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Investigation of the possible DD*/BB* and DD*/BB* bound states
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In this work, we systematically study the DD*/BB* and DD*/BB* systems with the Bethe-Salpeter
equation in the ladder and instantaneous approximations for the kernel. By solving the Bethe-Salpeter

equation numerically with the kernel containing the direct and crossed one-particle exchange diagrams and

introducing three different form factors (monopole, dipole, and exponential form factors) at the vertices, we
find only the isoscalar DD*/BB* and DD*/BB* systems can exist as bound states. This indicate that the
X(3872) and T, could be accommodated as I¢(JF€) = 07 (17*+) DD* and (I)J* = (0)1* DD* bound
states while the bound-state explanations for Z,(10610) and Z.(3900) are excluded.
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I. INTRODUCTION

Since the discovery of X(3872) in 2003 [1], more than
twenty exotic-state candidates containing c¢¢ and bb quarks
have been found and studied by the LHCb, ATLAS, CMS,
BESIII, Belle, BABAR, CDF, and DO experiments [2,3].
The structures of these exotic states are more complex than
the standard gg mesons. Recently, the LHCb Collaboration
reported the first doubly open charmed tetraquark state 77,
in proton-proton collisions with a signal significance over
100 [4,5], and with its mass and width being

8 = my — (mpe +mpy) = =273 £ 61 £ 57} keV,
I'= 410+ 165 £ 43118 keV, (1)

respectively. This exotic state with a mass of about
3875 MeV manifests itself as a narrow peak in the mass
spectrum of D°D°z" mesons just below the D**D° mass
threshold, and is consistent with the ground isoscalar cciid
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state with the spin-parity quantum numbers J* = 17,
Although there have been many studies on the exotic
states, the puzzle about the nature of these states remains
unsolved so far.

Up to now, three exotic states [X(3872), Z.(3900), and
T/.] with their masses close to the threshold of DD* have
been found experimentally. To describe these exotic states a
variety of phenomenological models have been proposed,
including the chiral effective field theory [6—17], the Bethe-
Salpeter approach [18-22], the constituent quark model
[23-28], QCD sum rules [29-33], and the relativized quark
model [34-38], etc. In these models some physical pictures
have also been developed to understand the known exotic
states, such as hadronic molecule and tetraquark state.
Since the masses of these exotic states are close to the
threshold of the two S-wave lowest-lying standard mesons
(D and D*), one would naturally identify them as molecular
states of standard mesons. Therefore, it is very interesting
to investigate whether this is plausible for these exotic
states, which will be very helpful to reveal the structures of
these exotic states.

In this paper we will focus on the DD* and DD* bound
states and their b partners. Our purpose is to investigate
whether the bound states of the DD* and DD* systems and
their b partners via the interaction through exchanging
scalar mesons (o), vector mesons (p and ®), and pseudo-
scalar mesons (7 and #) can exist. As the relativistic
equation describing the bound state of two particles, the
Bethe-Salpeter (BS) equation is an effective method to deal
with nonperturbative QCD effects and has been applied to
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many theoretical studies concerning standard heavy
hadrons [39-41] and exotic states [42-46]. The kernel of
the BS equation can be derived from the relevant effective
Lagrangian, based on which numerical solutions for the BS
wave functions can be obtained in the covariant instanta-
neous approximation and the ladder approximation, and
these solutions can be used to judge whether these bound
states exist.

The remainder of this paper is organized as follows. In
Sec. I we discuss the DD* and DD* system hadronic wave
function and derive the BS equation for the vector and
pseudoscalar mesons system. We also discuss the kernel
derived from the relevant effective Lagrangian. In Sec. III,
we present numerical solutions for DD* and DD* bound
states and their b partners with three different form factors.
Finally, Sec. IV contains a summary.

