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Inspired by direct and indirect maximal center gauge methods which confirm the existence of vortices in
lattice calculations and by using the connection formalism, we show that under some appropriate gauge
transformations vortices and chains appear in the QCD vacuum of the continuum limit. In the direct
method, by applying center gauge transformation and “center projection,” QCD is reduced to a gauge
theory including vortices, which corresponds to the nontrivial first homotopy group Π1ðSOð3ÞÞ ¼ Z2. On
the other hand, using the indirect method, in addition to the center gauge transformation and center
projection, an initial step called Abelian gauge transformation and then Abelian projection are applied.
Therefore, instead of single vortices, chains that contain monopoles and vortices appear in the theory.
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I. INTRODUCTION

Quantum chromodynamics is the non-Abelian gauge
theory of the strong interaction which describes the hadrons
in terms of quarks and gluons. There are many books that
discuss QCD; for instance, see Refs. [1,2]. However,
quarks have not been observed as isolated particles in
the real world. Only hadrons (mesons and baryons) are
observed as some color singlet combinations. This exper-
imental fact reflects the confinement mechanism as one of
the most controversial unsolved issues in particle physics in
the low-energy regime or large distances [3,4]. During the
past few decades, many ideas have been proposed to
approach this problem. There are many articles about this
subject; for instance, see Refs. [5–11].
The area law of the Wilson loop average is a well-known

gauge-invariant criterion in studying quark confinement. It
leads to a linear potential between a pair of static quark-
antiquark. To study the linear part of the confinement
potential, the quenched approximation is used where the
dynamical quarks are removed for the infrared regime [4].
In fact, one can obtain some collective modes from gluons
[12] which are associated with some topological degrees of

freedom of the QCD vacuum, and as a result, it is assumed
that the QCD vacuum is filled with the topological objects
obtained from these collective modes. Magnetic monopoles
and center vortices are among the main candidates for
describing confinement, and each has its own fans.
For the nonperturbative description, people use lattice

QCD simulations and phenomenological models to look
for the confinement and topological objects. The results of
the phenomenological models must be in agreement with
the results of the lattice QCD, though. In fact, lattice QCD
can be served as a laboratory for confirming the correctness
or incorrectness of the phenomenological models.
In the absence of matter fields, some various mecha-

nisms of confinement have been suggested to extract the
topological degrees of freedom of pure Yang-Mills theory.
One of those mechanisms is the picture of the dual
superconductor and appearance of Abelian monopoles. It
was proposed by Nambu [13], Mandelstam [14], ’t Hooft
[15], and Polyakov [16] in the 1970s. The idea is that the
QCD vacuum can behave like a dual superconductor and it
is filled with magnetic monopoles. Just as the Meissner
effect leads to the condensation of the Cooper pairs as
electrically charged objects in an ordinary superconductor,
the magnetic monopoles are condensed in a dual super-
conductor and squeeze the chromoelectric flux between the
quark-antiquark pair inside a tube. Therefore, confinement
of electric fields is obtained as a result of the condensation
of magnetic monopoles in this picture [12,17,18].
The second possible mechanism is given by the center

vortex model [19–25]. Historically, vortexlike structures
were introduced in superconductors in 1959. Even though
they were not observed at that time, they were recognized a
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few years later by Abrikosov [26]. It was proposed in
various forms by ’t Hooft [27–30], Nielsen and Olesen
[31], Ambjorn and Olesen [32], Mack and Petkova [33,34],
and Cornwall [35] in the late 1970s with a field theoretical
approach. The idea is that the QCD vacuum is filled with
closed magnetic vortices, and it is assumed that the vortices
are condensed in the QCD vacuum. If a Wilson loop is
linked to a vortex in an SUðNÞ gauge group, the Wilson
loop obtains a phase difference equal to ei2πn=N (n ¼ 0 to
N − 1) corresponding to the type of the vortex. As a result,
some disorders are created in the lattice which eventually
lead to an area law falloff and confinement.
Vortices are defined by the center of the SUðNÞ gauge

group, and there exist (N − 1) distinct vortices, which are
called non-Abelian ZN vortices. The simplest vortices are
defined by the Z2 gauge group, and they have the topology
of tubes (in three Euclidean dimensions) or surfaces of
finite thickness (in four dimensions) carrying some well-
defined magnetic fluxes [5,27,28,31–35].
Lattice calculations show that ZN vortices produce full

string tensions as the Yang-Mills vacuum does. This is an
encouraging motivation to study confinement via center
vortices. If the center vortices are removed from the lattice,
the string tension also disappears [19,21,23,36–38].
The vortex condensation picture relies upon center gauge

fixing and center projection. After performing center
projection in lattice QCD, the full QCD with SUðNÞ gauge
symmetry is reduced to a gauge theory with a Z(N) gauge
symmetry. These vortices are called projection vortices (or
p vortices). Unlike monopoles, the modified models of
vortices like thick center vortices can qualitatively explain
the Casimir scaling dependence for all representations [20].
To study the confinement problem by center vortices,

one first has to discuss the existence of vortices in the
continuum limit. The most common methods of identifying
vortices in the lattice simulation are direct maximal center
gauge (DMCG) [21] and indirect maximal center gauge
(IMCG) [19]. Inspired by these two methods of identifying
vortices in lattice calculations and by the help of the
connection formalism [12], we discuss the appearance of
vortices in the continuum limit of QCD.
We review DMCG and IMCGmethods in lattice QCD in

Sec. II. In Sec. III, motivated by the methods proposed in
lattice calculations, we introduce the vortices in the
continuum by direct method for SUðNÞ gauge group. As
an example, by applying an appropriate gauge transforma-
tion in the SU(2) gauge group and using the results of
Sec. III, we show in Sec. IV that under the center gauge
transformation the vortex and antivortex can appear in the
theory. Then, we remove the term that represents the
antivortex. The theory has an SO(3) symmetry containing
the vortex, which corresponds to the nontrivial first
homotopy group of Π1ðSOð3ÞÞ ¼ Z2. Removal of the
contribution of the antivortex is called “center projection”
in our paper. In Sec. V, we introduce thin vortices in the

continuum by the indirect method for SUðNÞ gauge group.
Section VI is brought in two subsections. In Sec. VI A,
applying an Abelian gauge transformation for SU(2) gauge
theory, we show that the QCD vacuum is filled with
monopoles and antimonopoles. It is shown that after
Abelian projection the monopole appears in the vacuum
and the gauge group symmetry is reduced from SU(2) to
U(1) and we have a monopole vacuum. Then, in Sec. VI B,
we show that under a center gauge transformation on the
monopole vacuum the vortex and antivortex appear in the
gauge theory along with the monopole. After applying a
center projection, we have a gauge theory that contains
chains including monopoles and vortices.

II. DMCG AND IMCG IN LATTICE QCD

There are some methods to identify vortices in lattice
calculations where appropriate gauge transformations are
used. The results are in agreement with the vortex con-
densation picture [19–21,23,24].
In lattice QCD, the action is expressed in terms of link

variables on which the gluon fields are defined. The idea is
that under an appropriate gauge transformation the link
variables UμðxÞ get as close as possible to the center gauge
group; centerðSUðNÞÞ ¼ ZN . Then, after a projection, a
smaller set of degrees of freedom remains. This job is
usually done via two methods in lattice QCD calculation. In
the following, we briefly review both methods.

