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We study the transverse momentum dependent (TMD) evolution of the three leading twist dipole
type T-odd gluon TMDs inside a transversely polarized nucleon, all of which at small x dynamically
originate from the spin dependent odderon. Their energy dependence presents a unique opportunity to
study the polarization dependent TMD evolution in the small-x region, where the distributions are identical
up to a normalization constant at tree level. We further propose to study their evolution via azimuthal
asymmetries in virtual photon-jet production in polarized proton-proton collisions at RHIC. We present
model predictions for the asymmetries as functions of the large jet or photon transverse momentum andQ2

which set the hard scales in this process.
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I. INTRODUCTION

Three dimensional tomography of gluonic matter inside
a nucleon/nucleus has become a topic of much interest in
recent years, in large part due to the increasing prospects of
collider experiments at small-x values. Transverse momen-
tum dependent (TMD) gluon distributions play a central
role in describing the 3D structure of a nucleon/nucleus in
momentum space. In particular, a very rich phenomenology
of polarization dependent TMDs in the small-x limit has
been uncovered in a series of work [1–20]. The theoretical
and experimental studies of polarized gluon TMDs at small
x are of great importance not only because they encode
information on the nucleon/nucleus internal structure, but
also because they allow us to address many interesting
aspects of QCD dynamics, for instance, the (non-)univer-
sality of TMDs, the gluon polarization of the color glass
condensate (CGC), and the properties of the elusive odd-
eron that has finally been discovered recently [21].
It was recognized some time ago that at small x two

different definitions of the unpolarized gluon distributions
play a role [22]. Depending on the process that is being
considered, one probes different TMDs that are distin-
guished by their different gauge link structures: the dipole
or Weizsäcker-Williams distributions, a mixture of both or

even more complicated options [23–25]. In this work, we
focus on the dipole type gluon TMD which has a closed
loop gauge link in the fundamental representation and
can be related to gluonic correlators that appear in the
description of saturation phenomena at small x. The
relations between small-x correlators and gluon TMDs
allow us to study gluon TMDs by employing the powerful
theoretical tools established in saturation physics. Some
interesting developments along this line include the com-
putation of the linearly polarized gluon TMD in the
McLerran-Venugopalan (MV) model [1], and deriving a
TMD resummation formalism based on the CGC effective
theory [26–29]. A more recent finding [7,18] reveals that
the three leading twist dipole type T-odd gluon TMDs
(including the gluon Sivers function) inside a transversely
polarized nucleon share a common dynamical origin and
become identical at small x. All three distributions are
related to the spin dependent odderon which not only plays
a role in generating transverse single spin asymmetries in
high energy scattering [3,18,30–32], but also contributes to
the polarization averaged scattering amplitudes [33,34].
The relation among the three T-odd TMDs only holds at

tree level, but is spoiled by higher order radiative correc-
tions. This is to be expected because the resummation is
formulated in impact parameter space and different Bessel
functions and weights appear due to the different polari-
zation tensor structures associated with these T-odd gluon
TMDs. Since these distributions cannot be calculated from
first principles, it will have to be checked experimentally in
how far the equality holds or not, but how the functions
change with respect to each other under scale evolution can
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be calculated. We will consider this using the diquark
model expressions from [4] as starting distributions and for
one particular process. At present there are only a few
known processes that probe the dipole gluon TMDs, one of
which is virtual photon-jet production in proton-proton or
proton-nucleus collisions, which in the forward or back-
ward region is dominated by the qþ g → γ� þ jet process.
In [35] we studied azimuthal asymmetries in this process
for unpolarized collisions. In the present paper we will
study polarized proton-proton collisions which allow us to
study the three dipole type T-odd gluon TMDs inside a
transversely polarized nucleon and their energy evolution
through azimuthal spin asymmetries. Assuming that the
three gluon TMDs are the same at the initial scale, our
numerical estimations indicate that the equivalence of these
distributions is significantly violated fairly quickly at
higher scales and that the differences in azimuthal asym-
metries might be visible in experiments at RHIC using the
STAR forward detector.
We thus propose to access the T-odd gluon TMDs by

