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In this paper, a detailed analysis on normal modes of the linearized Hermite collision operator is
presented, which follows from linearizing spin Boltzmann equation for massive fermions proposed in
[Phys. Rev. D 104, 016022 (2021)] with the nondiagonal part of the transition rate neglected and
approximating what we got with a mutilated operator. With the assumption of total angular momentum
conservation, the collision term is proven to well describe the equilibrium state and gives proper
interpretation for collisional invariants, thus is relevant for the research on local spin polarization.
Following the familiar fashion as used in quantum mechanics, we treat the problem of solving normal
modes as a degenerate perturbation problem and calculate the dispersion relations for intriguing eleven zero
modes, which form one-to-one correspondence to all collisional invariants. We find that the results of
spinless modes appearing in ordinary hydrodynamics are consistent with available conclusions in
textbooks. As for spin-related modes, we obtain the frequencies up to second order in a wave vector
and relate them with the dissipation of spin density fluctuation. In addition, the ratio of two relaxation
timescales for spin and momentum is shown as a function of reduced mass, which reads that based on
present framework spin equilibration is almost as slow as momentum equilibration as far as the strange
quark spins in quark gluon plasma (QGP) are concerned.

DOI: 10.1103/PhysRevD.105.096021

I. INTRODUCTION

Recent developments in the experiments of relativistic
noncentral heavy-ion collisions have seen great progress in
measuring the net spin polarization of Λ and Λ̄ hyperons
[1,2]. In the early stage of evolution of the hot, dense matter
produced in noncentral heavy-ion collisions, the medium
carries a huge total angular momentum that is converted
into spin angular momentum of the particles of final states
via spin-orbit coupling. Theoretical researches on the
global polarization of Λ hyperons have long attracted
extensive interests and corresponding numerical results
satisfy experimental data well [3–11]. However, they have
difficulties in providing satisfying explanations for the
measurements of differential spin polarization, i.e., the
dependence of Λ polarization on the azimuthal angle and
transverse momentum [12,13], which is usually called the
“spin sign problem” [14,15]. Resolving this problem calls
for new theoretical frameworks and concerns one still
unsettled question of how strange quark spin comes to
equilibrium. There are two possible mechanisms by which

strange quark spin could equilibrate. One is that fluctua-
tions of the vorticity will drive the spins toward equilibrium
just as fluctuations around an external magnetic field do,
the other is dynamic mechanism originating from the
scatterings between strange quarks and other particles
within the medium [16]. If taking an analogy with the
transport equation, the proposed mechanisms exactly refer
to the external field term and the collision term. We here
address that the crucial point for answering these questions
lies in the appropriate extraction of spin equilibration
timescale. In short, the new framework must take into
account the influence of dissipation instead of treating spin
as an independent equilibrated quantity. Among all the
candidates, spin hydrodynamics and spin transport are
thought to be promising. Spin hydrodynamics extends
the description of ordinary fluid theory by including spin
degree of freedom, based on which the relaxation of spin
and the evolution of vorticity become the focus of theo-
retical research, while spin transport, namely, focuses on
constructing a consistent theory for both spin and momen-
tum transport. Though, in principle, the latter possesses a
wider range of application, the constructed transport
equation on the market is too involved to be solved on
account of the complexity and nonlinearity.
There are many developments in the investigation of spin

hydrodynamic. Among them, “ideal” spin hydrodynamics
was proposed in the context of the QGP [17] and for
massive spin-1=2 fermions [18]. Recently, first-order spin
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hydrodynamics including nonequilibrium corrections has
also been put into efforts [19–23]. In a recent work, the
authors construct a second-order spin hydrodynamic theory
based on the method of moment expansion [24] from spin
transport equation [25,26], which is also our starting point
for linear mode analysis. As a reminder, one can also see
[27–33] for continuous efforts on the research of spin
transport theory.
In this paper, we present a detailed analysis on normal

modes of the linearized collision operator. To that end, we
adopt the transport equation along with a nonlocal
collision kernel proposed in [26] as the start point of
our calculation. The linear mode analysis is closely
associated with hydrodynamics because the theory of
fluids can be completely constructed from these normal
modes, which are nothing but collisional invariants, i.e.,
the microscopic correspondence of macroscopic con-
served laws. Moreover, one can relate dispersion relations
of normal modes with the dissipation of various fluc-
tuation amplitudes, from which various relaxation time-
scales can be extracted. As is raised in previous
paragraphs, the comparison for these timescales is sig-
nificant for investigating spin polarization and spin
equilibration. This paper is organized as follows. In
Sec. II we present a short review of spin Boltzmann
equation with a nonlocal collision term. In Sec. III the
equilibrium distribution function is briefly discussed and
the conditions for global equilibrium are also obtained.
After that, the mutilated operator inheriting the important
properties of full linearized collision operator is proposed
in Sec. IV. In Sec. V, we present the detailed analysis on
normal modes of the approximated linearized operator,
i.e., mutilated collision operator following the fashion as
used in quantum mechanics [34,35]. Summary and out-
look are given in Sec. VI. Natural units kB ¼ c ¼ ℏ ¼ 1
are utilized. The metric tensor here is given by
gμν ¼ diagð1;−1;−1;−1Þ, while Δμν ≡ gμν − uμuν is the
projection tensor orthogonal to the four-vector fluid
velocity uμ.

In addition, we employ the symmetric/antisymmetric
shorthand notations:

XðμνÞ ≡ ðXμν þ XνμÞ=2; ð1Þ

X½μν� ≡ ðXμν − XνμÞ=2; ð2Þ

Xhμνi ≡
�Δμ

αΔν
β þ Δν

αΔ
μ
β

2
−
ΔμνΔαβ

3

�
Xαβ: ð3Þ

Specially, we decompose the derivative ∂ according to

∂μ ¼ uμDþ∇μ; D≡ uμ∂μ; ∇μ ≡ Δμν∂ν: ð4Þ

II. REVIEW OF THE NONLOCAL TRANSPORT
EQUATION

We start with the spin Boltzmann equation with a
nonlocal collision term for massive fermions proposed in
[26]. Assuming that the evolution of the system of our
interest is governed by the proposed on-shell Boltzmann
equation, which extends the phase space to incorporate the
variable s as a classical description of spin degrees of
freedom,

p · ∂fðx; p; sÞ ¼ C½f�; ð5Þ

with the nonlocal collision term

C½f�≡
Z

dΓ1dΓ2dΓ0W½fðxþ Δ1; p1; s1Þfðxþ Δ2; p2; s2Þ

− fðxþ Δ; p; sÞfðxþ Δ0; p0; s0Þ�; ð6Þ
where the measure appearing in the collision kernel is
defined as dΓ≡ d4pδðp2 −m2ÞdSðpÞ, the newly intro-
duced measure dSðpÞ is given in Eq. (11) and the other
collision term corresponding to only spin changes in [26] is
neglected. Here we note the transition rate W is