A. Direct maximal center gauge method

This method was proposed by Del Debbio et al. [21],
who tried to maximize the following quantity by determin-
ing the gauge transformation GðxÞ ∈ SUðNÞ:

R½U� ¼ max
G

X
x;μ

jTrUG
μ ðxÞj2: ð1Þ

UG
μ ðxÞ ¼ GðxÞUμðxÞG†ðxþ μ̂Þ shows the gauge transfor-

mation of the link variables UμðxÞ, and as a result of the
above maximization, UG

μ becomes as close as possible to
the center elements. μ̂ is a unit vector along the μ direction.
Then, by performing the center projection, one replaces the
transformed link variable UG

μ ðxÞ by the closest associated
center elements of the group ZN . As an example, the center
projection is defined for the SU(2) gauge group as

UG
μ ðxÞ → Zð2Þ ¼ sign½TrUG

μ ðxÞ�1 ¼ fþ1;−1g × 1; ð2Þ

where 1 represents a 2 × 2 unit matrix. P vortices, identified
by the DMCG method, are related to the nonperturbative
degrees of freedom; see Ref. [4] for more details.

B. Indirect maximal center gauge method

The indirect maximal center gauge method was origi-
nally examined in lattice QCD for the SU(2) gauge group
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[19]. In general, for an SUðNÞ gauge group, the procedure
is as the follows. For the first step, a non-Abelian gauge
configuration is fixed under Abelian gauge fixing, and after
Abelian projection, the SUðNÞ gauge symmetry is reduced
to ½Uð1Þ�N−1. In the second step, the remaining ½Uð1Þ�N−1

configuration is fixed under center gauge fixing such that
the transformed gauge fields become as close as possible
to the center elements. Finally, by performing a center
projection, one gets the center elements. For example, for
the SU(2) gauge group,

Zð2Þ ¼
X
x;μ

sign½cos θðx; μÞ�1 ¼ fþ1;−1g × 1; ð3Þ

where θðx; μÞ parametrizes the links. In general, in both
methods, identification of the vortices is done by using
gauge fixing and then projection.

III. DIRECT METHOD OF INTRODUCING
VORTICES IN THE CONTINUUM

In this section, inspired by DMCG method in lattice
QCD which confirms the existence of vortices in the
infrared regime, we show that vortices appear in the theory
by a singular gauge transformation. In this procedure, we
use the connection formalism, which is applied for the
singular gauge transformation. We would like to mention
that we do not find a continuum formula for maximal center
gauge transformation, Eq. (1), which has already been done
in Ref. [39]. Instead, motivated by the fact that vortices
exist in the infrared part of the theory, as shown by the
lattice calculations, we use the connection formalism to
make explicit the vortices, somehow similar to the pro-
cedure done in Ref. [12] for monopoles.

A. Link variable and transformed gluon field

In lattice gauge theory, color confinement can be studied
by quenched approximation where only gluon fields exist
in the theory. Gluons are defined on link variables as
follows:

UμðxÞ ¼ eiagAμðxÞ ∈ SUðNÞ: ð4Þ

Under a gauge transformation GðxÞ ∈ SUðNÞ, the link
variables are transformed as

UμðxÞ → UG
μ ðxÞ ¼ GðxÞUμðxÞG†ðxþ μ̂Þ: ð5Þ

Using Eq. (4) in the above equation,

UG
μ ðxÞ ¼ GðxÞeiagAμðxÞG†ðxþ μ̂Þ: ð6Þ

Since the lattice spacing a is small enough, we can use the
exponential expansion of eiagAμðxÞ, and using the Taylor
expansion for G†ðxþ μ̂Þ,

UG
μ ¼ 1þ iag

�
GðxÞAμG†ðxÞ − i

g
GðxÞ∂μG†ðxÞ

�
þOða2Þ

¼ eiagA
G
μ : ð7Þ

Thus, in the continuum limit where a → 0, the gluon field
is transformed as

AG
μ ðxÞ ¼ GðxÞAμðxÞG†ðxÞ − i

g
GðxÞ∂μG†ðxÞ; ð8Þ

where AG
μ ðxÞ ∈ SUðNÞ. In terms of group generators,

A⃗G
μ :T⃗ ¼ GðxÞðAc

μTcÞG†ðxÞ − i
g
GðxÞ∂μG†ðxÞ; ð9Þ

Tc are generators of the SUðNÞ group, and c is the
color index.
Since we are interested in observing topological defects

from the gluon fields, we have to use an appropriate gauge
transformation. Thin vortices appear as topological defects
after center gauge transformations and some subsequent
efforts.
Equation (9) can be used to study the vortices if

GðxÞ≡ NðxÞ is defined as a center gauge transformation,

A⃗N
μ :T⃗ ¼ NðxÞðAc

μTcÞN†ðxÞ − i
g
NðxÞ∂μN†ðxÞ: ð10Þ

To study the contribution of thin vortices in the continuum,
we first recall that in lattice QCD calculations when the
Wilson loop links to the vortex it receives a phase differ-
ence equal to ei2πn=N associated with the nontrivial center
element contribution ZðkÞ [18],

WðCÞ → ei2πn=NWðCÞ; ðn ¼ 1; 2;…; N − 1Þ: ð11Þ

Under a center gauge transformation NðxÞ, a Wilson line
should be transformed as

WðC0Þ → WNðC0Þ ¼ Nðx − ϵÞWðC0ÞN†ðxþ ϵÞ
¼ Nðx − ϵÞN†ðxþ ϵÞ þOðϵÞ
≡ ZðkÞ þOðϵÞ; ð12Þ

WðC0Þ ¼ 1þOðϵÞ. C0 indicates an open circle from x − ϵ
to xþ ϵ, where x indicates the location of the intersection
of C0 and the hypersurface Σ. ϵ is an infinitesimal quantity
so that in the limit where ϵ → 0, C0 ¼ C.
We use Eq. (12) to obtain the appropriate gauge trans-

formation NðxÞ, which gives the nontrivial center elements
indicating the existence of vortices in the last line
of Eq. (12).
From Fig. 1(a), an ideal vortex is defined on (D − 1)-

dimensional hypersurface Σ, while the thin vortex is
defined on (D − 2)-dimensional boundary S ¼ ∂Σ

INTRODUCING VORTICES IN THE CONTINUUM USING … PHYS. REV. D 105, 096020 (2022)

096020-3



[18,39]. Piercing the hypersurface by the Wilson loop
results in a discontinuity Z(k). The center vortex in D ¼ 2,
3, and 4 is defined as a string, surface, and volume,
respectively.
The relation between an ideal vortex and a thin vortex is

as follows [18,39]:

ideal vortex ¼ −
i
g
NðxÞ∂μN†ðxÞ − thin vortex: ð13Þ

In fact, intersecting the hypersurface Σ of an ideal vortex
with a Wilson loop C gives a phase to the Wilson loop
proportional to a center group element. The boundary ∂Σ
indicates the location of the thin vortex, which is gauge
equivalent to the ideal vortex. Thus, the ideal vortex field is
not unique and can be gauge transformed to a thin vortex
field which has the support only on the boundary ∂Σ [18].
Replacing ð− i

g NðxÞ∂μN†ðxÞÞ from Eq. (13) in Eq. (10),

A⃗N
μ :T⃗ ¼ NðxÞðAc

μTcÞN†ðxÞ þ ideal vortexþ thin vortex:

ð14Þ

On the other hand, in analogy to the lattice calculation
where the thin vortex links to the Wilson loop [Fig. 1(b)],
one can define a gauge field in the coset space by removing
the ideal vortex [39] so that A⃗N

