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In this work, the electromagnetic and gravitational form factors of a spin-3=2 particle, Δ resonance, are
simultaneously calculated with the help of a relativistic covariant quark-diquark approach. The two kinds of
form factors are separately extracted from the matrix elements of the electromagnetic current and of the
energy-momentum tensor of the system. Our numerical results show that the approach can reproduce the
electromagnetic monopole, dipole, quadrupole, and octupole form factors well compared to the lattice
calculations. Our obtained electromagnetic moments are also comparable with some other approaches.
Moreover, the obtained gravitational form factors, which give the mechanical properties of the system (like
the mass and spin distributions) are also given for the Δ isobar. In addition, some discussions of the sign
and the interpretation of the D term are given.
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I. INTRODUCTION

It is well known that the electromagnetic form factors
(EMFFs) are the indispensable physical quantities which
reveal the internal structure of a complicated system. The
electromagnetic form factors of hadrons, like π-mesons and
nucleons, can tell us the charge or magnetic distributions of
the systems. They also illustrate the charge and magnetic
radii, which can be extracted by the slopes of the charge and
magnetic distributions of the systems at q2 ¼ 0 (with q
being the momentum transfer) [1–4]. Furthermore, for a
spin-1 system (for instance a deuteron or a vector meson
of ρ) its charge, magnetic, and quadrupole form factors can
also embody its intrinsic structures such as its charge,
magnetic distributions, and quadrupole deformation, (see
Refs. [5–10] for the deuteron, and Refs. [11–15] for the
ρ meson, respectively). Consequently, EMFFs can provide
discriminating information for studying the inner structures
of hadrons.

There are many studies devoted to the understanding of
the electromagnetic form factors of the nucleon, its exci-
tations N�, and the well-known N − Δ transitions in the
literature. The constituent quark model is one of the
successful approaches. In those quark-model calculations,
the nucleon or its excitation is regarded as a three-quark
system and the electromagnetic current probes each quark
instantaneously [16–20]. Then, the form factors are
obtained by the calculation of the three-quark contributions
to the matrix element by using the wave function of the
hadron. Relativistic corrections to the wave function of the
nucleon or its excitations, as well as to the electromagnetic
interaction operator may also be taken into account in those
quantummechanical calculations. Reasonable results, com-
pared to the experimental measurement, can be obtained. It
should be mentioned that, in contrast to those calculations
(with some relativistic corrections), the relativistic covar-
iant quark-diquark approach is also employed to study the
electromagnetic form factors of nucleons [21–26]. In those
relativistic covariant field theory studies, the diquark
contribution, as well as the quark one, are simultaneously
and explicitly considered. Their results are also very
consistent with the available experimental data.
In addition to the electromagnetic form factors of

hadrons, the gravitational form factors (GFFs) are also
expected to embody the fundamental information of the
spatial distributions, like the energy, spin, and strong forces
[27] of systems. Those GFFs are defined through the matrix
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element of the symmetric energy-momentum tensor
(EMT). More details about GFFs can be found in
Refs. [27–32]. Clearly, GFFs describe the interaction
between the gravitation as an external field, and the matter
fields in which the scattering off the graviton is a natural but
impractical probe for GFFs. Luckily, because of the similar
structures of EMT and electromagnetic current operators
[28], hard-exclusive reactions, like deeply virtual Compton
scattering (DVCS) and vector-meson electroproduction,
provide a realistic way to access the GFFs of hadrons
through the generalized parton distributions (GPDs)
[33,34] and through the generalized distribution amplitudes
(GDAs) [35]. It is expected that the nucleon GPDs will be
measured at some facilities, such as Jefferson Lab (JLab.),
the future Electron Ion Collider (EIC) [36], and the
Electron-Ion Collider in China (EicC) [37].
One reason why GFFs are extremely important partially

comes from their connections to the GPDs and GDAs. It is
believed that GPDs are an important metric of the three-
dimensional hadron structure, and they can be loosely
described as amplitudes for removing a parton from a
hadron and replacing it with one with a different momen-
tum. In addition, the moments of GPDs are related not only
to EMFFs but also to GFFs—and one of the GFFs describes
the total angular momentum carried by the partons. It is
accepted that the finding the contribution to the sum of the
spin- and orbital-angular momenta from specific compo-
nents of hadrons is of great importance [28,29,38,39]. In
particular, it is discussed that there is a very important
quantity D term [40], which is closely related to the matrix
element of EMT Tij components. As with the energy and
angular momentum, the D term also corresponds to the
values of GFFs at zero-momentum transfer. Therefore, the
D term is considered as the “last global unknown property”,
which is believed to characterize the spatial deformations as
well as other mechanical properties of hadrons [27].
For the GFFs of hadrons with spin 0, 1=2, and 1, much

work has been already done [35,41–46]. The common
approaches of the chiral quark model, LQCD calculation,
the effective chiral theory, the SU(2) Skyrme model, the
bag model, the QCD sum rule, and the AdS=CFT corre-
spondence [42,43,45,47–52] have all been employed.
Although there are some approaches devoted for the
GFFs of a spin-3=2 Δ resonance [53–55], simultaneous
discussions and calculations of the EMFFs and GFFs for Δ
are still missing. In contrast to hadrons with spin-0, 1=2,
and 1, Δð1232Þ is a low-lying baryon resonance with spin-
3=2, the study of its EMFFs and GFFs can give more
information about the internal structures of this high-spin
particle and can be further applied for the transition EMFFs
and GFFs of N − Δ process [56]. Therefore, such a study is
of great interest. In this work, we employ the relativistic
and covariant quark-diquark approach to simultaneously
calculate the EMFFs and GFFs of the spin-3=2 Δ particle.
We know that the baryon Δ can be simply regarded as a

three-quark system, and here we treat it as a system of a
quark plus an axial-vector diquark. Consequently, the
estimated form factors are given by the sum of quark
and diquark contributions.
This paper is organized as follows. In Sec. II, the

definitions of EMFFs and GFFs for a spin-3=2 particle
are given. Section III shows the corresponding matrix
elements of the quark and diquark for the electromagnetic
and gravitational probes in the covariant quark-diquark
approach. In Sec. IV, the model parameters are firstly
determined comparing to the Lattice calculations for the
EMFFs of Δþ. Then, our numerical calculations for the
electric monopole, magnetic dipole, electric quadrupole,
and magnetic octupole form factors are given. Finally, we
display our calculated GFFs of Δ, such as its mass and spin
distributions, and we particularly address the issues of the
sign and the interpretation of the D term. Section V is
devoted to a summary.

II. FORM FACTORS OF A SPIN-3=2 PARTICLE

A. Electromagnetic form factors

It is well known that in the one-photon approximation a
composite particle with spin-S has (2Sþ 1)-independent
electromagnetic form factors due to symmetries and con-
servations, like parity and time reversal. For the spin-3=2
particle, the matrix element of the electromagnetic current
is expressed as [57]

hp0; λ0jĴ μ
að0Þjp; λi

¼ −ūα0 ðp0; λ0Þ
�
Pμ

M

�
gα

0αFV;a
1;0 ðtÞ −

qα
0
qα

2M2
FV;a
1;1 ðtÞ

�

þ iσμνqν
2M

�
gα

0αFV;a
2;0 ðtÞ −

qα
0
qα

2M2
FV;a
2;1 ðtÞ

��
uαðp; λÞ; ð1Þ

where uαðp; λÞ is the known Rarita-Schwinger spinor for a
spin-3=2 particle. In general, the index a in Eq. (1) runs
from a gluon to a quark flavor and the total form factors
Fi;j ¼ ΣaF

V;a
i;j . In the present work, we only consider the

constituent quark (and diquark) degrees of freedom (d.o.f.)
and do not take the gluon contribution into account. In this
work, we introduce the kinematical variables Pμ ¼
ðpμ þ p0μÞ=2, qμ ¼ p0μ − pμ, and q2 ¼ t (which stands
for the squared momentum transfer), where pðp0Þ is the
initial (final) momentum. The normalization of the Rarita-
Schwinger spinor is taken to be ūσ0 ðpÞuσðpÞ ¼ −2Mδσ0σ .
In the nonrelativistic approximation, the EMFFs can be

further expressed in terms of FV
i;0ð1Þði ¼ 1; 2Þ, according to

Eq. (1) and Ref. [58]. In the Breit frame, the average of the
baryon momenta and the momentum transfer are respec-
tively defined by Pμ ¼ ðE; 0; 0; 0Þ and qμ ¼ ð0; qÞ. Thus,
q2 ¼ −q2 ¼ t ¼ 4ðM2 − E2Þ with the Δ isobar mass being
M. Then,
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GE0ðtÞ ¼
�
1þ 2