W ≡ δð4Þðpþ p0 − p1 − p2Þ
1

8

X
s;r;s0;r0;s1;s2;r1;r2

hsrðp; sÞhs0r0 ðp0; s0Þhs1r1ðp1; s1Þhs2r2ðp2; s2Þ

× hp; p0; r; r0jtjp1; p2; s1; s2ihp1; p2; r1; r2jt†jp; p0; s; s0i ð7Þ

with

hsrðp; sÞ≡ δsr þ
1

2m
ūsðpÞγ5s · γurðpÞ: ð8Þ

As is shown by the two terms in Eq. (8), we splitW into the
unpolarized part and polarized one. Namely, when neglect-
ing the nondiagonal part in Eq. (8), i.e., the term linearized

to spin s, the transition rate takes exactly the unpolarized
form (sum up the final states and average the initial states),

W̄ ≡ δð4Þðpþ p0 − p1 − p2Þ

×
1

8

X
r;r0;r1;r2

hp; p0; r; r0jtjp1; p2; r1; r2i

× hp1; p2; r1; r2jt†jp; p0; r; r0i; ð9Þ
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where the γ matrices, spinor usðpÞ and spin indices r, s
correspond to the spinor description for fermions as often
used, and the matrix element of t is the conventional
scattering amplitude defined in quantum field theory. To
proceed, we comment that the crucial point for the non-
trivial extension of the collision term lies in the spatial shift
Δ manifesting the nonlocality of the collisions,

Δμ ≡ −
1

2mðp · t̂þmÞ ϵ
μναβpν t̂αsβ; ð10Þ

where t̂μ is the timelike unit vector which is ð1; 0Þ in the
frame where pμ is measured. The collision shift well
captures the properties of spin-orbit coupling in nonlocal
collisions, thus is highly relevant for discussing the spin
sign problem of the local polarization of Λ.
To proceed, we move on to the classical spin. Spin here is

treated as an additional variable in phase space [25,36–40],
which immediately connects the first-principle quantum
description to a “classical” description of spin. In previous
paragraphs, we have introduced the covariant integration
measure for spin

Z
dSðpÞ≡

ffiffiffiffiffiffiffi
p2

3π2

s Z
d4sδðs · sþ 3Þδðp · sÞ: ð11Þ

Then the following useful integrals can be easily obtained
via rather straightforward calculations,Z

dSðpÞ ¼ 2; ð12aÞ
Z

dSðpÞsμ ¼ 0; ð12bÞ
Z

dSðpÞsμsν ¼ −2
�
gμν −

pμpν

p2

�
; ð12cÞ

Z
dSðpÞsλsμsν ¼ 0; ð12dÞZ

dSðpÞΣμν
s Σαβ

s ¼ 2

m2
ðgμαgνβp2 þ gμβpνpα

þ gναpμpβ − ½μ ↔ ν�Þ; ð12eÞ
where the dipole tensor Σμν

s ≡ − 1
m ϵ

μναβpαsβ is interpreted
as the spin angular momentum of the particle [26].
With the extended phase space, our interesting tensors

such as particle current, energy-momentum tensor and spin
tensor can be convenient written as

Nμ ≡
Z

dΓpμfðx; p; sÞ; ð13Þ

Tμν
HW ≡

Z
dΓpμpνfðx; p; sÞ þ T ½μν�

HW; ð14Þ

Sλ;μνHW ≡
Z

dΓpλ

�
1

2
Σμν
s −

1

2m2
p½μ∂ν�

�
fðx; p; sÞ; ð15Þ

where we have chosen the pseudogauge proposed by
Hilgevoord and Wouthuysen (HW) [25,41,42], the spin
tensor of which is proved to be conserved in global
equilibrium and nonconserved away from global equilib-
rium because of mutual conversion between spin and
orbital angular momentum and thus more intuitively
suitable for our discussion herein and we keep T ½μν�

HW to
stress that THW is not symmetric and is in the second order
in ℏ expansion while its form is left unspecified within our
paper, see [24,25] for more details.
By taking Landau choice of fluid velocity and Landau

matching conditions,

Tμν
S uν ¼ euμ; uμNμ ¼ uμN

μ
eq;

uμT
μν
S uν ¼ uμT

μν
equν; uλJλ;μν ¼ uλJ

λ;μν
eq ; ð16Þ

where Tμν
S refers to the symmetric part of Tμν

HW
and the total angular momentum tensor is defined as
Jλ;μν ≡ Sλ;μνHW þ xμTλν

HW − xνTλμ
HW, we allow the following

decompositions,

Nμ ¼ nuμ þ Vμ; ð17Þ

Tμν
S ¼ euμuν − PΔμν þ πμν þ ΠΔμν; ð18Þ

Sλ;μνHW ¼ uλSμν þ δSλ;μν; ð19Þ

where n, e, P, Sμν are the particle number density, energy
density, static pressure and spin density, and the dissipative
quantities Vμ, πμν and Π are the diffusion current, shear
stress tensor, bulk viscous pressure respectively. Note that
generally uλδSλ;μν ≠ 0.

III. EQUILIBRIUM

In this section, we will show that the collision term
Eq. (6) is consistent with the standard form of spin-
dependent local equilibrium distribution function [17,43],

fleqðx; p; sÞ ¼
1

ð2πÞ3 exp
�
ξ − β · pþ ΩμνΣ

μν
s

4

�
; ð20Þ

where Ωμν represents spin potential, while βμ ≡ uμ
T , ξ≡ μ

T,
β≡ 1

T with the temperature T, and the chemical potential μ
introduced for conserved particle number (only elastic
scatterings are considered). The exponent in Eq. (20) is
exactly the linear combination of all conserved quantities,
and ξ, β and Ωμν are the correspondent Lagrangian multi-
pliers maximizing the total entropy of the system. To prove
this, the substitution of Eq. (20) into Eq. (6) leads to
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C½fleq�¼−
1

ð2πÞ6
Z

dΓ0dΓ1dΓ2W̄F½p;p0;p1;p2;s;s0;s1;s2�expð2ξ−β ·ðpþp0ÞÞ

×

�
−∂μξðΔμ

1þΔμ
2−Δμ−Δ0μÞþ∂μβνðΔμ

1p
ν
1þΔμ

2p
ν
2−Δμpν−Δ0μp0νÞ−1

4
ΩμνðΣμν

s1 þΣμν
s2 −Σμν

s −Σμν
s0 Þ

�
; ð21Þ

where the local equilibrium distribution is Taylor expanded
to first order in Ω assuming small spin potential ( if the
system in discussion is close to the state of global
equilibrium, Ω is about the order of the gradient of β field).
When including spin, it is the global equilibrium dis-

tribution function that makes the collision term vanish as
long as the total angular momentum

Jμν ¼ 2Δ½μpν� þ 1

2
Σμν
s ð22Þ

is conserved in a collision, which is distinct from traditional
definition for local equilibrium. In that case, the conditions
for vanishing Eq. (21) are

∂ðμβνÞ ¼ 0; ξ ¼ const;

Ωμν ¼ −∂ ½μβν� ¼ const; ð23Þ

which implies that the spin potential Ωμν is fixed to thermal
vorticity 1

2
ð∂νβμ − ∂μβνÞ. βμ can be further decomposed

into a translation (aμ) and a rigid rotation (Ωμνxν) in global
equilibrium,

βμ ¼ aμ þΩμνxν; aμ ¼ const; ð24Þ

which are consistent with the previous conclusions drawn
in [17,43]. One may observe that Eq. (21) contains an extra
dimensionless factor F compared to Eq. (6) and W is
replaced by W̄. The reason why these changes are

necessary is elaborated in [44] and we want to emphasize
that the reformed collision operator or collision term
respects Hermiticity, non-negative property and detailed
balance as well as the collisional invariance for total
angular momentum, which is a necessary condition for a
consistent description of global equilibrium.

