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The impact of mesonic fluctuations on the restoration of the UAð1Þ anomaly is investigated
nonperturbatively for three flavors at finite temperature in an effective model setting. Using the functional
renormalization group, the dressed, fully field-dependent Kobayashi-Maskawa-’t Hooft (KMT) anomaly
coupling is computed. It is found that mesonic fluctuations strengthen this signature of the UAð1Þ breaking
as the temperature increases. On the other hand, when instanton effects are included by parametrizing the
explicit temperature dependence of the bare anomaly parameter in consistency with the semiclassical result
for the tunneling amplitude, a natural tendency appears, diminishing the anomaly at high temperatures. As
a result of the two competing effects, the dressed KMT coupling shows a well-defined intermediate
strengthening behavior around the chiral (pseudo)transition temperature before the axial anomaly gets fully
suppressed at high temperature. As a consequence, we conclude that below T ∼ 200 MeV the UAð1Þ
anomaly is unlikely to be effectively restored. Robustness of the conclusions against different assumptions
for the temperature dependence of the bare anomaly coefficient is investigated in detail.
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I. INTRODUCTION

Understanding the thermal evolution of the anomalous
breaking of the axial UAð1Þ subgroup of ULðNfÞ ×
URðNfÞ chiral symmetry of QCD remains unsettled.
Clarification of this subject is of particular importance
for tracking the finite temperature variation of the η − η0
mass difference and also in axion phenomenology. The
most important signatures of the UAð1Þ anomaly is the
absence of expected mass degeneracies (see below) and a
nonzero topological susceptibility, which is related to the
fluctuations of the topological charge in the QCD vacuum.
It is now basically textbook material that the UAð1Þ

symmetry recovers at high enough temperature (T), but
very little is known for certain around, and especially
below, the (pseudo)critical temperature, Tc, of the chiral
restoration. If T ≫ Tc, then due to Debye screening, the
instanton density and thus the topological susceptibility
show an exponential damping [1–3], but semiclassical
calculations definitely fail if T ≲ Tc.
Whether the UAð1Þ symmetry is recovered at the critical

temperature has consequences regarding the order of the

transition. For massless quarks with two flavors, if the
anomaly remains strong at Tc, the order of the phase
transition is expected to be of second order [with Oð4Þ
critical exponents], while if the anomaly is absent, then it is
likely to be driven first order due to fluctuations [4]. Note
that the possibility of a fluctuation-induced first-order
transition is based on the ϵ expansion of the renormaliza-
tion group (RG) flows and has been also in doubt in past
years [5–7].
Studies on the finite temperature recovery of the UAð1Þ

symmetry have a huge body of literature [8]. Most works
were done on the lattice for two-flavor QCD, and one
usually measures to what extent appropriate masses and
susceptibilities (χ) are degenerate as a function of the
temperature. Specifically, since the pion (pseudoscalar
isotriplet meson, π) and the a0 (scalar isotriplet meson)
are related by a UAð1Þ transformation, the ma0 −mπ or
χπ − χa0 differences can be seen as a good measure of the
anomalous UAð1Þ breaking.
In Refs. [9–11], for various pion masses, using domain-

wall fermions, based on calculating the susceptibilities, the
conclusion was that the anomaly is still visible beyond the
critical temperature. In Ref. [12] (for Nf ¼ 2), however,
using Wilson fermions, the measurement of the mass
difference showed that the UAð1Þ symmetry is effectively
restored at Tc in the chiral limit. Analyses of the eigenvalue
spectrum of the Dirac operator using overlap fermions
showed that the susceptibility difference is nonzero, which
indicated that the anomaly is present even beyond the critical
temperature [13]. More recently, chiral extrapolation
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regarding the susceptibilities using highly improved stag-
gered quark action led to a broken axial symmetry even at
1.6Tc [14]. Similar conclusions are drawn in Ref. [15] just
above Tc. Ensembles generated by two-flavor (Möbius)
domain wall sea quarks, and the respective eigenvalue
analysis of the susceptibilities may show, on the contrary,
that all results are consistent with the axial anomaly being
restored at Tc in the chiral limit [16,17].
The strong CP problem and its possible resolution via

the axion field are also closely related to the UAð1Þ
anomaly. They are also of huge importance in current dark
matter research. For comprehensive studies on the axion
phenomenology and its connection with the axial anomaly,
the reader is referred to Refs. [18–20].
Tackling the problem of the UAð1Þ restoration can also

be approached via several effective models and methods,
e.g., the nonlinear sigma model with (unitarized) chiral
perturbation theory [21,22], the Polyakov quark meson
model [23,24], the Polyakov-loop extended Nambu-Jona-
Lasinio model [25,26], the Witten-Di Vecchia-Veneziano
model, and the extended linear sigma model [27]. The
behavior of the meson spectra and that of the topological
susceptibility were investigated using the Dyson-
Schwinger approach in Refs. [28,29], exploiting related
Ward identities in Ref. [30], and also with renormalization
group techniques [31,32].
Previously, mesonic fluctuation effects with regard to the

