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We present an analytic study of the dispersion relation for an isotropic magnetized plasma interacting
with axions. We provide a quantitative picture of the electromagnetic plasma oscillations in both the
ultrarelativistic and nonrelativistic regimes and considering both nondegenerate and degenerate media,
accounting for the dispersion curves as a function of the plasma temperature and the ratio of the plasma
phase velocity to the characteristic velocity of particles. We include the modifications on the Landau
damping of plasma waves induced by the presence of the axion field, and we comment on the effects of
damping on subluminal plasma oscillations.
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I. INTRODUCTION

The study of the physics of plasmas is crucial for the
understanding of a vast array of applications ranging from
laboratory experiments to astrophysics and cosmology. To
some extent, a fraction of the interstellar medium and the
intergalactic space, the interior of stars, the solar wind, and
accretion discs can be treated using plasma physics.
Examples of high-energy density plasmas are the interior
of giant planets [1] and white dwarfs [2], the atmosphere of
neutron stars [3], and the interaction of plasmas with
petawatt lasers [4,5].
Any external perturbation, such as an incident electro-

magnetic wave, may change the equilibrium of the plasma
and drive both electrostatic and electromagnetic oscilla-
tions [6,7]. Oscillations in isotropic plasmas are of electro-
static (longitudinal, also known as Langmuir oscillations)
and electromagnetic (transverse) characters. The corre-
sponding dispersion relations have been derived for both
nonrelativistic plasmas [8–11] as well as for ultrarelativistic
plasmas [12–17]. The quantum of plasma oscillations,
the plasmon [18,19], might couple strongly with an
external electromagnetic field to form mixed states called
polaritons [20].

Plasmon dynamics could be also altered by their inter-
actions with light fields, thus serving as efficient detectors
for the presence of new physics [21–24]. One such example
is the hypothetical axion [25,26], a light pseudoscalar field
originally introduced as a solution to the strong CP
problem within the QCD sector of the standard model
(see Refs. [27,28] for recent reviews). Outside of the QCD
theory, light axions might arise copiously in string theory
embeddings [29,30], possibly leading to a plethora of light
fields in the string “axiverse” [31,32] and to alternative
explanations for the DM puzzle [33,34]. Coupling an axion
with electrically charged fermions and with photons intro-
duces new Lagrangian terms that modify the action for the
electromagnetic field and leads to new effects in electro-
dynamics [35–39]. Several experiments, either proposed or
already deployed, aim to scan the possible values of the
axion mass window and coupling with photons [40]. For
recent reviews of some experimental techniques and active
searches see Refs. [41,42].
The immediate interest in axion-plasmon polaritons is

two-fold: first, polaritons can be used to investigate the
effects of plasmas in both astrophysical and cosmological
phenomena, impacting on the properties of the cosmic
microwave background [43], the primordial axion abun-
dance problem [44,45], and the production of axions in the
stellar medium [46–48]. Second, polaritons can be used as a
direct signature of axions in the laboratory, where the
different experiments to be designed in the near future and
the corresponding sensitivities can be tuned by changing
the density of the electrons in the plasmas. As such,
discharge, tokamaks, solid-state, and ultracold plasmas
emerge as potential platforms for polariton experiments.
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Recently, plasma metamaterials have proposed to increase
the sensitivity of axion haloscopes toward the QCD
parameter range [49].
Astrophysical regions possessing a strong magnetic field

have been proposed as laboratories to search for axions. As
an example, the synchrotron emission of axions interacting
with the magnetosphere surrounding pulsars would affect
the luminosity of neutron stars both through an axion-
electron coupling at tree-level [50,51] and the mediation of
a plasmon [52–54]. Similarly, axion-photon interactions in
the magnetosphere of neutron stars could lead to detectable
radio signals [55–60]. Screening effects in relativistic
plasmas and the production of thermal axions have also
been considered, and the estimate bounds the coupling
constant between axions and photons based on data from
the supernova SN1987A event [61–64]. Note, that a similar
search is currently undergoing for hypothetical “dark”
photons, whose mixing with Langmuir waves could alter
stellar evolution [65–67].
As for laboratory experiments, axions in plasmas have

recently gained attention in the context of intense lasers. In
fact, the next generation of high-power laser facilities is
expected to provide conditions to probe QED physics in
parameter regimes that are inaccessible to particle colliders
[68]. The Extreme Light Infrastructure (ELI) experiment,
for example, will offer the possibility to investigate the
effect of the Heisenberg-Euler vacuum (virtual electron-
positron pairs) [68,69] and the quantum recoil due to
radiation emission [70]. The wakefield acceleration para-
digm gained much breath as it reveals to be an efficient way
to accelerate particles [71–73], and recent studies have
exploited such wakefields [74] to produce axions in the lab
[75–78]. These laser-plasma interaction facilities differ
from the setups discussed above, in the sense that axions
could in principle be produced in situ, with their presence
manifesting in the features of the plasma.
In previous work, one of us has shown that in a

magnetized plasma, an electromagnetic field is modified
by the presence of the axion field through its dynamical
backreaction mediated by the Lorentz force [79,80]. This
results in a nonresistive, “dielectric” coupling between the
axion and the plasmon, which leads to the excitation of a
novel quasiparticle, the axion-plasmon polariton. As such,
we expect this novel axion-plasmon polariton to pave the
stage for a new research branch in the physics of axions.
In this paper, we establish a generic kinetic theory of