measuring the azimuthal angle dependent cross section of
virtual photon plus jet production in polarized proton-
proton collisions. All three T-odd gluon TMDs induce
different azimuthal modulations and can therefore be fully
analyzed in this single process. We restrict ours to the
backward region of the transversely polarized proton, such
that a hybrid approach [36] can apply, in which one uses a
collinear parton distribution function (PDF) on the unpo-
larized proton side while multiple gluon scatterings on the
polarized proton side are treated in the CGC formalism.
Such a hybrid approach remains a good approximation as
long as the typical transverse momenta of the incoming
gluon inside the CGC are much larger than that carried by
the incoming quark. In contrast, for virtual photon-jet
production at mid rapidity and/or at larger x values, the
hybrid approach would not be applicable and effects from
color entanglement in the full TMD description would need
to be taken into account, thereby reducing or possibly even
removing the predictive power of the QCD calculation
[37,38] (see also relevant discussions [39–41]). For the
phenomenological applications of this hybrid formalism,
we refer readers to Refs. [35,39,42–49].
TMD factorization at small x can only be established in

the so-called correlation limit [23,24]. To reliably extract
small-x T-odd gluon TMDs, we will therefore focus on the
correlation limit in virtual photon-jet production in polar-
ized proton-proton collisions, which means that the
outgoing virtual photon and jet are approximately back-
to-back in transverse momentum.
The paper is structured as follows. In Sec. II, we present

detailed numerical estimations of the evolved T-odd gluon
TMDs using the diquark model result for the spin depen-
dent odderon as the input at the initial scale. We derive the
polarization and azimuthal angle dependent cross section
for virtual photon-jet production, and make predictions for

RHIC energy in Sec. III. The paper is summarized
in Sec. IV.

II. EVOLVED T-ODD GLUON TMDS

We start with introducing the matrix element definition
of gluon TMDs. The information on confined gluon
transverse motion inside a transversely polarized target is
formally encoded in the following correlator matrix
element:

Γμν½U;U0�ðx; k2⊥Þ ¼
1

xPþ

Z
dy−d2yT
ð2πÞ3 eik·y

× hP;S⊥j2Tr½Fþμ
T ð0ÞUFþν

T ðyÞU0�
× jP;S⊥ijyþ¼0; ð1Þ

where U and U0 are process dependent gauge links in the
fundamental representation. S⊥ is the nucleon transverse
spin vector. One can define six leading power gluon
TMDs by parametrizing the tensor structure of the above
correlator [50,51],

Γijðx; k2⊥Þ ¼ −gijT f
g
1ðx; k2⊥Þ þ

kij⊥
M2

h⊥g
1 ðx; k2⊥Þ

−
gijT ϵ

S⊥k⊥
T

M
f⊥g
1T ðx; k2⊥Þ þ

iϵijT k⊥ · S⊥
M

gg1Tðx; k2⊥Þ

−
ϵk⊥fiT Sjg⊥ þ ϵS⊥fiT kjg⊥

4M
hg1ðx; k2⊥Þ

−
ϵfiT αk

jgαS⊥⊥
2M3

h⊥g
1T ðx; k2⊥Þ; ð2Þ

where the six gluon TMDs are functions of x and k2⊥,
ϵμνT ¼ ϵρσμνpρnσ with ϵ−þ12 ¼ 1, gμνT ¼ gμν − pfμnμg=p · n,

and ki1…in⊥ are completely symmetric and traceless tensors
which up to rank n ¼ 3 are given by kij⊥ ≡ ki⊥k

j
⊥ þ 1

2
k2⊥g

ij
T

and kijk⊥ ≡ ki⊥k
j
⊥kk⊥ þ 1

4
k2⊥ðgijT kk⊥ þ gikT k

j
⊥ þ gjkT k

i⊥Þ.
The first two gluon TMDs, fg1 and h⊥g

1 , are the
unpolarized and linearly polarized gluon distributions,
respectively. Among the four transverse spin dependent
gluon TMDs, the three T-odd gluon TMDs, f⊥g

1T , h
⊥g
1T and

hg1, are relevant for the single spin asymmetry studies.
Depending on the process considered, there are two main
types of gauge link structures appearing in the gluon
distributions: the Weizsäcker-Williams (WW) distribution
and the dipole type distribution. The former has a staplelike
gauge link, while the latter contains a closed loop gauge
link in either the adjoint representation or the fundamental
representation. The unpolarized gluon distribution fg1 and
linearly polarized gluon TMD h⊥g