μ :T⃗ → A⃗0N
μ :T⃗;

A⃗0N
μ :T⃗ ¼ NðxÞðAc

μTcÞN†ðxÞ þ thin vortex: ð15Þ

We recall that A⃗0N
μ :T⃗ is still singular on ∂Σ. The gauge field

configuration A⃗0N
μ :T⃗ induces the same behavior for arbitrary

Wilson loop as the configuration A⃗N
μ :T⃗ does. In other

words, for x ∉ hypersurface, we only see the boundary of
the vortex, called the thin vortex field. In fact, by this choice
of x, we have removed the hypersurface Σ from the space-
time. So, the contribution of the ideal vortex defined on the
hypersurface vortex would be zero;

thin vortex¼−
i
g
NðxÞ∂μN†ðxÞ; x∉hypersurface: ð16Þ

B. Field strength tensor and connection formalism

In this subsection, we discuss the connection formalism,
which has already been used in some references, for
instance, Refs. [12,40]. In fact, we generalize the con-
nection formalism, previously applied to the Abelian gauge
transformation, to the center gauge transformation.
The Yang-Mills Lagrangian has an SUðNÞ symmetry

and is given by

£YM ¼ −
1

2
TrðFμνFμνÞ; ð17Þ

where the SUðNÞ non-Abelian field strength tensor called
Fμν ¼ F⃗μν:T⃗ ¼ Fc

μνTc is defined by Fμν ¼ ∂μAν − ∂νAμ þ
ig½Aμ; Aν� and for a regular system can be written as

Fμν ¼
1

ig
½D̂μ; D̂ν�; D̂μ ¼ ∂̂μ þ igAμ; ð18Þ

where D̂μ is the covariant-derivative operator.
But topological defects appear as a result of singular

gauge transformation. To observe these defects explicitly,
we rewrite the Yang-Mills gauge theory in terms of the
covariant-derivative operator D̂μ and the ordinary deriva-
tive operator ∂̂μ,

1

ig
½D̂μ; D̂ν� ¼

1

ig
½∂̂μ þ igAμ; ∂̂ν þ igAν�

¼ 1

ig
½∂̂μ; ∂̂ν� þ ½∂̂μ; Aν� þ ½Aμ; ∂̂ν�

þ ig½Aμ; Aν�: ð19Þ

Using the ½∂̂μ; f� ¼ ∂μf,

1

ig
½D̂μ;D̂ν�¼

1

ig
½∂̂μ; ∂̂ν�þ∂μAν−∂νAμþ ig½Aμ;Aν�: ð20Þ

For regular systems, the first term on the right-hand side of
Eq. (20) is zero, so we have Eq. (18). But this term is not
zero for singular systems. Therefore,

Fμν ¼
1

ig
½D̂μ; D̂ν� −

1

ig
½∂̂μ; ∂̂ν�; ð21Þ

where Fμν is the SUðNÞ non-Abelian field strength tensor,
and Eq. (21) is applied when the singularity exists in the
system. As a result of singular gauge transformation,
topological defects like monopoles and vortices appear
in the theory.
We study the behavior of the non-Abelian field strength

tensor under singular gauge transformations.
In general, if GðxÞ ∈ SUðNÞ represents a regular gauge

transformation, the field strength tensor is transformed as
FG
μν ¼ GðxÞFμνG†ðxÞ. Therefore, Fμν is

FIG. 1. Linking between the Wilson loop C and a vortex with
hypersurface Σ. The boundary of the hypersurface is shown by
∂Σ, indicating a thin vortex.
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FG
μν ¼ GðxÞf∂μAν − ∂νAμ þ ig½Aμ; Aν�gG†ðxÞ

¼ ð∂μAG
ν − ∂νAG

μ Þ þ ig½AG
μ ; AG

ν �: ð22Þ

On the other hand, for a singular system where Fμν is
defined by Eq. (21), one gets

FG
μν ¼

1

ig
GðxÞ½D̂μ; D̂ν�G†ðxÞ − 1

ig
GðxÞ½∂̂μ; ∂̂ν�G†ðxÞ

¼ 1

ig
½D̂G

μ ; D̂
G
ν � −

1

ig
GðxÞ½∂̂μ; ∂̂ν�G†ðxÞ; ð23Þ

where D̂G
μ ¼ GðxÞD̂μG†ðxÞ. The first term of Eq. (23) can

be written by the help of Eq. (20) for a gauge transformed
field,

1

ig
½D̂G

μ ; D̂
G
ν � ¼

1

ig
½∂̂μ; ∂̂ν� þ ∂μAG

ν − ∂νAG
μ þ ig½AG

μ ; AG
ν �:

ð24Þ

Replacing Eq. (24) in Eq. (23),

FG
μν¼ð∂μAG

ν −∂νAG
μ Þþ ig½AG

μ ;AG
ν �þ

i
g
G½∂μ;∂ν�G†: ð25Þ

This is a noticeable result. The last term of Eq. (25) shows
the difference between this equation and Eq. (22).
The advantage of using the connection formalism

technique is that the gauge theory will remain gauge
invariant after the singular gauge transformation.
Equation (25) is valid for both the Abelian and center
gauge transformations. It has already been discussed for the
Abelian gauge transformation [12,40], and we intend to use
it for the center gauge transformation, as well.
If one uses Eq. (25) without applying any projection, a

full QCD will be obtained at the end. We discuss how we
perform center projection in Sec. IV.

IV. DIRECT METHOD FOR INTRODUCING
VORTICES IN SU(2) GAUGE GROUP

The formation of center vortices in the QCD vacuum
relies upon two steps: center gauge transformation and
center projection. Using the results of Sec. III, we discuss
these two steps for the SU(2) gauge group.
Step 1: Center gauge transformation In general, a 2 × 2

gauge transformation GðxÞ ∈ SUð2Þ is written in terms of
three Euler angles α, β, γ,

GðxÞ¼eiγðxÞT3

eiβðxÞT2

eiαðxÞT3

¼
 

e
i
2
½γðxÞþαðxÞ�cosβðxÞ

2
e

i
2
½γðxÞ−αðxÞ� sinβðxÞ

2

−e−i
2
½γðxÞ−αðxÞ� sinβðxÞ

2
e−

i
2
½γðxÞþαðxÞ�cosβðxÞ

2

!

αðxÞ∈ ½0;2πÞ;βðxÞ∈ ½0;π�;γðxÞ∈ ½0;2πÞ; Tc¼σc

2
;

ð26Þ

where Tc’s are generators of the SU(2) group and σc’s are
Pauli matrices. The center gauge transformation GðxÞ≡
NðxÞ ∈ SUð2Þ is continuous everywhere except at the
hypersurface of the vortex. Therefore, the Euler angles
are selected in a way that the constraint of Eq. (12) is
satisfied. There are different choices for the angles. One can
choose α ¼ γ ¼ φ

2
and β ¼ 0,

N ¼
�
ei

φ
2 0

0 e−i
φ
2

�
; φ ∈ ½0; 2πÞ: ð27Þ

It can be shown that

Nðφ¼ ϵÞN†ðφ¼2π−ϵÞ¼−12×2∈Zð2Þ; ϵ→0; ð28Þ

where ð−12×2Þ represents the nontrivial contribution of the
Z(2) gauge group. Thus, the contribution of an ideal vortex
is observed at φ ¼ 0. On the other hand, outside the
hypersurface, the contribution of the thin vortex is repre-
sented by a pure gauge shown in Eq. (16),

thin vortex≡ V⃗μ:T⃗ ¼ −
i
g
N∂μN† ¼ −

1

g
∂μφT3: ð29Þ

The spatial component of thin vortex is

V⃗φ:T⃗ ¼ −
g−1

ρ
T3; V⃗ρ:T⃗ ¼ 0: ð30Þ

Equation (30) represents the gauge field associated with the
thin vortex in cylindrical coordinates. The thin vortex is
observed at ρ ¼ 0 [39] in the third direction of color space.
Under a center gauge transformation, the gluon field is
defined by Eq. (15),