axion-plasmon polaritons. Our approach is based on a
phase-space description of the axion-plasmon coupling,
going beyond the hydrodynamical treatment presented in
Ref. [79]. The theoretical framework is based on the Vlasov
equation for a relativistic plasma [14,17], which is coupled,
via the modified Maxwell’s equations, to the Klein-Gordon
equation describing the axion. Such a theoretical
framework is able to capture effects that are not cast by
the hydrodynamics formulation, such as wave-wave and

wave-particle interaction, and the isentropic damping of the
collective plasma oscillations in the presence of hot
electrons, the so-called Landau damping [81,82]. The
isentropic, energy conserving nature of the Landau damp-
ing is a particular feature of the kinetic formulation, being
completely absent in hydrodynamical or single-particle
models of plasmas [83,84]. As such, a theoretical theory
of axions in a plasma opens the venue for new phenomena
in astrophysical and cosmological scenarios that have so far
remained elusive. The axion-photon coupling modifying
the plasmon dispersion relation has been explored in
previous work [52–54] to compute the emission rate of
the process e− → e− þ a mediated by a plasmon enhanced
at axion-plasmon crossing, in relation with the energy loss
from a supernova core and to predict the spectrum of axions
radiated from the Sun. Here, we derive the condition for
crossing in a general setup, including that of a relativistic
plasma which has not been yet covered in the literature.
This paper is organized as follows. In Sec. II, we revise

the system combining Maxwell equations with the Klein-
Gordon equation. In Sec. III, we derive the kinetic
dispersion relation for the axion-plasmon polariton. In
Sec. IV, we specialize our results to a positron-electron
plasma, for which we derive the dispersion relation, and we
discuss analytically its features in various scenarios,
namely for the case of an ultrarelativistic, degenerate,
and nonrelativistic plasmas. We provide the numerical
calculations for the ultrarelativistic case, which is unex-
plored in the literature. Discussion and conclusions are
drawn in Sec. V. We work in units c ¼ ℏ ¼ 1.

II. MAXWELL EQUATIONS COUPLED
TO AN AXION FIELD

Whenever the axion field φ couples with electrically
charged fermions ψ , an effective axion-photon coupling
gφγ ≡ αEMξ=ð2πfÞ arises through fermion loop diagrams,
where αEM ≡ e2=ð4πÞ is the fine-structure constant, ξ is a
model-dependent parameter, and f is the axion decay
constant. In the case of the QCD axion, the mixing with
pions due to the interaction with the gluons leads to a
coupling whose numerical value depends on the electro-
magnetic and color anomalies of the embedding theory
[35,36]. More generally, gφγ parametrizes the strength of
the coupling for an axion interacting with a photon field.
The axion also couples at tree level with the fermion current
of a Dirac fermion field, with the coupling strength gφψ .
In this setting, the Lagrangian density that describes the

electromagnetic field Aμ interacting with a Dirac fermion ψ
of mass mψ and charge q, and an axion φ of mass mφ reads

L ⊃
1

2
∂μφ∂μφ −

1

2
m2

φφ
2 −

gφγ
4

φF̃μνFμν −
1

4
FμνFμν

− igφψφψ̄γ5ψ þ iψ̄γμð∂μ − iqAμÞψ −mψ ψ̄ψ ; ð1Þ
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where Fμν ¼ ∂μAν − ∂νAμ is the field strength, F̃μν its dual,
and we have introduced the Dirac matrices γμ and γ5.
Although the Lagrangian in Eq. (1) includes the interaction
with fermions for completeness, this term can generally be
neglected as justified in the Appendix.
The set of Maxwell’s equations coupled to the axion field

derived from Eq. (1) reads [37,38]

∇ · E ¼ ρq − gφγð∇φÞ ·B; ð2Þ

∇ ·B ¼ 0; ð3Þ

∇ ×E ¼ − _B; ð4Þ

∇ ×B ¼ Jþ _Eþ gφγ _φBþ gφγð∇φÞ ×E; ð5Þ

where the dot over the vector stands for a time derivative.
The dynamics of the axion coupled to the electromagnetic
field as derived from the Lagrangian is described by the
Klein-Gordon equation,

φ̈ −∇2φþm2
φφ ¼ gφγE · B: ð6Þ

Note, that the set of Maxwell’s Eqs. (2)–(5) in which the
homogeneous equations are present is usually considered
when investigating the coupling of the axion with the
photon [37,38]. A different choice would consist in
preserving the dual symmetry between the E and B fields,
which would lead to the set in the dual axion representation
explored in Ref. [39].
In the following, we decompose the equations above by

choosing a reference frame ðêx; êy; êzÞ and we break down
the magnetic field as B ¼ B0êz þBð1Þ, where the first term
is a constant magnetic field along the axis êz and the second
term is a perturbation which we write as

Bð1Þ ¼
Z

d3k dωeik·x−iωt
X

s∈fx;y;zg
êsB̃

ð1Þ
s : ð7Þ

A similar decomposition holds for the electric and the axion
fields, as well for the sources ρq and J. We assume that the
plasma wave propagates along the direction êz with wave
number k ¼ kêz, so we restrict ourselves to electrostatic
waves only, for which kkB. A different choice in which k
has also a component along the, e.g., êx direction would
lead to a different set of equations and to solutions that
differ from the longitudinal modes explored here. See, e.g.,
Refs. [61,62] for the general treatment.
With this choice, Faraday’s Eq. (4) is decomposed as

kẼx ¼ ωB̃ð1Þ
y , kẼy ¼ −ωB̃ð1Þ

x , and B̃ð1Þ
z ¼ 0, so that Gauss’s

law for magnetism in Eq. (3) is also automatically satisfied.
In addition, the last term in the modified Ampère’s Eq. (5)
is negligible compared to the second to last because of
Faraday’s law. With this notation, the inhomogeneous
Maxwell’s equations read