1 have the same 1=x
enhancement in the small-x limit for both the WW and the
dipole cases [1,2]. It has been found that the WW type
T-odd gluon TMDs and the dipole type T-odd distributions

BOER, HAGIWARA, ZHOU, and ZHOU PHYS. REV. D 105, 096017 (2022)

096017-2



with a gauge link in the adjoint representation are sup-
pressed in the small-x limit [5,52]. In contrast, all of the
three dipole type T-odd gluon TMDs with a gauge link in
the fundamental representation rise rapidly with decreasing
x (although not as rapid as the unpolarized gluon distri-
bution [53–55], thanks to a 1=x enhancement obtained in
higher order calculations).
Interestingly, at tree level the three dipole type T-odd

gluon TMDs can be related to the spin dependent odderon
[7,18,51],

xf⊥g
1T ¼ xhg1 ¼ −

k2⊥
2M2

xh⊥g
1T ¼ k2⊥Nc

4π2αs
O⊥

1T: ð3Þ

The derivation of the above relation is in close analogy to
that of the following relation [1,2]:

xfg1 ¼
k2⊥
2M2

xh⊥g
1 ; ð4Þ

where the unpolarized and the linearly polarized gluon
TMDs are the dipole type distributions. These relations
remain true under small-x evolution. In the QED case, the
same relation between the unpolarized photon TMD and
the linearly polarized photon TMD holds in the small-x
limit [56–58]. The linear polarization of photons can be
probed via a cos 4ϕ azimuthal asymmetry in dilepton
production [59]. This asymmetry was measured in the
ultraperipheral collision (UPC) process by the STAR
Collaboration [60] and turns out to be in a very good
agreement with the theoretical expectation [56,57]. This
strongly indicates that the small-x photons are fully linearly
polarized. However, it has been found that the simple
relation presented in Eq. (4) is spoiled by TMD evolution
[35]. The purpose of the current work is to investigate how
the relation equation (3) is affected by TMD evolution. To
this end, we evolve T-odd gluon TMDs to high energy
scales from some initial scale, where the relation is
expected to hold. We use the expectation value of the spin
dependent odderon computed in the diquark model [4] as
the input for the T-odd gluon TMDs at the initial scale.
It has been verified in a sequence of papers [26–29] that

the unpolarized small-x gluon TMD satisfies the standard
Collins-Soper equation and the renormalization group
equation which hold in the moderate or large x region.
By solving the evolution equations, all large logarithms that
arise in higher order calculation can be resummed into a
Sudakov factor. Such joint resummation formalism has
been applied in phenomenological studies [35,61–65] in
various contexts. One expects that a similar analysis applies
to the polarization dependent cases. As a result, in the
Collins-2011 scheme, the evolved gluon TMDs take the
forms,

fg1ðx; k2⊥; μ ¼ QÞ ¼
Z

djb⊥j
2π

jb⊥jJ0ðjk⊥jjb⊥jÞ

× e−Sððμ
2
b;Q

2Þf̃g1ðx; b2⊥�Þ; ð5Þ

f⊥g
1T ðx; k2⊥; μ ¼ QÞ ¼ 1

jk⊥j
Z

djb⊥j
2π

jb⊥jJ1ðjk⊥jjb⊥jÞ

× e−Sðμ
2
b;Q

2Þf̃⊥g
1T ðx; b2⊥�Þ; ð6Þ

hg1ðx; k2⊥; μ ¼ QÞ ¼ 1

jk⊥j
Z

djb⊥j
2π

jb⊥jJ1ðjk⊥jjb⊥jÞ

× e−Sððμ
2
b;Q

2Þh̃g1ðx; b2⊥�Þ; ð7Þ

h⊥g
1T ðx; k2⊥; μ ¼ QÞ ¼ 1

jk⊥j3
Z

djb⊥j
2π

jb⊥jJ3ðjk⊥jjb⊥jÞ

× e−Sððμ
2
b;Q

2Þh̃⊥g
1T ðx; b2⊥�Þ; ð8Þ

where μb ¼ 2e−γE=jb⊥j, the standard rapidity parameter ζ is
chosen identical to the renormalization scale μb and not
shown here. The unpolarized gluon TMD and the T-odd
TMDs in b⊥ space are given by [66]