II. THE BETHE-SALPETER FORMALISM
FOR DD* AND DD* SYSTEMS

The DD* + c.c. and DD* systems have isospin 0 or 1.
The flavor wave functions of the DD* + c.c. systems are
[15,21,47]

X050 = 5 (1D D7) + [D0DY))
+ (D D) + [D°D)),
X051 = 5 [(ID"D7) = |D*D)
T e(|D* D) - DD,
X5 )1 =5 (1D D) +¢lD°D)),
Koo )1 = J5 (D7D DY) (@)

where ¢ = £1 correspond to C parity C =7 respectively.
The wave functions for the DD* systems are

1
|T2Lc>1:0 = %(|D+D*O> - |D0D*+>)7
1
Téhier = (DD +[D°D™)),
T )= = [DTD™),
TC) 1 = [D°D*). 3)

The wave functions of the hidden-bottom and doubly
bottom states can be obtained analogously. |

—ilg” — (AMv + pv + p,)* (L Mv + pv+ pt)ﬂ/ml]

Since the bound states are composed of a vector meson
(D*) and a pseudoscalar meson (D), we can define the BS
wave function of the bound state by

Xp(x1,%2, P) = (0|TD*(x1)D(x)|P) = e xp(x).  (4)

where P = Mwv is the total momentum of the bound state,
and v is its velocity. D**(x;) and D(x,) are the field
operators of the vector meson D* and the pseudoscalar
meson D at space coordinates x; and x,, respectively. X =
A1x1 + Ayx, is the coordinate of the center of mass and
X = x| — x, is the relative coordinate with 1, = m, /(m; +
m,) and A, = m,/(m; + m,), with m; and m, being the
masses of D* and D, respectively. The BS wave function in
momentum space is defined as

_iP. d4

ey (p).  (5)

where the relative momentum p = A, p; — A1 p,, the p; =
MP + pand p, = 1, P — p are the D* meson and D meson
momenta, respectively.

The BS equation for the bound state consisting of a
vector and a pseudoscalar mesons can be written in the
following form

s pl)/

where S*(p,) and S( pz) are the propagators of D* and D,
respectively, and K,,(P, p,q) is the four-point truncated
irreducible kernel. The K. (P, p,g) can be derived from
four-point Green’s function as follows:

x8(p) = P.p.q)xp(q)S(p2),  (6)

G (x1.X2:y2. 1)
= G%})(xl,xz;)@yl) +/d4u1d4u2d4v1d4112

x G((l('}) (1, x5 U, uy ) K e (uy, 5 09, 0y)

X Grﬂ(”l,vz;yz,)ﬁ)» (7)

where G?Oﬂ) is related to the forward scattering disconnected

four-point amplitude,
Gy X2 v2. 1) = SP(x1.71)S (2. 72), (8)

S%(x,v,) and S(x,,y,) are the propagators of constituent
particles D* and D in coordinate space, respectively.

For convenience, we define p;(= p - v) and p}(= p* —
p;v*) to be the longitudinal and transverse projections of
the relative momentum (p) along the bound state momen-
tum (P). Then the D* propagator has the form

SP(p1) =

(MM + p))? — co1 + ie

©)
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and the propagator of D meson has the form

i
MM — p))? — @5 +ie’

where w;p) = /m%(z) - p2.

In general, for DD* and DD* systems, y%(p) can be
written as

S(p2) = ( (10)

15(p) = F1(p)eP guep(P) + fop)e P, P,ey(P)
+ f3 (p>€a/j/wpﬂpy€ﬂ(P) + f4(p>8aﬁ/wp/4pv€ﬂ(P)’
(11)

'CDDU = _ZQGmDDaDIlG - 2gamDDaDZ(7a

Lpps = 29smp Dt Digho + 2g,mp D Dio,

where €;(P) represents the polarization vector of the bound
state and f; (i =1, 2, 3, 4) are Lorentz-scalar functions.
With the constraints imposed by parity and Lorentz trans-
formations, it is easily to prove that y%(p) can be
simplified as

25(p) = f(p)e™™ p,Pes. (12)

where the function f(p) contains all the dynamics and is a
Lorentz scalar function of p.

In order to obtain the interaction kernel K, (P, p, q) of
DD* and DD* systems, the Lagrangian for heavy mesons
interacting with light mesons are needed, which can be
described from the heavy-meson chiral perturbation theory
as the following [48,49]:

Lppe = gppp(DpDiss + D2y DE Py, + gppep(DikDy + DD, )Py,
Lppy = _ZigDD*\/g/waﬂ(aﬂ\/u)ba[(Dzaal);ﬁ - DZﬁa“DZ) + (Dzﬁfaapb - DbaaDZm)]
~ 2i0ppvEuap(OV) o (DE0°D} — DV 8°D}) + (D 0D, — D,o*D")),
Lopy = igppy(Dyp0,Di = DideDy) (V) + i9p 51y (Dp9aDis = DideDy) (V) 4y
Lppv = igD*/:)*\/(Df;,baal)z*zﬂT - DZﬁ%@aDZ,b)(\/a)ba - ing*D*\/DZTaDZ,b(aa\/ﬁ - V),