A⃗0N
μ :T⃗ ¼ N

�X3
c¼1

Ac
μTc

�
N† þ thin vortex; ð31Þ

where the first term on the right-hand side is regular and the
second term indicates a topological defect. Replacing
Eqs. (27) and (29) in Eq. (31), one obtains
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A⃗0N
μ :T⃗ ¼ ½A1

μ cosφþ A2
μ sinφ�T1

þ ½−A1
μ sinφþ A2

μ cosφ�T2

þ
�
A3
μ −

1

g
∂μφ

�
T3: ð32Þ

The magnetic vortex flux Φflux is

Φflux ¼
Z

dxμðV⃗μ:T⃗Þ ¼ −
1

2g

Z
2π

0

dφ

�
1 0

0 −1

�

¼ −
2π

g
T3: ð33Þ

The total contribution of the magnetic flux is in the third
direction in color space.
Using Eq. (25) of Sec. III B for the transformed field

strength,

F⃗N
μν:T⃗ ¼ ð∂μðA⃗0N

ν :T⃗Þ − ∂νðA⃗0N
μ :T⃗ÞÞ

þ ig½A⃗0N
μ :T⃗; A⃗0N

ν :T⃗� þ i
g
N½∂μ; ∂ν�N†: ð34Þ

With the help of Eq. (32), we rewrite the first term of
Eq. (34), which is linear in terms of A⃗0N

μ :T⃗,

Flinear
μν ¼ F⃗linear

μν :T⃗ ≡ ∂μðA⃗0N
ν :T⃗Þ − ∂νðA⃗0N

μ :T⃗Þ
¼ ½ð∂μA1

ν − ∂νA1
μÞ cosφþ ð∂μA2

ν − ∂νA2
μÞ sinφ�T1 þ ½−ð∂μA1

ν − ∂νA1
μÞ sinφþ ð∂μA2

ν − ∂νA2
μÞ cosφ�T2

þ ½∂μA3
ν − ∂νA3

μ�T3 þ
�
−g
�
A1
ν
1

g
∂μφ − A1

μ
1

g
∂νφ

�
sinφþ g

�
A2
ν
1

g
∂μφ − A2

μ
1

g
∂νφ

�
cosφ

�
T1

þ
�
−g
�
A1
ν
1

g
∂μφ − A1

μ
1

g
∂νφ

�
cosφ − g

�
A2
ν
1

g
∂μφ − A2

μ
1

g
∂νφ

�
sinφ

�
T2 þ

�
−
1

g
½∂μ; ∂ν�φ

�
T3: ð35Þ

The first three sets of brackets of Eq. (35) are regular, and the fourth and the fifth sets of brackets indicate some kind of
interactions between thin vortex and the off-diagonal gluon fields. ð− 1

g ½∂μ; ∂ν�φÞT3 represents the field strength of a thin
vortex field carrying a magnetic flux, which is equal toΦflux ¼ − 2π

g T
3. The second term of Eq. (34) can be written with the

help of Eq. (32),

Fbilinear
μν ¼ F⃗bilinear

μν :T⃗ ≡ ig½A⃗0N
μ :T⃗; A⃗0N

ν :T⃗�
¼ ½gðA1

μA3
ν − A1

νA3
μÞ sinφ − gðA2

μA3
ν − A2

νA3
μÞ cosφ�T1 þ ½gðA1

μA3
ν − A1

νA3
μÞ cosφþ gðA2

μA3
ν − A2

νA3
μÞ sinφ�T2

þ g½A2
μA1

ν − A1
μA2

ν�T3 −
�
−g
�
A1
ν
1

g
∂μφ − A1

μ
1

g
∂νφ

�
sinφþ g

�
A2
ν
1

g
∂μφ − A2

μ
1

g
∂νφ

�
cosφ

�
T1

−
�
−g
�
A1
ν
1

g
∂μφ − A1

μ
1

g
∂νφ

�
cosφ − g

�
A2
ν
1

g
∂μφ − A2

μ
1

g
∂νφ

�
sinφ

�
T2: ð36Þ

The first three brackets of Eq. (36) represent interactions
between gluon fields and are regular. The fourth and the
fifth brackets indicate interactions between the thin vortex
and off-diagonal gluon fields but with an opposite sign
compared with their counterparts in Eq. (35). Back to
Eq. (34), the last term can be rewritten with the help of
Eq. (27),

F⃗singular
μν :T⃗ ≡ i

g
N½∂μ; ∂ν�N† ¼ 1

g
½∂μ; ∂ν�φT3: ð37Þ

Fsingular
μν ¼ F⃗singular

μν :T⃗ in the above equation indicates the
field strength of an anti-thin vortex carrying a magnetic flux
equal to Φflux ¼ þ 2π

g T
3.

Step 2: Center projection Adding Flinear
μν , Fbilinear

μν , and
Fsingular
μν together, one finds out that the similar terms with

opposite signs cancel each other in Fbilinear
μν and Flinear

μν . On
the other hand, the anti-thin vortex field strength tensor
contribution represented by Fsingular

μν is canceled by the thin
vortex field strength tensor contribution brought in the last
term of Flinear

μν , and finally, one is left with a full QCD field
strength tensor.
In fact, with the above parametrization, one can argue

that the vacuum is filled with thin vortices and anti-thin
vortices (see Fig. 2).
To have only the contribution of the thin vortices, we

remove the Fsingular
μν term in Fig. 2. We call this procedure

center projection, and the “center projected field strength
tensor” is defined as follows:
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F⃗ CP
μν :T⃗ ≡ F⃗linear

μν :T⃗ þ F⃗bilinear
μν :T⃗

¼ ½ð∂μA1
ν − ∂νA1

μÞ cosφþ ð∂μA2
ν − ∂νA2

μÞ sinφþ gðA1
μA3

ν − A1
νA3

μÞ sinφ − gðA2
μA3

ν − A2
νA3

μÞ cosφ�T1

þ ½−ð∂μA1
ν − ∂νA1

μÞ sinφþ ð∂μA2
ν − ∂νA2

μÞ cosφþ gðA1
μA3

ν − A1
νA3

μÞ cosφþ gðA2
μA3

ν − A2
νA3

μÞ sinφ�T2

þ ½∂μA3
ν − ∂νA3

μ þ gðA2
μA1

ν − A1
μA2

νÞ�T3 þ
�
−
1

g
½∂μ; ∂ν�φ

�
T3: ð38Þ

All the terms in Eq. (38) are regular except the last term,
which represents the field strength of a thin vortex field.
Therefore, the gauge symmetry is SO(3), and thin

vortices appear as the topological defects corresponding
to the nontrivial first homotopy group Π1ðSOð3ÞÞ ¼ Z2.