f̃g1ðx; b2⊥Þ ¼ 2π

Z
djl⊥jjl⊥jJ0ðjb⊥jjl⊥jÞf1ðx; l2⊥Þ; ð9Þ

f̃⊥g
1T ðx; b2⊥Þ ¼ 2π

Z
djl⊥jl2⊥J1ðjb⊥jjl⊥jÞf⊥1Tðx; l2⊥Þ; ð10Þ

h̃g1ðx; b2⊥Þ ¼ 2π

Z
djl⊥jl2⊥J1ðjb⊥jjl⊥jÞhg1ðx; l2⊥Þ; ð11Þ

h̃⊥g
1T ðx; b2⊥Þ ¼ 2π

Z
djl⊥jl4⊥J3ðjb⊥jjl⊥jÞh⊥g

1T ðx; l2⊥Þ: ð12Þ

Although the energy dependence of gluon TMDs is
perturbatively calculable, gluon TMDs at the initial scale
have to be determined either from model calculations or by
fitting to experimental data. There are three model calcu-
lations for the spin dependent odderon, i.e., T-odd gluon
TMDs, available in the literature [3,4,67]. Our numerical
results show that the spin dependent odderon computed
from the MV model [3] is very small and would not lead to
any measurable effects. As the MV model is well justified
only for a large nucleus target, the MV model calculation
for a proton target should probably not be taken too
seriously. In the following numerical estimations, we use
the diquark model results as input for both the unpolarized
gluon TMDs and the spin dependent gluon TMDs at the
initial scale [4]. In this model the quark-diquark system in
the proton forms the source of the small-x gluons, leading
to the following unpolarized gluon distribution:
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xfg1ðx;k2⊥Þ¼
2λ2sCFNcαs
ð2πÞ5k2⊥

Z
dzd2x⊥z̄½ðMzþmqÞ2K2

0ðM̃jx⊥jÞ

þM̃2K2
1ðM̃jx⊥jÞ�ð1−e−ix⊥·k⊥Þð1−eix⊥·k⊥Þ:

ð13Þ

Here K1 and K0 are the modified Bessel functions of the
second kind, z̄ ¼ 1 − z, M stands for proton mass, and
M̃2 ¼ z̄m2

q þ zm2
s − zz̄M2 with the valence quark mass

and the scalar diquark mass taken to be mq ¼ 0.3 GeV
and ms ¼ 0.8 GeV, respectively. The strong coupling
constant is fixed to be αs ¼ 0.3 in the diquark model
calculation. We further fix the proton-quark-scalar diquark

effective coupling constant λs by requiring the following:

π
R μ2

0 dk2⊥xf
g
1ðx; k2⊥Þ ¼ xGðx; μÞ where xGðx; μÞ is the

standard gluon PDF taken from the MSTW 2008 leading
order PDF set, and at x ∼ 0.01 that is the typical kinemati-
cal region we consider in the next section. With this we
obtain λ2s ≃ 153 at μ ¼ 1.6 GeVwhich is the lowest scale in
SNP which will be introduced shortly. This corresponds to
the “no evo” curves in Figs. 1 and 2. For the evolved
curves, λ2s is dependent on μ. An infrared cutoff is imposed
by replacing 1

k2⊥
with 1

k2⊥þΛ2
QCD

when Fourier transforming the

above expression to impact parameter space. The spin
dependent gluon TMDs in the diquark model read [4]

xf⊥g
1T ðx;k2⊥Þ ¼ xhg1ðx;k2⊥Þ ¼

−k2⊥
2M2

xh⊥g
1T ðx;k2⊥Þ ¼

iλ2sMα2sCFðN2
c − 4Þ

2ð2πÞ5k2⊥

Z
dzd2x⊥z̄ðMzþmqÞM̃

k⊥ · x⊥
k2⊥jx⊥j

×K0ðM̃jx⊥jÞK1ðM̃jx⊥jÞð1− e−ik⊥·x⊥Þ
Z

1

0

da
aā

n
1þ eik⊥·x⊥ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aāx2⊥k2⊥

q
K1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aāx2⊥k2⊥

q �
ðeiak⊥·x⊥ þ eiāk⊥·x⊥Þ

o

þ c:c: ð14Þ

It is interesting to notice that the spin dependent odderon
cannot be related to the derivative of the unpolarized
gluon TMD in the diquark model as it can be in the
MV model [3].
The standard treatment for the nonperturbative part