IV. MUTILATED COLLISION OPERATOR

Following [44], we choose a quiescent (also unpolarized)
background fluid, i.e., uμ ¼ ð1; 0; 0; 0Þ, Ωμν ¼ 0 with δuμ

and δΩμν treated as perturbations. With more details given
therein, we start with the equation for χ̃ (we want to find a
solution of the form χ ∼ χ̃e−ik·x to the linearized spin
Boltzmann equation)

τωχ̃ þ p̂μκμχ̃ þ L2½χ̃� ¼ −iL1½χ̃�; ð25Þ

with notations

τ≡ p · u
T

; ω≡ u · k
nσðTÞ ; p̂≡ p

T
; κα ≡ Δαβkβ

nσðTÞ ;

κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
−κ · κ

p
; lα ≡ κα

κ
; ð26Þ

where σðTÞ is an arbitrary constant with the dimension of
cross sections [45], χ denotes the deviation from the global
equilibrium distribution, and L1, L2 are the dimensionless
collision operators given by

L1½ϕ�≡ 1

ð2πÞ3nσðTÞT
Z

dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expðξ − β · p0Þ

× ½ϕðk; p; sÞ þ ϕðk; p0; s0Þ − ϕðk; p1; s1Þ − ϕðk; p2; s2Þ�; ð27Þ

L2½ϕ�≡ 1

ð2πÞ3T
Z

dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expðξ − β · p0Þ

× ½Δ · κϕðk; p; sÞ þ Δ0 · κϕðk; p0; s0Þ − Δ1 · κϕðk; p1; s1Þ − Δ2 · κϕðk; p2; s2Þ�: ð28Þ

Here we remind that the inner product is defined in global
equilibrium as

ðB;CÞ ¼ 1

ð2πÞ3
Z

dΓ expðξ − β · pÞBðp; sÞCðp; sÞ: ð29Þ

According to the calculations in [44], L2 contributes
nothing to the dispersion law, which is known from the fact
that L2 is absent in the formulas for ω. Therefore, we
neglect this term from now on but the complexity of solving
Eq. (25) does not decrease a lot. The linearized collision
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operator has a very complicated structure even for the
simplest interaction. However, it seems reasonable that the
qualitative features of the normal modes depend only upon
the universal properties independent of which interaction
to take, i.e., that the spectrum of the collision operator −L1

is composed of a eleven-fold degenerate zero, which are
nothing but all collisional invariants, and a sequence of
negative eigenvalues. These zero normal modes are pro-
tected by the conservation laws or essentially the transla-
tional and Lorentz symmetries. In the linear analysis, a
small fluctuation χ on top of background distribution can
always be expanded with a set of eigenstates of the
linearized collision operator formally [34]

χ ¼
X∞
n¼0

aneγntjγni; ð30Þ

where γn and jγni constitute the representation of eigen
spectrum of linearized collision operator, an denotes the
expansion coefficient and t is seen as a dimensionless
time. As the system evolves in time t, protected modes with
γn ¼ 0 remain unchanged and other negative modes
become less important after a characteristic timescale. If
taking this idea as an ansatz, the full linearized operator can
be approximated as a mutilated collision operator in which
all the negative eigenvalues collapse into a single eigen-
value of infinite degeneracy [46],

−L1 ≈ nσu · p
�
−γ þ γ

X11
n¼1

jλnihλnj
�

ð31Þ

with jλni being the eleven degenerate orthonormal eigen-
vectors of zero eigenvalue and −γ is the remaining negative
eigenvalue (it is suggestive that −γ is chosen to be the
largest one of all negative eigenvalues). To be concrete, we
rewrite the Eq. (31) as

−L1ϕðk; p; sÞ ≈ −nσu · pγ

�
ϕ −

X11
n¼1

ðψ̃n; τϕÞψ̃n

�
; ð32Þ

where the eigenfunction set is defined in Eq. (36) and there
are no differences between ψn and ψ̃n for lack of the
coordination x dependence in both eigenfunction sets. It is
easy to verify that this new defined operator [the right-hand
side of Eq. (32)] has the basic features belonging to the full
operator with respect to the orthonormal condition Eq. (37).
One may have doubt about taking the orthonormal con-
dition with a weight function τ. To answer this question,
one should be informed that the frequency ω of our interest
is not the eigenvalue of the operator L1 but τω is viewing
Eq. (34). In addition, one may observe that the proposed
approximation is exactly reformed relaxation time approxi-
mation (RTA) respecting L1jλni ¼ 0, n ¼ 1; 2;…11 and
−L1jλni ¼ −γjλni with n > 11. This extra factor τ is
consistent with the form of relativistic relaxation time

approximation. Last but not least, this novel version of
RTA is proved to reconcile the momentum dependence of
the relaxation time with the conservation laws. In fact,
when the relaxation time has momentum dependence as it
should do in general, the argument via matching conditions
used to resolve this contradiction also fails. Here we do not
go into details further and similar results are also reported
in a recent letter [47]. For simplicity, we require that γ is
momentum independent hereafter and when nothing con-
fusing happens, L1 represents the mutilated operator or
RTA operator instead of the full operator. Eventually the
equation to be solved is

τωχ̃ þ p̂μκμχ̃ ¼ −iγτ
�
χ̃ −

X11
n¼1

ðψ̃n; τχ̃Þψ̃n

�
: ð33Þ

V. DEGENERATE PERTURBATION THEORY AND
LINEAR MODE ANALYSIS

As a well-posed problem in the perturbation theory, the
solutions to Eq. (25) can be sought in the following steps.
First, treat the gradients of the thermodynamic variables as
a perturbation with respect to the linearized collision
operator −iL1, then we obtain an eigenvalue problem for
the unperturbed equation,

−iL1χ̃
ð0Þ ¼ τωð0Þχ̃ð0Þ: ð34Þ

Since the mutilated operator is constructed based on the
a priori knowledge about the spectrum of the full collision
operator, thus the conservation laws for energy-momentum,
particle number, and total angular momentum have already
been contained and the eigenfunctions are all the linear
combination of all collisional invariants 1; pμ, and Jμν.
Compared to ordinary hydrodynamic description, the six
new modes arise from the nontrivial dynamics of spin and
we identify them with the spin modes. Due to the eleven-
fold degeneracy, the perturbation term should be taken into
account to remove or partly remove the degeneracy.
For the first-order perturbation of p · κ, the evaluation of

the eigen spectrum can be done in a familiar fashion used in
quantum mechanics. To proceed, we denote the nth order
eigenvalues and eigenfunctions as ωðnÞ and χ̃ðnÞ for con-
creteness