+igpp(Djy,0° DL — DI 00Dy ) (V)

where D, D, D*, and D* are heavy flavored meson
fields, with D= (D%, D*,D}), D= (D° D-,D5),
D* = (D*°,D**,D:*), and D* = (D*,D*",D:"),
a and b denote the light quark flavor indices, the octet
pseudoscalar [P and the nonet vector V meson matrices are
defined as

2 + +

nte 7 K

_ - O 0
P = n -5+% K| (14)

— 7al) _ﬁ

K K N

and

2~ o + +

atsoorm K
V= - _2 L e 0|, 15
P N K~ (15)

K~ I_{*O ¢

ab ~ ig’l-)*D*VD,’faD;b(a"‘\/ﬂ - aﬂ\/a>ab’ (13)

respectively, and the coupling constants are given as

2g
gDD*P:_gDD*P:_f_ mpmp-,
V3
9pp*v =9bD _ﬂg\/
Vv =9DbbV =" =>
V2
Gpov=—05Dv =—Gp 0y =g pry ="
DDV DDV D*D*V = 9Db*D*V ﬂ’

Ippv= _g/D*D*\/ = —\/EAngD*

Gu—mp g =9 059 =009,
Sx 26
1=056GeV-!, f,=132MeV, g¢,=3.73. (16)

In the so-called ladder approximation, the kernel
K,;.(P.p,q) is replaced by its lowest-order form. Then
with the Lagrangian for heavy mesons interacting with light
mesons, for the kernel of the bound states induced by p, o,
o, 7, and 7 exchanges, we have
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k/gi;’*_direa(l?hpzﬂz»‘h) = (2”)454

(g1 42— p1 — p2)4cigzmp -mpA(k,m,) g™,

I_(/lDTb[:—crossed(pl 2392, q1) == (27)*6* (g1 + g2 = p1 = Pz)cfg%m*pk’lkTA(k» mp),
I_(/zl)rbv*—direct(l?l»Pﬁ q2:q1) =—(27)*6* (g1 + g2 — p1 = P2) ¢l gppv (P2 + 42) A (k,my)
X [g9ppv(P1+ 1) 95 + I pv(KiGey — kegi),
K0 —erossea(P1-P23:02.01) = —(27)* 8% (g1 + @2 = p1 = p2)Acs [ €70

Xkﬂkb(pl+QZ)ﬂ(ql +p2)yAﬂ/)(k7mV>v (17)
|
for the DD* bound state, and A= m?
FM(k ) = 2 2
A —k
AT,C AT, 0 — 2_m? 2
K?)b*—direct P1,P2:92.91) = K}bD*—direct(pl’pZ;QZv QI)v FE(kz) - e(k A ’
AT, P . _ AT, P . 2 _ 2)2
KDD*—crossed P1:P2:92,491) = _KDD*—crossed<p1’p2’q2’q1>’ FD<k2) = (A ” ) (20)

AtV .

= KDD*—direct(pl’ P2:492:491 >’
AtV .

= KDD*—crossed(pl’ P2:4>, ‘h)’

(18)

( )
( )
ffﬁ,’;v*_dm(m,pz; 9-91)
( )

I‘(vﬂ‘r. Vv

DD*—crossed \P 1 P25 92> 41

for the DD* bound state, where m,, mp, and my represent
the masses of the exchanged o, the pseudoscalar light
meson and the vector light meson, respectively. ¢§ and c§
are the isospin coefficients for the direct and crossed
diagrams, and the values for different exchange mesons
are listed in Table I, and the derivation process shown in
Appendix A. A" represents the propagator for a vector
meson and A represents the scalar or pseudoscalar meson
propagator, and they have the following forms,

—1 kk
A’“’k, — - u"v i
o) kz—m2v<g” mzv)

A(k.my(p)) = (19)

Considering the size effects of constituent particles,
we introduce the monopole, exponential and dipole form
factors at each vertex. The form factors are respectively
defined as

A2 _ k2)2 :

—

From Refs. [50,51], we can find the wave function curves
of 7 and p mesons do not differ much. Furthermore, since o,
7, 1, p, and w are light mesons, their radii should not be
very different. Since the form factors are determined by the
overlap integrals of the wave functions of the hadrons at
the vertices, we assumed the same value of A for all the
exchanged particles.