Ẽz ¼
1

ik
ρ̃q − gB0φ̃; ð8Þ

kB̃ð1Þ
y ¼ ωẼx þ iJ̃x; ð9Þ

−kB̃ð1Þ
x ¼ ωẼy þ iJ̃y; ð10Þ

0 ¼ ωẼz þ iJ̃z þ gφγB0ωφ̃; ð11Þ

so that both the components of the electric field that are
orthogonal to the direction of wave propagation follow the
expression ðω2 − k2ÞEx;y ¼ −iωJx;y. In fact, while the
electromagnetic field in the directions orthogonal to propa-
gation are unaffected by the modified equations, a trans-
verse electric field component Ez along the direction of
propagation sourced by the axion field appears. For the
moment, we leave aside Faraday’s laws and we focus on
Gauss’ Eq. (8) coupled with the Klein-Gordon Eq. (6),
which is also modified as

ð−ω2 þ k2 þm2
φÞφ̃ ¼ gφγB0Ẽz: ð12Þ

Combining Eqs. (8) and (12) leads to the expressions for
the electric and axion fields,

φ̃ðω; kÞ ¼ −
gφγB0

ik

ρ̃qðω; kÞ
ω2 − k2 −m2

eff

; ð13Þ

Ẽzðω; kÞ ¼
�
1þ ðgφγB0Þ2

ω2 − k2 −m2
eff

�
ρ̃qðω; kÞ

ik
; ð14Þ

where we introduced the effective mass squared
m2

eff ¼ m2
φ þ ðgφγB0Þ2. Faraday’s Eq. (11) is used to derive

the expression for the current as J̃z ¼ ρ̃qω=k, which in the
space configuration can be restated as the continuity
equation _ρþ ∇ · J ¼ 0.

III. DERIVATION OF THE AXION-PLASMON
DISPERSION

The system of Maxwell and Klein-Gordon equations just
introduced is closed once defined the phase-space distri-
bution function fλðt;x;pÞ, where the subscript λ stands for
the charge species, either electrons (e−), positrons (eþ), or
ions (I), and p is the momentum of the species parcel. Such
a distribution satisfies the collisionless Boltzmann equation

� ∂
∂tþ vλ · ∇

�
fλ þ Fλ · ∇pfλ ¼ 0; ð15Þ

where Fλ is the force acting upon the species λ, ∇p is the
gradient in momentum space, vλ ¼ p=Eλ is the parcel

velocity, Eλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

λ

q
is the energy for a particle of

mass mλ, and p ¼ jpj. For a charged plasma, particles are
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subject to the Lorentz force Fλ ¼ qλðEþ vλ ×BÞ, so that
the dynamics of the phase-space distribution in Eq. (15)
reduces to the Vlasov equation with a negligible electron-
axion coupling [85].
For each species λ, we assume that the distribution

fluctuates around an isotropic equilibrium configuration that
depends only on p,

fλðt;x;pÞ ¼ fλ;0ðpÞ þ fλ;1ðt;x;pÞ; ð16Þ

with fλ;1 ≪ fλ;0 a perturbation. Assuming a quasineutral
plasma implies that the equilibrium distributions satisfyP

λ qλfλ;0 ¼ 0, so that the charge density is given by

ρqðt;xÞ ¼
X
λ

qλ

Z
d3p fλ;1ðt;x;pÞ: ð17Þ

Inserting the expansion of the phase-space density inEq. (16)
into Eq. (15) and taking the Fourier transform of the resulting
expression, the phase space perturbation is cast as

f̃λ;1ðω; k;pÞ ¼ −
iqλ

ω − k · vλ
Ẽðω; kÞêz ·

∂fλ;0ðpÞ
∂p : ð18Þ

Finally, plugging Eq. (14) into Eq. (18), multiplying by the
charge qλ, summing over the various species λ and integrat-
ing over the momentum dp gives the plasma dispersion
relation,

Gðω; kÞ
Z

d3p
k

X
λ

êz · p̂
k · vλ − ω

q2λ
∂fλ;0
∂p ¼ 1; ð19Þ

Gðω; kÞ≡ ω2 − k2 −m2
φ

ω2 − k2 −m2
eff

; ð20Þ

with p̂≡ p=p. In derivingEq. (19),wehave assumed that the
equilibrium phase-space density depends on the magnitude
of the momentum p and not on its direction, as stated in the
decomposition in Eq. (16).
Once setting d3p ¼ 2πp2dpdy, where y ¼ k̂ · p̂, the

expression for the dispersion relation in Eq. (19) reads

Gðω; kÞ
Z þ∞

0

dp
Z

1

−1
dy

2πp2

k

X
λ

y
ykvλ − ω

q2λ
∂fλ;0
∂p ¼ 1;

ð21Þ

with vλ ¼ p=Eλ. We separate the real and imaginary parts
of the complex integral by using the identity

fðxÞ
x − x0

¼ PV
fðxÞ
x − x0

þ iπδðx − x0Þ; ð22Þ

where δðxÞ is the delta function. With this prescription, the
integral over the angular direction in Eq. (21) reads

Z
1

−1
dy

y
y − ω=ðkvλÞ

¼ 2 −
ω

2kvλ
ln

�
ωþ kvλ
ω − kvλ

�
2

þ iπ
ω

kvλ
Θ
�
vλ −

ω

k

�
; ð23Þ

where the Heaviside step function ΘðxÞ in the argument x
arises from the fact that for ω < kvλ the integral in Eq. (23)
contains a pole. The imaginary part of the frequency in
Eq. (21) describes the damping of the wave. The step
function implies that for ω > kv the imaginary component
of the frequency is zero, while for ω < kv damping occurs.
Integrating over the momentum, the step function yields to a
lower integration limit atp≡mλū, where ū≡ ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

p
.