χ̃ ¼ χ̃ð0Þ þ χ̃ð1Þ þ � � � ;
ω ¼ ωð0Þ þ ωð1Þ þ ωð2Þ þ � � � : ð35Þ

Following the procedures in quantum mechanics, χ̃n with
n > 0 is chosen as the combination of the eigenfunctions of
Eq. (34) excluding the zeroth-order eigenfunctions. In order
to break the eleven-fold degeneracy, the standard method of
Schmidt orthogonalization is adopted and the eigenfunc-
tions for these eleven-fold degenerate zeros can be taken as
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ψ̃1 ¼
1ffiffiffiffiffiffiffiffi
V1;1

p ; ψ̃2 ¼ β
u · p − e

nffiffiffiffiffiffiffiffi
V2;2

p ; ψ̃3 ¼
βl · pffiffiffiffiffiffiffiffi
V3;3

p ; ψ̃4 ¼
βj · pffiffiffiffiffiffiffiffi
V3;3

p ; ψ̃5 ¼
βv · pffiffiffiffiffiffiffiffi
V3;3

p ;

ψ̃6 ¼
uμJμνlνffiffiffiffiffiffiffiffi

V6;6
p ; ψ̃7 ¼

uμJμνjνffiffiffiffiffiffiffiffi
V6;6

p ; ψ̃8 ¼
uμJμνvνffiffiffiffiffiffiffiffi

V6;6
p ; ψ̃9 ¼

lμJμνjνffiffiffiffiffiffiffiffi
V9;9

p ;

ψ̃10 ¼
lμJμνvνffiffiffiffiffiffiffiffi

V9;9
p ; ψ̃11 ¼

jμJμνvνffiffiffiffiffiffiffiffi
V9;9

p ; ð36Þ

to fulfill the orthonormal condition

ðψ̃α; τψ̃βÞ ¼ δαβ; ð37Þ

where the definitions of two auxiliary vectors j, v and the
normalized factor Vi;j are all put in the Appendix B. We
now seek the solutions to the inhomogeneous integral
equation for χ̃ð1Þ

−iL1χ̃
ð1Þ
α ¼ τωð1Þ

α χ̃ð0Þα þ p̂μκμχ̃
ð0Þ
α : ð38Þ

According to the fundamental theory of degenerate per-
turbation, when the inhomogeneity is orthogonal to
the solution of the associated homogeneous equation
Eq. (34), i.e.,

ðψ̃ γ; τωð1Þχ̃ð0Þ þ p̂μκμχ̃
ð0ÞÞ ¼ 0; γ ¼ 1 � � � ; 11 ð39Þ

with

χ̃ð0Þα ¼
X11
i¼1

Cαβψ̃β; ð40Þ

a unique solution to Eq. (38) exists. To ensure the existence
of nontrivial solutions of Eq. (39), the frequency ω has to
obey the dispersion relation, i.e., the secular equation,

DetWγβ ¼ 0; ð41Þ

with the matrix elements taking the form,

Wγβ ¼ ωð1Þðψ̃ γ; τψ̃βÞ þ ðψ̃ γ; p̂ · κψ̃βÞ: ð42Þ

With all these matrix elements calculated in Appendix C,
the secular equation is,

������������������������������

ωð1Þ 0 H1;3 0 0 0 0 0 0 0 0

0 ωð1Þ H2;3 0 0 0 0 0 0 0 0

H1;3 H2;3 ωð1Þ 0 0 0 0 0 0 0 0

0 0 0 ωð1Þ 0 0 0 0 0 0 0

0 0 0 0 ωð1Þ 0 0 0 0 0 0

0 0 0 0 0 ωð1Þ 0 0 0 0 0

0 0 0 0 0 0 ωð1Þ 0 H7;9 0 0

0 0 0 0 0 0 0 ωð1Þ 0 H7;9 0

0 0 0 0 0 0 H7;9 0 ωð1Þ 0 0

0 0 0 0 0 0 0 H7;9 0 ωð1Þ 0

0 0 0 0 0 0 0 0 0 0 ωð1Þ

������������������������������

¼ 0; ð43Þ

the roots of this equation are

ωð1Þ
1 ¼ −ωð1Þ

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2;3 þH2
1;3

q
; ωð1Þ

3 ¼ ωð1Þ
4 ¼ ωð1Þ

5 ¼ 0;

ωð1Þ
6 ¼ ωð1Þ

11 ¼ 0; ωð1Þ
7 ¼ ωð1Þ

8 ¼ H7;9; ωð1Þ
9 ¼ ωð1Þ

10 ¼ −H7;9; ð44Þ

and one appropriate linear combination of ψ̃ satisfying the solubility condition Eq. (39) can be chosen to be
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χ̃ð0Þ1 ¼ 1ffiffiffi
2

p
�
−

H1;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1;3 þH2
2;3

q ψ̃1 −
H2;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
1;3 þH2

2;3

q ψ̃2 þ ψ̃3

�
; χ̃ð0Þ2 ¼ 1ffiffiffi

2
p

�
H1;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
1;3 þH2

2;3

q ψ̃1 þ
H2;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
1;3 þH2

2;3

q ψ̃2 þ ψ̃3

�
;

χ̃ð0Þ3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2;3

H2
1;3
þ 1

r �
−
H2;3

H1;3
ψ̃1 þ ψ̃2

�
; χ̃ð0Þ4 ¼ ψ̃4; χ̃ð0Þ5 ¼ ψ̃5; χ̃ð0Þ6 ¼ ψ̃6;

χ̃ð0Þ7 ¼ 1ffiffiffi
2

p ðψ̃7 − ψ̃9Þ; χ̃ð0Þ8 ¼ 1ffiffiffi
2

p ðψ̃8 − ψ̃10Þ; χ̃ð0Þ9 ¼ 1ffiffiffi
2

p ðψ̃7 þ ψ̃9Þ; χ̃ð0Þ10 ¼ 1ffiffiffi
2

p ðψ̃8 þ ψ̃10Þ; χ̃ð0Þ11 ¼ ψ̃11: ð45Þ

One can readily verify that the results of the first five modes
are the same as those in [45], which is independent of the
details of interactions involved. It is reasonable because we
are solving the same problem as far as the spinless modes
are concerned. By substituting the zeroth order eigenvalues
and eigenfunctions into Eq. (38) the first-order eigenfunc-
tions are