In the following we will drive explicitly the integral
equation for the BS scalar wave function. Substituting
Egs. (9), (10), (12), and (17) or (18) into the BS equa-
tion (6), we can obtain the simplified BS equation and we
listed it in Appendix B.

In Eq. (BI) there are poles in p; at =AM — w, + ie,
WM +wy —ie, ,M +w, — i€, and 1M —w, + ie. By
choosing the appropriate contour, we integrate over p; on
both sides of Eq. (B1) and obtain the three-dimensional
integral equation. Then the scalar BS wave function is
rotationally invariant, and f(p,) [f(p,) = [dp.f(p)] only
depends on the norm of the three-momentum, p;.
Therefore, after completing the azimuthal integration, the
above BS equation becomes a one-dimensional integral
equation, which is

f(pd) = /dlptlA(lptI, )/ (lqu). (21)

TABLE 1. The isospin factors ¢ and c¢ for direct and crossed Feynman diagrams with / =0 and I = 1.

cf cq
P ® z n c P ® n n c
DD* I1=0 3/2 1/2 1 3c/2 c/2 3c/2 c/6
I1=1 -1/2 1/2 1 —c/2 c/2 —c/2 c/6
DD =0 -3/2 1/2 1 3/2 -1/2 3/2 -1/6
I=1 1/2 1/2 1 1/2 1/2 1/2 1/6
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where f(|p;]) is the one-dimensional Lorentz-scalar
BS function. The propagators and kernels after one-
dimensional simplification are included in A(|p|, |qq|)-

III. NUMERICAL SOLUTIONS FOR THE
BS WAVE FUNCTION

In this section we solve the integral equation—Eq. (21).
The method discretizes the integration region into suffi-
ciently large n pieces by the Gaussian quadrature method.
In this way, the BS scalar function f(|p,|) becomes n
dimensional vector and the integral equation becomes
an eigenvalue equation. The matrix equation obtained
in this way can be written in the form £ (|p,|) =
AP ([, lad ) S (lqq)-

There are two parameters in our model, the cutoff A and
the binding energy E,. The cutoff A contains the informa-
tion about the nonpoint interaction of the hadrons which is
nonperturbative. Therefore, the cutoff A cannot be deter-
mined exactly. Fortunately, the cutoff was found in the
study of the deuteron to be around 1 GeV. In this work, we
vary the cutoff A over a much wider range (0.8 GeV-
5 GeV) to find all possible solutions of the DD*/BB* and
DD*/BB* bound states. The binding energy E,, is defined
as E,=FE—-—m;—m,, and we will vary E, from
—30 MeV-0 MeV. Fixing a value of the cutoff A and
varying the binding energy E;, we will obtain a series of
the trial eigenvalues. For some (not all) values of the cutoff,
we could find that the binding energy in the range
—30 MeV-0 MeV corresponds to the eigenvalue closest
to 1.0. Our task is to find out all these cutoff values.

In the present paper, we will systematically study the
S-wave DD*/BB* and DD*/BB* bound states. As studied
in Ref. [47], the DD*/BB* carry different C parity for
the isoscalar and isovector states, respectively. From the
effective Lagrangian listed in Eq. (13), we can find the
kernels in the bottom sector which have the same form as
those in the charm sector. We work in the rest frame of the

bound state in which P = (M,0) and take the averaged
masses of the mesons from the PDG [2], mp =
1867.24 MeV, mp-=2008.56 MeV, mp = 5279.48 MeV,
mp- = 5324.70 MeV, m, = 137.28 MeV, m, =
547.86 MeV, m, =775.26 MeV, m, = 782.65 MeV,
and m, = 550 MeV. The contribution of ¢ exchange is
permitted by the chiral perturbation theory and thus is
included in our work, despite the large uncertainties in its
mass and structure. In our previous work [45] and Ref. [48],
it found that the contribution from ¢ exchange is very small
and not sufficient to form bound states. The numerical
results from our calculation for the charm and bottom
systems are listed in Tables II and III, respectively.