V. INDIRECT METHOD OF INTRODUCING
VORTICES IN THE CONTINUUM

In this section, motivated by the IMCG method in lattice
QCD which confirms the existence of vortices, we study
vortices in the continuum. As mentioned in Sec. II B, in the
indirectmethod, in addition to the center gauge transformation
and center projection [19], an initial step including Abelian
gauge transformation and then Abelian projection is done.
Two successive gauge transformations are performed

such that the first one is an Abelian gauge transformation
MðxÞ ∈ SUðNÞ and the second one is a center gauge
transformation NðxÞ ∈ SUðNÞ. The transformation of link
variables is

UμðxÞ !
MðxÞ

UM
μ ðxÞ !

NðxÞ
UNM

μ ðxÞ ð39Þ
or

UNM
μ ðxÞ ¼ NðxÞUM

μ ðxÞN†ðxþ μ̂Þ
¼ NðxÞMðxÞUμðxÞM†ðxþ μ̂ÞN†ðxþ μ̂Þ
¼ NðxÞMðxÞeiagAμM†ðxþ μ̂ÞN†ðxþ μ̂Þ: ð40Þ

In the last equality, we used Eq. (4). Similar to what we
have done in Sec. III A, we can use the exponential
expansion, and by using the Taylor expansion for
M†ðxþ μ̂Þ and N†ðxþ μ̂Þ,

UNM
μ ¼ 1þ iag

�
NðxÞ

�
MðxÞAμM†ðxÞ − i

g
MðxÞ∂μM†ðxÞ

�

× N†ðxÞ − i
g
NðxÞ∂μN†ðxÞ

�
þOða2Þ

¼ eiagA
NM
μ : ð41Þ

For the continuum limit where a → 0,

ANM
μ ðxÞ ¼ NðxÞ

�
MðxÞAμM†ðxÞ − i

g
MðxÞ∂μM†ðxÞ

�
N†ðxÞ

−
i
g
NðxÞ∂μN†ðxÞ: ð42Þ

NðxÞ indicates a center gauge transformation, and the
contribution of vortices must be obtained from this gauge
transformation. Therefore, similar to the Sec. III A and
Eq. (15), the gauge field in the coset space is written as

A⃗0NM
μ :T⃗ ¼ NðxÞ

�
MðxÞðAc

μTcÞM†ðxÞ − i
g
MðxÞ∂μM†ðxÞ

�
× N†ðxÞ þ thin vortex: ð43Þ

This is somehow similar to an Abelian gauge fixing plus
center gauge fixing of IMCGmethod in lattice calculations.
However, an intermediate step including Abelian projection
must be applied, and we discuss it for the SU(2) gauge
group in Sec. VI.

VI. INDIRECT METHOD OF INTRODUCING
VORTICES IN SU(2) GAUGE GROUP

In this section, we apply the procedure explained in the
previous section to the SU(2) gauge group, and we show
that, unlike Sec. IV where we have gotten vortices as a
result of center gauge transformation and a center projec-
tion, we get a chain of vortices and monopole by the
indirect method.
We discuss this section in two subsections. In Sec. VI A,

we study the Abelian gauge transformation and Abelian
projection, which leads to the emergence of the monopole.
In Sec. VI B, in addition to steps 1 and 2 in Sec. VI A, a
center gauge transformation followed by a center projec-
tion, which leads to the appearance of chains containing
vortices and monopoles, is discussed.

FIG. 2. Appearance of a vortex and an antivortex under center
gauge transformation.

INTRODUCING VORTICES IN THE CONTINUUM USING … PHYS. REV. D 105, 096020 (2022)

096020-7



A. Abelian gauge transformations and Abelian
projection: Monopole

The appearance of monopoles relies upon Abelian gauge
transformation followed by an Abelian projection, which is
discussed in this subsection for the SU(2) gauge group.
Lattice studies show that within a good approximation

the string tension between a pair of quark and antiquark is
described by Abelian variables of the maximal Abelian
gauge transformation. Therefore, in the continuum limit,
the idea of the Abelian gauge transformation is to repress
the contribution of the off-diagonal components of the
gauge fields so that the contribution of diagonal compo-
nents is dominant in the low-energy regime.
We perform a local rotation in color space called an

Abelian gauge transformation. As a result, magnetic
monopoles can be extracted from the diagonal part of
the non-Abelian gauge field.
Step 1: Abelian gauge transformation Choosing

αðxÞ ¼ φ, βðxÞ ¼ θ, and γðxÞ ¼ �φ in the gauge rotation

matrix of Eq. (26), an appropriate gauge transformation
MðxÞ ∈ SUð2Þ, which leads to an Abelian gauge trans-
formation, is obtained.
In this paper, we choose γðxÞ ¼ −φ,

Mðθ;φÞ ¼
�

cos θ
2

e−iφ sin θ
2

−eiφ sin θ
2

cos θ
2

�
: ð44Þ

According to Sec. III A, we define GðxÞ≡MðxÞ as an
Abelian gauge transformation; then the transformation of
gluon field is given by Eq. (9),

A⃗M
μ :T⃗ ¼ MðxÞ

�X3
c¼1

Ac
μTc

�
M†ðxÞ − i

g
MðxÞ∂μM†ðxÞ: ð45Þ

The first term on the right-hand side of Eq. (45) is regular
under Abelian gauge transformation MðxÞ, but the second
term is singular. Replacing Eq. (44) in Eq. (45),

A⃗M
μ :T⃗ ¼

�
A1
μ

�
1 − 2sin2

θ

2
cos2φ

�
þ A2

μ

�
−sin2

θ

2
sin 2φ

�
þ A3

μð− sin θ cosφÞ þ 1

g
sinφ∂μθ þ

1

g
sin θ cosφ∂μφ

�
T1

þ
�
A1
μ

�
−sin2

θ

2
sin 2φ

�
þ A2

μ

�
1 − 2sin2

θ

2
sin2φ

�
þ A3

μð− sin θ sinφÞ − 1

g
cosφ∂μθ þ

1

g
sin θ sinφ∂μφ

�
T2

þ
�
A1
μðsin θ cosφÞ þ A2

μðsin θ sinφÞ þ A3
μðcos θÞ þ

1

g
ð1 − cos θÞ∂μφ

�
T3; ð46Þ

where the singularity appears in the inhomogeneous term of the above equation defined by Asingular
μ ðθ;φÞ ¼

Ac singular
μ ðθ;φÞTc ≡ − i

gMðθ;φÞ∂μM†ðθ;φÞ in spherical coordinates and is given by

Asingularðθ;φÞ ¼ −
i
g
Mðθ;φÞ∇M†ðθ;φÞ ¼ 1

2g

� ½1 − cos θ�∇φ ½i∇θ þ sin θ∇φ�e−iφ
½−i∇θ þ sin θ∇φ�eiφ −½1 − cos θ�∇φ

�

¼ g−1

r
ðcosφeφ þ sinφeθÞT1 þ g−1

r
ðsinφeφ − cosφeθÞT2 þ g−1

r
1 − cos θ
sin θ

eφT3; ð47Þ

where Asingularðθ;φÞ ¼ Ac singularðθ;φÞTc. It is observed from Eq. (47) that there exists a magnetic monopole as a point
defect at the origin, r ¼ 0 along with a Dirac string at θ ¼ π.
The magnetic flux ΦfluxðθÞ of the inhomogeneous term is given by

ΦfluxðθÞ ¼
Z
c
dxμAsingulaa

μ ðθ;φÞ ¼ 1

2g

Z
2π

0

dφ

�
1 − cos θ sin θe−iφ

sin θeiφ −ð1 − cos θÞ

�

¼ 2π

2g

�
1 − cos θ 0

0 −ð1 − cos θÞ

�
¼ 2π

g
ð1 − cos θÞT3: ð48Þ

It is observed that the total contribution of the magnetic flux
is located along the third direction of the color space. At
θ ¼ π, the magnetic flux of a Dirac string that enters a
monopole located at the origin r ¼ 0 is equal to 4π

g T
3.