applies to the Sudakov factor Sðμ2b; Q2Þ which at one-loop
order reads

Sðμ2b;Q2Þ ¼ SAðμ2b�; Q2Þ þ SNPðb2⊥; Q2Þ; ð15Þ
with

SAðμ2b�; Q2Þ ¼ CA

2π

Z
Q2

μ2b�

dμ2

μ2
αsðμÞ

�
ln
Q2

μ2
−
11 − 2nf=CA

6

�
;

ð16Þ

where μ2b� is defined as μ2b� ¼ 4e−2γE=b2⊥�, with b⊥� given
by b⊥� ¼ b⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þb2⊥=b2max

p and b⊥ ¼ jb⊥j. A regulator which

allows us to smoothly match large transverse momentum
behavior is introduced [68–70]

μ0bðQ2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=μ2b� þ 1=Q2

q : ð17Þ

The parametrization for the nonperturbative Sudakov factor
SNPðb2⊥; Q2Þ is taken from [71] and Casimir scaled to apply
to gluons rather than quarks:

FIG. 1. The considered gluon TMDs at different scales at
x ¼ 0.01, using the diquark model result as the initial condition.

FIG. 2. The ratiosR1 andR2 evolved to the scale μ ¼ 10 GeV
for x ¼ 0.01 in comparison to the tree level model input that
satisfies R1 ¼ R2.
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SNP
g ðb2⊥;Q2Þ ¼ CA

CF

1

2

�
g1þ g2 ln

Q
2Q0

þ 2g1g3 ln
10xx0
x0þ x

�
b2⊥;

ð18Þ

with bmax¼1.5GeV−1, g1¼0.201GeV2, g2¼0.184GeV2,
g3 ¼ −0.129, x0 ¼ 0.009, and Q0 ¼ 1.6 GeV. In our
numerical estimation, we use the one-loop running cou-
pling constant αs, with nf ¼ 3 and ΛQCD ¼ 216 MeV.
Here we assume for simplicity that the unpolarized gluon
TMD and the T-odd gluon TMDs share the same non-
perturbative part of the Sudakov factor, which is not
necessarily the case though.
With the expressions introduced above, we are now

ready to evolve the T-odd gluon TMDs computed in the
diquark model to a high scale. Judging from Eqs. (6) and
(7), the gluon Sivers function and the gluon TMD hg1 evolve
in exactly the same way and thus remain identical at
arbitrary energy scale, so hg1 will not be shown in the
figures. In Fig. 1 we present the unpolarized gluon
distribution xfg1, the gluon Sivers function xf⊥g

1T , and
xh⊥g

1T as function of k⊥ (with k⊥ ¼ jk⊥j) at the initial scale
μ ¼ 1.6 GeV and the scale μ ¼ 10 GeV. One can see that
xf⊥g

1T and xh⊥g
1T are much smaller than xfg1. Since the

azimuthal asymmetries are proportional to the ratios

R1ðμ2Þ ¼ xf⊥g
1T ðμ2Þ

xfg
1
ðμ2Þ , R2ðμ2Þ ¼

−
k2⊥
2M2xh

⊥g
1T ðμ2Þ

xfg
1
ðμ2Þ , we directly plot

these ratios at the initial scale and the scale μ ¼ 10 GeV as
a function of k⊥ in Fig. 2. The k⊥ dependent behavior of
both ratios R1 and R2 changes quite substantially after
performing energy evolution. R1 is about 2% at μ ¼
10 GeV and is only very mildly dependent on k⊥. The
R2 rises with increasing k⊥, but remains quite small at low
transverse momentum. We note that although there is a
large model uncertainty and we do not expect the diquark
model to be very realistic, the effect of the evolution is
expected to reflect the actual situation, namely, that R1

starts to differ fromR2 under TMD evolution quite quickly.