χ̃ð1Þα ¼ i
γτ
ðτωð1Þ

α χ̃ð0Þα þ p̂μκμχ̃
ð0Þ
α Þ; α¼1;2� �� ;11: ð46Þ

Subsequently, the second order perturbation equation
reads,

−iL1χ̃
ð2Þ ¼ τωð1Þχ̃ð1Þ þ p̂μκμχ̃

ð1Þ þ τωð2Þχ̃ð0Þ: ð47Þ

At this time, the solubility condition turns into

ðχ̃ð0Þα ; τωð1Þ
β χ̃ð1Þβ þ p̂μκμχ̃

ð1Þ
β þ τωð2Þ

β χ̃ð0Þβ Þ ¼ 0; ð48Þ

equivalently, this can be written as with the assistance of
bracket notation,

ωð2Þ
α ¼ i½χ̃ð1Þα ; χ̃ð1Þα �; α ¼ 1; 2 � � � ; 11; ð49Þ

where χ̃ð1Þ is given by Eq. (46) and the bracket is defined as
½B;C�≡ ðL1½B�; CÞ. Substitute the mutilated operator L1

into Eq. (49), and we get

ωð2Þ
α ¼ −i

�
ðp̂μκμ þ τωð1Þ

α Þχ̃ð0Þα ;
1

γτ
ðp̂μκμ þ τωð1Þ

α Þχ̃ð0Þα

�

¼ −
i
γ

��
χ̃ð0Þα χ̃ð0Þα ;

1

τ
p̂μκμp̂νκν

�
þ ωð1Þ

α ωð1Þ
α ðχ̃ð0Þα ; τχ̃ð0Þα Þ þ 2ωð1Þ

α ðχ̃ð0Þα ; p̂μκμχ̃
ð0Þ
α Þ

�
: ð50Þ

With a rather lengthy calculation, we obtain the frequencies in terms of various thermodynamic integrals I, L and N
displayed in Appendix A

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2;3 þH2
1;3

q
−
i
γ
ðQ1;1 −H2

2;3 −H2
1;3Þ;

ω2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2;3 þH2
1;3

q
−
i
γ
ðQ1;1 −H2

2;3 −H2
1;3Þ;

ω3 ¼ −
i
γ
Q3;3; ω4 ¼ −

i
γ
Q4;4; ω5 ¼ −

i
γ
Q4;4; ω6 ¼ −

i
γ
Q6;6;

ω7 ¼ H7;9 −
i
γ
ðQ7;7 −H2

7;9Þ; ω8 ¼ H7;9 −
i
γ
ðQ7;7 −H2

7;9Þ;

ω9 ¼ −H7;9 −
i
γ
ðQ9;9 −H2

7;9Þ; ω10 ¼ −H7;9 −
i
γ
ðQ9;9 −H2

7;9Þ; ω11 ¼ −
i
γ
Q11;11; ð51Þ

where the matrix elements Qi;j and Hi;j are calculated and
given in Appendix C and D. By comparison with the results
in [45], one can derive the detailed results for all first-order
transport coefficients of ordinary hydrodynamics, but we

here only concentrate on the spin modes. Here we comment
that these spin-related dispersion relations have no match
with the remaining six ones in [19], because in that work
the linear analysis concentrates on the nonconservative spin
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density. Among the spin modes there are four propagating
modes, two degenerate modes with the propagating speed

H7;9=κ damp according to the damping rate −½χ̃ð1Þ7 ; χ̃ð1Þ7 �
while the other two travel in the opposite direction with the

damping rate −½χ̃ð1Þ9 ; χ̃ð1Þ9 �. On the other hand, the sixth and
eleventh modes are purely decaying at their respective
decaying rates.
It is interesting to note that the imaginary parts of these

frequencies encode the information of the relaxation of
related dissipative quantities, i.e., the dissipation of a
perturbation of conserved charges around the equilibrium
state. If the system of our interest is not too far away from
the equilibrium state, in that case the linear analysis suffices
and we can get a quantitative comparison of two typical
relaxation times, one is the relaxation time for energy
momentum tensor, the other is for spin tensor, which is
significantly crucial in the investigation of spin polariza-
tion. Before that, we need to clarify the definition of the
spin relaxation time. As is shown in [44], we propose that
the relaxation time for spin density should be taken as the
longest one of all relaxation times for six spin modes,

τs ¼ max

�
1

jωð2Þ
α j

; α ¼ 6; � � � 11
	

ð52Þ

with the sign jAj representing the amplitude of a complex
A. To clarify the equilibrium picture, we compare it with
another typical timescale, the relaxation time for shear
modes ω4;5, which describes the dissipation of an initial
disturbance through shear viscosity η. We denote it with τη
to reflect that this timescale is closely connected with the
relaxation of transverse momentum density via shear
viscosity η. If the former is far smaller than the latter,
the initial disturbance has minor effects on spin evolution
because the spin density relaxes monotonically and quickly
to the equilibrium much earlier than other spinless modes
and almost independent. Reversely, the non-equilibrium
effects brought by the spin degrees of freedom play a big
role and may be irrelevant to heavy-ion collisions for much
longer spin equilibration time. In an intermediate case
where these two scales are comparable, the status of spin
hydrodynamics is enhanced because this is exactly within
the range of the application for spin hydrodynamic theory.
To that end, we need to specify the parameters in our

calculation. The spin Boltzmann equation is especially
derived for the spin transport for massive quarks, i.e.,
strange quarks (m ¼ 150 Mev) temporarily overlooking
the interactions with massless quarks and gluons. The
relevant temperature of the hot matter created in heavy-ion
collisions ranges from about Tc to 5Tc (the critical temper-
ature Tc is 170Mev). Since not all thermodynamic integrals
can be evaluated analytically, we calculate the frequencies
of normal modes numerically. The dependence of the
relative relaxation time on the reduced mass z is exhibited

in Fig. 1. From this figure, we can see it clearly that the spin
relaxation time is a little larger than shear relaxation time
and their ratio grows with the increasing reduced mass.
Throughout temperature region we are interested in, their
departure from each other is rather small. Therefore, these
two typical times are comparable satisfying the intermedi-
ate scenario introduced in the proceeding paragraphs,
which calls for the tangled dynamic evolution of both spin
and momentum (their characteristic equilibration times are
almost the same), while identical conclusions are also
reported in related works recently [24,48]. It seems that
increasing temperature will lessen the separation of two
timescales. In the hot medium where strange quarks are
generated, spin and moment relax to equilibrium via the
collisions between strange quarks at almost the same time.
In a different viewpoint, the dependence of τs=τη on z can
be also interpreted by holding T fixed, which reads that
increase particle mass enhances the effect of separation for
two equilibration timescales. The slowness of spin dis-
sipation may be attributed to suppression of spin interaction
by the mass of constitute particles, which is consistent with
the reason why spin rotation is suppressed in microscopic
collision process proposed in [19]. Nevertheless, present
results has dependence on the parametrization of γ. For the
impacts of the energy dependence of γ on the separation of
two timescales discussed here, we leave it to a future work
in preparation.

