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Experiments using proton beams at high luminosity colliders and fixed target facilities provide
impressive sensitivity to new light weakly coupled degrees of freedom. With these experiments in mind, we
revisit the production of dark vectors and scalars via proton bremsstrahlung, making use of a model that
describes the underlying nucleon scattering cross section in the forward direction due to Pomeron
exchange. We compare the resulting distributions and rates with those obtained via variants of the Fermi-
Weizsacker-Williams approximation, and provide production rate distributions for a range of beam
energies, including those relevant for the proposed Forward Physics Facility at the High Luminosity LHC.
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I. INTRODUCTION

The strongest empirical evidence for new physics
beyond the Standard Model (SM), in particular for dark
matter and neutrino mass, may hint at the presence of a
more complex dark sector [1–17]. Such scenarios neces-
sarily imply the presence of new degrees of freedom which
are weakly coupled to the SM, and could therefore be light
relative to the weak scale. This framework has been studied
in great detail in recent years (see, e.g., [18–20]), as there is
sensitivity to light weakly coupled degrees of freedom at a
variety of luminosity frontier experiments, including pro-
ton [21–37] and electron [38–46] fixed target facilities
and colliders.
The dark sector framework relies on minimal assump-

tions, but effective field theory provides a simplifying
perspective that helps to classify the interactions of new
neutral states with the SM according to their dimension-
ality. There are only three relevant or marginal “portal”
operators that are unsuppressed by a new (potentially high)
energy scale. These Higgs, vector and neutrino portals
therefore comprise a priori the leading couplings of the
SM to a dark or hidden sector. Significant theoretical and
experimental effort has been invested in studying these
portal interactions, motivated in part by their importance
for the phenomenology of light dark matter models
[18–20]. The most relevant production channels for
dark force mediators are therefore of importance for
associated searches at collider and fixed target facilities.

For experiments making use of proton beams, the dominant
production channels depend on the energy of the proton
beam and the mass of the dark mediator. Among them,
bremsstrahlung of dark vectors and scalars can be particu-
larly important over the dark sector mass range from about
500 MeV to a GeV. However, computing the bremsstrah-
lung production rate, particularly in the forward direction,
is difficult as it involves the nonperturbative physics of the
forward pp (or pn) cross section. Thus far, most analyses
have relied on variants of the Weizsacker-Williams (WW)
approximation, developed in the 1970s as a generalization
of the successful approach used for electron beams.
In this paper, we revisit the production of dark vectors

and scalars via proton bremsstrahlung and build a model to
describe this process in the context of Pomeron-mediated
forward scattering. We use this model to analyze the
various production modes associated with initial and final
state radiation in diffractive and nondiffractive proton
scattering. We will focus our attention on proton-proton
scattering, as a generic contribution relevant for both the
High Luminosity LHC and for fixed target experiments.
This analysis will allow us to test the impact of various
approximations and kinematic constraints, and to compare
this approach with the modified WW approximation [47].
Our final results for production rates are shown in Fig. 1 for
a 120 GeV fixed target beam at Fermilab, and Fig. 2 for the
14 TeV LHC, along with various comparisons.
The rest of this paper is organized as follows. In the

next section, we provide a brief overview of dark sector
production channels in proton beam experiments, and then
we turn in Sec. III to a discussion of bremsstrahlung in
forward proton scattering. We discuss the modeling of
forward elastic and diffractive scattering via Pomeron
exchange, and then build a model for initial and final state
radiation of dark vectors and scalars via this process, along
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with a more generic model for initial state radiation in
non-single-diffractive scattering. We present our results
in Sec. IV, along with comparisons to modified WW
approaches, and conclude in Sec. V. A number of technical
details are relegated to a series of appendices.

II. OVERVIEW OF DARK SECTOR PRODUCTION
VIA PROTON BEAMS

We will consider dark sectors which couple to the
Standard Model via vector and/or scalar portal couplings
of the form,

L ⊃ −
1

2
ϵFμνF0

μν − ASH†H þ � � � ; ð1Þ

where F0
μν ¼ ∂μA0

ν − ∂νA0
μ, which induces couplings of the

dark vector A0
μ to the electromagnetic current, and the dark

scalar S to the scalar current which contains all scalar
bilinears of charged fermions.
In a proton collider or fixed target experiment, there

are a variety of production modes, which proceed via an on
or off shell mediator A0

μ or S. For the low sub-GeV mass
range of interest, meson decays provide an important

FIG. 2. The production cross section of dark vectors and scalars at 14 TeV (center of mass) energy as a function of mass and within
θ < 1 or 0.25 mrad of the beam axis (center of mass frame). The curves are as described in Fig. 1. The lighter gray curves again show
other production channels from meson decay [32,48], and parton-level Drell-Yan [48] processes relevant at higher mass. See the text in
Secs. III and IV for further details.

