with deviations only
occurring at order Oðk̂2Þ, see Eq. (45). On the other hand,
the nonhydrodynamic mode ω̂shear

L;new is intrinsically new and
describes nonequilibrium modes that relax to equilibrium in
times of order τρ. We note that, as expected, we recover
the results from the previous section, Eq. (45), when taking
τ̂ρ → 0 and η̂ρ → τ̂π .
In the large wave number limit, all four longitudinal

modes can be cast in the following form

ω̂ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27
35
τ̂πη̂ρ þ 3τ̂π τ̂ρc2s þ 4τ̂ρ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð27
35
τ̂πη̂ρ þ 3τ̂π τ̂ρc2s þ 4τ̂ρÞ2 − 324

35
τ̂2πτ̂ρη̂ρc2s

q
6τ̂πτ̂ρ

vuut
k̂þOð1Þ: ð89Þ

Since the hydrodynamic and nonhydrodynamic modes
merge at finite values of wave number, it is not trivial to
map these four solutions with the small wave number
solutions displayed in Eqs. (86), (87), and (88). In order
for these modes to be stable, it is essential that the term inside
the outer square root is real and positive, otherwise leading to
modes with a negative imaginary part, and thus unstable
solutions. For this purpose, we must first impose that the
term inside the inner square root is positive. If this is the case,
it is straightforward to see that the term in the numerator is
always positive. Therefore, in order to obtain purely real
modes, it is sufficient to impose

�
27

35
τ̂πη̂ρ þ 3τ̂π τ̂ρc2s þ 4τ̂ρ

�
2

−
324

35
τ̂2πτ̂ρη̂ρc2s ≥ 0: ð90Þ

In fact, this inequality is satisfied as long as the
transport coefficients are positive definite quantities,
i.e., τ̂π > 0, τ̂ρ > 0, and η̂ρ > 0. Therefore, the stability
of the longitudinal modes perturbations on a static fluid is
always fulfilled.

The linear causality of the theory can be verified by
analyzing the asymptotic group velocity of the modes [32].
In order for these modes to propagate subluminally, the
following condition must be satisfied

lim
k̂→∞

				∂Reðω̂Þ∂k̂
				≤ 1⇒ τ̂ρ ≥

27

35
η̂ρτ̂π

1−c2s
3τ̂πð1−c2s Þ−4

: ð91Þ

In order to obtain this relation, it is necessary to impose a
first constraint to the shear relaxation time τ̂π , which is
given by

τ̂π ≥
4

3ð1 − c2s Þ
; ð92Þ

which, in the ultrarelativistic limit, c2s ¼ 1=3, reduces to
τ̂π ≥ 2. This is exactly the linear stability condition for the
shear relaxation time in Israel-Stewart theory [15,21].
The longitudinal modes of the modified third-order

theory for perturbations on a static fluid are displayed in
Fig. 7 in comparison with the corresponding longitudinal
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modes of Israel-Stewart theory for a wide range of values of
wave number, considering η̂ρ ¼ τ̂π ¼ 5 [20] and τ̂ρ ¼ 3.

2. Perturbations on a moving fluid

Next, we consider the longitudinal modes for perturba-
tions on a moving fluid. Once again, we assume that the

background velocity is parallel to the wave vector, thus Ω̂
and κ̂ are given by Eqs. (13) and (14). In this case, the
dispersion relation associated with the longitudinal modes,
Eq. (84), can be written as

γ2½ðω̂ − Vk̂Þ2 − c2sðω̂V − k̂Þ2�
�
iτ̂πγðω̂ − Vk̂Þ þ 9

35

τ̂πη̂ργ
2ðω̂V − k̂Þ2

iτ̂ργðω̂ − Vk̂Þ þ 1
þ 1

�

−
4i
3
γ3ðω̂ − Vk̂Þðω̂V − k̂Þ2 ¼ 0: ð93Þ

Once again, the general solutions for this case can be extremely complicated and will not be displayed here. Instead, we
analyze the asymptotic form of these modes. First, in the small wave number limit, they read