Finally, insertingEq. (23) intoEq. (21) leads to the dispersion
relation ϵðω; kÞ ¼ 0, where the real and the imaginary
components of the function ϵðω; kÞ are respectively

ϵrðω; kÞ ¼ 1þ 4π

k2
Gðω; kÞ

X
λ

Z þ∞

0

dp
p2

vλ

×

�
ω

4kvλ
ln

�
ωþ kvλ
ω − kvλ

�
2

− 1

�
q2λ

∂fλ;0
∂p ; ð24Þ

ϵiðω; kÞ ¼ −
2π2ω

k3
Gðω; kÞ

X
λ

Z þ∞

mλū
dp

p2

v2λ
q2λ

∂fλ;0
∂p ; ð25Þ

where each species λ contributes to the branching of the
solution on the ðω; kÞ plane, see, e.g., Ref. [86]. The
condition for wave damping implies that all subluminal
modesω < k are damped, see Ref. [87], while the imaginary
part of the function in Eq. (25) vanishes for ω ≥ k.
The choice of the notation for the function ϵðω; kÞ recalls

the definition of the dielectric function, for which the
expressions in Eqs. (24)–(25) are functionally identical,
see, e.g., Ref. [14]. However, contrarily to the dielectric
function which is a function of the real parameters ω and k,
the frequency ω in the dispersion relation above is a
complex number, with the imaginary component describing
the damping of the wave. Note, that we introduce a small
imaginary component in the frequency by setting
ω → ωþ iγL, with γL describing the absorption of the
electrostatic and axion waves by the plasma. The presence
of this imaginary term in the dispersion relation is linked to
the phenomenon of Landau damping [81]. In fact, neglect-
ing higher-order terms, the real (r) and imaginary (i) parts
of the function ϵðω; kÞ satisfy

ϵðωþ iγL; kÞ ≈ ϵrðω; kÞ − i
∂ϵr
∂ω γL þ iϵiðω; kÞ; ð26Þ

so that the condition ϵðω; kÞ ¼ 0 leads to

ϵrðω; kÞ ¼ 0; γL ¼
�∂ϵrðω; kÞ

∂ω
�
−1
ϵiðω; kÞ: ð27Þ
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As for the real component ϵr ¼ ϵrðω; kÞ, the integration by
parts of the expression in Eq. (24) yields

ϵr ¼ 1 −
4π

k2
Gðω; kÞ

X
λ

Z þ∞

0

dp
p2

EλðpÞ

×

�
ω

kvλ
ln
ωþ kvλ
ω − kvλ

−
ω2 − k2

ω2 − k2v2λ
− 1

�
q2λfλ;0ðpÞ; ð28Þ

where the integral is related to the longitudinal polarization
function ΠLðω; kÞ≡ Π00ðω;kÞ where Πμν is the electro-
magnetic polarization tensor, see Eq. (A17) in Ref. [16].

IV. RESULTS

We now specialize Eq. (24) to the case in which the
plasma is composed of an electron-positron plasma, whose
phase-space distribution at equilibrium is described by a
Fermi-Dirac function [87]

fe�ðpÞ ¼
2

ð2πÞ3
1

eð
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

e

p
�μÞ=T þ 1

; ð29Þ

where a plus (minus) sign denotes the positron (electron)
distribution, μ is the electron chemical potential, and me is
the electron mass. Note, that the value of the chemical
potential is fixed once the temperature and density of the
plasma are given. Since electrons and positrons have the
same mass and opposite charge, the expressions in
the previous section simplify greatly and allow us to define
the number density of charged particles in the plasma as

n0 ≡ 4π

Z þ∞

0

dpp2½feþðpÞ þ fe−ðpÞ� ð30Þ

¼ 1

π2

Z þ∞

0

dpp2
e−βΦ þ coshðβμ̃Þ

coshðβΦÞ þ coshðβμ̃Þ ; ð31Þ

where we introduced the notation β≡me=T, μ̃≡ μ=me,
and we switched to the variable u ¼ p=me so that we set
Φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
. The normalization in Eq. (30) acts as a

definition of μ̃ and has to be treated as a constraint over the
expressions in Eqs. (24)–(25). Note, that the macroscopic
current obtained from Faraday’s Eq. (11) and with the input
from Eq. (17) leads to the microscopic description in terms
of particle flux,

Jz ¼
ω

k
4πe

Z þ∞

0

dpp2½feþðpÞ − fe−ðpÞ�

¼ −
ω

k
4πe

Z þ∞

0

dpp2
sinhðβμ̃Þ

coshðβΦÞ þ coshðβμ̃Þ : ð32Þ

Because of the continuity equation, a nonzero current
density is related to a nonzero net charge of the plasma.

We now consider an ultrarelativistic plasma, for which we
neglect the chemical potential assuming charge neutrality.