UAð1Þ anomaly were explored in terms of the three-flavor
linear sigma model [33], where the degree of the UAð1Þ
breaking was associated with the strength of the
Kobayashi-Maskawa-t’ Hooft (KMT) determinant cou-
pling. Contrary to the usually expected scenario, it was
found that the KMT coupling may grow as the chiral
condensates evaporate. This study was based on a chiral
invariant expansion of the effective potential, where cou-
pling constants were promoted to coupling (or coefficient)
functions that depend explicitly on the chiral condensates.
The aforementioned result was obtained via a rather crude
approximation of the functional renormalization group
(FRG) flows of the coefficient functions, where the
anomaly was treated perturbatively to linear order in all
of the loop integrals. That is to say, the scale evolution of
the anomalous term of the effective action was functionally
linear in itself and its derivatives with respect to the chiral
condensates. More importantly, its effects on the chirally
symmetric part of the effective potential was completely
neglected. One of the main goals of this paper is to
investigate whether a similar result as of Ref. [33] can
be obtained under a more sophisticated approach, where the
anomaly function is treated on equal footing with the
chirally symmetric part of the effective potential, i.e., no
expansion is performed in mesonic loop integrals in terms
of the anomalous KMT coupling.
Another goal is to include the effect of topological

fluctuations on the UAð1Þ breaking part of the effective

action. In the meson model framework, the anomaly is
described by the KMT determinant. The corresponding
bare coupling, defined at the initial UV scale, Λ, of the
effective action, is determined by the underlying theory of
QCD. If Λ of the effective theory were high enough, none
of the bare couplings could depend on the environment, but
in meson models, with Λ beingOð1 GeVÞ, the temperature
dependence of the KMT coupling, generated by QCD
dynamics above the scale Λ, could be important. It is well
known that at high temperatures topological fluctuations
are well represented by a dilute gas of single charged
instantons, which radically cuts down the strength of the
anomaly as the temperature rises. If the temperature
decreases, it is assumed that the instanton liquid condenses,
which displays only a weak T dependence.
In this study, we propose a simple interpolating para-

metrization of the aforementioned temperature dependence,
similarly to what has already been employed by several
authors [23,25,26,34]. Our main focus will be on inves-
tigating how the two competing effects (i.e., mesonic
fluctuations and instantons contributions) produce a real-
istic, environment-dependent anomaly coefficient.
The paper is organized as follows. In Sec. II, based on a

chiral invariant expansion, we introduce an approximate
effective potential, which is going to be used as an ansatz
for the renormalization group calculations. In Sec. III, we
derive flow equations for the coefficient functions, which
replace coupling constants of the ordinary framework. This
is to be done in two separate steps, which include different
background fields that yield three separate flow equations.
These equations need to be solved simultaneously via
numerics, which we do in Sec. IV. There, we discuss how
results change with respect to different assumptions on the
bare anomaly coupling and show the thermal behavior of
the system (condensate evaporation, mass spectrum, and
anomaly evolution). The reader finds the discussion and
outlook in Sec. V.

II. CHIRAL EFFECTIVE POTENTIAL

We are working in an effective theory framework, where
the dynamical variables are meson fields,

M ¼ ðsa þ iπaÞTa: ð1Þ

Here, sa and πa refer to the scalar and pseudoscalar
components, respectively, and Ta are the Uð3Þ generators
in the fundamental representation, TrðTaTbÞ ¼ δab=2. Any
effective model built upon the M fields needs to reflect
chiral symmetry; i.e., it has to be invariant under the
transformations M → LMR†, where L (R) refers to left-
(right-)handed Uð3Þ chiral rotations.
The effective potential of a quantum field theory, V, is

defined as the zero momentum part of the effective action,
Γ. In this study, we approximate (Euclidean) Γ with a
standard kinetic term (no wave function renormalization
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will be taken into account as the anomalous dimension is
expected to be small in scalar models [35]) plus a local
effective potential, V, as

Γ ¼
Z
x
ðTr½∂iM†∂iM� þ V½M�Þ: ð2Þ

Note that Γ and thus V can only contain combinations of
the M field that are invariant under ULð3Þ ×URð3Þ chiral
transformations. For three flavors, there are three indepen-
dent chiral invariant combinations, that is,

ρ ¼ TrðM†MÞ;
τ ¼ TrðM†M − TrðM†MÞ=3Þ2;
ρ3 ¼ TrðM†M − TrðM†MÞ=3Þ3: ð3Þ

Obviously, Eq. (3) is a nonunique set, but once it is chosen,
all other chiral invariants can be expressed in terms of ρ, τ,
and ρ3. When one is doing phenomenology, one also needs
combinations that give account of the UAð1Þ anomaly. The
KMT determinant term, i.e.,

Δ ¼ detM† þ detM; ð4Þ

is the prototype of such terms, and it is the only one that is
(super)renormalizable in four dimensions. One should be
aware that

Δ̃ ¼ detM† − detM ð5Þ

is forbidden due to parity reasons, but Δ̃2 could in principle
be included. It can be shown, however, that it is not
independent,

Δ̃2 ¼ Δ2 − 4ρ3=27 − 2ρτ=3þ 4ρ3=3: ð6Þ

That is, if Eqs. (3) are all included in the potential, then Δ
and its powers are the only operators that describe the
UAð1Þ anomaly, apart from the obvious fact that any
combination of operators (3) multiplied by Δ also realizes
a UAð1Þ breaking operator.
Keep in mind that without explicit symmetry breaking

terms spontaneously broken chiral symmetry shows the
pattern ULð3Þ × URð3Þ → UVð3Þ, where the latter index
refers to vector transformations (in which the parameters of
the left and right ones are equal). That is to say, the ground
state is proportional to the unit matrix, M ∼ 1̂, where both
τ ¼ 0 and ρ3 ¼ 0. Note that if we are to treat finite quark
masses as perturbations they can only slightly modify this
state. Since we are interested in the thermodynamic proper-
ties of the system around this vacuum, for the exploration
of fluctuating field configurations, it can be assumed that
ρ ≠ 0 but τ ≈ 0, ρ3 ≈ 0. This leads to the natural choice of
expansion in terms of chiral invariants