From the results in Tables II and III, we can draw three
main conclusions. First, only the bound states with isospin
I = 0 exist. Second, for the same binding energy E,, the
values of the cutoff A is smaller in the bottom sector than
those in the charm sector, which means the interactions in
the bottom bound states are stronger than the interactions
in the charm sector as expected. Finally, the values of the
cutoff A for the dipole form factor are larger than the
corresponding values for the monopole and exponential
form factors for both the charm states or bottom states.

For the DD* bound state, there are two relevant states
X(3872) and Z.(3900) observed by the experiments. The
quantum numbers of X(3872) and Z.(3900) are 19(J*C) =
0" (1*+) and I6(JPC) = 17 (1), respectively [2]. From
our calculations, there are no I =1 DD* bound states
existing with the cutoff A in the range 0.8 GeV-5 GeV.
Therefore, Z.(3900) cannot exist as an I = 0 DD* bound
state in our model. Our result consistent with many other
studies. In Ref. [52], using the local hidden gauge
approach, the authors found a state with 3900 MeV could
not be easily interpreted as a DD* (DD*) molecular state.
Albaladejo et al. [53] found the Z,.(3900) cannot be a DD*
bound state considering that the Z,. enhancement was
originated from a resonance with a mass around the

TABLEII. The numerical results for the DD* and DD* systems. E,, = —4.15 and —0.71 correspond to the binding energy of T, and
X(3872), respectively. The units of E;, and A are MeV.
DD* DD*
cC=1 C=-1
I=0 I=1 I1=0 I=1 I1=0 I=1

E, Ay Ag  Ap Ay Ag Ap Ay A Ap Ay A Ap Ay A Ay Ay A Ap
-5 1056 1013 1456 1340 1250 1823 1093 1097 1540
—-10 1117 1100 1562 1402 1337 1928 1146 1177 1635
—15 1165 1166 1643 1448 1401 2006 1184 1234 1701
-20 1208 1224 1714 1488 1455 2072 1214 1279 1755
=25 1247 1276 1779 1523 1502 2130 1240 1318 1800
=30 1284 1324 1839 1555 1544 2182 1264 1352 1840
—4.15 . 957 885 1292
—-0.71 1043 993 1432 e e e
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TABLE III.  The numerical results for the BB* and BB* systems. The units of E, and A are MeV.
BB* BB*
cC=1 C=-1
I1=0 I=1 I1=0 I=1 I1=0 I1=1

E, Ay Ag Ap Ay N Ap Ay Ag Ap Ay A Ap Ay Ag Ap Ay ANg Ap
-5 861 754 1126 -~ .- oo 1130 964 1469 - - .o 871 799 1165

-10 894 817 1195 -~ ... ... 1151 1019 1522 .-~ ..~ ... 906 865 1238

-15 920 865 1249 ... ... ... 1172 1062 1567 --- -~ .- 933 914 1291

-20 943 905 1294 ... .- .- 1192 1099 1607 -+ .- ... 955 953 1335

-25 964 940 1335 .-~ ..o ... 1210 1131 1642 --- ... ... 975 987 1374

-30 984 973 1373 ... .- ... 1228 1161 1675 --- .- .- 992 1017 1407

DD* threshold or produced by a virtual state which must
have a hadronic molecular nature. From the BS approach
with quasipotential approximation [18], no bound state was
induced from the interactions of DD* in the isovector
sector, which also suggested that the molecular state
explanation for Z.(3900) was excluded. Based on the
lattice QCD the CLQCD Collaboration [54] studied the
low-energy scattering of the (DD*)* meson system. It was
found that the DD* interaction was weakly repulsive;
hence, the results did not support the possibility of a
shallow bound state for the two mesons for the pion mass
values studied. In the framework of the one-boson
exchange model [47], the results showed that the momen-
tum-related corrections was unfavorable for the formation
of the molecular state in the / = 0, J*¢ = 17~ channel in
the DD* system. In fact, since the mass of Z.(3900) is
above the threshold of DD* system, we propose to study
the possible molecular structure of Z.(3900) as a resonance
or a virtual state. The X(3872) can be a isoscalar DD*
bound state with the cutoff A = 1043 MeV, 993 MeV, and
1432 MeV for the monopole, exponential, and dipole form
factors in our method, respectively. The properties of
X(3872) as a DD* bound state have been studied in our
previous work [55].