A. Ultrarelativistic plasma

We first consider the case where the electron-positron
plasma temperature is T ≫ me, or β ≪ 1, and with a
negligible chemical potential. In this regime, the Fermi-
Dirac distribution reduces to a Maxwell-Boltzmann dis-
tribution when the interparticle distance is larger than the
thermal wavelength, n1=30 ≪ ð2πmeTÞ1=2. The expression
in Eq. (24) for the plasma dispersion relation with the
phase-space distribution normalized as in Eq. (30) reads

ω2 − k2 −m2
φ

ω2 − k2 −m2
eff

�
ωβ

4kK2ðβÞ
I − 1

�
¼ k2

2k2D
;

I ≡
Z þ∞

0

duu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ln

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
þ ku

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
− ku

�2

e−β
ffiffiffiffiffiffiffiffi
1þu2

p
;

ð33Þ

where the inverse Debye length for a plasma at temperature
T is

kD ¼
�
4παEM

T
n0

�
1=2

: ð34Þ

We first discuss the solutions of Eq. (33) in the regionω≲ k,
for which the expression within the logarithmic term
becomes independent on u and the integral over momenta
can be performed exactly using the normalization inEq. (30).
In this regime, the dispersion relation is described by

ω2 − k2 −m2
φ

ω2 − k2 −m2
eff

�
ω

4k
ln

�
ωþ k
ω − k

�
2

− 1

�
¼ k2

2k2D
; ð35Þ

which, as expected for the ultrarelativistic case, is indepen-
dent of the electron mass.
We separate the solutions into distinct regimes, and we

introduce k2⋆ ¼ 2k2D=3 to facilitate the comparison with the
results in Sec. IV B. In the limit k ≪ ω, we expand the term
in squared brackets in Eq. (35) as

ω

4kv
ln

�
ωþ vk
ω − vk

�
2

− 1 ≈
v2k2

3ω2
þ v4k4

5ω4
þ v6k6

7ω6
þ � � � ; ð36Þ

where v ¼ 1 in the regime considered here, so that the
dispersion relation can be obtained analytically. In the case
gφγ ¼ 0, the solution for the region k ≪ ω is approximated
in the region k≲ k⋆ by the relation [14,15]

ω2 ¼ k2⋆ þ
3

5
k2 þ 12

175

k4

k2⋆
: ð37Þ

B-FIELD INDUCED MIXING BETWEEN LANGMUIR WAVES AND … PHYS. REV. D 105, 096024 (2022)

096024-5



In the same limit, the axion dispersion is given by the
Klein-Gordon Eq. (12) as ω2 ¼ k2 þm2

φ.
The inclusion of a nonzero axion-photon coupling

affects these results by hybridizing the dispersion relations
for the axion and the plasmon, effectively giving rise to an
axion-plasmon polariton [79], with the two relations
repelling each other by avoiding crossing. Inserting the
expansion in Eq. (36) to second order into Eq. (35) with
gφγ ≠ 0 leads to the dispersion relation for the upper and
lower polariton modes,

ω2
U;L ¼ 1

2

h
k2⋆ þ k2 þm2

eff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⋆ − k2 −m2

effÞ2 þ 4Ω4

q i
:

ð38Þ

Here, Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gφγB0k⋆

p
is the analogous of the Rabi fre-

quency, describing the strength of the axion-plasmon
coupling [79]. The solution for the upper polariton mode
ωU is valid for a wide range of k extending beyond k≳ k⋆
and holds as long as the condition k ≪ ω is satisfied. The
lower polariton mode solution ωL is valid for k≲ kl, with

kl ¼ k⋆
mφ

meff
: ð39Þ

The crossing from plasmon to axion behavior occurs at the
wavelength k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⋆ −m2

eff

p
.

A different solution for the lower polariton mode is
provided in the region k≲ ω. In fact, setting ω ¼ kð1þ δÞ
with an arbitrary δ into Eq. (35) yields

k2δð2þ δÞ −m2
φ

k2δð2þ δÞ −m2
eff

�
1þ δ

4
ln

�
1þ 2

δ

�
2

− 1

�
¼ k2

2k2D
; ð40Þ

As long as jk2 − ω2j ≪ m2
φ, the limit δ → 0 leads to a

solution in the region k≲ ω as

ω=k ¼ 1þ 2 exp

�
−2

�
1þ k2

2k2D

m2
eff

m2
φ

��
: ð41Þ

This relation is valid for kl ≲ k≲ k0, where the momentum
k0 is obtained by setting ϵr ¼ 0 as

k0 ≡ kl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2=βÞ

p
: ð42Þ

For gφγB0 ¼ 0, the two expressions in Eqs. (37) and (41)
cross at k ≈ 0.7kD. Note that, contrary to the solutions
obtained in Eq. (38) which is valid even in the case of a
massless axion, the expression in Eq. (41) is not valid when
discussing the region k ∼ ω and for mφ ¼ 0 only the upper
polariton solution ωU exists. More in detail, Eq. (40) in the
presence of a massless axion does not have a solution for
vanishing δ, hence the dispersion relation does not cross the
region ω ≈ k and only solutions for a finite δ exist. To avoid

this complication, in the following we consider a mas-
sive axion.
We finally compute the dispersion relation in the region

ω ≈ k, where the phase velocity of the plasma waves
approaches the speed of light [88]. Assuming a linear
approximation around k ≈ k0 for the dispersion of the kind
Δω ¼ Δk − k0Δvp, where the phase velocity is vp ¼ ω=k,
and taking into account the expression

Δvp
Δk

¼ ∂ϵr=∂k
∂ϵr=∂vp

����
ω¼k

; ð43Þ

with ∂ϵr=∂vpjω¼k ¼ 12ðkl=βk0Þ2 and ∂ϵr=∂kjω¼k ¼ 2=k0,
we obtain the dispersion relation