3
τ

�
½FV

2;0ðtÞ þ ð1þ τÞðFV
1;0ðtÞ−FV

2;0ðtÞÞ�

þ 2

3
τð1þ τÞ½FV

2;1ðtÞ þ ð1þ τÞðFV
1;1ðtÞ−FV

2;1ðtÞÞ�;
ð2aÞ

GE2ðtÞ ¼ ½FV
2;0ðtÞ þ ð1þ τÞðFV

1;0ðtÞ−FV
2;0ðtÞÞ�

þ ð1þ τÞ½FV
2;1ðtÞ þ ð1þ τÞðFV

1;1ðtÞ−FV
2;1ðtÞÞ�;

ð2bÞ

GM1ðtÞ ¼
�
1þ 4

5
τ

�
FV
2;0ðtÞ þ

4

5
τðτ þ 1ÞFV

2;1ðtÞ; ð2cÞ

GM3ðtÞ ¼ FV
2;0ðtÞ þ ðτ þ 1ÞFV

2;1ðtÞ; ð2dÞ

where τ ¼ −t=4M2ð≥ 0Þ. In Eq. (2), GE0, GE2, GM1,
and GM3 are the charge, electric-quadrupole, magnetic-

dipole and magnetic-octupole form factors, respectively.
When the momentum-transfer squared goes to zero, namely
t ¼ −q2 → 0, we get the charge, magnetic-dipole, electric-
quadrupole, and magnetic-octupole moments. Moreover,
the slope of electric monopole form factor shows the
corresponding charge radius of the system. According to
Ref. [59], we have

hr2iE ¼ 6
d
dt

G̃E0ðtÞjt¼0; ð3Þ

in which G̃E0 has been normalized (G̃E0 ¼ GE0
Qe
), and Qe is

the charge quantum number carried by the particle.

B. Gravitational form factors

The GFFs for a spin-3=2 particle are defined through the
matrix element of its EMT tensor as [53,57]

hp0; λ0jT̂μνð0Þjp; λi ¼ −ūα0 ðp0; λ0Þ
�
PμPν

M

�
gα

0αFT
1;0ðtÞ −

qα
0
qα

2M2
FT
1;1ðtÞ

�
þ ðqμqν − gμνq2Þ

4M

�
gα

0αFT
2;0ðtÞ −

qα
0
qα

2M2
FT
2;1ðtÞ

�

þMgμν
�
gα

0αFT
3;0ðtÞ −

qα
0
qα

2M2
FT
3;1ðtÞ

�
þ iPfμσνgρqρ

2M

�
gα

0αFT
4;0ðtÞ −

qα
0
qα

2M2
FT
4;1ðtÞ

�

−
1

M
ðqfμgνgfα0qαg − 2qα

0
qαgμν − gα

0fμgνgαq2ÞFT
5;0ðtÞ þMgα

0fμgνgαFT
6;0ðtÞ

�
uαðp; λÞ: ð4Þ

The above definition is for the total GFFs of the system.
One can also define the contributions of the quark and
gluon individually. Here, FT

3;0; F
T
3;1, and FT

6;0 are non-
conserving terms, and they should vanish if we consider
the total EMT. Since only the quark contributions are taken
into account in our present approach, FT

3;0; F
T
3;1, and FT

6;0

are simply ignored. Moreover, the convention afμbνg ¼
aμbν þ aνbμ and a½μbν� ¼ aμbν − aνbμ are adopted.
In the Breit frame, the gravitational multipole form

factors (GMFFs) are derived from the matrix element of
the EMT current [53,57]. Here we summarize the results as
follows:

hp0; σ0jT̂00ð0Þjp; σi ¼ 2ME

�
ε0ðtÞδσ0σ þ

� ffiffiffiffiffi
−t

p
M

�
2

Q̂kl
σ0σY

kl
2 ε2ðtÞ

�
;

hp0; σ0jT̂0ið0Þjp; σi ¼ 2ME

� ffiffiffiffiffi
−t

p
3M

iϵiklYl
1Ŝ

k
σ0σJ 1ðtÞ þ

� ffiffiffiffiffi
−t

p
M

�
3

iϵiklYlmn
3 Ôkmn

σ0σ J 3ðtÞ
�
;

hp0; σ0jT̂ijð0Þjp; σi ¼ 2ME

�
1

4M2
ðΔiΔj þ δijΔ2ÞD0ðtÞδσ0σ þ

1

4M4
Q̂kl

σ0σðΔiΔj þ δijΔ2ÞΔkΔlD3ðtÞ

þ 1

2M2
ðQ̂ik

σ0σΔjΔk þ Q̂jk
σ0σΔ

iΔk þ Q̂ij
σ0σΔ

2 − δijQ̂kl
σ0σΔkΔlÞD2ðtÞ

�
; ð5Þ

where the spin-3=2 quadrupole- and octupole-spin operators Q̂ij and Ôijk are respectively defined as

Q̂ij ¼ 1

2

�
ŜiŜj þ ŜjŜi −

2

3
SðSþ 1Þδij

�
;

Ôijk ¼ 1

6

�
ŜiŜjŜk þ ŜjŜiŜk þ ŜkŜjŜi þ ŜjŜkŜi þ ŜiŜkŜj þ ŜkŜiŜj −

6SðSþ 1Þ − 2

5
ðδijŜk þ δikŜj þ δkjŜiÞ

�
; ð6Þ
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with i; j; k ¼ 1; 2; 3. The spin operators can be expressed in
terms of the SU(2) Clebsch-Gordan coefficients in the
spherical basis as

Ŝaσ0σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1Þ

p
CSσ0
Sσ1a with ða¼0;�1.σ;σ0 ¼0; · · ·;�SÞ:

ð7Þ

Obviously, the GMFFs ε0;1ðtÞ and J 0;1ðtÞ, respectively
relate to the matrix elements of T00 and Ti0;0i, and D0;2;3ðtÞ
to the ones of Tij. They show the fundamental mechanical
properties of the system. ε0;1ðtÞ and J 0;1ðtÞ display the
energy- and angular-momentum distributions, andD0;2;3ðtÞ
are interpreted as the essential quantities for characterizing
the distributions of strong forces inside the system.
The relations among the GMFFs and GFFs are

ε0ðtÞ ¼ FT
1;0ðtÞ þ

t
6M2

�
−
5

2
FT
1;0ðtÞ − FT

1;1ðtÞ −
3

2
FT
2;0ðtÞ þ 4FT

5;0ðtÞ þ 3FT
4;0

�

þ t2

12M4

�
1

2
FT
1;0ðtÞ þ FT

1;1ðtÞ þ
1

2
FT
2;0ðtÞ þ

1

2
FT
2;1ðtÞ − 4FT

5;0ðtÞ − FT
4;0ðtÞ − FT

4;1ðtÞ
�

þ t3

48M6

�
−
1

2
FT
1;1ðtÞ −

1

2
FT
2;1ðtÞ þ FT

4;1ðtÞ
�
; ð8aÞ

ε2ðtÞ ¼ −
1

6
½FT

1;0ðtÞ þ FT
1;1ðtÞ − 4FT

5;0ðtÞ�

þ t
12M2

�
1

2
FT
1;0ðtÞ þ FT

1;1ðtÞ þ
1

2
FT
2;0ðtÞ þ

1

2
FT
2;1ðtÞ − 4FT

5;0ðtÞ − FT
4;0 − FT

4;1ðtÞ
�

þ t2

48M4

�
−
1

2
FT
1;1ðtÞ −

1

2
FT
2;1ðtÞ þ FT

4;1ðtÞ
�
; ð8bÞ

J 1ðtÞ ¼ FT
4;0ðtÞ −

t
5M2

½FT
4;0ðtÞ þ FT

4;1ðtÞ þ 5FT
5;0ðtÞ� þ

t2

20M4
FT
4;1ðtÞ; ð8cÞ

J 3ðtÞ ¼ −
1

6
½FT

4;0ðtÞ þ FT
4;1ðtÞ� þ

t
24M2

FT
4;1ðtÞ; ð8dÞ

D0ðtÞ ¼ FT
2;0ðtÞ −

16

3
FT
5;0ðtÞ −

t
6M2

½FT
2;0ðtÞ þ FT

2;1ðtÞ − 4FT
5;0ðtÞ� þ

t2

24M4
FT
2;1ðtÞ; ð8eÞ

D2ðtÞ ¼
4

3
FT
5;0ðtÞ; ð8fÞ

D3ðtÞ ¼
1

6
½−FT

2;0ðtÞ − FT
2;1ðtÞ þ 4FT

5;0ðtÞ� þ
t

24M2
FT
2;1ðtÞ: ð8gÞ

One can also proceed by calculating the Fourier trans-
formations of GMFFs to get the monopole and quadrupole
densities [53]