FIG. 1. The production cross section of dark vectors and scalars for a 120 GeV fixed target beam as a function of mass and within
θ < 50 mrad of the beam axis (lab frame). The red curves denote the rates using the quasireal approximation in nonsingle diffractive
scattering, and the uncertainty band corresponds to varying the associated cutoff scale Λp ∈ ½1; 2� GeV with the central value
1.5 GeV. The green curves show the associated rates from initial and final state radiation in quasielastic scattering, where
interference effects cause a significant suppression. In the vector case, the dashed gray curve uses the modified WWapproximation
of [47] with a cut on transverse momentum pT < 1 GeV, while for both plots the lighter gray curves show other production channels
from meson decay [21,29], and parton-level Drell-Yan [23] processes relevant at higher mass. See the text in Secs. III and IV for
further details.
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channel. For the vector portal, the decays π0=η → γ þ A0�,
with subsequent visible or invisible decays of A0� provide
the dominant channel formA0 < 0.5 GeV [21,29], while for
scalars, the decays K → π þ S� and B → K þ S� provide
the dominant channels for a larger mass range if the beam is
sufficiently energetic [6]. For proton beam fixed target
experiments, secondary electromagnetic bremsstrahlung
may also be important for very low masses [49]. On the
other hand, for mediator masses well above the nucleon
scale, Drell-Yan processes such as qq̄ → A0� or loop-
induced scalar production gg → S� are relevant [23].
In the present paper, our focus is on the intermediate

mass range mA0=S ∼ GeV, where mixing of the dark states
with vector or scalar mesons with the same quantum
numbers can resonantly enhance the production rate. In
the case of forward production, where the small sub-GeV
momentum transfer allows us to treat the coupling of the
dark sector state with the proton collectively, this channel
amounts to “dark bremsstrahlung.” For the scalar and
vector portals, the induced coupling to protons, which will
be relevant here, follows directly from (1),

Leff ⊃ −ϵeA0
μp̄γμp − gSNNθSp̄pþ � � � ð2Þ

where we have ignored higher multipole couplings for A0
μ,

the h − S mixing angle θ ≃ Av=m2
h ≪ 1 for the parameters

of interest, and gSNN ¼ 1.2 × 10−3 can be obtained via the
use of low energy theorems [50] (see also [51,52]). In the
next section, we will consider a model for dark brems-
strahlung based on these couplings, and the underlying
physics of proton-proton scattering.

III. PROTON BREMSSTRAHLUNG

We will focus our attention in this paper on bremsstrah-
lung, which is important for the forward production of dark
sector mediators with hadronic scale mass, particularly due
to the possibility of resonant mixing with hadronic states.
This is a complex process to model for proton beams, and
we will consider several different approximation strategies,
which will allow us an assessment of relative precision. In
particular, we will compare four different approaches:

(i) ISR and FSR in quasielastic scattering.
(ii) ISR in nonsingle diffractive scattering via the

quasireal approximation.
(iii) Hadronic generalization of the WW approximation.
(iv) Modified WW approximation.

These approaches are described in more detail below, with
some technical details relegated to the appendices. In all
cases, a timelike form factor for coupling to the proton
provides resonant enhancements, and is discussed separately.

A. Modeling forward pp scattering

We start by reviewing the high-energy behavior of
hadronic scattering processes with small momentum transfer

that cannot be described in termsof perturbativeQCD. Inhigh
energypp collisions, where soft interactions play a dominant
role, the total cross section can be divided into diffractive and
nondiffractive scattering processes [53,54]. In elastic diffrac-
tive scattering both protons stay intact after the collisionwhile
in inelastic diffractive scattering, one of the incoming protons
or both dissociate into multiparticle final states with the
invariant massM ≪

ffiffiffi
s

p
, preserving the quantum number(s)

of the associated initial proton(s). Nondiffractive scattering
denotes more generic inelastic processes and is the character-
istic process used at the LHC to observe new physics events
with large transversemomentum.Our focus here is instead on
the forward region, andprocesseswithGeV-scale or sub-GeV
momentum transfer.
Within the category of diffractive scattering, single

dissociation (SD), corresponding to pp → pþ X, and
double dissociation (DD), corresponding to pp →
X þ Y, have the following characteristics: (i) the diffracted
state is separated from the scattered proton by a large
rapidity gap devoid of any hadronic activity; (ii) the energy
transfer between the two interacting protons remains small;
and (iii) the coherence condition implies ξ ¼ M2

X=s≲ 0.15,
which separates dissociation from the inelastic process.
Such processes have traditionally been modeled phenom-
enologically with Regge exchanges, along with single or
multi-Pomeron exchange. Feynman diagrams correspond-
ing to one Pomeron exchange in elastic, single- and double-
diffraction processes are shown in Fig. 3, where the
remaining configurations correspond to nondiffractive
interactions. Experimental data indicates that the high-
energy total and elastic pp cross sections grow slowly with
centre of mass energy, and have the asymptotic behavior
σtot ∼ lnðsÞ2 [55]. At LHC energies, diffractive processes
constitute up to 40% of the total pp cross section [56].
The Donnachie-Landshoff (DL) model of diffractive pp

scattering incorporates the Regge theory approach, which
sums the exchanges of many particles and provides a good

(a) (b)

(c) (d)

FIG. 3. Schematic diagrams for the lowest order Pomeron
exchange processes contributing to (a) elastic scattering, (b)
single dissociation, (c) double dissociation and (d) nondi ractive
interactions. The double line P corresponds to the Pomeron
exchange and p for proton.
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description of the existing elastic differential cross section
data, including the exponential fall at low Mandelstam t,
the dip region at mid t, and the rapid fall in cross section at
high t. The DL parametrization utilizes single Regge (with
ρ, ω and f; a2 trajectories) and Pomeron exchange [60],
along with multiple Regge and Pomeron exchanges
[61–63], plus triple-gluon exchange for jtj≳ 3.5 GeV2

[64]. This parametrization will form the basis of our
bremsstrahlung model, and we review the components in
more detail below.