ω ¼ k − ðk − k0Þ
β2

3
lnð2=βÞ: ð44Þ

The smallness of the term ðβ2=3Þ lnð2=βÞ assures that the
slope in Eq. (44) acts as a perturbation over the light cone
solution ω ¼ k.
Results are shown in Fig. 1, where the frequency ω is

plot as a function of the wave number k, both in units of kD,
and for the choices β ¼ 0.5 and mφ ¼ kD. In the case of no
axion-photon coupling gφγ ¼ 0, the plasma dispersion

FIG. 1. Kinetic dispersion relation of the axion-plasmon polar-
iton modes for an ultrarelativistic plasma. The green dashed line
is the axion dispersion for gφγ ¼ 0. The plasma dispersion
relation ω ¼ ωðkÞ for β ¼ 0.5, for the illustrative case mφ ¼ kD
and for three different values of the quantity gφγB0 ¼ 0 (green
solid line), gφγB0 ¼ kD (blue solid line), and gφγB0 ¼ 2kD (red
solid line). Also shown for reference is the line k ¼ ω (black solid
line). All curves are in units of the inverse Debye length
in Eq. (34).
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relation is described by the green solid line in Fig. 1,
corresponding to Eq. (35) in the long-wavelength limit
k ≪ ω and approaching Eq. (44) for k ≈ ω. In this case, the
dispersion relation of the axion field is represented by the
green dashed line. When gφγ ≠ 0, the upmost solution splits
into the upper polariton mode ωU for mB ¼ kD (blue solid
line) and gφγB0 ¼ 2kD (red solid line), while the dispersion
relation of the lower polariton mode, valid for k ≪ ω, is
described by Eq. (41) for k≲ ω and by Eq. (44) for k ≈ ω.
For reference, we also show the line k ¼ ω (black solid
line) to better visualize the deviations from the light-cone
dispersion relation.
As discussed below Eq. (23), damping is effective for

subluminal modes or, using Eq. (44), for k > k0. For
mφ ≫ gφγB0, the result for k0 in Eq. (42) coincides with
the usual expressions for the wave number describing
Landau damping, while k0 is suppressed by a factor
mφ=ðgφγB0Þ with respect to the usual results obtained in
Ref. [13] for mφ ≪ gφγB0. In this latter regime, the results
obtained for the emission of axions in supernovae cores
mediated by a plasmon would be suppressed by the same
quantity [52].
To proceed with the computation of γL, we compute the

derivative of ϵr with respect to ω, using Eq. (44). In this
regime, the imaginary component of the function in
Eq. (25) reads

ϵiðω; kÞ ¼
πβ

2

k2D
k2

m2
φ

m2
eff

ū2e−βū: ð45Þ

The last expression is valid for β ≪ 1 ≪ ū, which coin-
cides with the ultrarelativistic limit and with the region
k ≈ ω where ū ≫ 1 in which we are working. As the
imaginary part of the function in Eq. (25) is associated with
the dissipation in the medium, the formula in Eq. (45) could
seem counterintuitive as it vanishes in the limit of a
massless particle. However, in order to derive the
dispersion relation in Eq. (44) we have also assumed that
mφ ≠ 0; in this regards, one cannot take the limit mφ → 0

in Eq. (45). For a massless axion, the dispersion relation in
Eq. (35) does not cross the region ω ¼ k, so that the
imaginary part of the function in Eq. (25) is always
vanishing. Finally, we recover the damping rate

γLðΔkÞ ≈
πβk20

16Δk lnð2=βÞ e
−

ffiffiffiffiffiffiffiffiffiffiffi
3k0

Δk lnð2=βÞ

q
; ð46Þ

where k0 has been defined in Eq. (42). Damping occurs only
for the region k0 þ Δk with Δk > 0, namely for subluminal
waves for which ω < k. The function γLðΔkÞ has a maxi-
mum for Δk ¼ ð3=4Þk0= lnð2=βÞ and it has decayed to a
tenth of its maximum value for Δk ≈ 40k0= lnð2=βÞ.
The results obtained are generally relevant for light

axion in astrophysical setups. Consider for example the

magnetized plasma surrounding a magnetar, in which the
typicalmagnetic field is of the order ofB0 ¼ 1010 T [89–91].
If the effects studied here were not taken into account, the
typical scale k0 at which damping occurs would be expected
to take place for kl ∼ kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2=βÞp

regardless of the axion
mass. Instead, the inclusion of the axion-photon coupling
leads to a suppression of the scale k0 as in Eq. (42). For an
axion-photon coupling in the range gφγ ∼ 10−10 GeV−1,
corresponding to the sensitivity of CAST [92], the sup-
pression effect takes place for an axion mass
mφ ≲ gφγB0 ≈ 1 μeV. Instead, if the axion-photon coupling
lies below the projected sensitivity window of ADMX [93],
gφγ ≲ 10−15 GeV−1, the suppression is effective for the non-
QCD axion masses mφ ≲ gφγB0 ≈ 10−11 eV. In both sce-
narios, the dispersion relation is modified with respect to the
standard case with gφγ ¼ 0.