Vðρ; τ; ρ3;Δ;HÞ ¼ UðρÞ þ CðρÞτ þDðρÞρ3 þ AðρÞΔ
− TrðHðM þM†ÞÞ; ð7Þ

where the last term is the aforementioned explicit symmetry
breaking piece, H ¼ h0T0 þ h8T8 (no isospin breaking is
assumed). This expansion is completely analogous to the
usual chiral potential of the linear sigma model, but with
ρ-dependent couplings. Note that, while the UVð3Þ vac-
uum does not suggest an expansion in terms of Δ, we
nevertheless do so; second-to-last term on the rhs of (7).
The reason for this is that, due to the ρ-dependent
coefficient, AðρÞ, which multiplies Δ and thus allows
the backreaction of the chiral order parameter on the
strength of the axial anomaly (7), already goes way
beyond usual perturbative treatments. In such approaches,
the ρ dependence of AðρÞ is completely neglected.
Nevertheless, it would be very interesting to include
higher powers of Δ, as suggested and analyzed in detail
in Ref. [36] for the two-flavor case.
The main goal of this study is to calculate numerically

the effective potential (7) at various T temperatures. This
will be done in the FRG framework [37,38]. In the core of
the formalism lies the scale-dependent effective action, Γk,
and the corresponding local potential, Vk. The former
differs from Γ in the sense that in Γk infrared fluctuations
below momentum k are suppressed. Obviously, Γk¼0 ¼ Γ,
Vk¼0 ¼ V, and we also wish to keep the form of (7) at all
scales and therefore make the coefficient functions k
dependent,

UðρÞ → UkðρÞ; CðρÞ → CkðρÞ;
DðρÞ → DkðρÞ; AðρÞ → AkðρÞ: ð8Þ

Maintaining the approximate form of (2) for Γk, Vk obeys
the finite temperature flow equation

∂kVk ¼
T
2

X
n

Z
jq⃗j<k

d3q
ð2πÞ3 ∂̃kTr logðω2

n þ k2 þ V 00
kÞ; ð9Þ

where V 00
k is the 18 × 18 second derivative matrix

of Vk, ωn ¼ 2πnT are bosonic Matsubara frequencies,
and the ∂̃k differential operator acts only on the explicit
k dependence. Note that (9) is sometimes called the
optimized flow equation [39] in the local potential
approximation. Also note that, since the integrand is q
independent, the momentum integral merely gives a
volume factor.
Our first task is to plug the ansatz (7) of the effective

potential into (9) and extract individual flow equations for
the coefficient functions UkðρÞ, CkðρÞ, DkðρÞ, and AkðρÞ.
The main problem here is that V 00

k in the rhs of (9) can only
be expressed in terms of field variables sa and πa, but by
construction, Vk depends on the invariant combinations ρ,
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τ, ρ3, and Δ. Therefore, it should be emphasized that the
explicit expression of the rhs of (9) should combine into
invariants (3) and (4), consistently with the functional form
of Vk appearing in the lhs. It is highly nontrivial how one
obtains from the rhs of (9) a form, which is compatible with
(7). This is to be done in the next section.

III. RENORMALIZATION GROUP FLOWS

Solving the flow equation, one needs an initial condition.
In the FRG framework, it is assumed that at some Λ UV
scale the potential is known, and one integrates the flow
equation down toward k → 0. The usual assumption is that
Vk¼Λ takes the form of a classical potential, i.e., it includes
only operators that are allowed by (perturbative) renorma-
lizability, with coefficients that are environment indepen-
dent being some functions of Λ. As already announced in
the Introduction, if we are dealing with effective models,
and Λ is not large enough, this assumption may be altered
due to the environment dependence of the interactions at
higher scales. We will come back to this point in the next
section. In accordance with (perturbative) renormalizabil-
ity, pieces of the effective potential in the UV are assumed
to be the following:

UΛðρÞ ¼ m2ρþ g1ρ2; CΛðρÞ ¼ g2;

DΛðρÞ ¼ 0; AΛðρÞ ¼ a: ð10Þ

The parameters m2, g1, g2, and a can be determined using
physical input, e.g., the mass spectrum calculated from the
effective potential at k ¼ 0. Note that the RG flow
equations are fully determined by the dimensionality
and the symmetry of the system; thus, H does not enter
to the rhs of the flow equation. That is equivalent to saying
that none of the flows is sensitive to the explicit breaking
and they cannot generate terms that break chiral sym-
metry. That is, H remains a k-independent constant matrix
at any scale.
In what follows, we show how to extract flow equations

for the coefficient functions. Since ρ3 is a nonrenormaliz-
able operator, it is expected that its effect is small; therefore,
in our analysis, we set Dk ≡ 0 for all k. Note that
throughout the calculations one has to be consistent with
this assumption; i.e., no ρ3 dependence should be generated
in the RG flow. The lhs of the flow equation (9), therefore,
does not contain ρ3, and it becomes

∂kUkðρÞ þ ∂kCkðρÞτ þ ∂kAkðρÞΔ: ð11Þ

Now, as already mentioned in the previous section, the
problem with extracting expressions for ∂kUk, ∂kCk, and∂kAk is that V 00

k in the rhs of (9) can be expressed in terms of

the fields and not the invariants. Obviously, the flow
equation is chirally symmetric; therefore, these field
dependences must eventually be combined into invariant
tensors, but from a practical point of view, it is highly
nontrivial how to perform the calculations. One has to
invent an expansion in terms of the field variables that
generate an expression in the rhs of (9) that is compatible
with (7).
For this, one can exploit the obvious feature that the

expression of both sides of (9) in terms of the invariants is
unique. That is, they are reconstructed from a multitude of
specific field configurations when evaluating the rhs of
(9), which share the feature that the ρ, τ, Δ invariants can
be disentangled in a unique fashion. One may choose the
most convenient background, making the reconstruction
of the invariants the simplest. Once all flow equations are
set up, one analyzes the emerging potential in the actual
“physical” background (in our case M ¼ s0T0 þ s8T8),
dictated by the direction of the linear explicit breaking
[last term in (7)].