1. Elastic scattering

We first review the elastic cross section. The full para-
metrization of multi-Regge and Pomeron exchanges in the
DL model is summarized in Appendix A, and we present a
comparison of this model to data in Fig. 4. It is notable that
just including single-Pomeron exchange describes the
measured pp elastic cross section at high-energies remark-
ably well for sufficiently small t. For later purposes, we find
it convenient to present this parametrization in terms of a
phenomenological soft Pomeron propagator GPðs; tÞgμν
and an effective proton-Pomeron vertex Γμ

PðtÞ,

GPðs;tÞ¼
ð2να0PÞαPðtÞ

2ν
ηPðtÞ; ΓμðtÞ¼−iYPFPðtÞγμ; ð3Þ

where 2ν ¼ ðs − uÞ=2. The effective soft Pomeron trajec-
tory is linear in t,

αPðtÞ ¼ 1þ ϵP þ α0Pt; ð4Þ

where the intercept αPð0Þ > 1, and YP is the coupling
strength of the Pomeron to the proton. The parameter
values in these fits are provided in Appendix A. The

Pomeron form factor was traditionally assumed to have a
dipole form [60], FPðtÞ ∼ 1=ð1 − t=0.71 GeV2Þ2, as for
the proton electromagnetic form factor. However, more
recent studies [63] utilize an exponential form factor,
F2
PðtÞ ¼ A expðatÞ þ ð1 − AÞ expðbtÞ. Finally, ηPðtÞ ¼

− exp ð− 1
2
iπαPðtÞÞ is the signature factor.

As is apparent in Fig. 4, the cross section modeled with
soft Pomeron exchange in the region where the squared
momentum transfer t is not too large can be approximated
by a simple exponential falloff dσ=dt ∝ e−Bjtj. Note that
with increasing energy the differential cross section
becomes steeper and the diffractive slope B, which grows
linearly in logðsÞ (the so-called shrinkage of the diffractive
peak) has been measured by several experiments [65] and is
∼20 GeV−2 at LHC energies.
While single Pomeron exchange is sufficient to model

the elastic cross section for small t, the inclusion of higher
exchanges, including double Pomeron exchange, becomes
important for fitting the diffractive dip apparent in Fig. 4 for
jtj ≳ 1 GeV. These additional components of the model are
described in Appendix A. Considering all the contributions
from single-Pomeron (P) and double-Pomeron (PP)
exchange, and triple-gluon (3g) exchange, the elastic pp
scattering at high energies takes the form

dσel

dt
≃

1

4π
jAelj2; ð5Þ

where

Aelðs; tÞ ¼
X
P;PP

ðYiFiðtÞÞ2Giðs; tÞ þ Y2
3gG3gðtÞ: ð6Þ

2. Dissociative scattering

Scattering with SD of one proton can be modeled with
the triple-Pomeron formalism using a generalized optical
theorem [66,67], in which the corresponding pp → pþ X
cross section is given by

dσSD

dtdM2
X
¼ g3PðtÞ

16π2
gPð0ÞgPðtÞ2

M2
X

×

�
s
M2

X

�
2αPðtÞ−2�M2

X

s0

�
αPð0Þ−1

; ð7Þ

where the diffractive mass isM2
X ¼ ξs, with ξ≲ 0.15, gPðtÞ

is the soft Pomeron-proton coupling strength with an
exponential t-dependent form factor, and g3PðtÞ is the
triple-Pomeron coupling. The dimensionful coupling
g2Pð0Þ ≈ 57 mb specifies σtot, and is distinct from the
single Pomeron-exchange value defined previously, while
g3Pð0Þ=gPð0Þ ≃ 0.2 is obtained from a triple-Regge analy-
sis of lower energy data [67]. In the low-mass regime

FIG. 4. The DL model fit for the elastic differential cross
section compared with pp data at

ffiffiffi
s

p ¼ 7 TeV [57,58] (in blue)
and

ffiffiffi
s

p ¼ 53 GeV [59] (in purple). A single soft Pomeron
exchange fit is also shown in each case for small t values with
dashed lines. The diffractive dip requires the addition of double
Pomeron exchange and other components of the full model.
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MX ≲ t, the system X is dominated by baryon resonances
and low level excited states of the proton [68,69].
In the following subsections, where we consider initial

and final state radiation for these exchange processes, it will
be useful to have parametrizations for the total pp cross
section (in mb) taken from experimental data [70,71],

σtotðsÞ ¼ 34.4þ 0.3 log2ðs=s0Þ

þ 13.1

�
s
s0

�
−η1 þ 7.4

�
s
s0

�
−η2

; ð8Þ

where s0 ¼ 15.98 GeV2, η1 ¼ 0.45, η2 ¼ 0.55, and sim-
ilarly the elastic scattering cross section (in mb) [65] is

σelðsÞ ¼ 11.8 − 1.6 logðsÞ þ 0.14 log2ðsÞ: ð9Þ

The single diffractive cross section can similarly be
modeled [72,73] and parametrized based on the experi-
mental data [56]. However, larger systematic uncertainties
in the diffractive cross sections of about 5–10% (depending
on the energy) arise due to the fact that at high energies,
defining (and selecting) purely diffractive events is
problematic [56]. The

ffiffiffi
s

p ¼ 14 TeV LHC cross section
for SD scattering is ∼10 mb, while for double dissociation
scattering it is ∼7 mb [74]. We also introduce the
inelastic, nonsingle diffractive (NSD) cross section, σNSD ≡
σtot − σel − σSD, which can be parametrized following
Ref. [75] as