We have discussed in Sec. III B that under a gauge
transformation the field strength tensor is obtained from
Eq. (25). We rewrite it as follows:

F⃗M
μν:T⃗ ¼ ð∂μðA⃗M

ν :T⃗Þ − ∂νðA⃗M
μ :T⃗ÞÞ þ ig½A⃗M

μ :T⃗; A⃗
M
ν :T⃗�

þ i
g
Mðθ;φÞ½∂μ; ∂ν�M†ðθ;φÞ: ð49Þ

Equation (49) can be calculated using Eqs. (44) and (46).
Since the two color directions T1 and T2 have no
contribution in the magnetic flux, we will suppress these
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nondiagonal components of the gauge fields in the
“Abelian projection” step. It can be easily confirmed
that the first term of the Abelian sector ðFlinear

μν Þ3 ≡
∂μðAM

ν Þ3 − ∂νðAM
μ Þ3 includes a magnetic monopole sitting

at the origin along with a Dirac string in θ ¼ π. The second
term of the Abelian sector is called ðFbilinear

μν Þ3 ≡
−gfðAM

μ Þ1ðAM
ν Þ2 − ðAM

μ Þ2ðAM
ν Þ1g and contains an antimo-

nopole at the origin, and the third term of the Abelian sector
Fsingular
μν ≡ i

gMðθ;φÞ½∂μ; ∂ν�M†ðθ;φÞ includes an anti-Dirac
string at θ ¼ π with a magnetic flux equal to − 4π

g T
3 (see

Appendix and Fig. 3),

FM
μν ¼ Flinear

μν þ Fsingular
μν þ Fbilinear

μν : ð50Þ

If we add the contents of the above three terms, the
similar terms with opposite signs are canceled, and a field
strength tensor which gives a full QCD is obtained [12].
Step 2: Abelian projection The sum of the two terms

Flinear
μν þ Fsingular

μν represents a gauge configuration that only
contains a monopole at r ¼ 0. However, it is exactly
canceled by the antimonopole arisen from Fbilinear

μν . Thus,
one can claim that the vacuum is filled with monopoles and
antimonopoles.
From Fig. 3, it is observed that, in order to have only the

contribution of the monopole, we discard the term Fbilinear
μν

so that [12]

A⃗M
μ :T⃗ ¼ ðAM

μ ÞaTa → Aμ ≡ ðAM
μ Þ3T3: ð51Þ

From Eq. (46), the gauge field is changed to

Aμ ¼
�
A1
μðsin θ cosφÞ þ A2

μðsin θ sinφÞ þ A3
μðcos θÞ

þ 1

g
ð1 − cos θÞ∂μφ

�
T3: ð52Þ

As a result, Fbilinear
μν , which gives the antimonopole

contribution, is equal to zero, and the remaining part
Flinear
μν þ Fsingular

μν describes an Abelian projected QCD,
which contains a monopole at r ¼ 0 and is called the
monopole vacuum.
After Abelian projection, SU(2) gauge symmetry is

reduced to U(1) gauge symmetry, and monopoles appear
as the topological defects corresponding to the nontrivial
second homotopy group Π2ðSUð2Þ=Uð1ÞÞ ¼ Z.

B. Center gauge transformation and
center projection: Chain

As mentioned before, the vortex recognition by the
indirect method is done in four steps. We have discussed
the first two steps in Sec. VI A, and we explain the final two
steps in the following.
Step 3: Center gauge transformation; We have shown

that under two successive gauge transformations the gluon
field is changed by Eq. (43). After Abelian projection, the
bracket in Eq. (43) should be replaced by Eq. (51),

A⃗ 0NM
μ :T⃗ ¼ NðxÞAμN†ðxÞ þ thin vortex: ð53Þ

For x ∉ hypersurface, the thin vortex is defined in Eq. (16).
In fact, Eq. (53) expresses that a center gauge trans-

formation is applied on a monopole vacuum. Using the
center gauge transformation defined by Eq. (27) and the
Abelian projected field defined by Eq. (52), the above
equation is changed to

A⃗ 0NM
μ :T⃗ ¼

�
A1
μðsin θ cosφÞ þ A2

μðsin θ sinφÞ þ A3
μðcos θÞ þ

1

g
ð1 − cos θÞ∂μφ −

1

g
∂μφ

�
T3

¼
�
A1
μðsin θ cosφÞ þ A2

μðsin θ sinφÞ þ A3
μðcos θÞ −

1

g
cos θ∂μφ

�
T3: ð54Þ

The first three terms on the right-hand side of
Eq. (54) are regular, and the last term is defined in the
spherical coordinates as ð− 1

g cosθ∂μφT3 ¼ − g−1

r
cosθ
sinθ eφT

3Þ.
It indicates a defect representing a monopole located
at the origin r ¼ 0 along with the two line vortices at
θ ¼ 0; π. This singular term remarkably represents a
chain containing monopole and vortices. In fact, the

magnetic potential of the chain defined by
Eμ ≡ − 1

g cos θ∂μφT3, can be interpreted as the sum of

two terms: a magnetic potential of a monopole along
with a Dirac string defined by Bμ ≡ 1

g ð1 − cos θÞ∂μφT3

plus a magnetic potential of a vortex defined by
Vμ ≡ − 1

g ∂μφT3.

FIG. 3. Appearance of a monopole accompanying a Dirac-
string, an anti-Dirac string, and an antimonopole as a result of an
Abelian gauge transformation.

INTRODUCING VORTICES IN THE CONTINUUM USING … PHYS. REV. D 105, 096020 (2022)

096020-9



The magnetic flux ΦfluxðθÞ passing through a closed
contour Cðr; θÞ is defined as

ΦfluxðθÞ ¼
Z
c
dxμA0 singular

μ

¼ 2π

2g

�
1− cosθ 0

0 −ð1− cosθÞ

�
−
2π

2g

�
1 0

0 −1

�

¼ 2π

g
ð1− cosθÞT3 −

2π

g
T3

¼ −
2π

g
cosθT3; ð55Þ

where the first term in the second line of Eq. (55) represents
the magnetic monopole flux plus a Dirac string. At θ ¼ π,
the contribution of the flux of the Dirac string is equal to
þ 4π

g T
3. The second term in the second line of Eq. (55)

indicates a vortex extending on the z axis with a flux equal
to − 2π

g T
3. Finally, the chain flux is obtained as the sum of

the vortex flux and the magnetic monopole flux plus the
Dirac string and is equal to − 2π

g cos θT
3.