A. Flows of Uk and Ak

In this subsection, we work with the background that is
defined by M ¼ ðs0 þ iπ0ÞT0. The main advantage of this
choice is that in such configurations τ≡ 0 (and also the
omitted ρ3 ¼ 0), while the remaining invariant combina-
tions are given by

ρ ¼ 1

2
ðs20 þ π20Þ; Δ ¼ s30 − 3π20s0

3
ffiffiffi
6

p : ð12Þ

That is to say, no dependence on τ appears in the lhs of (9),
and thus one is able to extract the flows of Uk and Ak as the
pure ρ-dependent and the OðΔÞ parts of the rhs of (9),
respectively. This is rather convenient, since one can
perform calculations without the need of keeping track
of the identification of the τ invariant. Note that, as a result,
the flow of CkðρÞ cannot be obtained in this background,
but as we will see, it does contribute to both the flows of
coefficients UkðρÞ and AkðρÞ.
Since the background we are working with is propor-

tional to the unit matrix, symmetry of the fluctuations
around this configuration requires the mass matrix, V 00

k ,
to have eight degenerate doublet eigenmodes, correspond-
ing to the planes fsi; πig, i ¼ 1; 2;…; 8, and one
different doublet eigenmode in the fs0; π0g plane (see
Appendix A for the calculation of V 00

k). Using the identity

“Tr log ¼ log det” and the notation Ω ¼ Rjq⃗j<k d3q
ð2πÞ3 ¼ k3

6π2

for the volume factor, the rhs of (9) yields
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8 ×
Ω
2
T
X
n

∂̃k log

�
ðω2

n þ k2 þ U0
k þ A0

kΔÞ2 þ
4

3
ðω2

n þ k2 þ U0
k þ A0

kΔÞρCk −
1

3
ρA2

k þ 2AkCkΔ
�

þΩ
2
T
X
n

∂̃k log

�
ðω2

n þ k2 þ U0
k þ A0

kΔÞ2 þ 2ðω2
n þ k2 þU0

k þ A0
kΔÞð3A0

kΔþ ðU00
k þ A00

kΔÞρÞ

− 6AkΔðU00
k þ A00

kΔÞ −
4

3
ρðAk þ ρA0

kÞ2 þ 9Δ2A0
k
2

�
; ð13Þ

where the first term comes from the s − π mixing in the
i ¼ 1; 2;…8 sectors, while the second one is obtained from
the doublet of i ¼ 0. Note that the ρ and Δ invariants could
already be identified within each sector individually. To
transform (13) into a compatible form with the ansatz of
(7), one has to expand (13) to linear order in Δ. This yields

∂kUkðρÞ ¼
Ω
2
T
X
n

∂̃kð8 logD8 þ logD0Þ ð14Þ

for the flow equation of Uk and

∂kAkðρÞ ¼ ΩT
X
n

∂̃k

�
8

D8

�
A0
kðω2

n þ k2 þU0
kÞ

þ 2

3
ρCkA0

k þ AkCk

�

þ 1

D0

ðð4A0
k þ ρA00

kÞðω2
n þ k2 þ U0

kÞ

þU00
kðρA0

k − 3AkÞÞ
�

ð15Þ

for that of Ak. Here,

D8 ¼ ðω2
n þ k2 þ U0

kÞ
�
ω2
n þ k2 þ U0

k þ
4

3
ρCk

�

−
1

3
ρA2

k; ð16aÞ

D0 ¼ ðω2
n þ k2 þ U0

kÞðω2
n þ k2 þU0

k þ 2ρU00
kÞ

−
4

3
ρðAk þ ρA0

kÞ2: ð16bÞ

Expanding the rhs of (14) and (15) in terms of the
anomaly function, at the next-to-leading order, one
recovers the results of Ref. [33]. Note that (14) can also
be obtained directly by choosing the imaginary background
M ¼ iπ0T0, in which in addition to τ ¼ 0 also Δ ¼ 0.
Calculating the V 00

k matrix elements in such background and
plugging it into (9), one arrives directly at (14).

B. Flow of Ck

For the determination of the flow equation of Ck, the
M¼ iðπ0T0þπ8T8Þ purely imaginary background appears
to be the most convenient. In this case, the cubic invariantΔ
automatically vanishes, and we have

ρ ¼ 1

2
ðπ20 þ π28Þ; τ ¼ 1

3
π28

�
π0 −

1

2
ffiffiffi
2

p π8

�
2

: ð17Þ

In the applied background, the fluctuation determinant
breaks into three degenerate doublets in the fsi; πig, i ¼ 1,
2, 3 planes, four degenerate doublets in the fsi; πig, i ¼ 4,
5, 6, 7 planes, and a fully coupled quartet in the subspace
fs0; s8; π0; π8g. The former seven 2 × 2 subsectors can be
calculated quite easily, but the complete analytic evaluation
of the 4 × 4 determinant is a lot more messy. For the rhs of
(9), one arrives at

3 ×
Ω
2
T
X
n

∂̃k log

�
ðω2

n þ k2 þ U0
k þ C0

kτÞ2 þ ðω2
n þ k2 þU0

k þ C0
kτÞ
�
4

3
ρþ 4

ffiffiffi
2

3

r ffiffiffi
τ

p �
Ck þ 2C2

k

�
τ þ 2

3

ffiffiffi
2

3

r
ρ
ffiffiffi
τ

p �

− A2
k

�
1

3
ρ −

ffiffiffi
2

3

r ffiffiffi
τ

p ��
þ 4 ×

Ω
2
T
X
n

∂̃k log

�
ðω2

n þ k2 þU0
k þ C0

kτÞ2 þ ðω2
n þ k2 þ U0

k þ C0
kτÞ
�
4

3
ρ − 2

ffiffiffi
2

3

r ffiffiffi
τ

p �
Ck

þ 2C2
k

�
τ −

1

3

ffiffiffi
2

3

r
ρ
ffiffiffi
τ

p �
− A2

k

�
1

3
ρþ

ffiffiffi
1

6

r ffiffiffi
τ

p ��

þ Ω
2
T
X
n

∂̃k log

�
D0D8 − 4

ffiffiffi
2

3

r �
A2
k

4
þ ðω2

n þ k2 þ U0
k þ Ckρ=3ÞCk

�
D0

� ffiffiffi
τ

p þ Fπ28
��

; ð18Þ
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where F is a complicated function of π0 and π8. Note that,
as opposed to the cases of Uk and Ak, now in none of the
determinants do the field variables combine into invariants,
as reflected by the merely formal appearance of the
nonanalytic terms ∼