σNSDðsÞ ¼ 1.76þ 19.8

�
s

GeV2

�
0.057

mb: ð10Þ

B. ISR and FSR in quasielastic scattering

We can build a model of proton bremsstrahlung by adding
initial state radiation (ISR) and final state radiation (FSR) to
the Pomeron exchange model for pp elastic scattering, as
represented by the two Feynman diagrams in Fig. 5. Note
that emission from the target proton into the forward region
is negligible compared with that from the ultrarelativistic
beam proton (as discussed for the photon bremsstrahlung
in electron scattering [76]). Also note that u-channel

(exchange) diagrams are subleading in the regime of high
energy but soft (small-t) scatterings, since t ≪ u ∼ s.
Utilizing the phenomenological Pomeron propagator and

vertices outlined above, we compute the dark bremsstrah-
lung rate associated with the diagrams in Fig. 5.
Considering radiation from both incoming and outgoing
beam protons with 4-momentum kμ ¼ ðEk; k⃗Þ, the contri-
bution from the quasielastic process pp → ppD (where
D ¼ V, S) in the lab frame is given by

d2σelpp→ppD

dEkdcosθk
¼ 1

64ð2πÞ4ppm2
p

jk⃗j
jp⃗p− k⃗j

Z
dtdϕjMpp→ppDj2;

ð11Þ

where θk is the dark vector/scalar emission angle with
respect to the beam. The summed and averaged square of
the 2 to 3 matrix element jMpp→ppDj2 is presented in
Appendix B.
To compare with the other approximate methods of

calculation, we will find it convenient to define the differ-
ential splitting probability of the proton to emit a dark state
in the form

dPsplit:
D ¼ 1

σelppðsÞ
d2σelpp→ppD

dEkd cos θk
: ð12Þ

The resulting splitting probability of dark state emission as a
function of the scalar/vector energy Ek and angle θk is shown
in the next section in Figs. 7 and 8, respectively. In the plots
we also compare the complete ISRþ FSR calculation via
Pomeron exchange with the result from ISR only, which as
discussed below can be associated with NSD scattering with
various final states. In considering radiation during quasie-
lastic scattering, we observe a strong interference between
the ISR and FSR amplitudes, and a significant cancelation
that suppresses the final result as a generic feature of
bremsstrahlung [77,78] for both scalar and vector cases.
Similar results hold for varied choices of mD, and emitted
angles and energies. For completeness, we note that these
radiative topologies are subject to soft and collinear diver-
gences when the radiated particle is parametrically light, and
certain divergences are only canceled on considering loop
corrections to the underlying scattering process. We will not
account for these effects here, as the mediator mass in the
regimes of interest provides an infrared regulator that is
sufficient to cut off those divergences.
Using the single diffractive cross section in Eq. (7), one

can also calculate the differential cross section for dark state
radiation through pp bremsstrahlung. This computation
has not been done explicitly in this paper, but, based on the
large cancellation observed in the quasielastic regime, we
anticipate a similar cancellation to also occur in the case
of single diffractive topologies. In addition, since single
diffractive events make up at most 10% of the total cross

(a) (b)

FIG. 5. Dark state radiation from (a) initial state, and (b) final
state proton bremsstrahlung through Pomeron exchange. The
label p0 stands for the intermediate proton’s momentum.
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section at the relevant energies, we will focus now on the
nonsingle diffractive topologies.

C. ISR in nonsingle diffractive scattering
and the quasireal approximation

In quasielastic and single diffractive scattering, radiation
from both initial and final protons is tightly connected,
and as observed above significant interference between the
two amplitudes leads to a suppression of the total rate as
compared to ISR or FSR alone. As a result, in order to
identify the leading processes, we consider radiation in pp
nonsingle diffractive topologies, where both the beam
proton and target proton dissociate after scattering. In such
processes, radiation from particles other than proton in the
final state should not interfere destructively with proton
ISR, thus one expects no significant cancellation between
ISR and FSR in nonsingle diffractive events.
The ISR contribution can be estimated by artificially

turning off the FSR amplitude in the consideration of
quasielastic scattering above. However, to test this estimate,
we now discuss another approach for evaluating the proton
bremsstrahlung cross section, where instead of limiting
the final state, the intermediate fermion propagator in the
ISR diagram is approximated [79–82] within an on shell
approach (also known as time-ordered perturbation theory)
used by Altarelli-Parisi [83]. We will refer to this as the
“quasireal approximation.”
We can compare the process of scattering of a beam

proton by a target proton ppt → X, with another process,
ppt → X þD involving an additional dark state D emitted
from the incoming proton as shown in Fig. 6, along with
any possible particles in the final state X. Under certain
kinematic conditions, to be formulated below, the cross
section for the second process can be expressed in terms
of the cross section of its subprocess, along with the
splitting probability of emission of a single dark state in
the collision. Let us denote the corresponding amplitude
for the hard scattering process without radiation as
Mppt→f

r ¼ Aðp; pjÞurðpÞ, where urðpÞ is the spinor of
the incoming proton with helicity r and momentum p, and
Aðp; pjÞ is the remaining part of the amplitude for the hard
scattering with pj denoting the momenta of the other
particles in the process. The amplitude for dark ISR off the
incoming proton with momentum k can then be obtained

from the amplitude for the original process by adding an
external dark state line,