B. Degenerate plasma

We now consider a highly degenerate Fermi gas, for
which T ≪ μ −me. This is the limit to consider when
dealing with the effects of oscillations in dense nuclear
material such as the interior of neutron stars and white
dwarfs, where the thermal length for the particles in the
plasma is much larger than their interparticle distance. In
this limit, the sum of the phase space distributions reads

feþðpÞ þ fe−ðpÞ ¼
2

ð2πÞ3ΘðpF − pÞ; ð47Þ

where pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

e

p
is the Fermi momentum and ΘðxÞ

is the Heaviside function in the argument x, so that the
normalization in Eq. (30) leads to the chemical potential
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F þm2

e

p
with pF ¼ ð3π2n0Þ1=3. Inserting Eq. (47)

into Eq. (24) leads to the dispersion relation

ω2 − k2 −m2
φ

ω2 − k2 −m2
eff

�
ω

4kvF
ln

�
ωþ kvF
ω − kvF

�
2

− 1

�
¼ k2

2m2
D
; ð48Þ

where the square of the Debye mass m2
D ≡ ð2αEM=πÞμ2vF

depends on the Fermi velocity vF ≡ pF=μ, see e.g.,
Ref. [86]. Note, that the dispersion relations for the
degenerate regime in Eq. (48) has the same functional
dependence on ω and k as what has been previously
obtained in the ultrarelativistic regime, see Eq. (35). For
this reason, the results in Eq. (38) for k ≪ ω are also valid
for the degenerate case, once identified k2⋆ ¼ 2m2

D=3.
However, the Fermi velocity vF might not be close to
the speed of light and appears in the solution even when the
Fermi surface is nonrelativistic. Note, that when the axion-
photon coupling is absent the modes satisfy (vp ≡ ω=k)

vp
2vF

ln

���� vp þ vF
vp − vF

���� > 1; ð49Þ
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or ζkvF ≲ ω with ζ ≈ 0.833. The appearance of the
prefactor in Eq. (48) containing the axion-photon coupling
leads to solution also for ζkvF ≳ ω in the region
k2 þm2

φ < ω2 < k2 þm2
φ þ ðgφγB0Þ2.

For modes kvF ≪ ω the expansion of the terms in
squared brackets in Eq. (48) to second order using
Eq. (36) gives the dispersion relation

ω2 − k2 −m2
φ

ω2 − k2 −m2
eff

�
1þ 3v2Fk

2

5ω2

�
¼ ω2

v2Fk
2⋆
; ð50Þ

so that for negligible couplings mφ ≈meff , we obtain the
plasma dispersion ω2 ≈ v2Fk

2⋆ þ ð3=5Þv2Fk2. Instead, when
coupling cannot be neglected two separate solutions appear
similar to what is found in Eq. (38) for the ultrarelativistic
plasma.

C. Nonrelativistic plasma

The nonrelativistic case β ≫ 1 has been extensively
treated in Ref. [79]. In this section, we show how the
same results can be derived using the formalism
discussed here. In the nonrelativistic regime, for which

βe−β
ffiffiffiffiffiffiffiffi
1þq2

p
=K2ðβÞ ≈

ffiffiffiffiffiffiffiffi
2=π

p
β3=2e−βq

2=2, the logarithmic
term in Eq. (33) for modes whose phase velocity ω=k is
much larger than the average velocity of particles in the
plasma v can be approximated as

1 −
ω

4kv
ln

�
ωþ kv
ω − kv

�
2

≈ −
v2k2

3ω2
: ð51Þ

In this approximation, the dispersion relation describing the
upper- and lower-polariton modes reads

ω2
U;L ¼ 1

2

�
ω2
Pl þ ω2

φ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

Pl − ω2
φÞ2 þ 4Ω4

q 	
; ð52Þ

where ωPl ≡ ðe2n0=meÞ1=2 ¼ kD=β1=2 is the plasma fre-
quency. This latter expression matches the results obtained
in Ref. [79] using the continuity and Navier-Stokes
equations (respectively the zeroth and second moment of
the Vlasov equation). In the absence of a photon-axion
interaction, the two dispersion relations are ω2 ¼ ω2

Pl and
ω2 ¼ m2

φ þ k2, corresponding respectively to the plasmon
and axion modes. The Rabi frequency of the system Ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωPlgφγB0

p
describes two distinct effects, namely the

mixing of the axion and plasmon modes and the repulsion
between the upper and lower polariton modes. For both the
upper and lower modes, the crossing from plasmon to axion
behavior occurs when ωPl ¼ ωφ, corresponding to the
wavelength [79]

k⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
Pl −m2

eff

q
: ð53Þ

In the realm of the kinetic analysis performed here, each
polariton mode acquires a small imaginary part as a
consequence of the mixing of a Landau damped plasma
mode, ωU;L → ωU;L þ iγU;L, where the imaginary part
reads

γU;L ≈ −
ffiffiffi
π

8

r
ωPl

ðk=kDÞ3
�
1þ ðgφγB0Þ2

ω2
U;L − k2 −m2

eff

�
e−

β2ω2
U;L

2k2 : ð54Þ

For polariton frequencies close to the axion mode,
ω2
U;L ∼ k2 þm2

eff , there is a resonant effect leading to
effective axion Landau damping while, away from reso-
nance, we obtain the plasma Landau damping rate,
γU;L ≈ γPl, where [83]

γPl ≃ −
ffiffiffi
π

8

r
ωPl

ðk=kDÞ3
e−

k2
D

2k2 : ð55Þ

The results in Eqs. (45) and (54) may contain hints about
the fate of axions at cosmological scales, namely in the
conditions of primordial and intergalactic plasmas.
The QCD axion survives the strong magnetic fields in
the radiation era, because of the large conductivity actually
diminishes its dissipation in the medium and acts as a
quantum Zeno effect [94]. This could not be true in the hot
intergalactic medium, which should have temperatures
T ∼ 106 K and a density ne ∼ 10−6 cm−3, resulting in the
plasma frequency ωPl ∼ 10−14 eV. It is possible that par-
ticles of this mass do not survive the propagation in the
intergalactic medium because of a much weaker magnetic
field. These aspects will be treated with care in a separate
publication.