E0ðrÞ ¼ Mε̃0ðrÞ; E2ðrÞ ¼ −
1

M
r
d
dr

1

r
d
dr

ε̃2ðrÞ; ð9Þ

with ε̃0;2ðrÞ ¼
R d3q

ð2πÞ3 e
−iq·rε0;2ðtÞ being the densities in

r-space.
The mass radius of Δ is an important property, and it can

be derived as [53]

hr2iM ¼ 6
d
dt

ε0ðtÞjt¼0: ð10Þ

Moreover, if one interprets the static TijðrÞ connecting to
the pressure pðrÞ and shear force sðrÞ of the system like
classical mechanics, these two physical quantities relate to
the D term as [31]

pðrÞ ¼ 1

6M
1

r2
d
dr

r2
d
dr

D̃0ðrÞ;

sðrÞ ¼ −
1

4M
r
d
dr

1

r
d
dr

D̃0ðrÞ;

D̃0ðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·rD0ðtÞ: ð11Þ
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According to Ref. [60], the force on an infinitesimal piece
of area dSj at the distance r for the system has the form
FiðrÞ¼TijðrÞdSj¼½2

3
sðrÞþpðrÞ�dSi where dSj ¼ dSrj=r.

The corresponding force must be directed outwards for the
mechanical stability of the system. Therefore, the local
criterion for the mechanical stability can be formulated
as [60]

pðrÞ þ 2

3
sðrÞ > 0: ð12Þ

Here we can express the D term, D ¼ D0ð0Þ, by pðrÞ and
sðrÞ as

D ¼ M
Z

d3rr2pðrÞ ¼ −
4M
15

Z
d3rr2sðrÞ: ð13Þ

So,

M
Z

d3rr2pðrÞ þ 2M
3

Z
d3rr2sðrÞ

¼ −
3

2
D ¼ M

Z
d3rr2

�
pðrÞ þ 2

3
sðrÞ

�
> 0; ð14Þ

which implies D < 0 for any stable system.

III. COVARIANT QUARK-DIQUARK APPROACH

It is believed that the Δ isobar is composed of three light
quarks, u and d quarks. Since it has IðJpÞ ¼ 3=2ð3=2þÞ,
the total antisymmetry makes the isospin and spin of each
pair of quarks equal to 1. Here we treat two of them as a
diquark. Therefore, the matrix element of the electromag-
netic current is the sum of the contributions of the quark
and diquark. For example, Δþ contains two u quarks and
one d quark. So we can treat a ðudÞ or ðuuÞ pair as a
diquark. If we consider the probability of the two cases, we
naively conclude that the probability of ðudÞ as a diquark is
two times that of ðuuÞ as a diquark. It should be stressed
that we also explicitly take the internal quark structure of
the axial-vector diquark into account. This treatment is
different from the nonrelativistic quark model calculations
for the nucleon EMFFs and for the N − Δ transition

amplitudes, where the total contribution is simply regarded
as three times that of the single quark contribution although
the bound-state wave function is employed [17–20]. The
present approach is consistent with the other relativistic and
covariant quark-diquark approaches [22,23].

A. EMFFs of Δ contributed by quark

Here, we give the details for the calculation of the
EMFFs of Δ in our approach. The electromagnetic current
attached to Δ is represented by the Feynman diagrams
illustrated in Figs. 1(a) and 1(b) and its matrix element is
expressed as the sum of the quark and diquark contributions
(labeled by the subscripts of q and D, respectively) as

hp0;λ0jĴμð0Þjp;λi¼ hp0;λ0jĴμqð0Þjp;λiþhp0;λ0jĴμDð0Þjp;λi:
ð15Þ

In the present work, we neglect the longitudinal part
kμkν=m2

V of the vector propagator in order to have finite
results [61]. So the quark contribution is

hp0; λ0jĴμqð0Þjp; λi

¼ −Qe
qeūα0 ðp0; λ0Þð−iÞ

Z
d4l
ð2πÞ4

1

D̃
Γ̃α0β0

�
=lþ q

2
þmq

�

× gβ0βγμ
�
=l −

q
2
þmq

�
Γ̃βαuαðp; λÞ; ð16Þ

where Qe
q is the charge quantum number carried by the

active quark, and D̃ stands for all the propagator denom-
inators as

D̃ ¼
��

lþ q
2

�
2

−m2
q þ iϵ

���
l −

q
2

�
2

−m2
q þ iϵ

�

× ½ðl − PÞ2 −m2
D þ iϵ�: ð17Þ

The vertex of Δ with its quark and diquark constituents in
Eq. (16) is expressed as Γ̃αβ ¼ ΓαβΞ. According to
Ref. [62], the Lorentz structure of the vertex Γαβ is

Γαβ ¼ c1½gαβ þ g2γβΛα þ g3ΛβΛα�; ð18Þ

(a) (b) (c)

FIG. 1. Feynman diagrams for the electromagnetic current of the Δ resonance, (a) and (b), and of the diquark (c). The left and middle
panels stand for the contributions of quark (single line) and diquark (double line) to Δ.
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withΛ being the relative momentum between the quark and
diquark. The couplings of c1, g2, and g3 in Eq. (18) can be
determined by fitting to the experimental data of EMFFs or
to the lattice calculation. The superscript β stands for the
index of the spin-1 particle. It should be addressed that the
vertex Γαβ contains high-order momentum terms, and they
can make the loop integral divergent. To avoid this problem
we simply consider an additional scalar function Ξ to
simulate the bound state problem of the Δ resonance. In
general, this scalar function should be obtained from a
dynamical calculation of the system, like solving the Bethe-
Salpeter equation. Here, we simply take an ansatz for the
scalar function Ξ as [63]

Ξðp1; p2Þ ¼
c

½p2
1 −m2

R þ iϵ�½p2
2 −m2

R þ iϵ� ; ð19Þ

where mR is a cutoff mass parameter, and we find that our
numerical results are not sensitive to mR within a certain
range. As discussed already in Refs. [45,64], regularization
done by introducing the momentum-dependent form fac-
tors breaks the gauge invariance and the electromagnetic
Ward-Takahashi identities. For the present work, it leads to
the EMFFs and GFFs not being normalized at the same
time. Despite of the deficiency, we adopt the function Ξ to
simplify the calculation and it turns out the deviation in
normalization is small as shown in the later content. Then,
Eq. (16) goes to

hp0;λ0jĴμqð0Þjp;λi¼−Qe
qeūα0 ðp0;λ0Þð−iC̃2Þ

×
Z

d4l
ð2πÞ4

1

D
Γα0β0

�
=lþq

2
þmq

�

×gβ0βγμ
�
=l−

q
2
þmq

�
Γβαuαðp;λÞ; ð20Þ

where C̃ ¼ cc1 and denominator is modified to be

D ¼ D̃½ðl − PÞ2 −m2
R þ iϵ�2

��
l −

q
2

�
2

−m2
R þ iϵ

�

×

��
lþ q

2

�
2

−m2
R þ iϵ

�
: ð21Þ

B. EMFFs of Δ contributed by the diquark

In the same way, the diquark contribution to the EMFFs
of Δ is

hp0; λ0jĴ μ
Dð0Þjp; λi

¼ −Qe
Deūα0 ðp0; λ0ÞiC̃2

Z
d4l
ð2πÞ4

1

D0 Γ
α0
β0 ðP − =lþmqÞ

× jμ;β
0β

D Γα
βuαðp; λÞ; ð22Þ

where the Qe
D is the charge quantum number carried by the

diquark. It should be mentioned that the diquark is an axial
vector ð1þÞ bound state of two quarks. Here, we adopt the
same vertex in Eqs. (18) and (19). Thus, in the above
equation,