Aðp; pjÞ → Aðp − k; pjÞ
ið=p − =kþmpÞ
ðp − kÞ2 −m2

p
: ð13Þ

In the framework of the quasireal approximation, which is
best suited to the high energy limit, the intermediate proton
propagator can be approximated as

ið=p − =kþmpÞ
ðp − kÞ2 −m2

p
≈

i
2Ep0

P
r0u

r0 ðp − kÞūr0 ðp − kÞ
Ep − Ek − Ep0

; ð14Þ

where Ep, Ek, and Ep0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗ − k⃗Þ2 þm2

p

q
are the energy

of the incoming proton, the radiated dark state, and the
intermediate proton, respectively. Using this approxima-
tion, at the cost of being noncovariant, the numerator of the
intermediate proton propagator in Eq. (13) can be replaced
by the polarization sum for an on shell proton resulting in
the following matrix element for dark state emission off the
initial state proton,

Mppt→Df
r ðp; k; pjÞ ≈

X
r0
Mppt→f

r0 ðp0; pjÞ
�

VD
r0r

2k · p −m2
D

�
:

ð15Þ

Here we have defined the vertex functions VS
r0r ¼

gSūr
0 ðp0ÞurðpÞ and VV

r0r;λ ¼ gVūr
0 ðp0Þ=ϵ⋆λ ðkÞurðpÞ, corre-

sponding to dark scalar and dark vector radiation, respec-
tively. Note that now the matrix element Mppt→f involves
the modified on shell momentum p0 ∼ p − k. Now by
integrating over the phase space of the remaining particles
in the final state X, the cross section for the process with
dark state emission can be factorized as follows (see
Appendix C),

dσppt→DfðsÞ ≈ dPp→p0D × σNSDpp ðs0Þ; ð16Þ

where we have again introduced the differential splitting
probability,

dPp→p0D ≡ wDðz; p2
TÞdp2

Tdz; ð17Þ

for radiating a dark state given a longitudinal momentum
fraction z of the proton beam momentum and transverse
momentum pT . We take into account only the nonsingle
diffractive cross section σNSDpp ðs0Þ, since as discussed above
radiation in quasi-elastic processes is suppressed by ISR
and FSR interference. The residual scattering cross section
involves s0 ¼ 2mpðpð1 − zÞ þmpÞ which accounts for the
momentum of the emitted dark state. Deferring the details
to Appendix C, the resulting splitting functions read

FIG. 6. Dark sector initial state radiation in a generic non-
diffractive scattering event.
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wSðz; p2
TÞ ¼

αθ
2π

F2
Sðm2

S; m
2
p −H=zÞ

×
1

2H

�
zþ zð1 − zÞ

�
4m2

p −m2
S

H

��
; ð18Þ

and

wVðz; p2
TÞ ¼

αϵ
2π

F2
Vðm2

V;m
2
p −H=zÞ

×
1

H

�
z − zð1 − zÞ

�
2m2

p þm2
V

H

�
þ H
2zm2

V

�
;

ð19Þ

with αθ ¼ g2SNNθ
2=4π, αϵ ¼ αemϵ

2, and the kinematic
structure function is given by

Hðz; p2
TÞ≡ p2

T þ z2m2
p þ ð1 − zÞm2

D: ð20Þ

The functions FSðk2Þ and FVðk2Þ are scalar and vector
nucleon form factors, which are discussed in detail below in
Sec. III D. The expression in Eq. (18) agrees with the result
of Ref. [50] in the case of scalar bremsstrahlung.
Note that the terms appearing in Eqs. (18) and (19) have

poles when the structure function Hðz; p2
TÞ → 0. In the

massless and collinear limit, the approximation gives the
standard soft photon bremsstrahlung result with a 1=H ∼
1=p2

T singularity [38]. Indeed, assuming a smooth limit as
mV → 0, one restores the Altarelli-Parisi splitting kernel,

wV ∝ α
2π

1
p2
T

1þð1−zÞ2
z , for mp ≪ pT. However, finite mD ¼

mV;mS regulates this singularity, leading to 1=H ≈ 1=m2
D.

The final term in Eq. (19) proportional to 1=m2
V arises due

to the longitudinal polarization of the massive vector, so the
mV → 0 limit is not smooth, but this term is not numerically
important for the parameters considered here.
The applicability of this approximation in which the ISR

process is factorized from the underlying hard scattering
depends on a number of kinematic conditions. First, we
observe that the shift from the mass shell p02 −m2

p ¼
ðp − kÞ2 −m2

p ¼ 0 for the intermediate proton in the pp⋆D
vertex must be considerably smaller than the momentum
transfer in the hard scattering denoted by the shaded central
block of Fig. 6. Fortunately, the required suppression when
the intermediate proton line goes far off shell at the pp⋆D
vertex is accounted for by the off shell (or transition) form-
factor (25) described in the next section. The form factor
is constructed to reach its maximum value (¼ 1) if the
invariant p02 −m2

p ≈ −H=z is much less than a specified
cutoff value Λp ∼mp associated with the hard scattering.
We will vary the hard scale over the range 1≲ Λp≲
2 GeV, with the central value of 1.5 GeV, to assess the
impact of this kinematic constraint. As a second kinematic
condition, the propagator approximation in Eq. (14)
requires Ep0 − ðEp − EkÞ ≪ 2Ep0 . Along with the generic

requirements that the process is relativistic with the beam
energy being the dominant kinematic variable, this leads to
two further kinematic consistency conditions,