ω̂sound
� ¼ V � cs

1� csV
k̂þOðk̂2Þ; ð94Þ

ω̂shear
L ¼ −i

3AC − 4V2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3AC − 4V2Þ2 þ 12AðAB þ 4τ̂ρV2Þ

q
2γðAB þ 4τ̂ρV2Þ þOðk̂Þ; ð95Þ

ω̂shear
L;new ¼ −i

3AC − 4V2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3AC − 4V2Þ2 þ 12AðAB þ 4τ̂ρV2Þ

q
2γðAB þ 4τ̂ρV2Þ þOðk̂Þ; ð96Þ

where the following variables were introduced

A≡ 1 − c2sV2; ð97Þ

B≡ 3τ̂π

�
9

35
η̂ρV2 − τ̂ρ

�
; ð98Þ

C≡ τ̂π þ τ̂ρ: ð99Þ

FIG. 7. Imaginary and real parts of the longitudinal modes of Israel-Stewart theory (solid black lines) and modified third-order fluid
dynamics (red dashed lines) for perturbations on a static background fluid, considering τ̂π ¼ η̂ρ ¼ 5 [20] and τ̂ρ ¼ 3 in the
ultrarelativistic regime, c2s ¼ 1=3.
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Since we are interested in obtaining linear stability con-
ditions imposed by the longitudinal modes, it is sufficient to
solely analyze the modes for V ≠ 0 in the small wave
number limit, and thus we shall not study these modes for
large wave number in this work.
There are two hydrodynamic longitudinal modes, which

are purely real and thus always stable in this regime, and two
nonhydrodynamic longitudinal modes. As it was observed
for the original third-order theory, analyzed in the previous
section, the hydrodynamic modes for perturbations on top of
a moving background are given by the relativistic velocity
addition, see Eq. (49). The stability of the nonhydrodynamic
modes is not automatically guaranteed and must be analyzed
in more detail. These modes are stable if both the numerator
and denominator have opposite signs, leading the modes to
have a positive imaginary part. Once again, we make the
assumption that neither the numerator nor the denominator
change their signs for any causal value of the background
velocity V, otherwise leading to a problematic discontinuity.
Taking the background fluid velocity to be zero, V ¼ 0, one
can see that the numerator is positive definite, while the
denominator is negative. In general, the denominator is
negative for any value the background fluid velocity can
assume as long as the following condition is satisfied

AB þ 4τ̂ρV2 < 0; ð100Þ

which leads to the following conditions

τ̂ρ >
27

35
η̂ρτ̂π

1 − c2s
3τ̂πð1 − c2s Þ − 4

; ð101Þ

τ̂π >
4

3ð1 − c2s Þ
: ð102Þ

Note that the constraint given by Eq. (101) is identical to the
linear causality condition obtained when analyzing the
modes for perturbations on a static fluid in the large wave
number limit, see Eq. (91). Furthermore, in the ultrarelativ-
istic limit, c2s ¼ 1=3, Eq. (102) reduces to τ̂π > 2, which
corresponds to the linear causality and stability condition for
the shear relaxation time in Israel-Stewart theory [15,21].
The final step is to evaluate the necessary condition to

obtain a positive numerator. First, we note that, in order to
obtain linearly stable modes, the term inside the square root
in the numerator must be either: positive and smaller than
the term outside, or negative. Both conditions are guaran-
teed by imposing 3AC − 4V2 ≥ 0. Naturally, this constraint
must be valid for any physical value of the fluid velocity, V.
In this case, the strongest condition possible is obtained
considering the maximum value for the background veloc-
ity, V ¼ 1. Then, we have

3ð1 − c2s Þðτ̂π þ τ̂ρÞ ≥ 4; ð103Þ

which is guaranteed by Eq. (102).
Note that the stability condition given by Eq. (103)

reduces to the linear causality and stability conditions
derived for Israel-Stewart theory, see Ref. [21], in the limit
of vanishing τρ and ηρ. Nevertheless, we remark that simply
taking τρ ¼ 0 is forbidden by Eq. (101). It is possible to
conclude that the inclusion of the relaxation timescale τρ is
essential to render the third-order theory linearly causal and
stable.
The solutions of Eq. (93) are displayed in Fig. 8, con-

sidering η̂ρ ¼ τ̂π ¼ 5 [20] and τ̂ρ ¼ 3, in the ultrarelativistic
limit c2s ¼ 1=3, for several values of background velocity. In
this scenario, we note that the modes are linearly stable
beyond the vanishing wave number limit. Once again, as it
was also observed for the transverse modes, the imaginary
part of the longitudinal modes no longer merge when
considering perturbations on a moving fluid.
After carefully analyzing both transverse and longitudinal

modes of the modified third-order formulation, we con-
cluded that the inclusion of the transport coefficients τρ and
ηρ is essential to obtain a linearly causal and stable
formulation. However, in order to obtain exclusively stable
modes, the novel transport coefficients cannot assume
arbitrary values. We then constrained the possible values
they can assume in order to render causal and stable modes
and noted the conditions related to the longitudinal modes of
the theory are stronger than the ones obtained for the
transverse modes.