ffiffiffi
τ

p
. These need to be canceled out,

and eventually indeed do so. To see that one expands (18)
in terms of π8, which atOðπ08Þ reproduces the flow equation

for Uk, at Oðπ8Þ shows that all contributions exactly
cancel (which is equivalent of saying that all the formal
∼
ffiffiffi
τ

p
terms drop), while at Oðπ28Þ, one evaluates F at π8 ¼

0 and gets F ¼ F0π
2
0 þOðπ8Þ with F0 still π0 (and thus ρ)

dependent. Then, the identification of the τ ¼ π20π
2
8=3þ

Oðπ38Þ invariant is straightforward, and it leads to the flow
equation for Ck

∂kCk ¼ ΩT
X
n

∂̃k

	
7

2D8

�
2C0

kðω2
n þ k2 þ U0

kÞ þ
4

3
ρCkC0

k þ 2C2
k

�
þ 2

D8

�
3

2
C0
kðω2

n þ k2 þU0
kÞ þ

1

3
ρCkC0

k −
1

4
AkA0

k

�

−
2

3D2
8

�
A2
k þ

4

3
ρC2

k þ 4Ckðω2
n þ k2 þU0

kÞ
�

2

þ 1

D0

�
ð3C0

k þ ρC00
kÞðω2

n þ k2 þ U0
kÞ þ

3

2
A0
kðAk þ ρA0

kÞ þ ρC0
kU

00
k

�

−
4

3D2
8

�
1

16
A4
k þ

7

12
ρA2
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; ð19Þ

where the background-independent definitions of D8 and
D0 can be read off from (16a) and (16b), respectively. The
technical difficulty of the calculation can be illustrated by
realizing that the first two terms of (18) only give the first
three contributions in (19);, the remaining ones come
directly from the F0 factor. Finally, we note that, since
in the applied background ρ3 ¼ Oðπ38Þ, the outlined cal-
culations do not get contaminated by the appearance of the
ρ3 invariant.

IV. NUMERICAL RESULTS

Now, we solve the coupled differential equations (14),
(15), and (19) using the grid method. We set up three grids

in ρ space with spacing δρ ¼ 50 MeV2. All ρ derivatives
are calculated using the six-point formula, except close to
the grid boundaries, where the five- and four-point for-
mulas have been used. The differential equations are then
integrated using the fourth-order Runge-Kutta method,
starting from k ¼ Λ≡ 1 GeV toward k ¼ 0, using (10)
as initial conditions. As reported in several papers in the
literature, the flows slow down when approaching k → 0,
needing gradually more computational time to perform the
next step in k. We therefore stop them at kend ¼ 10 MeV, at
which all functions are practically converged and none of
the results is k dependent. The Matsubara sums are
performed analytically in (14) and (15) (see also
Appendix B) and numerically in (19). In the latter, cutoffs
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in the sums are chosen such that the final results practically
do not depend on their actual value. This meant typically
summing up Oð1000Þ terms.
The first task before obtaining any result is the para-

metrization of the model. The H matrix, i.e., its h0 and h8
components, are determined by the partially conserved
axial-vector current relations. They read

m2
πfπ ¼

ffiffiffi
2

3

r
h0 þ

ffiffiffi
1

3

r
h8;

m2
KfK ¼

ffiffiffi
2

3

r
h0 −

1

2

ffiffiffi
1

3

r
h8; ð20Þ

which gives

h0 ¼
1ffiffiffi
6

p m2
πfπ þ

ffiffiffi
2

3

r
m2

KfK;

h8 ¼
2ffiffiffi
3

p m2
πfπ −

2ffiffiffi
3

p m2
KfK; ð21Þ

where mπ and mK are the pion and kaon masses, respec-
tively, while fπ (93 MeV) and fK (113 MeV) are the
corresponding decay constants. Because of this choice
of the H symmetry breaking matrix, in the vacuum, we
have a two-component condensate:M ¼ s0T0 þ s8T8. The
remaining four parameters, i.e., m2, g1, g2, and a, are
chosen such that the pseudoscalar masses (π, K, η, and η0)
reproduce the physical spectrum, i.e., mπ ≈ 140 MeV,
mK ≈ 494 MeV, mη ≈ 548 MeV, and mη0 ≈ 958 MeV.
The applied parameter set can be seen in Table I. The
scalars are expected to be associated with the f0ð500Þ (σ),
K�

0ð800Þ (κ), a0ð980Þ, and f0ð980Þ mesons. The masses of
the latter excitations turn out to be less accurate, especially
that of the σ meson. Note that the σ field itself is the order
parameter of the chiral symmetry breaking, which, in turn,
does show the expected vacuum and thermal behavior,
despite the unsatisfactory account of its fluctuations. One of
the reasons of the former inaccuracies could be that in the
Euclidean framework of the RG flow equations the lifetime
of the mesons cannot be extracted and treating these fairly
broad resonances as stable excitations is a crude approxi-
mation. We could have sacrificed some parts of the
pseudoscalar spectrum to gain more accurate values for
the scalars, but since we are mainly focusing on the

anomaly evolution in this study, on top of the lightest
pseudoscalars (π andK), we wished the η-η0 system to be as
accurate as possible. Also, we note that, even with a more
accurate scalar sector (and thus a less accurate pseudoscalar
one), the tendency observed for the anomaly evolution
would have remained qualitatively the same.