Now, we have some discussions about the chain
characteristic. From Eq. (55) for θ ¼ 0, we only have
the contribution of a magnetic vortex flux equal to
− 2π

g T
3, located in the positive direction of the z axis

which enters the magnetic monopole placed at the
origin, r ¼ 0. At θ ¼ π, there exists a Dirac string flux
equal to þ 4π

g T
3 located in the negative direction of the z

axis and entering the magnetic monopole. There is also
a magnetic vortex whose flux is equal to − 2π

g T
3 at

θ ¼ π. It is located in the negative direction of the z axis
and exits from the magnetic monopole placed at r ¼ 0.
In fact, the sum of the two fluxes ΦDirac string þΦvortex

represents the contribution of a vortex equal to þ 2π
g T

3,
which enters the magnetic monopole sitting at the
origin, r ¼ 0. As a result, the magnetic flux of the
monopole is obtained as the sum of the absolute
values of the fluxes of the two line vortices entering
into it.
Equation (25) is used to obtain the field strength tensor

of the transformation,

F⃗ NM
μν :T⃗ ¼ NðxÞðF⃗ M

μν:T⃗ÞN†ðxÞ ¼ NðxÞMðxÞðF⃗μν:T⃗ÞM†ðxÞN†ðxÞ

¼ 1

ig
½D̂NM

μ ; D̂NM
ν � − 1

ig
NðxÞMðxÞ½∂̂μ; ∂̂ν�M†ðxÞN†ðxÞ

¼ ð∂μðA⃗0NM
ν :T⃗Þ − ∂νðA⃗0NM

μ :T⃗ÞÞ þ ig½A⃗0NM
μ :T⃗; A⃗0NM

ν :T⃗� þ i
g
NðxÞMðxÞ½∂μ; ∂ν�M†ðxÞN†ðxÞ: ð56Þ

We use Eq. (56) to study some various topological defects. A full QCD is obtained if one uses Eq. (56) without applying
any projection. In this section, we discuss the possible resulting defects after Abelian and center projections.
Looking at the last line of Eq. (56), we define the first term by Flinear

μν ¼ F⃗linear
μν :T⃗ ≡ ∂μðA⃗ 0NM

ν :T⃗Þ − ∂νðA⃗ 0NM
μ :T⃗Þ and

rewrite it using Eq. (54),

F⃗linear
μν :T⃗ ¼ fð∂μA1

ν − ∂νA1
μÞ sin θ cosφþ A1

ν∂μðsin θ cosφÞ − A1
μ∂νðsin θ cosφÞgT3

þ fð∂μA2
ν − ∂νA2

μÞ sin θ sinφþ A2
ν∂μðsin θ sinφÞ − A2

μ∂νðsin θ sinφÞgT3

þ fð∂μA3
ν − ∂νA3

μÞ cos θ þ A3
ν∂μðcos θÞ − A3

μ∂νðcos θÞgT3 þ ð∂μEν − ∂νEμÞT3: ð57Þ

The last line of the above equation contains some defects as
explained in the following:

ð∂μEν − ∂νEμÞT3 ¼ 1

g
sin θð∂μθ∂νφ − ∂μφ∂νθÞT3

þ 1

g
ð1 − cos θÞ½∂μ; ∂ν�φT3

−
1

g
½∂μ; ∂ν�φT3: ð58Þ

The first term of Eq. (58) represents the field strength
of a magnetic monopole located at r ¼ 0, the second

term indicates the field strength of a Dirac string at
θ ¼ π, and the third term represents the field strength
of a thin vortex field that extended on the z axis.
(See Fig. 4.)
It is clear that the second term of Eq. (56),

F⃗bilinear
μν :T⃗ ≡ ig½A⃗ 0NM

μ ðxÞ:T⃗; A⃗ 0NM
ν ðxÞ:T⃗�, is zero. This hap-

pens because of the Abelian projection process which
makes the components of the gluon field zero for the
two color directions T1 and T2. Using the center
gauge transformation defined in Eq. (27) and the
Abelian gauge transformation of Eq. (44), the third term
of Eq. (56) is
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Fsingular
μν ¼ F⃗singular

μν :T⃗

¼ −
1

g
ð1 − cos θÞ½∂μ; ∂ν�φT3 þ 1

g
½∂μ; ∂ν�φT3

¼ 1

g
cos θ½∂μ; ∂ν�φT3; ð59Þ

where − 1
g ð1 − cos θÞ½∂μ; ∂ν�φT3 represents the field

strength of an anti-Dirac string in θ ¼ π with a flux equal
to − 4π

g T
3 and the term 1

g ½∂μ; ∂ν�φT3 represents the field

strength of an antivortex on the z axis with a flux equal to
þ 2π

g T
3. (See Fig. 5.)

In fact, the contribution of the vortex and the Dirac string
appearing in Flinear

μν is exactly canceled by the contribution
of the antivortex and the anti-Dirac string in Fsingular

μν . As a
result, a monopole vacuum is obtained unless we remove
some of the singularities from the theory.
Step 4: Center projection As explained in Sec. IV, a

center projection is done by removing Fsingular
μν defined in

Eq. (59). This means that center projection is obtained by
Flinear
μν þ Fbilinear

μν . On the other hand, we have shown that
Fbilinear
μν is zero, and as a result, the center projected field

strength tensor is as follows:

FCP
μν ¼ Flinear

μν : ð60Þ

Therefore, only a monopole attached to a Dirac string and a
vortex remain. We can interpret these configuration as a
chain as shown in Fig. 6.
The first plot on the left-hand side of Fig. (6) represents a

monopole at r ¼ 0 plus a Dirac string located at θ ¼ π
carrying a magnetic flux equal to 4π

g T
3. The second plot on

the left-hand side indicates a vortex carrying a magnetic
flux equal to − 2π

g T
3 extending on the z axis. Combining

these two plots, a chain shown on the right-hand side of
Fig. (6) is obtained. A chain contains a monopole at r ¼ 0
and two line vortices entering it. The flux of the vortex
sitting at θ ¼ 0 is equal to − 2π

g T
3, and the flux of the vortex

sitting at θ ¼ π is equal to þ 2π
g T

3. The latter vortex is
obtained as a result of combining the flux of the Dirac
string sitting in the negative z direction and the first vortex
located in the z direction.
Our arguments about the chains of monopoles and

vortices are in agreement with the work of Del Debbio
et al. [24], which is done by lattice QCD (see Fig. 7), and

FIG. 5. Appearance of an anti-Dirac string and an antivortex
after Abelian gauge transformation, followed by an Abelian
projection and then a center gauge transformation.

FIG. 4. Appearance of a monopole attached to a Dirac string
and a vortex after Abelian gauge transformation, Abelian
projection, and center gauge transformation.

FIG. 6. Appearance of a chain after Abelian gauge trans-
formation, Abelian projection, center gauge transformation,
and center projection.

FIG. 7. Vortex field strength: (a) before gauge fixing, (b) after
maximal Abelian gauge fixing in the horizontal �σ3 direction,
and (c) after Abelian projection [24]. As shown in this figure, two
vortex enter a monopole or an antimonopole, in agreement with
what we have introduced in this paper as a chain configuration
in Fig. 6.
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also in agreement with the results of Reinhardt and
Engelhardt [41], in which two vortex enter a mono-
pole (see Fig. 8).
We end this section by discussing the possible advan-

tages of using chains. As we mentioned at the beginning of
the article, in both the dual superconductor model and the
center vortex model, monopoles and vortices can explain
some aspects of the color confinement like the linear
potential between a quark and antiquark. However, none
of these models nor the associated defects is able to
describe all the expected features of the confining potential
between color sources.
At intermediate distances, a well-defined linear confin-

ing potential is expected, VRðrÞ ∼ σRr, in which σR is the
string tension of representation R. The confining potential
should agree with the Casimir scaling at intermediate
distances. It means that the string tension of the potential
between a quark and an antiquark in representation R, σR, is
approximately proportional to the quadratic Casimir oper-
ator CR of representation R, i.e.,