H
4zð1 − zÞ2p2

p
≪ 1; ð21Þ

pT;mpðmDÞ ≪ EpðEkÞ: ð22Þ

For concreteness, we demand that the variable on the left of
each inequality in Eqs. (21) and (22) be at most 20% of the
right-hand side.
In combination, these kinematic conditions lead to a

restricted range for z, as well as an upper bound on pT
which depends on mD and the characteristic scale Λp. As
discussed further below, varying Λp as described above
leads to the red shaded bands in Figs. 1 and 2. This serves
as an estimate for the theoretical uncertainty in our
calculation, as the systematic uncertainty in the nondif-
fractive cross section in Eq. (16) is somewhat smaller.

D. Timelike and off shell form factors

The coherent emission of a dark vector or scalar from a
proton, having timelike momentum, requires incorporation
of a timelike form factor to properly account for both the
loss of coherence for momentum transfers above a GeV,
and resonant enhancement due to mixing of the radiated
dark state with hadronic degrees of freedom with the same
quantum numbers.
The vector case coincides with the proton electromag-

netic form factor F1;pðq2Þ, which can be extracted from
elastic scattering and annihilation reactions (see Ref. [84]
for a recent review). Numerous datasets in the spacelike
kinematic region have allowed high-precision parametriza-
tions, but the timelike region is more complex and statistics
over the kinematic threshold, q2 > 4m2

p, are limited
[85,86], but it is this region involving low mass vector
resonances that is of most interest to us. To make use of
the data that exist, parametrizations in the low invariant
mass regime have made use of the vector meson
dominance approach [87,88] (see Ref. [89] for a recent
review). Following [29], we make use of the following
form-factor parametrization with a minimal number of free
parameters that still achieves a good fit to data away from
the threshold [88],

Fp
1;Vðk2VÞ ¼

X
ρ;ω

fρ;ωm2
ρ;ω

m2
ρ;ω − k2V − imρ;ωΓρ;ω

: ð23Þ

The fit parameters are fρ ¼ f0.616; 0.223;−0.339g, and
fω ¼ f1.011;−0.881; 0.369g, which account for mixing
with ρ and ω resonances.
Following Ref. [90], lacking any data in the scalar

channel, we take the same approach for the timelike
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scalar-nucleon form factor, incorporating mixing with
isoscalar (and in principle isovector) JPC ¼ 0þþ scalar
resonances through a sum of Breit-Wigner components,

Fp
1;Sðk2SÞ ¼

X
ϕ¼f0

fϕm2
ϕ

m2
ϕ − k2S − imϕΓϕ

; ð24Þ

where the parameters ff0 ¼ f0.28; 1.8;−0.99g account for
mixing with the three low-lying scalar f0 resonances.
The timelike form factors assume that all legs are on

shell. However, the intermediate proton in ISR and FSR is
off shell, and to account for the off shell leg at the pp⋆D
vertex, as in Ref. [91] we introduce a further hadronic
form factor,

Fpp⋆Dðp02Þ ¼ Λ4
p

Λ4
p þ ðp02 −m2

pÞ2
; ð25Þ

which depends on the momentum of the intermediate
proton p02 ¼ ðp − kÞ2 rather than just the momentum
transfer. The form factor is constructed to reach its
maximum value (¼ 1) if the invariant p02 −m2

p ≈ −H=z,
which measures how far the intermediate proton line is off
shell, is much less than a specified cutoff value Λp ∼mp.
This off shell hadronic form factor has been utilized in, e.g.,
π and η [92,93], kaon [94], and ω [95] photoproduction
reactions, and also in meson- and photon-induced reactions
on the nucleon [96,97] to ensure the gauge invariance of
different contributions [98]. We vary the hard scale over the
range 1≲ Λp ≲ 2 GeV, with the central value of 1.5 GeV,
to generate the results shown in Figs. 1 and 2.
To account for both effects discussed above, we define

the product of the timelike form factors in Eqs. (23)
and (24) and the off shell form factor in Eq. (25),

FDðk2; p02Þ≡ Fpp⋆Dðp02Þ × Fp
1;Dðk2Þ: ð26Þ

IV. RESULTS AND COMPARISONS

In this section we present our results for the production
rates of dark states via proton bremsstrahlung, and compare
them with modifications of the Weizsacker-Williams
approximation [38,99], which is particularly successful
in modeling high energy electron bremsstrahlung.
Using the results of the last section, differential splitting

probabilities for the various approaches are shown in
Figs. 7 and 8 for vector and scalar dark sector radiation,
respectively. These results for the differential splitting
functions illustrate a number of features. In particular,
we see that the quasireal approximation for ISR agrees very
well with the full 2 to 3 calculation of pure ISR in the
Pomeron exchange model. We emphasize that although
these processes in principle involve distinct final states,
the ratio taken in forming the splitting functions restores

the normalization. Similarly, we see that the full 2 to 3
calculation of ISR plus FSR in quasielastic scattering using
the Pomeron exchange model is well described by a
hadronic generalization of the WW approximation
described below. Finally, we have included the result from
another modification of the WW approximation, presented
in [47], which we also discuss below and which leads to a
slightly higher production rate. The form factor at the
radiation vertex, as defined in Eq. (26), is used in all
approaches except for the modified WW approximation,
where following [32] we use only a timelike form factor but
restrict the transverse momentum of the radiated dark
vector, pT < 1 GeV.
Integrating these differential distributions, and incorpo-

rating the appropriate form-factors, our final results for the
production rates of dark vectors and scalars are shown
in Figs. 1 and 2. For illustrative purposes, in these figures,
we choose angular cuts that are relevant for dark sector
production in a 120 GeV fixed target beam at the Fermilab
SeaQuest detector ∼10 m away from the beam collision,
and at FASER in the forward region of the 14 TeV LHC.