VI. SUMMARY AND OUTLOOK

In this work, we present a detailed linear analysis of
normal modes of linearized collision operator based on the
spin Boltzmann equation for massive fermions proposed in
[26]. When neglecting the nondiagonal part of the tran-
sition rate, the linearized collision operator L1 is proven to
be Hermite and solving normal modes can be done in the

FIG. 1. The relative relaxation time defined by the ratio of two
distinct typical timescales τs=τη as a function of zð¼ m

TÞ.
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fashion of degenerate perturbation theory. Moreover, the
reformed collision kernel phenomenologically incorporates
the important ansatz of the conservation of total angular
momentum in a collision event. The eleven zero modes
exactly correspond to eleven conserved charges that are
tightly associated with spin hydrodynamics. Considering
the complexity of solving integral equation, we instead
approximate the full linearized collision operator with a
mutilated operator, which inherits necessary properties of
linearized collision operator.
With the simplified collision kernel, solving normal

modes completely reduces to numerical integration order
by order and we calculate the frequencies of these normal
modes growing from zero modes up to second order in
wave vector. We also show that our framework can be well
applied to investigate the relaxation of spin. Identifying
spin equilibration time as the largest one of all reciprocals
of damping rates for spin modes, we compare it with typical
timescale for momentum equilibration. Our results mani-
fest that these two timescales are close over the temperature
range of our interest, which also show that increasing
particle mass will lead to separation of scales while high
temperature puts them closer. Therefore, the evolution of
spin cannot be independent of that of momentum treating
it as equilibrated. The clarification of the hierarchy for
relaxation times based on reliable quantum kinetic theory
is highly nontrivial in resolving the problem of discovering
the local spin polarization in the experiments of relativistic
heavy-ion collisions.
There are still some improvements or possible extensions

to our evaluation. First, the parameter γ, introduced to
represent the eigenvalue with infinite degeneracy, is set to
be spin and momentum independent, otherwise γ cannot be
factorized out of the integral Eq. (50). In our framework, γ
can be naturally parametrized as momentum dependent
without contradicting the conservation laws compared to
traditional RTA. In principle, γ is not a free parameter and is
supposed to be determined by solving or approximately
solving eigen spectrum of the full linearized collision
operator, which is left as further research in the future.
Second, the adopted kinetic equation is derived only for
massive quarks, although massive strange quarks should
contribute a lot as constituent components of Λ hyperons.
However there are also other processes contributing to spin
and momentum relaxation such as collisions between
strange quarks and massless gluons and u,d quarks.
They shall play a role but whether those processes are
predominant over collisions between massive quarks them-
selves calls for a further investigation. For completeness
and precision, the scattering of strange quarks and massless
quarks and gluons is also necessarily considered. Last but
not the least, we take one of the easiest equilibrium

configuration, i.e., Ω ¼ 0, on top of which the linear
analysis is carried out. It is generally believed that finite
thermal vorticity can survive in global equilibrium and so
is the spin potential Ω. If choosing the configuration with
finite vorticity, we are allowed with another power counting
scheme where vorticity field breaks rotation symmetry and
the theory then is anisotropic.
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APPENDIX A: THERMODYNAMIC INTEGRAL

To proceed, we first introduce the following integration
formula

IðrÞα1���αn ≡ 2

Z
dP

ð2πÞ3 pα1pα2 � � �pαn

eξ−β·p

ðu · pÞr
¼ IðrÞn0 uα1 � � � uαn
þ IðrÞn1 ðΔα1α2uα3���αn þ permutationsÞ þ � � � ; ðA1Þ

where the abbreviation dP stands for d4pδðp2 −m2Þ and
the formal expression after the second equality comes from
the analysis of Lorentz covariance. Using the projection
operator uα and Δαβ, the scalar coefficients in the form of
thermodynamic integrals are given by

IðrÞnq ≡ 2

ð2qþ 1Þ!!
Z

dP
ð2πÞ3 ðu · pÞn−2q−rðΔαβpαpβÞqeξ−β·p;

ðA2Þ

where KnðzÞ denotes the modified Bessel functions of the
second kind defined as

KnðzÞ≡
Z

∞

0

dx coshðnxÞe−z cosh x: ðA3Þ

Specifically, we note that Ið0Þ10 ¼ n, Ið0Þ20 ¼ e, Ið0Þ21 ¼ −P,
Ið0Þ31 ¼ −hT and

Ið0Þ30 ðzÞ ¼
T5z5eξ

32π2
ðK5ðzÞ þ K3ðzÞ − 2K1ðzÞÞ; ðA4Þ

with z≡ m
T , n, e, P, h are the number density, energy

density, static pressure and enthalpy respectively.
In addition, when handling the angular momentum

integrations, the following similar and useful formulas
are also of our interest,

LINEAR MODE ANALYSIS AND SPIN RELAXATION PHYS. REV. D 105, 096021 (2022)

096021-9



LðrÞ
α1���αn ≡ 2

Z
dP

ð2πÞ3ðp0 þmÞpα1pα2 � � �pαn

eξ−β·p

ðu · pÞr
¼ LðrÞ

n0 uα1 � � � uαn þ LðrÞ
n1 ðΔα1α2uα3���αn þ permutationsÞ þ � � � ;

NðrÞ
α1���αn ≡ 2

Z
dP

ð2πÞ3ðp0 þmÞ2 pα1pα2 � � �pαn

eξ−β·p

ðu · pÞr
¼ NðrÞ

n0 uα1 � � � uαn þ NðrÞ
n1 ðΔα1α2uα3���αn þ permutationsÞ þ � � � : ðA5Þ

The scalar functions LðrÞ
nq and NðrÞ

nq can be also defined like
Eq. (A2). With extra factor appearing in the integrations,
these integrals cannot be expressed with the modified
Bessel functions of the second kind KnðzÞ.

APPENDIX B: NORMALIZED FACTORS

First, we define two auxiliary unit vectors jμ and vμ,
which satisfy

u · l ¼ u · j ¼ u · v ¼ l · j ¼ l · v ¼ j · v ¼ 0;

l2 ¼ j2 ¼ v2 ¼ −1: ðB1Þ

Thus we can expand pμ and Jμν as

pμ ¼ u · puμ þ l · plμ þ j · pjμ þ v · pvμ;

Jμν ¼ uμJμνlν − lμJμνuν þ uμJμνjν − jμJμνuν þ uμJμνvν − vμJμνuν þ lμJμνjν

− jμJμνlν þ lμJμνvν − vμJμνlν þ jμJμνvν − vμJμνjν: ðB2Þ

Accounting for the antisymmetric property of total angular momentum Jμν, the effective degrees of freedom, or the effective
basis can be chosen as ð1; u · p; l · p; j · p; v · p; uμJμνlν; uμJμνjν; uμJμνvν; lμJμνjν; lμJμνvν; jμJμνvνÞ, and they are labeled
by the ith basis, respectively (i ¼ 1; 2;…; 11).
The normalized factors for the zeroth eigenfunctions meeting the condition of Eq. (37) are

V1;1 ¼ expðξÞ
Z

dΓ
ð2πÞ3

u · p
T

expð−β · pÞ ¼ n
T
;