VI. CONCLUSIONS AND REMARKS

In this work, we analyzed the linear causality and stability
of third-order fluid-dynamical formulations. The original
formulation of third-order fluid dynamics proposed in
Ref. [26] was shown to be linearly unstable when perturbed
around a global equilibrium state. While the modes were
shown to be stable for perturbations on a static fluid, they
become intrinsically unstable for perturbations on a moving
fluid. The origin of this problem was mapped to the
diffusionlike behavior of the modes at large values of wave
number. This problem is similar to what is observed in
relativistic Navier-Stokes theory, whose parabolic nature
leads to acausal and unstable modes. We then observed that
the instability of this theory cannot be solved by simply
tuning the transport coefficients.
With the purpose of addressing this problem, we then

proposed a modification of the theory developed in Ref. [26]
that renders it linearly causal and stable. This modified
version of the third-order theory was obtained by converting
gradients of shear-stress tensor, linear third-order terms that
feature the equation of motion for πμν, into a new dynamical
variable ∇hμπνλi → ρμνλ that relaxes to such gradients of the
shear stress tensor. We then required that this new dissipative
current satisfies a relaxation equation, introducing τρ and ηρ
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as new transport coefficients corresponding to the relaxation
time and effective viscosity associated with the hydrody-
namic current ρμνλ, respectively. In the construction of this
equation, we only accounted linear terms, since any non-
linear term would vanish and thus would not contribute to
the analysis performed in this paper.
The next step was to analyze whether the addition of the

new nonconserved current ρμνλ, along with the aforemen-
tioned transport coefficients, is actually sufficient to render
the theory linearly causal and stable. At this point, it is
essential to perform perturbations not only on the usual
hydrodynamic variables, but also in such current,
ρμνλ ¼ δρμνλ. When calculating the dispersion relations
associated with the transverse and longitudinal modes of
this theory, we immediately recover the equations for the
previous theory by simply taking τρ ¼ 0 and ηρ ¼ τπ .
Furthermore, the modes of the modified theory do not
display a diffusionlike behavior at large values of wave
number and the number of modes does not increase when
considering perturbations on a moving fluid, problems
displayed by the original theory. We then obtained the set
of conditions the transport coefficients introduced must
satisfy in order for the modified theory to be linearly causal
and stable. Overall, in terms of the usual hydrodynamic
variables, the linear causality and stability conditions of the
modified third-order theory are given by�
3τπð1 − c2s Þ − 4

η

ε0 þ P0

�
τρ >

27

35
ηρτπð1 − c2s Þ; ð104Þ

3ð1 − c2s Þτπ ≥
4η

ε0 þ P0

: ð105Þ

Therefore, we concluded that the transport coefficients
cannot assume arbitrary values, and the novel third-order
theory is linearly causal and stable as long as Eqs. (104) and
(105) are simultaneously satisfied. In particular, Eq. (104)
imposes the existence of a nonzero timescale, defined as τρ,
as an essential requirement for both causality and stability—
in fact, these properties are related: if linear causality is
satisfied, then linear stability is automatically guaranteed and
vice-versa.
A complete nonlinear third-order theory was not for-

mally derived here and shall be investigated in future
publications. In particular, it is our future goal to inves-
tigate how such novel third-order theory emerges in a
microscopic derivation, taking the relativistic Boltzmann
equation as the starting point.
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FIG. 8. Imaginary and real parts of the longitudinal modes, considering η̂ρ ¼ τ̂π ¼ 5 [20] and τ̂ρ ¼ 3, for three different values of
background velocity V ¼ 0.1, V ¼ 0.4, and V ¼ 0.9, in the ultrarelativistic limit c2s ¼ 1=3.
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