D0 ¼
��

lþq
2

�
2

−m2
Dþ iϵ

���
l−

q
2

�
2

−m2
Dþ iϵ

�

× ½ðl−PÞ2−m2
qþ iϵ�½ðl−PÞ2−m2

Rþ iϵ�2

×

��
l−

q
2

�
2

−m2
Rþ iϵ

���
lþq

2

�
2

−m2
Rþ iϵ

�
: ð23Þ

Figure 1(c) gives the explicit contribution of diquark with
its quark structure. The effective Lagrangian for the diquark
is [23]

LD→qq ¼ cDΨT
qC−1γμΨqϵμ;DðpD; λÞΞD þ H:c:; ð24Þ

whereΨT
q stands for the charge conjugate of quark field and

C ¼ iγ2γ0. The correlation function attached to the vertex
in the above Lagrangian and Fig. 1(c) is assumed to be the
same as in Eq. (19) for simplicity, and have the same cutoff
mass mR in order to reduce the number of parameters.
According to Fig. 1(c), we get

hp0; λ0jĴμDð0Þjp; λi ¼ Σqhp0; λ0jĴμqð0Þjp; λi
¼ −ϵ�β0 ðp0

D; λ
0Þjμ;β0βD ϵβðpD; λÞ; ð25Þ

where ϵβðpD; λÞ represents the spin-1 diquark field, and

jμ;ββ
0

D represents the effective electromagnetic current of
spin-1 diquark. Here, we introduce kinematical variables
Pμ
D ¼ ðpμ

D þ p0
D
μÞ=2; qμD ¼ p0

D
μ − pμ

D ¼ qμ and q2D ¼
−tD ¼ −t (since transfer momentum is all on the diquark).
Then

hp0
D; λ

0jĴμqð0ÞjpD; λi
¼ −Qe

qeϵ�β0 ðp0
D; λ

0ÞiC̃2
D

×
Z

d4lD
ð2πÞ4

1

DD
γβ

0
�
=lD þ q

2
þmq

�
γμ

×

�
=lD −

q
2
þmq

�
γβð=lD − PD þmqÞϵβðpD; λÞ; ð26Þ

where the constant C̃ in Eq. (20) is replaced by C̃D ¼ c1cD.
In addition,
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DD ¼
��

lD þ q
2

�
2

−m2
q þ iϵ

���
lD −

q
2

�
2

−m2
q þ iϵ

�

× ½ðlD − PDÞ2 −m2
q þ iϵ�½ðlD − PDÞ2 −m2

R þ iϵ�2

×

��
lD −

q
2

�
2

−m2
R þ iϵ

���
lD þ q

2

�
2

−m2
R þ iϵ

�
:

ð27Þ

Finally, the electromagnetic current of the diquark in
Eq. (25) can be written as

jμ;β
0β

D ¼
�
gβ

0βFV
D;1ðtÞ −

qβ
0
qβ

2m2
D
FV
D;2ðtÞ

�
ðp0

D þ pDÞμ

− ðqβ0gμβ − qβgμβ
0 ÞFV

D;3ðtÞ; ð28Þ

where FV
D;1;2;3ðtÞ stand for the three form factors of the

spin-one particle contributed by quarks and by the loop
integral. They contain the binding effect. The expression of
this effective current in Eq. (28) is standard for a free spin-1
particle. Moreover, in reproducing the effective electro-
magnetic current, the normalization of the diquark charge is
also employed.

C. GFFs of the Δ contributed by the quark

One may also calculate the matrix elements of energy-
momentum tensor for the Δ system by summing the
contributions of the quark and the diquark,

Tμν ¼ Tμν
q þ Tμν

D : ð29Þ

The Feynman diagrams for the process are shown in
Figs. 2(a) and 2(b).
According to the Lagrangian for a quark with mass mq

Lq ¼
i
2
ψ̄qγ

μ∂↔μψq−mqψ̄qψq; with ∂↔μ ¼ ∂⃗μ− ∂⃖μ; ð30Þ

then, the symmetric EMT is defined as

Tμν
q ¼ i

4
ψ̄qγ

μ∂ν
↔
ψq þ

i
4
ψ̄qγ

ν∂μ
↔
ψq: ð31Þ

In our covariant quark-diquark approach, the matrix
element of EMT current from the contribution of quark is

hp0; λ0jT̂μν
q ð0Þjp; λi

¼ −ūα0 ðp0; λ0Þ−iC̃
2

2

Z
d4l
ð2πÞ4

1

D
Γα0β0

�
=lþ q

2
þmq

�

× gβ0βðγμlν þ γνlμÞ
�
=l −

q
2
þmq

�
Γαβuαðp; λÞ; ð32Þ

where D has been given in Eq. (21).

D. GFFs of the Δ contributed by the diquark

The EMT of the diquark can be obtained from the Proca
Lagrangian if we consider it as a structureless particle.
Here, we treat the diquark contribution to the EMT matrix
element of Δ by considering explicitly its quark contents as
we have discussed in Sec. III B. The matrix element of
EMT current from the contribution of diquark is

hp0; λ0jT̂μν
D ð0Þjp; λi

¼ −ūα0 ðp0; λ0ÞiC̃2

Z
d4l
ð2πÞ4

1

D0 Γ
α0β0

�
=lþ q

2
þmq

�

× Xμν
β0β

�
=l −

q
2
þmq

�
Γβαuαðp; λÞ; ð33Þ

where D0 is shown in Eq. (23), and Xμν
β0β stands for the

effective energy-momentum tensor of the diquark.
According to Fig. 2(c), the matrix element of the EMT

current of the diquark, due to its two quark structure,
is [33,65]

(a) (b) (c)

FIG. 2. Feynman diagrams for the GFFs of Δ, contributed to by quark (a), by diquark (b), and the GFFs of the diquark (c).
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hp0
D; λ

0jT̂μν
D ð0ÞjpD; λi ¼ 2hp0

D; λ
0jT̂μν

q ð0ÞjpD; λi ¼ −ϵ�β0 ðp0
D; λ

0ÞXβ0βμνϵβðpD; λÞ

¼ −ϵ�β0 ðp0
D; λ

0Þ
�
Pμ
DP

ν
D

mD

�
gββ

0
FT
D;1;0ðtÞ −

qβqβ
0

2m2
D
FT
D;1;1ðtÞ

�

þ ðqμqν − gμνq2Þ
4mD

�
gββ

0
FT
D;2;0ðtÞ −

qβqβ
0

2m2
D
FT
D;2;1ðtÞ

�

−
Pfμ
D gνg½β0qβ�

mD
FT
D;4;0ðtÞ −

1

mD
ðqfμgνgfβ0qβg − 2qβqβ

0
gμν − gβ

0fμgνgβq2ÞFT
D;5;0ðtÞ

�
ϵβðpD; λÞ; ð34Þ

where the nonconserving form factors are ignored. Finally,
we get the matrix element of EMT tensor contributed by the
diquark

hp0
D; λ

0jT̂μν
D ð0ÞjpD; λi

¼ −ϵ�β0 ðp0
D; λ

0ÞiC̃2
D

Z
d4lD
ð2πÞ4

1

DD
γβ

0
�
=lD þ q

2
þmq

�

× ðγμlνD þ γνlμDÞ
�
=lD −

q
2
þmq

�
γβð=lD − PD þmqÞ

× ϵβðpD; λÞ: ð35Þ

To summarize this section, we employ the relativistic
covariant quark-diquark approach to compute the EMFFs
and GFFs of the spin-3=2 Δ resonance. In the above
formulas the quark structure of the diquark (1þ) is
explicitly taken into account by introducing the correlation
function and by the loop integrals of Eqs. (26) and (35). In
particular, only the fundamental electromagnetic current
and the EMT of the quark are involved.