For the DD* bound state, the recently experimentally
discovered T, state could be associated with it. In our
model, the T, can be I =0 DD* bound state with the
cutoff A taking the values of 957 MeV, 885 MeV, and
1292 MeV for the monopole, exponential, and dipole form
factors, respectively. Theoretically, the DD* system has
been studied within a variety of approaches and different
models. In Ref. [56], the authors studied doubly charmed
exotic states by solving the scattering problem of two D
mesons. Their results pointed to the existence of a stable
isoscalar doubly charmed bound state with the quantum
numbers (1)J” = (0)1*. By solving the coupled channel
Schrodinger equations, Ohkoda et al. [7] found the DD*
system could be a deeply (1)J¥ = (0)17 bound state, and
no isovector bound state could exist. Via solving the single
channel BS equation, the authors of Ref. [19] found the

I(J?) =0(1") DD* system could be the double charm
tetraquark 7. observed by LHCb observation with a
reasonable cutoff regularizing the loop integral. In
Ref. [6], the authors studied the DD* system up to
O(€?) at the one-loop level within the framework of heavy
meson chiral effective field theory. There existed a bound
state in the / = 0 channel as the cutoff is near m,,, no bound
state was found in the / = 1 channel within a wide range of
the cutoff parameter.

In the bottom sector, only the Z,(10610) reported by the
Belle Collaboration in 2011 is close to the BB* threshold
[57]. A later analysis for the same experiment allowed
for an amplitude analysis where the quantum numbers
I6(JP) =17 (1%) were strongly favored for Z,(10610)
[58]. In our model, no isovector BB* bound state was
found, which disfavors the bound state explanation for
the Z,(10610).

For Z,.(3900) and Z,(10610) although they cannot exist
as bound states in many studies, however they can be
interpreted as virtual states by performed heavy-quark
flavor symmetry on heavy meson hadronic molecules
[59], coupled-channels calculation [60-63], and
Lippmann-Schwinger equation [64]. The virtual state
which is also below the lowest threshold, and with the
pole on the second Riemann sheet. In Ref. [65], the authors
discussed in detail the virtual and demonstrated the virtual
state should be classified as molecular.

IV. SUMMARY

In this work, we applied the BS equation to systemati-
cally study the DD*/BB* and DD*/BB* systems with the
ladder approximation and the instantaneous approximation,
try to find the possible bound states of these systems. In our
calculations, both direct and cross diagrams were consid-
ered for the kernel induced by p, w, z, , and ¢ exchanges.
Since the constituent particles and the exchanged particles
in the DD*/BB* or DD*/BB* systems are not pointlike,
we introduced three different form factors (monopole,
exponential, and dipole form factors) which all contain a
cutoff A that reflects the effects of the structure of these
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particles. Since A is controlled by nonperturbative QCD
and cannot be determined exactly, we let it vary in a
reasonable range within which we tried to find possible
bound states of the DD*/BB* and DD*/BB* systems.

The results of our studies showed that only the S-wave
DD*/BB* and DD*/BB* systems with I = 0 could exist as
bound states. We also found that for the same binding
energy E, the values of the cutoff A in the bottom sector are
smaller than those in the charm sector, and that the values of
the cutoff A is larger for the dipole form factor than those
for the exponential and dipole form factors in both charm
and bottom sector. From our results, we can see that the
experimentally observed X(3872) and T, can be assigned
as I =0 DD* and I =0 DD* bound states, respectively,
corresponding to A = 1043 MeV, 993 MeV, and
1432 MeV and A =957 MeV, 885 MeV, and
1538 MeV for the monopole, exponential and dipole form
factors, respectively. No bound state was found for iso-
vector from S-wave DD*/BB* and DD*/BB* systems,
which disfavors the bound state explanation for Z.(3900)
and Z,(10610).

The possible S-wave DD*/BB* and DD*/BB* bound
states studied in our work are helpful in explaining the
structure of experimentally discovered exotic states and the
discovery of unobserved exotic states. In some cases the
theoretical explanations of the structures for the experi-
mentally observed exotic states and the existence of
theoretical predictions of the possible molecular states
remains controversial. Therefore more precise experimental
studies of the exotic states will be needed to check the
results of theoretical studies and to improve theoreti-
cal model.