III. ASYMMETRIES IN VIRTUAL PHOTON-JET
PRODUCTION IN POLARIZED pp COLLISIONS

Azimuthal asymmetries in virtual photon-jet production
in polarized pp collisions allow us to probe the T-odd
gluon TMDs discussed in the previous section. The
dominant partonic process is

qðxqP̄Þ þ gðxgPþ k⊥Þ → γ�ðp1Þ þ qðp2Þ ð19Þ
where the quark comes from the unpolarized projectile, and
the incoming gluon from the transversely polarized target.
The virtual photon and quark in the final state are produced
in the forward region of the unpolarized projectile. In this
kinematical region, transverse momentum carried by the
incoming gluon is much larger than that of the incoming
quark. As such, a hybrid approach in which the polarized
target is treated as a CGC, while on the side of a dilute
projectile one uses the ordinary integrated parton distribu-
tion functions, is justified. The hybrid approach was widely
used [36] to compute both spin averaged observables and
polarization dependent observables in the forward/back-
ward region of pA=pp collisions.
In order for TMD factorization to be valid, we restrict

ourselves to the correlation limit where each of the produced
particles transverse momentum p1⊥ or p2⊥ is much larger
than their sum k⊥ ¼ p1⊥ þ p2⊥, i.e., the probed gluon
transverse momentum. In the correlation limit, one has

P⊥ ≡ p1⊥ − p2⊥
2

∼ p1⊥ ∼ −p2⊥ ð20Þ

k⊥ ¼ jp1⊥ þ p2⊥j ≪ P⊥ ð21Þ

with P⊥ ¼ jP⊥j. Here, P2⊥ serves as an additional hard scale
required by TMD factorization. In the reference frame in
which azimuthal angles are measured with respect to the
gluon transverse momentum vector, i.e., ϕk ¼ 0, the azimu-
thal angles of the vectors S⊥, P⊥ are denoted by ϕS, ϕP,
respectively. The calculation of the polarization dependent
differential cross section proceeds along the same lines of
Ref. [35]. We first apply the Eikonal approximation and sum
all order gluon rescatterings into the Wilson lines.
Combining the amplitude with its conjugate part, two
Wilson lines form a closed Wilson loop. Because of the
different charge parity properties, the real part of the Wilson
loop contributes to the unpolarized cross section, while the
imaginary part of the dipole amplitude is responsible for the
spin dependent contributions. The next step is to isolate
the leading power part of the hard coefficients by Taylor
expanding them in terms of powers of k⊥=P⊥ and convert ki⊥
into ∂i⊥ that acts on the Wilson lines by partial integration.
After having done so, the derivative of theWilson loop can be
related to the gluon TMD matrix element. One eventually
recovers the differential cross section in TMD factorization,
which reads

dσp
↑p→γ�qX

dP:S
¼

X
q

xqf
q
1ðxqÞ

	
HUU

�
xfg1ðx; k2⊥Þ þ sinðϕSÞ

jk⊥j
M

xf⊥g
1T ðx; k2⊥Þ

�
þHUT cosð2ϕPÞ

jk⊥j2
2M2

xh⊥g
1 ðx; k2⊥Þ

þ 1

2
HUT sinð2ϕP − ϕSÞ

jk⊥j
M

xhg1ðx; k2⊥Þ þ
1

2
HUT sinð2ϕP þ ϕSÞ

jk⊥j
M

jk⊥j2
2M2

xh⊥g
1T ðx; k2⊥Þ



; ð22Þ
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wherefq1ðxqÞ is the quark collinear PDFof the proton and the
hard coefficients are given by

HUU ¼ αsαeme2q
Ncŝ2

�
−
ŝ
t̂
−
t̂
ŝ
−
2Q2û
ŝ t̂

�
; ð23Þ

HUT ¼ αsαeme2q
Ncŝ2

−2Q2û
ŝ t̂

: ð24Þ

In the above expressions, the phase space factor is
defined as dP:S ¼ dyJdyγ�d2P⊥d2k⊥, where yJ and yγ�
are the rapidities of the produced jet and the virtual photon,
respectively. Q2 and z are the virtual photon invariant mass

and the longitudinal momentum fraction of the incoming
quark carried by the virtual photon, respectively.
Similar to the case of asymmetries in dijet production in