V2;2 ¼ expðξÞ
Z

dΓ
ð2πÞ3

ðu · p − e
nÞ2ðu · pÞ
T3

expð−β · pÞ ¼ Ið0Þ30 − e2
n

T3
;

V3;3 ¼ V4;4 ¼ V5;5 ¼ expðξÞ
Z

dΓ
ð2πÞ3

ðu · pÞðl · pÞ2
T3

expð−β · pÞ ¼ h
T2

: ðB3Þ

Because of the calibration settings mentioned before, we have t̂ ¼ u ¼ ð1; 0; 0; 0Þ, then the other normalized factors are

V6;6 ¼ V7;7 ¼ V8;8 ¼ expðξÞ
Z

dΓ
ð2πÞ3

u · p
T

uμJμνlνuρJρσlσ expð−β · pÞ ¼
1

2m2T
ð−Ið0Þ31 þ 2Lð0Þ

41 − Nð0Þ
51 Þ;

V9;9 ¼ V10;10 ¼ V11;11 ¼ expðξÞ
Z

dΓ
ð2πÞ3 lμJ

μνjνðp · uÞlρJρσjσ expð−β · pÞ ¼
Ið0Þ30 þ Ið0Þ31 þ 4Lð0Þ

41 þ 10Nð0Þ
52

4m2T
; ðB4Þ

where the thermodynamic integrals are given in Appendix A. We have checked that the factors V2;2, V6;6, and V9;9 are all
positive.
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APPENDIX C: PERTURBATION MATRIX ELEMENTS I

In this section, we calculate the perturbation matrix elements which partly breaks the degeneracy of normal modes. The
matrix elements are given by Hi;j ¼ expðξÞ

T

R
dΓ

ð2πÞ3 ψ̃ iκ · pψ̃ j expð−β · pÞ. When indices i and j range from 1 to 5, only the
following matrix elements are nonzero.

H1;3 ¼
expðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1;1V3;3

p
T2

Z
dΓ

ð2πÞ3 κ · pl · p expð−β · pÞ ¼ Pκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1;1V3;3

p
T2

;

H2;3 ¼
expðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2;2V3;3

p
T3

Z
dΓ

ð2πÞ3
�
u · p −

e
n

�
p · κðl · pÞ expð−β · pÞ ¼ Pκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2;2V3;3
p

T2
; ðC1Þ

which breaks the five-fold degeneracy into threefold. When it comes to spin modes, we first introduce a four-indice tensor
Hμνρσ, which is defined as

Hμνρσ ¼ expðξÞ
T

Z
dΓ

ð2πÞ3 J
μνðp · κÞJρσ expð−β ·pÞ

¼ 1

4m2
ðgμσðκνuρ þ κρuνÞIð0Þ31 þ gνρðκμuσ þ κσuμÞIð0Þ31 − gνσðκμuρ þ κρuμÞIð0Þ31 − gμρðκνuσ þ κσuνÞIð0Þ31 ÞÞ

þ 1

4m2
ðLð0Þ

41 g
μρκσuν − 5Lð0Þ

42 g
μρuσκν −Lð0Þ

41 g
μσκρuν þ 5Lð0Þ

42 g
μσuρκνÞ

−
1

4m2
ðLð0Þ

41 g
νρκσuμ − 5Lð0Þ

42 g
νρuσκμ −Lð0Þ

41 g
νσκρuμ þ 5Lð0Þ

42 g
νσuρκμÞ

þ 1

4m2
ðLð0Þ

41 g
ρμκνuσ − 5Lð0Þ

42 g
ρμuνκσ −Lð0Þ

41 g
ρνκμuσ þ 5Lð0Þ

42 g
ρνuμκσÞ

−
1

4m2
ðLð0Þ

41 g
σμκνuρ − 5Lð0Þ

42 g
σμuνκρ −Lð0Þ

41 g
σνκμuρ þ 5Lð0Þ

42 g
σνuμκρÞ

þ 1

4m2
½gμρðNð0Þ

51 ðκνuσ þ uνκσÞ þ 5Nð0Þ
52 ðuνκσ þ uσκνÞÞ− gνρðNð0Þ

51 ðκμuσ þ uμκσÞ þ 5Nð0Þ
52 ðuμκσ þ uσκμÞÞ− ðρ↔ σÞ�

−
1

4m2
½Nð0Þ

51 g
μρðκνuσ þ κσuνÞ−Nð0Þ

51 g
νρðκμuσ þ κσuμÞ− ðρ↔ σÞ�; ðC2Þ

by projecting Hμνρσ with four direction vectors ðu; l; j; vÞ, we get the following nonvanishing matrix elements,

H7;9 ¼ H8;10 ¼
expðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V6;6V9;9

p Z
dΓ

ð2πÞ3
p · κ
T

uμJμνjνlρJρσjσ expð−β · pÞ ¼
ð−Ið0Þ31 þ Lð0Þ

41 − 5Lð0Þ
42 þ 5Nð0Þ

52 Þκ
4m2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V6;6V9;9

p : ðC3Þ

It is easy to find that the perturbation matrix has a symmetry of transposition. To be concrete, the matrix elements satisfy
Hi;j ¼ Hj;i. We now see that there are no cross terms between the spinless part and the spin part in the whole matrix W,
which is clear from Eq. (43).

APPENDIX D: PERTURBATION MATRIX ELEMENTS II

In this section, we calculate the 2nd-order perturbation matrix elements appearing in Eq. (51). The needed integrals are
implemented with the assistance of Eq. (A1),
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q1;1 ¼
expðξÞ
V1;1T

Z
dΓ

ð2πÞ3
ðp · κÞ2
p · u

expð−β · pÞ ¼ −
Ið1Þ21

V1;1T
κ2;

q2;2 ¼
expðξÞ
V2;2T3

Z
dΓ

ð2πÞ3
�
u · p −

e
n

� ðp · κÞ2
u · p

�
u · p −

e
n

�
expð−β · pÞ ¼

�
−Ið0Þ31 −

e2Ið1Þ21

n2
þ 2eIð0Þ21

n

�
κ2

V2;2T3
;

q1;2 ¼
expðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1;1V2;2

p
T2

Z
dΓ

ð2πÞ3
ðp · κÞ2
u · p

�
u · p −

e
n

�
expð−β · pÞ ¼

�
−Ið0Þ21 þ eIð1Þ21

n

�
κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1;1V2;2
p

T2
;

q3;3 ¼
expðξÞ
V3;3T3

Z
dΓ

ð2πÞ3
ðp · κÞ2ðp · lÞ2

p · u
expð−β · pÞ ¼ 3Ið1Þ42

V3;3T3
κ2; ðD1Þ

and the final results for spinless modes are

Q1;1 ¼ Q2;2 ¼
H2

1;3

2ðH2
1;3 þH2

2;3Þ
q1;1 þ

H2
2;3

2ðH2
1;3 þH2

2;3Þ
q2;2 þ

1

2
q3;3 þ

H1;3H2;3

H2
1;3 þH2

2;3
q1;2;