IV. NUMERICAL RESULTS

A. Determination of model parameters

In the present approach, we need to numerically calcu-
late the loop integrals sandwiched between the two Rarita-
Schwinger spinors. The on shell identities which have been
explicitly proven in Ref. [57] for the Rarita-Schwinger
spinors are employed. They are listed in Appendix A.
Moreover, Appendix B gives the Feynman parametriza-
tions for the necessary loop integrals.
We also need to input the masses of the Δ resonance M,

quarkmq, diquarkmD, and the cutoffmR in the calculation.
Here, we simple choose M ¼ 1.085 GeV. It is the average
of the masses of nucleon and Δ resonance, and this
selection means that we do not consider the mass splitting
between the Δ and nucleon. Moreover, we assume mq ¼
0.4 GeV according to Ref. [3]. OurM and mq indicate that
M < 3mq. Furthermore, we choose mD ∼ 0.76 GeV [3], it
implies that the diquark is a bound state of two quarks as
well. Finally, we simply borrow mR ∼ 1.6 GeV from
Ref. [15].

It should be addressed that due to the normalization of the
charge form factor ofΔ at t2 ¼ 0, the overall factor C̃ ¼ cc1
can be fixed. However, g2 and g3 in Eq. (20) are still free.
They describe the D-wave coupling of the Δ resonance to
the quark and the axial-vector diquark in our approach, and
they provide an essential effect on the high-order multi-
poles. To determine these two parameters, the EMFFs
calculated by the lattice QCD (LQCD) of Ref. [66] are
employed as constraints. Comparing to the LQCD results,
we select g2 ¼ 0.703 GeV−1 and g3 ¼ 0.412 GeV−2. All
the parameters in our calculation are listed in Table I, and the
obtained four EMFFs are plotted in Fig. 3 for Δþ. Figure 3
shows that our results are consistent with the LQCD
calculation, at least qualitatively. In the figure, the lines
are our calculations with different cutoff masses and the dots
are the results from LQCD with different pion masses. We
also conclude that our results are not sensitive to the cutoff
parametermR. In the present work, the units of parameters in
figures have been omitted and are consistent with Table I.
To show a more detailed analysis of our model param-

eters, we first check the impact of g2 and g3 on our EMFFs.
Figure 4 displays their effect. We find that g2 and g3 have a
remarkable influence on the electric-quadrupole and mag-
netic-octupole form factors, and they even change the signs
of GE2 and GM3. However, they have a little impact on the
electric monopole and magnetic-dipole form factors. This
conclusion is reasonable since the couplings g2;3 stand for
the high-partial waves, and they manifest themselves in the
high-order multipoles, like quadrupole and octupole form
factors.

B. Results for the moments of EMFFs

When the squared momentum transfer goes to
zero t ¼ 0, the form factors give the moments of the
magnetic dipole μΔ ¼ GM1ð0Þ e

2M, of the electric
quadrupoleQΔ ¼ GE2ð0Þ e

M2, and of the magnetic octupole
OΔ ¼ GM3ð0Þ e

2M3, where e is the electric charge [67].

TABLE I. The parameters used in our approach.

M=GeV mq=GeV mD=GeV mR=GeV g2=GeV−1 g3=GeV−2

1.085 0.4 0.76 1.6 0.703 0.412
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We can compare the obtained magnetic-dipole, electric-
quadrupole and magnetic-octupole moments to the results
of different model calculations, such as nonrelativistic
quark model (NQM) [68–70], relativistic quark model
(RQM) [71], QCD sum rules (QCDSR) [72–75], light
cone QCD sum rules (LCQSR) [76], Large Nc [77–79],
chiral-quark model with meson-exchange currents
(χQMEC) [80,81], QCD quark model (QCDQM)
[82,83], chiral bag model (CBM) [84], general parameter-
ization QCD (GPQCD) [85], chiral quark-soliton model
(χQSM) [86], effective mass and screened charge scheme
(EMS) [87,88], chiral perturbation theory (χPT) [89–91],
lattice QCD (LQCD) [92–94], and chiral constituent quark
model (χCQM) [95]. Tables II, III, and IV list the

comparisons of our magnetic, quadrupole, and octupole
moments with other model calculations, respectively.
For GM1ð0Þ of Δþþ, the results of other model calcu-

lations are in the range of ½4.4 ∼ 6.93�, and the minimum
value 4.4� 0.8 predicted by the LCQSR and the maximum
value 6.93 by the χQMEC as shown in Table II. Our result
6.04 is much closer to the one given by the large Nc
[77–79,96]. ForGE2ð0Þ ofΔþþ displayed in Table III, there
are the minimum value −3.82 in the NQM, and the
maximum value −0.0452� 0.0113 in the QCDSR. Our
result −3.86 is slightly smaller than the results given by
other models. The negative sign for GE2ð0Þ is consistent
with most of model calculations and indicates that Δ is
oblate deformed. For GM3ð0Þ listed in Table IV, we see that

FIG. 3. Calculated four EMFFs of Δþ comparing to the lattice QCD calculations. The dashed, solid and the dotted-dashed curves
represent the results with mR ¼ 1.4 GeV, 1.6 GeV, and 1.8 GeV, respectively. g2 ¼ 0.412 GeV−1 and g3 ¼ 0.703 GeV−2 are used.

FIG. 4. The parameter g2 and g3 dependences of GE2ð0Þ (a), GM1ð0Þ (b), and GM3ð0Þ (c).
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the results from the two different models vary widely and
our result is −1.12 for Δþþ. Future measurements for the Δ
isobar deformation are expected to discriminate different
approaches. From these three qualitative comparisons we
conclude that our results are comparable to most of the
models. In addition, in our numerical calculations, we do
not consider the small mass difference between the u and d
quarks, and the different moments for the isospin partners
of Δ, displayed in Tables II, III, and IV, due to their charge
difference.
Figure 5 gives the individual contributions from the

quark and diquark to the EMFFs of Δþþ. As shown in the
figure, the ratio of the contribution to EMFFs by diquark
and quark is close to 2 as −t goes to zero. It means that
when the momentum transfer is small the electromagnetic
interaction probes the diquark as a pointlike particle. This is
consistent with the physical intuition and the constituent
quark model calculations [16–18,70]. However, when the
momentum transfer increases, the EM current probes much

more inside the diquark such that the effects of the binding
and its quark structure become remarkable. It should be
noted that, in the nonrelativistic constituent quark model
calculation, the coupling of each quark to the electromag-
netic probe is considered to be the same (for simplicity) and
the total result is the three times that of the quark
contribution [16–18,20,70] although the nonrelativistic
wave function contains ρ and λ excitations.
Finally, we estimate the root mean squared radius of the

Δ resonance according to our electric form factor GE0ðtÞ.
It is

hr2iE ¼ 0.665 fm2; ð36Þ

for the charge distribution. It should be mentioned that the
obtained charged rms radii of the three charged isospin
partners Δ are the same since we do not consider the slight
mass difference between the u and d quarks.

TABLE II. A comparison of our magnetic-dipole moment with other models.

GM1ð0Þ Δþþ Δþ Δ0 Δ−

This work 6.04 3.02 0.00 −3.02
NQM [68] 5.56 2.73 −0.09 −2.92
RQM [71] 4.76 2.38 0.00 −2.38
QCDSR [72–74] 4.39� 1.00 2.19� 0.50 0.00 −2.19� 0.50
LCQSR [76] 4.4� 0.8 2.2� 0.4 0.0 −2.2� 0.4
Large Nc [77–79] 5.9(4) 2.9(2) � � � −2.9ð2Þ
χQMEC[80,81] 6.93 3.47 0.00 −3.47
QCDQM [82,83] 5.689 2.778 −0.134 −3.045
CBM [84] 4.52 2.12 −0.29 −2.69
EMS [87,88] 4.56 2.28 0 −2.28
χPT [89,90] 5.390 2.383 −0.625 −3.632
LQCD [92–94] 4.91� 0.61 2.46� 0.31 0.00 −2.46� 0.31
χCQM[95] 5.82� 0.08 2.63� 0.06 −0.56� 0.09 −3.75� 0.08

TABLE III. A comparison of our electric-quadrupole moment with other models.

GE2ð0Þ Δþþ Δþ Δ0 Δ−

This work −3.86 −1.93 0.00 1.93

NQM [69] −3.82 −1.91 0 1.91
NQM [70] −3.63 −1.79 0 1.79
χPT [91] −3.12� 1.95 −1.17� 0.78 0.47� 0.20 2.34� 1.17
χQSM [86] � � � −2.15 � � � � � �
QCDSR [75] −0.0452� 0.0113 −0.0226� 0.0057 0 0.0226� 0.0057

TABLE IV. A comparison of our magnetic-octupole moment with other model calculations.