A. Zero temperature results

First, let us review our results at zero temperature. The
solution for the UðρÞ function behaves similarly as the
effective potential in OðNÞ-like theories; i.e., the symmetry
breaking potential gradually flattens as k decreases so that
UðρÞ obeys convexity in the IR. The CðρÞ and AðρÞ
functions are more interesting. As for the former, in
Fig. 1, we see that its bare, field-independent value at
the UV scale (g2 ¼ 360) substantially gets modified
approaching the IR. This is of no surprise as (based on
dimensional analysis) ∼ logΛ2 terms supposedly alter the
bare coupling, but it is most important to realize that the
field dependence of CðρÞ is non-negligible. This shows that
resummation in ρ, realized by the FRG method, is rather
important because, for instance, perturbation theory would
definitely not be able to reproduce such behavior. As for
AðρÞ, we observe a similar pattern, and in accordance with
Ref. [33], its absolute value turns out to be a monotonically
decreasing function. Comparing Fig. 2 with the earlier
results of Ref. [33], now a more moderate tendency is
observed in the same sense.
At T ¼ 0, for the ½jAjðρ¼ 0Þ− jAjðρ¼ ρminÞ�=jAjðρ¼ 0Þ

ratio, now we get around ∼30%, as opposed to the earlier
attempt [33], where the same quantity was roughly ∼40%.
The rather crude approximation of Ref. [33] somewhat
overestimates the field dependence of AðρÞ.
The decreasing nature of jAjðρÞ already suggests that,

once thermal fluctuations are taken into account, the

TABLE I. Parameters for the initial potential in the UV.

m2 −0.9 GeV2

g1 20
g2 360
a −2.6 GeV
h0 ð285 MeVÞ3
h8 ð−310 MeVÞ3
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FIG. 1. Structure of the CðρÞ coefficient function at T ¼ 0 and
at T ¼ Tc. Red dots show the value of C corresponding to the
actual minimum of the complete effective potential.
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anomaly strength will increase, since if the chiral con-
densate evaporates the actual value of jAjðρ ¼ ρminÞ,
corresponding to the minimum point of the effective
potential, becomes larger; see the illustration also in
Fig. 2. We emphasize the nonperturbative nature of this
backreaction of the condensate on the KMT coupling.

B. Finite temperature results

Minimizing the effective potential with respect to s0 and
s8 gives the thermal evolution of the condensates. Instead
of the s0; s8 variables, we use the nonstrange-strange basis,�

sns
ss

�
¼ 1ffiffiffi

3
p
� ffiffiffi

2
p

1

1 −
ffiffiffi
2

p
��

s0
s8

�
; ð22Þ

and denote the minimum points of V as vns and vs; thus,
ρmin ¼ ðv2ns þ v2s Þ=2. Results are shown in Fig. 3. The
pseudocritical temperature, Tc, is defined through the
inflection of the vnsðTÞ curve. It comes out surprisingly
close to lattice results, we obtain Tc ≈ 158 MeV. Here, we
see a huge improvement compared to Ref. [33], in which Tc
was off by about a factor of 2. Notice that the strange
component evaporates much slower, and its inflection point
can be found at a slightly lower (by ∼10 MeV) value. We
also note that one could also use the temperature depend-
ence of the mσ −mπ mass difference to extract the
pseudocritical temperature of the transition of the non-
strange condensate. The corresponding inflection point is
found at Tc ≈ 167 MeV, which is about 5% higher than
that obtained from thermal evolution of the nonstrange
condensate. This modest variation in the characteristic
transition temperature values is fairly compatible with
the physics of a smooth crossover.
In Fig. 4, we show the thermal evolution of the mass

spectrum, calculated from the second derivative of the

effective potential; see the details in Appendix A. As
announced at the beginning of this section, for paramet-
rization, the pseudoscalar masses were used. In such
parametrization, the scalar spectrum seems to be less
accurate; in particular, a rather small σ and a high f0 mass
can be found. It is an open question whether a more
sophisticated treatment of the RG flows may cure the scalar
spectrum, and it will be investigated in a separate study. We
draw attention to the η0 mass as the temperature rises, which
shows no drop toward the pseudocritical temperature. This
already hints that the UAð1Þ anomaly does not seem to get
restored. Note that one needs to be careful with drawing
conclusions on the anomaly behavior solely from the mass
spectrum, as it contributes typically to masses through
“anomaly strength × condensate” type terms, which can
also drop solely from condensate evaporation, while the
UAð1Þ symmetry is still being broken. The temperature
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FIG. 2. Structure of the AðρÞ coefficient function at T ¼ 0 and
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actual minimum of the complete effective potential.
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dependence of the anomaly coefficient, Aðρ ¼ ρminÞ,
defined at the minimum point of V is displayed explicitly
in Fig. 5. The figure shows what has already been expected
from Fig. 2: through mesonic fluctuation effects, the
anomaly gets larger with respect to the temperature.