the SIDIS process [52], there are three independent
azimuthal modulations, each of which is related to a
different T-odd gluon TMD. Moreover, one observes that
in close analogy to the cos 2ϕ asymmetry induced by the
linearly polarized gluon distribution in unpolarized pA=pp
collisions, the size of the azimuthal asymmetries given by
the last two terms is proportional to Q2 and thus vanishes
for real photon production. In order to single out separate
angular dependence, we define the following azimuthal
moments:

hsinðϕSÞi≡
R
dϕPdϕS sinðϕSÞ½dσðϕP;ϕSÞ − dσðϕP;ϕS þ πÞ�R

dϕPdϕS½dσðϕP;ϕSÞ þ dσðϕP;ϕS þ πÞ� ð25Þ

and similarly,

hsinð2ϕP þ ϕSÞi≡
R
dϕdϕS sinð2ϕP þ ϕSÞ½dσðϕP;ϕSÞ − dσðϕP;ϕS þ πÞ�R

dϕPdϕS½dσðϕP;ϕSÞ þ dσðϕP;ϕS þ πÞ� ð26Þ

hsinð2ϕP − ϕSÞi≡
R
dϕdϕS sinð2ϕP − ϕSÞ½dσðϕP;ϕSÞ − dσðϕP;ϕS þ πÞ�R

dϕPdϕS½dσðϕP;ϕSÞ þ dσðϕP;ϕS þ πÞ� : ð27Þ

Using the derived spin dependent cross section, it is easy to express the azimuthal moments in terms of the unpolarized
gluon TMD and the corresponding T-odd gluon TMDs,

hsinðϕSÞi ¼
P

q

R
dP:Sdjb⊥jjb⊥jxqfq1ðxq; μ2bÞe−S 1

jk⊥j J1ðjk⊥jjb⊥jÞxf̃
⊥g
1T ðx; b2⊥Þ jk⊥jM HUUP

q

R
dP:Sdjb⊥jjb⊥jxqfq1ðxq; μ2bÞe−SJ0ðjk⊥jjb⊥jÞ2xfg1ðx; b2⊥ÞHUU

ð28Þ

hsinð2ϕP þ ϕSÞi ¼
P

q

R
dP:Sdjb⊥jjb⊥jxqfq1ðxq; μ2bÞe−S 1

jk⊥j3 J3ðjk⊥jjb⊥jÞxh̃
⊥g
1T ðx; b2⊥Þ jk⊥jM

jk⊥j2
2M2

1
2
HUTP

q

R
dP:Sdjb⊥jjb⊥jxqfq1ðxq; μ2bÞe−SJ0ðjk⊥jjb⊥jÞ2xfg1ðx; b2⊥ÞHUU

ð29Þ

hsinð2ϕP − ϕSÞi ¼
P

q

R
dP:Sdjb⊥jjb⊥jxqfq1ðxq; μ2bÞe−S 1

jk⊥j J1ðjk⊥jjb⊥jÞxh̃
g
1ðx; b2⊥Þ jk⊥jM

1
2
HUTP

q

R
dP:Sdjb⊥jjb⊥jxqfq1ðxq; μ2bÞe−SJ0ðjk⊥jjb⊥jÞ2xfg1ðx; b2⊥ÞHUU

: ð30Þ

The Sudakov factor S is given by [72]

S ¼
Z

P2⊥

μ2b

dμ2

μ2
αsðμÞ
2π

	
ðCA þ CFÞ ln

ŝ
μ2

− CA

�
11

6
−
nf
9

�
−
3CF

2
þ ðCA − CFÞðyJ − yγ� Þ þ CF ln

1

R2



þ SNP ð31Þ

where SNP is the nonperturbative part of the Sudakov
factor. The term CF ln 1

R2 in the above formula arises from
the final state soft gluon emissions along the jet direction
[73–80]. R is the produced jet radius which is chosen to be
0.4 in the following numerical estimations. Notice that the
final state gluon radiation can lead to cosϕ, cos 2ϕ, cos 3ϕ,
… azimuthal modulations in this process [72], where ϕ is
the angle between the two transverse momenta P⊥ and k⊥.