GM3ð0Þ Δþþ Δþ Δ0 Δ−

This work −1.12 −0.56 0.00 0.56

GPQCD [85] −11.68 −5.84 0 5.84
QCDSR [75] −0.0925� 0.0234 −0.0462� 0.0117 0 0.0462� 0.0117
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C. The results of the matrix elements
of EMT and GFFs of Δ

1. EMT of T00 and T0i;i0

Our relativistic covariant quark-diquark approach can be
also applied for the calculations of the matrix element of the
energy-momentum tensor for the Δ spin-3=2 system
according to the Secs. III C and III D. Here we show our
results for GFFs as the functions of −t in Fig. 6, where the
same normalization condition and model parameters are
adopted as for the case of EMFFs. By comparing our results
with Ref. [53] where the Skyrme model is applied, we find
that our FT

1;ð0;1Þ, F
T
4;ð0;1Þ, and FT

5;0 are consistent with each

other. However, our estimated FT
2;ð0;1Þ have a big difference.

This issue is closely related to the understanding of matrix
elements of Tij and it will be discussed later in detail. Then,
we can reproduce the physical GMFFs from Eq. (8) for the
energy- and angular-momentum distributions. The results
are displayed in Figs. 7 and 8.
As shown in Fig. 7 our εΔ0 ð0Þ ¼ 0.97 ∼ 1 which corre-

spond to the normalization condition of Δmass. This result
indicates that the condition is not exactly preserved. This
deviation, as discussed after Eq. (19), is because of the
momentum-dependent regularization violating the gauge
invariance. The ratio of the contribution from diquarks and
quarks is also close to 2 when t ¼ 0, similar to the case of
EMFFs. Furthermore, as shown in Fig. 8, our estimated
spin forΔ is JΔ1 ð0Þ ∼ 1.5which just corresponds to the total
spin of Δ carried out by its two constituents.

The mass radius from Fig. 7 is

hr2iM ¼ 0.529 fm2; ð37Þ

which is near but smaller than hr2iE. This number is close
to 0.54 fm2 of Ref. [53].
Furthermore, the quantities, such as the energy densities

and angular moment density can be obtained with the
results given in Fig. 9 by performing the Fourier trans-
formations as shown in Eq. (9). We know that the Fourier
transformation of a plane wave is not well defined, and the
transformations of our obtained GFFs, which are the
functions of −t, cannot be done due to the divergence.

Thus, we add a Gaussian-like wave packet e
t
λ2 [97,98] to

guarantee the convergence when jtj increases. Here, the
model-parameter λ represents the size of the hadron with
λ ∼ 1 GeV. The inclusion of this additional factor is
reasonable because of the locality of the particle and the
validity of the perturbative field theory. This issue has been
discussed explicitly in Refs. [99,100]. Our results for the
densities in r space are shown in Fig. 9. We find that the
energy densities converge quickly to zero when r > 1 fm
and when 0.5 GeV < λ < 1.1 GeV. Moreover, the
Compton wavelength corresponding to λ is about 2 ∼ 4
times the obtained radius of the Δ isobar.

2. The matrix elements of Tij and the D term

It should be reiterated that our results for the GFFs of
FΔ
20ðtÞ and FΔ

21ðtÞ shown in Fig. 6 are different in sign from

FIG. 5. The calculated four EMFFs of Δþþ, the gray dashed, blue dashed-dotted, and red solid curves stand for the contributions from
quark and diquark, and their sum, respectively.
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FIG. 6. Calculated GFFs of FT
10;11;20;21;40;41;50 as functions of −t for Δ.

FIG. 7. The calculated energy-monopole form factor of the Δ as a function of −t (left panel) and the energy quadrupole (right panel).
The dashed, dashed-dotted, and solid curves stand for the contributions from quark, diquark, and their sum.

FIG. 8. The angular-momentum form factor of the Δ as a function of −t (left panel), and the octupole-angular momentum form factor
(the right panel). The solid, dashed, and dashed-dotted curves represent the total result, and the contributions of quark and diquark,
respectively.
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the result of Ref. [53]. These two form factors and FΔ
50ðtÞ

relate to thematrix element ofTij [seeEqs. (5) and (8)]. In the
classical mechanics of continuum media, the energy-
momentum tensor Tij is interpreted as the pressure and
shear force in the continuum media approximation. When
one discusses quantum field theory problems, in analogy to
the classicalmechanics for the continuummedia, one expects
that the matrix element of Tij gives information of the
pressure and shear force of the system. According to the
relations between Tij and the D term and, furthermore, by

considering the stability of the system,which implies that the
corresponding pressure is positive, one concludes that theD
term should be negative as D0ðt ¼ 0Þ < 0 from Eq. (14).
Actually, the negativity of theD term has been discussed

extensively. Ref. [60] explicitly proves this issue by
discussing a scalar hadron, which is assumed to be
composed by two scalar fields. Under this circumstance,
D0ðtÞ is expressed as (assuming the two constituents have
same mass m, and the hadron has the mass M ¼ 2m − B
with B being the binding energy)

hp0jT12jpi ¼ 1

2
q1q2D0ðtÞ ¼ 2ig2

Z
d4k
ð2πÞ4

ðk1 − q1=2Þðk2 þ q2=2Þ þ ðk2 − q1=2Þðk1 þ q1=2Þ
½ðk − PÞ2 −m2�½ðkþ q=2Þ2 −m2�½ðk − q=2Þ2 −m2� ; ð38Þ

and

D0ð0Þ ¼B→0 −
11

3
þ 32

3π

ffiffiffiffiffiffiffi
B
2M

r
−O

�
B
2M

�
; ð39Þ

where the numerator in the first equation is due to the
energy-momentum tensor of a scalar particle. It is clearly
seen that the expected D-term results from the sum of the
numerators of k1k2 and −q1q2=4. The first one has a
positive contribution while the second attributes a dominant
negative value. Therefore, their sum gives − 11

3
. When the

binding B increases, the calculated D0ð0Þ reduces.
Inspired by the above analysis, the treatment of the

hadrons, like Δ in this approach, is carried out in the

following. Instead of considering two spinless constituents,
we take the fermion propagators, which is more realistic.
Consequently, the matrix element of Tμν shown in Eqs. (32)
and (33) are much more complicated and much different
from the one of scalar hadrons with two scalar constituents.
In order to address the calculated matrix element of Tμν

more transparently and analytically, we simplify the Eq. (32)
by replacing the Γαβ and Γα0β0 with c1gαβ and c1gα

0β0 ,
and by replacing the scalar function ½ðl − PÞ2 −m2

R þ
iϵ�2½ðl − q

2
Þ2 −m2

R þ iϵ�½ðlþ q
2
Þ2 −m2

R þ iϵ� in the denomi-
nator by ðl − PÞ2 −m2

R þ iϵ. And we omit iϵ in writing for
brevity. We expect these replacements do not change the
qualitative properties of our loop integrals. Then,

hp0; λ0jT̂μν
q ð0Þjp; λi ¼ −ūα0 ðp0; λ0Þ−iC̃

2

2

Z
d4l
ð2πÞ4

gα
0β0 ð=lþ q

2
þmqÞgβ0βðγμlν þ γνlμÞð=l − q

2
þmqÞgβα

½ðl − PÞ2 −m2
D�½ðl − q

2
Þ2 −m2

q�½ðlþ q
2
Þ2 −m2

q�½ðl − PÞ2 −m2
R�
uαðp; λÞ

¼ −ūαðp0; λ0Þð−iC̃2Þ
Z

d4l
ð2πÞ4

T̃μν

½ðl − PÞ2 −m2
D�½ðl − q

2
Þ2 −m2

q�½ðlþ q
2
Þ2 −m2

q�½ðl − PÞ2 −m2
R�
uαðp; λÞ:

ð40Þ

FIG. 9. The calculated energy-monopole density of Δ as a function of r (left panel) and energy-quadrupole density (right panel).