A. Versions of the WW approximation

The equivalent photon method (or Fermi-WW approxi-
mation) has been used successfully as an approximate
method to evaluate cross sections for various QED proc-
esses at high energies (see, e.g., [76,81,99]), wherein one
replaces the target charge with its effective electromagnetic
field. In this method, which is based on the mediator pole
approximation, the 2 to 3 cross section is dominated by the
photon pole at small t corresponding to small photon
virtuality. This approach has successfully been used for
electron beams [38,44,100], where in this case the scatter-
ing of the highly energetic beam electrons off the target
reduces to a real photon interaction with the same target.
Generalizing this argument to high energy proton-proton

elastic scattering, we would have a cloud of effective
bosons (here hypothetical Pomerons) from the target proton
denoted by χP, which the beam proton scatters to radiate a
collinear dark state. In this case the cross section for the full
process can be expressed in terms of the 2 to 2 process
pþ P → p0 þD, a subprocess of the full 2 to 3 interaction.
Following [38,99,100] we have

�
dσelpp→ppD

dzdp2
T

�
WW

≅
αD
16π2

F2
Dðm2

D;m
2
p −H=zÞ zð1 − zÞ

H2

× ðA22
D jt¼tmin

ÞχP; ð27Þ

with

χP ≡
Z

tmax

tmin

dtðt − tminÞjAelðs; tÞj2; ð28Þ

where tmin ≈ −H2=ð2zð1 − zÞppÞ2, tmax ≈ −2ð1 − zÞmppp,
and we have replaced 1=t for the photon propagator with the
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effective Pomeron exchange amplitude, Aelðs; tÞ defined in
Eq. (6). Finally, A22

D at t ¼ tmin corresponds to the 2 to 2
process and is presented in Appendix D. In Figs. 7 and 8 we
show the splitting probability using this generalized WW
approximation compared to the approaches described
above. The Jacobian ∂ðz; p2

TÞ=∂ðEk; cos θkÞ ¼ 2kEk=pp is
taken into account for comparing the splitting probability in
Eq. (12) with the corresponding one obtained from Eq. (27).
We observe that this approximation agrees very well with
the full 2 to 3 calculation in quasielastic scattering using
Pomeron exchange, and indeed is suppressed by a similar
interference of ISR and FSR contributions.
Next, we discuss a different variant of the WWapproxima-

tion.TheprocedureoutlinedinRef.[47]isamodifiedversionof
both fermion-pole [80,83] and photon-pole approaches [99]
(used for electron beams), and applied to the process of dark
vector radiation in a high-energy proton beam dump. In this
prescription, the following splitting function,

wVðz; p2
TÞ ¼

αϵ
2π

jFp
1;Vðm2

VÞj2
1

H

�
1þ ð1 − zÞ2

z

− 2zð1 − zÞ
�
2m2

p þm2
V

H
− z2

2m4
p

H2

�

þ 2zð1 − zÞð1þ ð1 − zÞ2Þm
2
pm2

V

H2

þ 2zð1 − zÞ2m
4
V

H2

�
; ð29Þ

was determined using the matrix element for the WW
subprocess pþ b → p0 þ V, where the nature of the
exchanged vector boson b was not specified in [47], but
the Pomeron is a viable candidate. This result notably
includes terms of up quartic order in the mass scales and
reduces to the well-known Altarelli-Parisi function in the
massless limit. The splitting function was then convoluted

FIG. 7. The splitting probability for the proton to emit a dark vector withmV ¼ 0.5 GeV as a function of energy (left) and radiated angle
(right), corresponding to beam energies Ebeam ¼ 120 GeV and

ffiffiffi
s

p ¼ 14 TeV. The curves denote the contributions from the quasielastic
emission from both initial and final state protons (solid blue), emission from initial state only (solid orange), compared with the approximate
splitting probability using the WW approximation with an effective Pomeron cloud (dotted cyan) and the quasireal ISR (dot-dashed red)
methods. The agreement between these approximate approaches and the full results is very good, with the latter dotted and dot-dashed curves
overlapping with the corresponding solid curves. Emission from both the initial and final state proton is subject to large interference and
cancellations, in comparison to purely initial state radiation. The modified WW approximation of [47] is also shown for comparison
(dashed gray).
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with the total pp cross section σtotppðs0Þ at a reduced scale
s0 ¼ 2mpðppð1 − zÞ þmpÞ, and this approach, augmented
with a timelike form factor to account for mixing with
hadronic states, has been widely used in estimating the
bremsstrahlung production of dark vectors in recent years
[29,32,101,102]. We present the splitting probability from
this prescription in Fig. 7 to compare with the other
approaches discussed in this paper. We observe that this
rate is slightly higher than the one obtained using the
quasireal approximation for ISR. We also impose a con-
straint on either pT < 1 GeV or the maximum angle from
the beam θV when presenting the corresponding results in
Figs. 1 and 2.