ACKNOWLEDGMENTS

One of the authors (Z.-Y. Wang) thanks Professors Jun
He, Ning Li, and Yin-Jie Zhang for helpful discussions and
Professor Feng-Kun Guo for useful suggestions. This work
was supported by National Natural Science Foundation
of China (Projects No. 12105149, No. 11947001,
No. 11805153, No. 11775024, and No. 11605150), the
Natural Science Foundation of Zhejiang province
(No. LQ21A050005).

APPENDIX A: THE CALCULATION PROCESS
OF ISOSPIN FACTORS ¢ AND ¢§

The field operators for D and D* mesons are

& 1 . .
D (x) = / p3 (apre™P* 4+ a},fe”"x),

(apoe™P* + a;-)oei""‘), (A1)

Pp 1L .
DY (x) :/ Z D*+€ Ameipx
(27 " 9=0
+ agﬁeu)"*e’f’*)
) Pp 1L .
Dy'(x) = / Z al), e gmin
" 9=0
+ (_20 e gipxy, (A2)
respectively.

By projecting the bound states onto the field operator
(A1) and (A2) we get

(OITD;(x))D} (x2)|P) 1, = Clp, o (x1.32). (A3)

then we can obtain the corresponding BS equation as

i,j a(l
v (p)

= $%(p, / 4ZK” H(P.p. )i (9)S(p2).

(A4)

In the following we take |T.),_, as an example. The
isospin coefficients Cj for |T¢.);_ are

Cliy) = —Cily = 1/V2, else =0, (A5)

After inserting the Eq. (AS5) into Eq. (A4), for the
|T/.),_ state, we have

d*q -

a(0 a q 12,12(d

mkmzw@qﬂ%fm,“wmm
12,21(c

P, p.q)+ K" Pp.g)
— KPP, ) (9)S(pa)

4
:wmq/éﬁﬁmequ@ﬂm»

=12,21
- K/l‘r

(A6)

where the superscripts ¢ and d on K i kl(P, D, q) represent

kernels from the direct and crossed Feynman diagrams,
respectively.

Based on the Lagrangian in Eq. (13), the total kernel
K®@ of |Tf.),_, induced by p, w, 6, m, and n exchange
mesons is
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_ 3. 1. - 3. 1. 3.
total __ AT,p At,w At,6 At.p _ AT, AT,
KM' - 75 KDD* —direct +5 KDD*—direct + KDD*—direct +5 KDD*—crossed ~ KDD* —crossed +5 KDD*—crossed
2 2 2 2 2
I AT
_ N
6 DD*—crossed* (A7)

d

The I_(’g gi_direct and I_{ggi have been given in Eq. (17), and the coefficients in front of them are the isospin factors c{

and c{ listed in Table L

—direct

APPENDIX B: THE BS EQUATION AFTER TAKING THE INSTANTANEOUS APPROXIMATION
AND SIMPLIFICATION

—i d*q
= 4 d 2 )
1) = Gt o T g T G el
22 _ ..
« {[(/hM +3P12) P’ (WM + Pz)[Pzgthsz +p)-PQ) 1}F2(kl2,m,,)
my mipi
. 1 (P-4 —p)’
- Clg%)D*P [3 (pe— (lt)2 + # Fz(ktz, mp)
d (MM + p;)? = pllA (M + p;) (M = p;) — (p — qy)?]
+ 4 ¢19ppvYp DV 3
3mj
(WM + p)[pi(M + pr) = Q)[40 M + p) (M = pi) + (P - 4)°]
3’"%1’1
(P’ — 42> (MM + p)lpi(M + p) = p: - 4

— &M + p)) (oM = p)) — (P — q,)* —

(Pt2 - qtz)z[(/hM + pi) — Ptz} _ (Pt2 - Qtz)z}

)
3mimyp;

_|_

2,2 2
3mimy; my,

2(M — p))(pe- a4 — P [pi(MM + p;) — Py - Q)

d !
- C]QDDVgD*D*V{

3’”%1’1
2(AM — 2 _p,-
_ (42 Pl?)’((h P %)}}Fz(ktz’mv)
P
M22m2(p, — q.)% + plad — (p, - q,)?
G RS RS a2 ) ), (B)
1

where k, = p; — q;, and we have made explicit use of the covariant instantaneous approximation (in which the energy
exchanged between the constituent particles of the binding system is neglected.).
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