The Gaussian wave packet e
t
λ2 has been included with λ ¼ 1 GeV (solid curve), λ ¼ 0.8 GeV (dashed curve), and λ ¼ 0.5 GeV

(dashed-dotted curve).
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According to Eq. (4) and Appendix C where T̃μν ¼ P
i T̃

μν
i , the PμPν

M and qμqν

4M terms can be yielded by the standard
Feynman parametrizations (see Appendix B),

− iC̃2

Z
d4l
ð2πÞ4

1

2M

½−l2ðlνPμ þ lμPνÞ þ 4lμlνðl · PÞ þ 4mqMlμlν þm2
qðlνPμ þ lμPνÞ�

½ðl − PÞ2 −m2
D�½ðl − q

2
Þ2 −m2

q�½ðlþ q
2
Þ2 −m2

q�½ðl − PÞ2 −m2
R�

¼ PμPν

M
Ã
Z

1

0

dx1

Z
1−x1

0

dx2

Z
1−x1−x2

0

dx3
M2ðx1 þ x2Þ3 þ 2mqMðx1 þ x2Þ2 þ ðMþm2

qÞðx1 þ x2Þ
M2

þ other Lorentz structures

¼ PμPν

M
FT
10ð0Þ þ other Lorentz structures; ð41Þ

and

− iC̃2

Z
d4l
ð2πÞ4

2

M

lμlνðl · PÞ þmqMlμlν

½ðl − PÞ2 −m2
D�½ðl − q

2
Þ2 −m2

q�½ðlþ q
2
Þ2 −m2

q�½ðl − PÞ2 −m2
R�

¼ qμqν

4M
Ã
Z

1

0

dx1

Z
1−x1

0

dx2

Z
1−x1−x2

0

dx3
2½M2ðx1 þ x2Þ þmqM�ð2x3 þ x1 þ x2 − 1Þ2

M2

þ other Lorentz structures

¼ qμqν

4M
FT
20ð0Þ þ other Lorentz structures; ð42Þ

where

Ã ¼ C̃2

ð4πÞ2 > 0;

M ¼ ðx1 þ x2Þ2M2 − ðx1 þ x2ÞM2 þ x1m2
D þ ð1 − x1 − x2Þm2

q þ x2m2
R > 0: ð43Þ

Moreover, FT
50ð0Þ ¼ 0 in Eq. (40) for this simplified model.

Then our ε0ð0Þ ¼ FT
10ð0Þ and D0ð0Þ ¼ FT

20ð0Þ, and both of
the Feynman integrals are positive obviously. Therefore, we
conclude that the sign of theD term in our calculation is the
same as for ε0. The D0ð0Þ > 0 can also be obtained from
Eq. (8) and Fig. 6 in our complete model, and the von Laue
condition [101]

R
∞
0 r2pðrÞdr ¼ 0 is still satisfied.

We believe that our above conclusion is because of the
Fermion properties and the realistic consideration of the Δ
isobar. This sign problem also occurs in Ref. [102] when
the hydrogen atom is considered. The controversial sign
problem of the D term is still open. More realistic
calculations for hadrons like nucleons are necessary to
check if this problem indeed exists. It has been argued that
the analogy to the pressure in classical mechanics of Tij and
the constraint of negativity ofD term may not be necessary.
Instead, the momentum current might be suitable to
interpret the matrix element of Tij of a quantum system
as argued in Ref. [102].

V. SUMMARY AND CONCLUSIONS

In this work we calculate the electromagnetic and
gravitational form factors of the spin-3=2 Δ with the help

of relativistic covariant quark-diquark approach. The inter-
nal quark structures of Δ as well as of the axial-vector
diquark are explicitly considered. In order to simulate the
bound-state properties ofΔ and diquark, we simply employ
an ansatz for the vertex scalar function, and the coupling of
Δ to the quark and diquark, given by Ref. [62]. Although
the vertex scalar function in Eq. (19) breaks the gauge
invariance, it turns out the deviation in the normalization is
small. We take the lattice QCD calculations for EMFFs as
the constraints to fit our model parameters.
It should be stressed that we simplify the three-body

problem into a two-body problem by considering two
quarks as a diquark. To get more accurate results, we
calculate the GFFs of the diquark as a two-body problem
instead of just taking it as a point particle. In Sec. III, we
find that our results of EMFFs and electromagnetic
moments are reasonable within acceptable region of t.
For the EMFFs of Δ, the ratio of the contributions from the
diquark and the quark is close to 2 when t ¼ 0. That is
because they are mainly determined by the number of
charges, and the charge ratio of the diquark to the quark
is 2. Similarly, because the mass ratio of the diquark to the
quark is close to 2, the contribution to GFFs from the
diquark is also close to 2 times that of the corresponding
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one of the quark when t ¼ 0. Finally, we also reasonably
reproduce the mass and spin distributions of Δ.
However, we point out that there is a sign difference of

our calculated D term from the argument of its negativity.
This is because of our realistic consideration of the quark
and diquark structures of Δ, as we have shown in the
detailed analyses of the matrix elements of Tij and of the
Feynman loop integrals. It is argued that theD term must be
negative if a system satisfies the local stability criterion,
otherwise if this was not the case, the system would
collapse [46,60]. This argument originated from the inter-
pretation of the stress tensor Tij as the momentum flux and
the normal force is expected to be outward. Our obtained
positive D term illustrates that its negativity might not be
necessary. Instead, the momentum current interpretation for
the matrix element of Tij still might be suitable. More
realistic studies for hadrons are needed to clarify this
question. Finally, the present relativistic covariant quark-
diquark approach will be employed for further studies of
the GPDs of the Δ resonance and of the N − Δ transition
form factors.
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APPENDIX A: SOME USEFUL
ON SHELL IDENTITIES

To compute the matrix element of EMT current and
electromagnetic current, some identities explicitly given in
Ref. [103] are employed. These identities are satisfied for
the Rarita-Schwinger spinors. In terms of the variables
P ¼ ðp0 þ pÞ=2 and q ¼ p0 − p,

Pα ≐
qα

2
; Pα0 ≐ −

qα
0

2
; ðA1Þ

where ≐means on shell equality, and we reserve the indices
αi and α0i. There are some on shell relations derived from
the Gordon identity and the Schouten identity,

ūðp0; λ0Þγμuðp; λÞ ¼ ūðp0; λ0Þ
�
Pμ

M
þ iσμνqν

2M

�
uðp; λÞ; ðA2Þ

iϵμνρσgτλ þ iϵνρστgμλ þ iϵρστμgνλ þ iϵστμνgρλ þ iϵτμνρgσλ ¼ 0:

ðA3Þ

We can rewrite the Gordon identity using on shell equality

γμ ≐
Pμ

M
þ iσμνqν

2M
: ðA4Þ

The other on shell relations used in our work read [103]

1 ≐
P
M

; 0 ≐ q; ðA5aÞ

γ5 ≐
qγ5
2M

; 0 ≐ Pγ5; ðA5bÞ

γμ ≐
Pμ

M
þ iσμq

2M
; 0 ≐

qμ

2
þ iσμP; ðA5cÞ

γμγ5 ≐
qμγ5
2M

þ iσμP

M
; 0 ≐ Pμγ5 þ

iσμqγ5
2

; ðA5dÞ

iσμν ≐ −
q½μγν�

2M
þ iϵμνPλγλγ5

M
; 0 ≐ −P½μγν� þ iϵμνqλγλγ5

2
;

ðA5eÞ

iσμνγ5 ≐−
P½μγν�γ5

M
þ iϵμνqλγλ

2M
; 0≐−

q½μγν�γ5
2

þ iϵμνPλγλ;

ðA5fÞ

where σμP ≡ σμνPν, ϵμνPλ ≡ ϵμνρλPρ.
The Rarita-Schwinger spinors satisfy this relation,

γαiuα1…αnðp;λÞ¼0; ūα0
1
…α0nðp0;λ0Þγα0i ¼0; i∈f1;…;ng:

ðA6Þ

Combining Eqs. (A1), (A4), and (A6), we can get these on
shell identities,

iσα
0μ ≐ gα

0μ; iσνα ≐ gνα: ðA7Þ

Some important on shell identities we used are derived
from the product of three and four Dirac matrices,

γργμγσ ¼ gρμγσ − gρσγμ þ gμσγρ − iϵρμσλγλγ5; ðA8aÞ

γργμγσγ5 ¼ gρμγσγ5 − gρσγμγ5 þ gμσγργ5 − iϵρμσλγλ; ðA8bÞ
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γργμγνγσ ¼ gρμgνσ − gρνgμσ þ gρσgμν þ iϵρμνσγ5 − gρμiσνσ