Q3;3 ¼
1

H2
2;3

H2
1;3
þ 1

�
H2

2;3

H2
1;3

q1;1 þ q2;2 −
2H2;3

H1;3
q1;2

�
;

Q4;4 ¼ Q5;5 ¼
expðξÞ
V3;3T3

Z
dΓ

ð2πÞ3
ðp · κÞ2ðp · jÞ2

p · u
expð−β · pÞ ¼ Ið1Þ42

V3;3T3
κ2: ðD2Þ

It is rather cumbersome to carry out the rest of integrals associated with spin modes. First, we introduce a new four-indice
tensor Qμνρσ,

Qμνρσ ¼ expðξÞ
T

Z
dΓ

ð2πÞ3 J
μν ðp · κÞ2

p · u
Jρσ expð−β ·pÞ

¼ 1

4m2T
ð−gμρgνσðIð1Þ41 þ 5Ið1Þ42 Þ þ gμσgνρðIð1Þ41 þ 5Ið1Þ42 ÞÞκ2

þ 1

4m2T
ð−gμσuνuρIð1Þ41 − gμσΔνρIð1Þ42 þ 2gμσlνlρIð1Þ42 − gνρuμuσIð1Þ41 − gνρΔμσIð1Þ42 þ 2gνρlμlσIð1Þ42

þ gνσuμuρIð1Þ41 þ gνσΔμρIð1Þ42 − 2gνσlμlρIð1Þ42 þ gμρuνuσIð1Þ41 þ gμρΔνσIð1Þ42 − 2gμρlνlσIð1Þ42 Þκ2

−
1

2m2T
ð−gμσuνuρLð0Þ

41 − gμσΔνρLð0Þ
42 þ 2gμσlνlρLð0Þ

42 − gνρuμuσLð0Þ
41 − gνρΔμσLð0Þ

42 þ 2gνρlμlσLð0Þ
42

þ gνσuμuρLð0Þ
41 þ gνσΔμρLð0Þ

42 − 2gνσlμlρLð0Þ
42 þ gμρuνuσLð0Þ

41 þ gμρΔνσLð0Þ
42 − 2gμρlνlσLð0Þ

42 Þκ2

þ 1

2m2T
½gμρuσuνðLð1Þ

51 þ 5Lð1Þ
52 Þ− gμσuρuνðLð1Þ

51 þ 5Lð1Þ
52 Þ− gνρuσuμðLð1Þ

51 þ 5Lð1Þ
52 Þ þ gνσuρuμðLð1Þ

51 þ 5Lð1Þ
52 Þ�κ2

−
1

4m2T
½−gμρðuνuσNð0Þ

51 þ ðΔνσ − 2lσlνÞNð0Þ
52 Þ þ gνρðuμuσNð0Þ

51 þ ðΔμσ − 2lμlσÞNð0Þ
52 Þ

þ gμσðuνuρNð0Þ
51 þ ðΔνρ − 2lρlνÞNð0Þ

52 Þ− gνσðuμuρNð0Þ
51 þ ðΔμρ − 2lμlρÞNð0Þ

52 Þ�κ2

þ 1

4m2T
½gμρð−uνuσNð1Þ

61 − ðΔνσ þ 5uνuσ − 2lνlσÞNð1Þ
62 þ ð−7Δνσ þ 14lνlσÞNð1Þ

63 Þ

− gνρð−uμuσNð1Þ
61 − ðΔμσ þ 5uμuσ − 2lμlσÞNð1Þ

62 þ ð−7Δμσ þ 14lμlσÞNð1Þ
63 Þ

− gμσð−uνuρNð1Þ
61 − ðΔνρ þ 5uνuρ − 2lνlρÞNð1Þ

62 þ ð−7Δνρ þ 14lνlρÞNð1Þ
63 Þ

þ gνσð−uμuρNð1Þ
61 − ðΔμρ þ 5uμuρ − 2lμlρÞNð1Þ

62 þ ð−7Δμρ þ 14lμlρÞNð1Þ
63 Þ�κ2

−
1

4m2T
½uμuρð−ðΔνσ − 2lνlσÞNð1Þ

62 þ ð−7Δνσ þ 14lνlσÞNð1Þ
63 Þ− uνuρð−ðΔμσ − 2lμlσÞNð1Þ

62 þ ð−7Δμσ þ 14lμlσÞNð1Þ
63 Þ

− uμuσð−ðΔνρ − 2lνlρÞNð1Þ
62 þ ð−7Δνρ þ 14lνlρÞNð1Þ

63 Þ þ uνuσð−ðΔμρ − 2lμlρÞNð1Þ
62 þ ð−7Δμρ þ 14lμlρÞNð1Þ

63 Þ�κ2;
ðD3Þ
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from which one can obtain the following indispensable integrals by projecting onto various directions,

q7;7 ¼ q8;8 ¼
expðξÞ
V6;6T

Z
dΓ

ð2πÞ3 uμJ
μνjν

ðp · κÞ2
p · u

uρJρσjσ expð−β · pÞ

¼ 1

4m2V6;6T
ð4Ið1Þ42 þ 2Lð0Þ

41 þ 2Lð0Þ
42 − 2Lð1Þ

51 − 10Lð1Þ
52 − Nð0Þ

52 − Nð0Þ
51 þ Nð1Þ

61 þ 5Nð1Þ
62 Þκ2;

q9;9 ¼ q10;10 ¼
expðξÞ
V9;9T

Z
dΓ

ð2πÞ3 lμJ
μνjν

ðp · κÞ2
p · u

lρJρσjσ expð−β · pÞ

¼ 1

4m2V9;9T
ð−Ið1Þ41 − Ið1Þ42 − 8Lð0Þ

42 þ 4Nð0Þ
52 − 4Nð1Þ

62 − 28Nð1Þ
63 Þκ2; ðD4Þ

and finally,

Q6;6 ¼
expðξÞ
V6;6T

Z
dΓ

ð2πÞ3 uμJ
μνlν

ðp · κÞ2
p · u

uρJρσlσ expð−β · pÞ

¼ 1

4m2V6;6T
ð2Ið1Þ42 þ 2Lð0Þ

41 þ 6Lð0Þ
42 − 2Lð1Þ

51 − 10Lð1Þ
52 − Nð0Þ

51 − 3Nð0Þ
52 þ Nð1Þ

61 þ 5Nð1Þ
62 Þκ2;

Q7;7 ¼ Q8;8 ¼ Q9;9 ¼ Q10;10 ¼
1

2
ðq7;7 þ q9;9Þ;

Q11;11 ¼
expðξÞ
V9;9T

Z
dΓ

ð2πÞ3 jμJ
μνvν

ðp · κÞ2
p · u

jρJρσvσ expð−β · pÞ

¼ 1

4m2V9;9T
ð−Ið1Þ41 − 3Ið1Þ42 − 4Lð0Þ

42 þ 2Nð0Þ
52 − 2Nð1Þ

62 − 14Nð1Þ
63 Þκ2; ðD5Þ

where the diagonal matrix elements Qi;i; i ¼ 1…11, are exactly what we present in Eq. (51).
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