The numerical model results for the asymmetries in
different kinematic regions are presented in Fig. 3. The
largest asymmetry is the hsinðϕSÞi which reaches two
percent. It grows with increasing k⊥ in the TMD region
at low transverse momentum k⊥ < P⊥=2. The k⊥ depend-
ence of hsinð2ϕP − ϕSÞi is similar to that of hsinðϕSÞi,
while the magnitude of hsinð2ϕP − ϕSÞi is suppressed due
to the smaller associated hard part. In fact, the difference
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between the curves for hsinðϕSÞi and hsinð2ϕP − ϕSÞi
solely reflects the difference between HUT and HUU, while
the difference between the curves for hsinð2ϕP − ϕSÞi and
hsinð2ϕP þ ϕSÞi solely reflects the difference due to the
TMD evolution. Unfortunately the predicted curves for
hsinð2ϕP − ϕSÞi and hsinð2ϕP þ ϕSÞi are found to be very
small in this model calculation and it would pose a big
challenge to measure them experimentally. However, since
our model calculation may be far from realistic, it would
nevertheless be worth measuring all three angular depend-
ences at RHIC, because at present it is the only known way
to investigate the differences between the three T-odd
dipole gluon TMDs experimentally. Although the dipole
gluon Sivers TMD can also be measured through the single
spin left-right asymmetry AN in charged hadron production
in the backward region of p↑p collisions [7], that process
would not allow us to access the other two T-odd dipole
gluon TMDs and therefore, also not their different TMD
evolutions.
Our numerical results indicate that the Sivers type

asymmetry will be the largest of the three asymmetries.
Once the dipole gluon Sivers TMD is measured through
this asymmetry or through the left-right asymmetry AN in
backward charged hadron production, it will be possible to
estimate the size of the other two smaller asymmetries in
virtual photon-jet production with more certainty.

IV. CONCLUSIONS

In summary, we study the TMD evolution of three T-odd
gluon TMDs relevant for the single spin asymmetries. All
three dipole gluon TMDs are related to the spin dependent
odderon in the small-x limit, and are shown to be identical
at the tree level. Although this relation persists under the
small-x evolution, it is violated by TMD evolution due to
the different polarization tensor structures involved. Recent
theoretical developments have confirmed that both double

and single Sudakov logs arising in the small-x limit can be
summed to all orders in the conventional TMD resumma-
tion formalism. We thus carry out a detailed numerical
study of the evolved T-odd gluon TMDs in the Collins-
2011 scheme using the diquark model expressions as the
initial conditions. We found that the ratios between the
unpolarized gluon TMD and the different polarized gluon
TMDs exhibit strong energy dependences. It would be
interesting to test these predictions by experimentally
studying T-odd gluon TMDs in virtual photon-jet produc-
tion in polarized pp collisions, where different azimuthal
modulations can serve as analyzers of the different polar-
ized gluon TMDs.
Our numerical model results suggest that the azimuthal

asymmetry induced by thegluonSivers function is the largest
one, whereas the asymmetries generated by other two T-odd
gluon TMDs are much smaller. The absolute magnitude of
the asymmetries critically depends on the model input at the
initial scale, which is very uncertain. However, the relative
sizes of the different asymmetries are more or less indepen-
dent of themodel setup, as they aremainly determined by the
evolution effect and the different hard factors. Once the
Sivers type asymmetry has beenmeasured, it will be possible
tomakemore realistic predictions for the other two azimuthal
asymmetries in the virtual photon-jet process. We stress that
at present this process offers the only known way to
investigate the differences between the three T-odd dipole
gluon TMDs experimentally. This makes it especially
interesting to be studied at RHIC. An observation of any
of these single spin asymmetries would constitute a clear first
signal of the spin dependent odderon.
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FIG. 3. Estimates of the azimuthal asymmetries as a function of k⊥ for P⊥ ¼ 10 GeV (left panel), and a function of P⊥ for
k⊥ ¼ 2.5 GeV (right panel) at

ffiffiffi
s

p ¼ 500 GeV. The jet and virtual photon rapidities yJ , y�γ are integrated over the regions
½−1.5;−0.5�; ½−3;−2�, respectively. The invariant mass of the virtual photon Q2 is integrated over the region [30, 80] GeV2 in the
left figure, and set to be 1

2
P2⊥ in the right one.
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