þ gρνiσμσ − gρσiσμν − gνσiσρμ þ gμσiσρν

− gμνiσρσ: ðA9Þ

The nontrivial relation obtained using Eqs. (A4), (A8),
and (A9) [58],

qα
0
gμα − qαgμα

0 ≐ 2M

�
1 −

q2

4M2

�
gα

0αγμ − 2gα
0αPμ

þ 1

M
qα

0
qαγμ: ðA10Þ

Because of Eqs. (A4) and (A1) this identity can be
derived [57],

q2

2
q½α0gα�½μPν� ≐ −qα0qαP½μiσν�q þ P2q½α0gα�½μiσν�q: ðA11Þ

Another nontrivial relation was derived from Ref. [57],

q2gμνgα
0α − 2gμνqα

0
qα − gα

0αPfμiσνgq

þ q½α0gα�fμPνg − gα
0αqμqν þ 1

2
qfα0gαgfμqνg

≐
1

2
q½α0gα�fμiσνgq −

1

2
qfα0gαgfμqνg þ q2gα

0fμgνgα: ðA12Þ

And combining Eqs. (A11) and (A12), we can obtain

q½α0gα�μiσνq ≐ q2gμνgα
0α − 2gμνqα

0
qα − gα

0αPfμiσνgq

þ q½α0gα�fμPνg − gα
0αqμqν þ qfα0gαgfμqνg

− q2gα
0fμgνgα þ q2

4P2
q½α0gα�½μPν�

þ 1

2P2
qα

0
qαP½μiσν�q; ðA13Þ

q½α0gα�νiσμq ≐ q2gμνgα
0α − 2gμνqα

0
qα − gα

0αPfμiσνgq

þ q½α0gα�fμPνg − gα
0αqμqν þ qfα0gαgfμqνg

− q2gα
0fμgνgα −

q2

4P2
q½α0gα�½μPν�

−
1

2P2
qα

0
qαP½μiσν�q: ðA14Þ

There are still some more identities, see Ref. [57].

APPENDIX B: FEYNMAN PARAMETRIZATION
AND LOOP INTEGRALS

In our calculation, we use the Feynman parametrization.
Some integrals are listed as follows:

−i
Z

d4l
ð2πÞ4

1

D
¼ A00; ðB1aÞ

−i
Z

d4l
ð2πÞ4

lμ

D
¼ A11Pμ; ðB1bÞ

−i
Z

d4l
ð2πÞ4

lμlν

D
¼ A21gμν þ A22PμPν þ A23qμqν; ðB1cÞ

−i
Z

d4l
ð2πÞ4

lμlνlγ

D
¼ A31ðPγgμν þ Pμgγν þ PνgγμÞ

þ A32ðqμqνPγ þ qγqνPμ þ qγqμPνÞ
þ A33PγPμPν; ðB1dÞ

−i
Z

d4l
ð2πÞ4

lμlνlγlρ

D
¼

X
ði;j;m;nÞ
∈ðμ;ν;γ;ρÞ

�
1

8
A41gijgmnþ1

8
A42PiPjgmn

þ1

8
A43qiqjgmnþ 1

24
A44PiPjPmPn

þ 1

24
A45qiqjqmqnþ

1

8
A46qiqjPmPn

�
;

ðB1eÞ

where An1n2 stand for the structural integrals. The sym-
metric properties of the denominatorDwith respect to q, as
shown in Eq. (21), is considered.

APPENDIX C: CALCULATION DETAILS
ABOUT D TERM

According to Eq. (40)

hp0;λ0jT̂μν
q ð0Þjp;λi¼−ūα0 ðp0;λ0Þ−iC̃

2

2

Z
d4l
ð2πÞ4

gα
0β0 ð=lþ q

2
þmqÞgββ0γfμlνgð=l− q

2
þmqÞgαβ

½ðl−PÞ2−m2
D�½ðl− q

2
Þ2−m2

q�½ðlþ q
2
Þ2−m2

q�½ðl−PÞ2−m2
R�
uαðp;λÞ

¼−ūαðp0;λ0Þð−iC̃2Þ
Z

d4l
ð2πÞ4

T̃μν

½ðl−PÞ2−m2
D�½ðl− q

2
Þ2−m2

q�½ðlþ q
2
Þ2−m2

q�½ðl−PÞ2−m2
R�
uαðp;λÞ; ðC1Þ

where
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T̃μν ¼ 1

2

�
=lþ =q

2
þmq

�
γfμlνg

�
=l −

=q
2
þmq

�
: ðC2Þ

Here T̃μν contains the information of fermions and can be divided into nine parts T̃μν ¼ P
9
i¼1 T̃

μν
i . Using the on shell

identities given in Appendix A, we get

T̃μν
1 ¼ 1

2
=lγfμlνg=l ≐

ilμlνσlq

M
−
il2lfμσνgq

4M
−
l2lfμPνg

2M
þ 2lμlνðl · PÞ

M
;

T̃μν
2 ¼ 1

4
=qγfμlνg=l ≐

iqfμlνgσlq

8M
−
ilfμσνgqðl · qÞ

8M
−
ilfμPνgσlq

4M
þ ilfμσνgqðl · PÞ

4M
ðC3aÞ

þ qfμlνgðl · PÞ
4M

−
lfμPνgðl · qÞ

4M
; ðC3bÞ

T̃μν
3 ¼ 1

2
mqγ

fμlνg=l ≐ −
1

2
imqlfμσνgl þmqlμlν; ðC3cÞ

T̃μν
4 ¼ −

1

4
=lγfμlνg=q ≐ −

iqfμlνgσlq

8M
þ ilfμσνgqðl · qÞ

8M
−
ilfμPνgσlq

4M
þ ilfμσνgqðl · PÞ

4M
þ lfμPνgðl · qÞ

4M
−
qfμlνgðl · PÞ

4M
; ðC3dÞ

T̃μν
5 ¼ −

1

8
=qγfμlνg=q ≐

iq2lfμσνgq

16M
þ q2lfμPνg

8M
; ðC3eÞ

T̃μν
6 ¼ −

1

4
mqγ

fμlνg=q ≐
1

4
imqlfμσνgq −

1

4
mqqfμlνg; ðC3fÞ

T̃μν
7 ¼ 1

2
mq=lγfμlνg ≐

1

2
imqlfμσνgl þmqlμlν; ðC3gÞ

T̃μν
8 ¼ 1

4
mq=qγfμlνg ≐

1

4
imqlfμσνgq þ

1

4
mqqfμlνg; ðC3hÞ

T̃μν
9 ¼ 1

2
m2

qγ
fμlνg ≐

im2
qlfμσνgq

4M
þm2

qlfμPνg

2M
: ðC3iÞ

According to Appendix B, we see that the PμPν

M term comes from the loop integrals of T̃μν
1 , T̃μν

3 , T̃μν
7 , and T̃μν

9 , and the qμqν

4M

term, which contributes to D term, results from the ones of T̃μν
1 , T̃μν

3 , and T̃μν
7 .
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Manuel Morales, Covariant multipole expansion of local
currents for massive states of any spin, Phys. Rev. D 101,
056016 (2020).

[58] S. Nozawa and D. B. Leinweber, Electromagnetic
form-factors of spin 3=2 baryons, Phys. Rev. D 42, 3567
(1990).

[59] Derek B. Leinweber, Terrence Draper, and R. M.
Woloshyn, Decuplet baryon structure from lattice QCD,
Phys. Rev. D 46, 3067 (1992).

[60] I. A. Perevalova, M. V. Polyakov, and P. Schweitzer, On
LHCb pentaquarks as a baryon-ψ(2S) bound state: Pre-
diction of isospin-3

2
pentaquarks with hidden charm, Phys.

Rev. D 94, 054024 (2016).
[61] Yubing Dong, Amand Faessler, Thomas Gutsche, Sergey

Kovalenko, and Valery E. Lyubovitskij, X(3872) as a
hadronic molecule and its decays to charmonium states
and pions, Phys. Rev. D 79, 094013 (2009).

[62] Michael D. Scadron, Covariant propagators and vertex
functions for any spin, Phys. Rev. 165, 1640 (1968).

[63] T. Frederico, E. Pace, B. Pasquini, and G. Salme, Pion
generalized parton distributions with covariant and light-
front constituent quark models, Phys. Rev. D 80, 054021
(2009).

[64] R. M. Davidson and E. Ruiz Arriola, Structure functions of
pseudoscalar mesons in the SU(3) NJL model, Phys.
Lett. B 348, 163 (1995).

[65] Wim Cosyn, Sabrina Cotogno, Adam Freese, and Cédric
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