V. SUMMARY AND CONCLUSIONS

We have derived the dispersion equations for the
oscillations of a magnetized plasmas in the absence of
collisions within the kinetic theory of a coherent super-
position of axions and plasmons. The framework consists
in the phase-space description of plasmas coupled to the
axion field via the axion-photon term. In more detail, we
construct a Vlasov–Maxwell–Klein-Gordon system in
Eqs. (2)–(5), Eq. (6), and Eq. (15), capturing the key
aspects of both relativistic and nonrelativistic plasmas:
wave-wave and wave-particle interactions as well as the full
relativistic nature of the axion field. In this regard, we
substantially extend the focus of Ref. [79] and we set the
stage for a set of future applications.
To illustrate some features of our kinetic theory, we have

analytically obtained the dispersion relation of the axion-
plasmon polaritons for both the ultrarelativistic and non-
relativistic plasmas, showing how the plasmon-axion
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interaction in the presence of a magnetic field modifies the
plasma physics relations. We have obtained the dispersion
relation for the plasma waves for the axion-polariton modes
in the ultrarelativistic case and in different regimes. The
dispersion relation split into an upper and a lower polariton
modes due to the presence of the axion. Results are
summarized in Fig. 1 for a fixed axion mass mφ and for
different values of the magnetic field B0 and the axion-
photon coupling gφγ. Landau damping is effective for wave
numbers k > k0, with k0 depends on the ratio mφ=ðgφγB0Þ
and it might be suppressed in regions where mφ ≪ gφγB0.
Similarly, damping is reduced in this regime as expressed
by Eq. (46).
We have shown that Landau damping takes place in hot

plasmas for some values of the plasma frequency, making
possible for the axions to be kinematically damped in some
situations of physical relevance. This latter, novel feature is
worth being investigated in the context of astrophysical and
cosmological plasmas, with potential to complement the
literature on the mechanisms of axion production and
suppression in dense and dilute plasmas. Moreover, we
motivate novel experimental schemes to detect axions in
laboratory plasmas in an active way, i.e., based on mech-
anisms where the axion is actually produced within the
plasma, therefore complementing the running experiments
based on telescopes and cavities, planned to detect axions
produced at the interior of stars or in the primordial
universe.
Besides damping, the mixing of longitudinal modes with

the axion also leads to other effects including axion
emission in the presence of a strong magnetic field [52–54],
acting both as a target for axion helioscopes and as a means
to probe the inner solar structure. These effects depend on
the relative strength of other competing terms entering the
imaginary part of the Langmuir waves that also suffer all
the other opacity sources such as Compton scattering or
inverse bremsstrahlung.
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APPENDIX: PAULI EQUATION WITH
AXION-ELECTRON INTERACTION

Here, we show under which conditions it is possible to
neglect the axion-electron coupling for an electron in the

presence of a magnetic field. Starting from the Lagrangian
in Eq. (1), the electron follows the equation of motion for
the Dirac field

iγμð∂μ − iqAμÞψ −meψ þ igφeφγ5ψ ¼ 0; ðA1Þ

where the coupling gφe ¼ Cemφ=f, for a model-dependent
factor Ce of order one. We concentrate on the nonrelativ-
istic case and we derive the expression analogous for the
Pauli equation in the presence of the axion-electron
coupling, writing the wave function in terms of the
large and small bispinor components as ψðx; tÞ ¼
e−imetðχðx; tÞ;Φðx; tÞÞ, where the time dependence of
the bispinors occurs at scales larger than 1=me. In the
Dirac representation, we have

i_χ ¼ −qA0χ − igφeφΦþ iσ · ∇Φþ qσ ·AΦ; ðA2Þ

i _Φ¼−qA0Φþ igφeφχþ iσ ·∇χþqσ ·Aχ−2meΦ: ðA3Þ

Neglecting the time dependence ofΦ andwhen 2me ≫ qA0,
Eq. (A3) is rewritten as

Φ ¼ i
2me

½gφeφþ σ · ð∇ − iqAÞ�χ: ðA4Þ

Substituting Eq. (A4) into Eq. (A2) and rearranging terms
gives the Schrödinger equation in the presence of the axion-
electron coupling,

i_χ ¼ −qA0χ −
1

2me
ð∇ − iqAÞ2χ − σ

2me
· ðqBþ gφe∇φÞχ:

ðA5Þ

The term gφe∇φ ∼mφ=L, where L is the length over which
the axion field varies, can be ignored with respect to eB0 as
long as

L≳ Lcrit ≡ 1 fm

�
B0

T

�
−1
�
mφ

μeV

�
: ðA6Þ

This condition is satisfied in many relevant astrophysical
setups, such as: (1) Ultralight axions of mass mφ ¼
10−22 eV that permeates the core of a DM halo of mass
∼1012 M⊙, so that de Broglie wavelength is λ ≈ 0.1 pc. A
cloud of ultralight axions surrounding a supermassive black
hole would also exhibit a large de Broglie wavelength
of the order of an astronomical unit; (2) DM axions of
massmφ ¼ 1 μeV and a typical galactic velocity dispersion
v ¼ 10−3c, so that the de Broglie wavelength is λ ≈ 200 m.
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