σR ¼ CR

CF
σF; ð61Þ

where F indicates the fundamental representation and σF
shows the string tension of the fundamental representation.
CF denotes the eigenvalue of the Casimir operator of
representation F. We recall that the dependence of the
potential slope to the Casimir scaling applies only for the
intermediate distances and it is valid and exact for the large
N limit [42,43]. In addition, at large distances, the k-string
tension depends on the N-ality of the representation; it is
equal to the fundamental representation string tension for
the nonzero N-ality representations and zero for the zero
N-ality representations [44].
Proportionality with Casimir scaling for the intermediate

distances and the N-ality dependence of the potentials at
large distances are confirmed by lattice calculations for
the fundamental and a variety of higher representations
[45–47]. Therefore, any phenomenological model which
tries to describe the potential between static color sources is

expected to interpret these two features. Vortex based
models have been able to explain the N-ality dependence.
However, to get the Casimir scaling for all representations,
the models have been modified by defining a thickness for
the vortex [24,48]. On the other hand, lattice results confirm
the existence of chains of monopoles and vortices [25,49]
that may explain the agreement of the potentials with
Casimir scaling for higher representations. In this article,
we have followed this approach to study the existence of
chains of monopoles and vortices for the continuum.
We recall that an Abelian-projected theory gives the

N-ality dependence (after all, it can still contain vortices),
but it does not give the Casimir scaling dependence at
intermediate distances [23,50].
In this paper, motivated by direct and indirect methods

of identifying vortices in lattice QCD, we have shown the
existence of chains of monopoles and vortices for the
continuum.

VII. CONCLUSIONS

Motivated by lattice QCD, which discusses the vortex
contribution in color confinement, we have tried to intro-
duce vortices in the continuum.
In the absence of matter fields, we work in the quenched

approximation where dynamical quarks are removed from
the theory. Therefore, the theory includes only the gluon
fields, in this limit.
In recent years, the identification of vortices in lattice

QCD has seen significant progress. Therefore, one expects
to observe the same physics in the continuum limit when
one uses the lattice results for the limit where a → 0.
Inspired by direct and indirect maximal center gauge

methods which have studied vortices in lattice calculations
and by using connection formalism technique, we have
tried to recognize the vortices in the continuum. We have
introduced the thin vortices from the gluon fields via both
direct and indirect methods for the SUðNÞ gauge group. We
also get some help from the techniques proposed by
Engelhardt and Reinhardt.
For an example, from the direct method, we have shown

that under center gauge transformation the QCD vacuum of
the SU(2) gauge group is filled with the vortices and
antivortices. Then, applying a center projection, we reach a
theory that contains the thin vortex. The theory has an SO
(3) symmetry containing the vortex, which corresponds to
the nontrivial first homotopy group of Π1ðSOð3ÞÞ ¼ Z2.
Then, using the indirect method, we have shown

that under Abelian gauge transformation for the SU(2)
case the gauge theory would contain monopoles along with
the Dirac strings and anti-Dirac strings as well as antimono-
poles. Then, applying Abelian projection and removing
the antimonopole contribution, we end up with a theory
that includes only the monopoles. In other words, SU(2)

FIG. 8. Illustration of the connection between Dirac string
shown in plot (a) and the center vortex shown in plot (b) [41]. The
interpretation of a chain represented in Fig. 6 is the same as this
figure where two vortex enter a monopole.
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gauge symmetry is reduced to a U(1) gauge symmetry,
and monopoles appear as the topological defects corre-
sponding to the nontrivial second homotopy group
Π2ðSUð2Þ=Uð1ÞÞ ¼ Z.
Next, we have done a center gauge transformation on the

Abelian vacuum. As a result, we get the monopole along
with the Dirac string, the vortex, and anti-Dirac string, and
the antivortex. Eventually, by applying center projection,
we end up with a theory that contains chains including
monopole and two vortices.

APPENDIX: TRANSFORMATION OF THE FIELD
STRENGTH TENSOR UNDER AN ABELIAN

GAUGE TRANSFORMATION

In subsection VI A, we express that the field strength is
changed by Eq. (49) when Abelian gauge transformation is
applied. One can also show that,

F⃗M
μν:T⃗ ¼ F⃗linear

μν :T⃗ þ F⃗bilinear
μν :T⃗ þ F⃗singular

μν :T⃗

≡ ð∂μðA⃗M
ν :T⃗Þ − ∂νðA⃗M

μ :T⃗ÞÞ þ ig½A⃗M
μ :T⃗; A⃗

M
ν :T⃗�

þ i
g
Mðθ;φÞ½∂μ; ∂ν�M†ðθ;φÞ: ðA1Þ

Each term of Eq. (A1) can be expressed in terms of the SU
(2) group generators as the following:

F⃗linear
μν :T⃗ ¼ ðFlinear

μν Þ1T1 þ ðFlinear
μν Þ2T2 þ ðFlinear

μν Þ3T3;

F⃗bilinear
μν :T⃗ ¼ ðFbilinear

μν Þ1T1 þ ðFbilinear
μν Þ2T2 þ ðFbilinear

μν Þ3T3;

F⃗singular
μν :T⃗ ¼ ðFsingular

μν Þ1T1 þ ðFsingular
μν Þ2T2 þ ðFsingular

μν Þ3T3:

ðA2Þ

From Eq. (46), F⃗linear
μν :T⃗ is obtained for the Abelian sector

ðFlinear
μν Þ3 ¼ ð∂μA1

ν − ∂νA1
μÞ sin θ cosφþ A1

ν∂μðsin θ cosφÞ − A1
μ∂νðsin θ cosφÞ

þ ð∂μA2
ν − ∂νA2

μÞ sin θ sinφþ A2
ν∂μðsin θ sinφÞ − A2

μ∂νðsin θ sinφÞ
þ ð∂μA3

ν − ∂νA3
μÞ cos θ þ A3

ν∂μðcos θÞ − A3
μ∂νðcos θÞ

þ 1

g
sin θð∂μθ∂νφ − ∂μφ∂νθÞ þ

1

g
ð1 − cos θÞ½∂μ; ∂ν�φ; ðA3Þ

where,þ 1
g sin θð∂μθ∂νφ − ∂μφ∂νθÞ represents the field strength of a magnetic monopole at r ¼ 0 and 1

g ð1 − cos θÞ½∂μ; ∂ν�φ
indicates the field strength of a Dirac string at θ ¼ π.
The Abelian sector F⃗bilinear

μν :T⃗ is also obtained by Eq. (46),

ðFbilinear
μν Þ3 ¼ −gðA2

μA3
ν − A3

μA2
νÞ sin θ cosφ − A1

ν∂μðsin θ cosφÞ þ A1
μ∂νðsin θ cosφÞ

− gðA3
μA1

ν − A1
μA3

νÞ sin θ sinφ − A2
ν∂μðsin θ sinφÞ þ A2

μ∂νðsin θ sinφÞ

− gðA1
μA2

ν − A2
μA1

νÞ cos θ − A3
ν∂μðcos θÞ þ A3

μ∂νðcos θÞ −
1

g
sin θð∂μθ∂νφ − ∂μφ∂νθÞ; ðA4Þ

where − 1
g sin θð∂μθ∂νφ − ∂μφ∂νθÞ represents the field strength of an anti-monopole at r ¼ 0.

Finally, F⃗singular
μν :T⃗ is obtained for the Abelian sector by Eq. (44),

ðFsingular
μν Þ3 ¼ −

1

g
ð1 − cos θÞ½∂μ; ∂ν�φ: ðA5Þ

And the above singular term shows the field strength of an anti-Dirac string at θ ¼ π.
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