C. Instanton contributions

Obviously, we are not at the end of the story. Beyond Tc,
the UAð1Þ symmetry has to be restored, as shown by the
semiclassical approximation of the instanton tunelling
amplitude. In the instanton liquid model, the topological
susceptibility is approximated via the instanton density,
χtop ≃ nðrÞ, where r is the average instanton size [1,2]. At
temperatures significantly higher than Tc, nðrÞ contains an
exponential suppression factor,

nðrÞ ∼ exp½−8ðπrTÞ2=3�: ð23Þ

Keeping in mind the effective meson model we are working
with, if the bare KMT coupling, a, is proportional to χtop,
then one is able to reproduce the Witten-Veneziano relation
[1,2]. As already pointed out in Ref. [2], however, it is not
entirely correct to associate the topological susceptibility
with either the KMT coupling, or with the instanton
density. We still find it phenomenologically the most
reasonable to use an interpolating form, following the T ¼
0 and the asymptotically large-T behavior of the topologi-
cal fluctuations [23,25,26,34]. Therefore, on top of the
already discussed scenario, where the bare anomaly cou-
pling, a, is temperature independent, we explore three
different assumptions, for which aðTÞ does depend on the
temperature [23,25,26,34]:

iÞ aðTÞ ¼ a0 exp½−8ðπrTÞ2=3�;

iiÞ aðTÞ ¼
(
a0; if T < Tc

a0 exp½−8ðπrÞ2ðT2 − T2
cÞ=3�; else

iiiÞ aðTÞ ¼
(
a0; if T < T0

a0 exp½−8ðπrÞ2ðT2 − T2
0Þ=3�; else:

Assumption iÞ is rather crude, as the exponential suppres-
sion should take place at very high T, well beyond Tc. Case
iiÞ is more reasonable, as it is sometimes argued that it is the
Debye screening effect of the instanton field that causes the
exponential suppression and, therefore, it does not affect
the instanton density below Tc. However, as it turns out,
such an approximate aðTÞ function makes the actual critical
temperature grow; therefore, it seems more appropriate to
introduce a T0 parameter, which should be tuned such that
Tc retains its physical value. This defines scenario iiiÞ.
Throughout the calculations, the average instanton size is

set to r ≃ 1=3 fm, and the T0 parameter has to be
T0 ≈ 143 MeV. In Fig. 5, we show the absolute value of
the dressed anomaly parameter in the minimum point of the
effective potential, jAjðρ ¼ ρminÞ, as a function of the
temperature, for all four possibilities. As expected, if no
instanton contribution is present, then mesonic fluctuations
strengthen the anomaly as the temperature rises. If the
semiclassical tunelling amplitude is applied to the whole
temperature range, then the anomaly coefficient monoton-
ically decreases with the temperature, but in this case, the
critical temperature comes out too small. If the instanton
effects are taken into account only beyond Tc, then we see a
momentary strengthening of the anomaly before it starts to
drop. If we correct this scenario so that the critical
temperature retains its physical value, we still get a very
similar curve. The conclusion is that mesonic fluctuations
can increase the anomaly up to about ∼Oð10%Þ, before the
instanton effects turn out to be more dominant and recover
the UAð1Þ symmetry. As a result, it is seen that even at
∼1.5Tc the anomaly is still visible, and the dressed A
parameter retains about ∼20% of its T ¼ 0 value.
We would like to draw attention to the fact that that a

similar evolution of the effective KMT coupling with
respect to the temperature was also reported within the
three flavor chiral Nambu—Jona-Lasinio model in
Ref. [40]. In the aforementioned study, the authors inves-
tigated how the effective KMT coupling should be chosen
as a function of T so that lattice results for χtop can be
reproduced the most accurately. Note that, even though χtop
may monotonically decrease with T, the effective KMT
coupling might not follow such behavior. As also discussed
in Ref. [40], we also believe that χtop might not be the most
appropriate quantity to measure the UAð1Þ breaking, as it
entangles with the chiral condensates and can decrease,
while the anomaly (the effective KMT coupling, to be
precise) is still visible.
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FIG. 5. Behavior of the dressed anomaly parameter, evaluated
at the minimum point of the effective potential, as a function of
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Along the same line of thinking, one may also attempt to
characterize the increasing suppression of the anomaly via
a dimensionless parameter that shows the level of UAð1Þ
breaking in the effective potential. Since the KMT deter-
minant is Δ ¼ v2nsvs=2

ffiffiffi
2

p
in the physical background, we

define rA as

rA ¼ ½v2nsvsAðρ ¼ ρminÞ�jT
½v2nsvsAðρ ¼ ρminÞ�jT¼0

; ð24Þ

see its temperature dependence in Fig. 6. This quantity
shows to what extent the actual contribution of the UAð1Þ
breaking term of the potential at some temperature T
compares to its own value at T ¼ 0. Note that rA, similarly
to χtop, entangles with the condensates, and as such, on top
of the anomaly evolution, it also measures to what extent
chiral symmetry is broken. As a result, rA should also be
considered a less adequate quantity for characterizing
purely the UAð1Þ breaking.
Finally, as already discussed in the Introduction, we

mention that the a0-π mass difference can be seen as a
better indicator of the UAð1Þ restoration. Using the mass
matrices (A2) and (A3), we getm2

a0−m
2
π¼−

ffiffiffi
2

p
AðρminÞvsþ

CðρminÞv2ns. That is to say, if the nonstrange condensate has
significantly evaporated, the mass difference depends
solely on the anomaly, assuming that the strange conden-
sate does not change much with T. In other words, if
beyond Tc the aforementioned mass difference does not
vanish, then the anomaly is still visible. In Fig. 7, we show
the instanton corrected thermal behavior of the mass
spectrum, realized in the most realistic scenario (iii). The
a0-π masses tend to get closer with T, but their difference
shows that the anomaly does carry significance up to
around ∼1.5Tc. One can check explicitly via the numerics
that around this temperature the term proportional to

CðρminÞ is indeed negligible, and therefore the a0-π mass
difference is controlled by the anomaly alone.

V. DISCUSSION

One of the main points of the paper is that in effective
meson models that describe chiral symmetry restoration at
finite temperature perturbative treatments are not satisfac-
tory. Couplings that receive field dependence (which can
also be thought of as resummation of nonrenormalizable
operators) through fluctuations do not even approximately
behave as constants when mesonic fluctuations are inte-
grated out; see, e.g., the solutions of Ck¼0 and Ak¼0 as the
function of the chiral condensates in Figs. 1 and 2. This
raises doubts on treatments that perform perturbative
corrections on vertices of the effective potential and points
in the direction that resummation is a necessity. The
functional renormalization group, which in effect was
designed for resumming the field dependence of zero
momentum vertices in a comparatively simple manner, is
shown to be one of the most effective tools to obtain such
nonperturbative results.
Another important result of the study is that the

behavior of the absolute value of dressed KMT determi-
nant coupling can get larger when the temperature
increases toward Tc. There are two distinct sources of
such strengthening. On the one hand, the fully dressed,
fluctuation corrected, field-dependent AðρÞ anomaly coef-
ficient function becomes explicitly temperature depen-
dent, and on the other hand, since the minimum point of
the effective potential corresponding to the chiral combi-
nation ρ gets smaller as the temperature increases, AðρÞ
has to be evaluated at different points so that an effective
interaction can be defined. At growing temperatures,
before instanton effects would recover UAð1Þ symmetry,
the KMT coupling can acquire a qualitatively visible
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∼10% relative growth. This is in line with earlier expect-
ations [33]; however, the effect appears to become more
moderate from a quantitative point of view.
As analyzed in Sec. II, the applied chiral invariant

expansion technique could be improved regarding the
KMT term, since in the UVð3Þ vacuum it does not vanish.
A more appropriate treatment would be to promote
UðρÞ → Uðρ;ΔÞ and solve its own flow equation in a
two-dimensional grid. Together with field-dependent
wave function renormalization, it might lead to improved
scalar spectra. Of course, it is much more challenging
from a numerical point of view; therefore, one might be
interested in investigating the Uðρ;ΔÞ ≈ UðρÞ þAðΔÞ
approximation, which leads to one-dimensional equations
but would still resum all powers of Δ in the effective
potential. As analyzed in Ref. [36], these terms can be
associated with instanton configurations of higher topo-
logical charges. These directions represent active studies
that will be reported elsewhere.
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APPENDIX A: MASS MATRICES

The second derivative matrix of Vk, defined in (7), with
Dk ¼ 0 can be written as

V 00 ¼
� M2

s;k M2
sπ;k

M2
πs;k M2

π;k

�
; ðA1Þ

where

ðM2
s;kÞij ¼ δijðU0

kðρÞ þ C0
kðρÞτ þ A0

kðρÞΔÞ

þ ∂2τ

∂si∂sj CkðρÞ þ
∂2Δ
∂si∂sj AkðρÞ

þ ∂ρ
∂si

∂ρ
∂sj ðU

00
kðρÞ þ C00

kðρÞτ þ A00
kðρÞΔÞ

þ
�∂ρ
∂si

∂τ
∂sj þ

∂ρ
∂sj

∂τ
∂si
�
C0
kðρÞ

þ
�∂ρ
∂si

∂Δ
∂sj þ

∂ρ
∂sj

∂Δ
∂si
�
A0
kðρÞ; ðA2Þ

ðM2
π;kÞij ¼ δijðU0

kðρÞ þ C0
kðρÞτ þ A0

kðρÞΔÞ

þ ∂2τ

∂πi∂πj CkðρÞ þ
∂2Δ

∂πi∂πj AkðρÞ

þ ∂ρ
∂πi

∂ρ
∂πj ðU

00
kðρÞ þ C00

kðρÞτ þ A00
kðρÞΔÞ

þ
� ∂ρ
∂πi

∂τ
∂πj þ

∂ρ
∂πj

∂τ
∂πi
�
C0
kðρÞ

þ
� ∂ρ
∂πi

∂Δ
∂πj þ

∂ρ
∂πj

∂Δ
∂πi
�
A0
kðρÞ; ðA3Þ

ðM2
sπ;kÞij ¼

∂2τ

∂si∂πj CkðρÞ þ
∂2Δ

∂si∂πj AkðρÞ

þ ∂ρ
∂si

∂ρ
∂πj ðU

00
kðρÞ þ C00

kðρÞτ þ A00
kðρÞΔÞ

þ
�∂ρ
∂si

∂τ
∂πj þ

∂ρ
∂πj

∂τ
∂si
�
C0
kðρÞ

þ
�∂ρ
∂si

∂Δ
∂πj þ

∂ρ
∂πj

∂Δ
∂si
�
A0
kðρÞ: ðA4Þ

These matrix elements need to be calculated in a suitable
background, before inserting them into the rhs of the flow
equation (9).

APPENDIX B: MATSUBARA SUMS

We define two basic sums, from which all others that
are needed can be derived via differentiation with respect to
the fαig parameters. As before, ωn ¼ 2πnT are bosonic
Matsubara frequencies,

S0ðα0; α2; α4Þ ¼ T
X∞
n¼−∞

1

α0 þ α2ω
2
n þ α4ω

4
n
; ðB1Þ

S2ðα0; α2; α4Þ ¼ T
X∞
n¼−∞

ω2
n

α0 þ α2ω
2
n þ α4ω

4
n
: ðB2Þ

These summations can be performed explicitly, and one
arrives at
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S0ðα0; α2; α4Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
ðα2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

p
Þ

4
ffiffiffiffiffiffiffi
2α4

p
α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

p coth

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
2
ffiffiffi
2

p ffiffiffiffiffi
α4

p
T

!

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
ð−α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

p
Þ

4
ffiffiffiffiffiffiffi
2α4

p
α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

p coth

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
2
ffiffiffi
2

p ffiffiffiffiffi
α4

p
T

!
; ðB3Þ

S2ðα0; α2; α4Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
4
ffiffiffiffiffiffiffi
2α4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

p coth

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
2
ffiffiffi
2

p ffiffiffiffiffi
α4

p
T

!

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
4
ffiffiffiffiffiffiffi
2α4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

p coth

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α0α4

pq
2
ffiffiffi
2
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α4

p
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