B. Sensitivity to visible dark vector decays

The impact of various bremsstrahlung production mod-
els can be assessed by studying the experimental sensitivity
in the minimal scenario that the dark sector particle decays
visibly, e.g., to leptons. In Fig. 9 we illustrate the impact on

the sensitivity reach of FASER [32] experiment at CERN
for dark vector searches. In producing this plot, we made
use of the FORESEE [48] software package, which deter-
mines the 90% confidence limit contours for the sensitivity
of detectors placed in the LHC forward direction, and
incorporates dark sector production via meson decays and
Drell-Yan, in addition to bremsstrahlung, and accounts for
dark sector particle lifetimes and branching fractions. The
modified WW approximation [47] described above has
been used extensively to determine the sensitivity to dark
vectors from bremsstrahlung at high luminosity proton
colliders and fixed target facilities. Replacing the modified
WW approximation with the quasireal approximation for
dark vector radiation as derived in this paper, modifies the
sensitivity reach in parameter space near the ρ=ω resonant
peak, with mA0 between 0.5 and 1 GeV. We illustrate both
approaches in Fig. 9 for comparison. As anticipated, the
sensitivity reach is degraded slightly on adopting the
quasireal approximation. The red band for the quasireal
approximation was determined as in Fig. 2 by varying the

FIG. 8. The splitting probability of the proton to emit a dark scalar withmS ¼ 0.5 GeV as a function of energy (left) and radiated angle
(right), corresponding to beam energies Ebeam ¼ 120 GeV and

ffiffiffi
s

p ¼ 14 TeV. The curves denote the contributions from the quasielastic
emission from both initial and final state protons (solid blue), emission from initial state only (solid orange), compared with the
approximate splitting probability using the WW approximation with an effective Pomeron cloud (dotted cyan) and the quasireal ISR
(dashed-dotted red) methods. As in Fig. 7, the agreement between these approximate approaches and the full results is again very good,
with the latter dotted and dot-dashed curves overlapping with the corresponding solid curves.
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associated cutoff scale Λp from 1 to 2 GeV, and illustrates
the dominant uncertainty.

V. CONCLUDING REMARKS

In this paper, we have revisited one of the primary
production channels for dark sector mediators (kinetically
mixed vectors and Higgs portal scalars) at proton beam
facilities, namely proton bremsstrahlung. The production
rate is nontrivial to estimate in the forward region as it
involves nonperturbative QCD. However, it is also important
for a number of fixed target and accelerator based searches
for dark sectors and light dark matter (including at the
proposed Forward Physics Facility at the High Luminosity
LHC), as this production channel is enhanced by resonant
hadronic mixing in the 0.5–1.0 GeV mass range. The
analysis in this paper has focused solely on the production
rates for the dark mediators. However, the production
distributions obtained can straightforwardly be convoluted
with decay distributions for either visible or hidden final
states in the decays of dark vectors or scalars.
Our approach has been to compare ISR and FSR

channels in an explicit model for the underlying diffractive
pp scattering process with various approximations that
instead use parametrizations of the hard scattering event.
One of our primary goals was to compare the efficacy
of these different approaches, and attempt to quantify the
level of precision and distinct kinematic constraints. Our
results for production distributions are summarized in
Figs. 7 and 8, while the final integrated results for
the overall cross sections are shown in Figs. 1 and 2.

The parameters chosen for these figures are representative of
fixed target experiments close to the 120 GeV main injector
beamline at Fermilab, and detectors such as FASER in the
forward region of the ATLAS interaction point at the 14 TeV
LHC. Overall, we find that radiation in quasielastic 2 to 3
scattering is suppressed by destructive interference between
the t-channel ISR and FSR diagrams, while various approx-
imations point to the dominant forward production channel
being from ISR in nonsingle diffractive scattering. This
calculation has an uncertainty associated with the choice of
cutoff scale Λp in the vertex form factor. Further progress in
determining parton distribution functions at very small x
may allow for an alternate parton-level calculation, and
progress in reducing the uncertainty in estimating production
rates via bremsstrahlung.
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APPENDIX A: DL MODEL FOR pp SCATTERING

In this Appendix we review the DL parametrization
for the pp elastic scattering interaction at high energies,
which includes Regge (exchange-degenerate ρ, ω and f, a2
trajectories), single Pomeron exchange [61], and multiple
Regge and Pomeron exchanges.
Single-Pomeron exchange describes the measured pp

total and elastic cross sections at high energies, and small-t
processes reasonably well. We can present the model
in terms of a phenomenological Pomeron propagator
GPðs; tÞgμν and an effective proton-Pomeron vertex Γμ

PðtÞ,

GPðs; tÞ ¼
ð2να0PÞαPðtÞ

2ν
ηPðtÞ; ðA1Þ

Γμ
PðtÞ ¼ −iYPFPðtÞγμ; ðA2Þ

where 2ν ¼ ðs − uÞ=2. The effective Pomeron trajectory is
linear in t,

αPðtÞ ¼ 1þ ϵP þ α0Pt; ðA3Þ

where the intercept αPð0Þ > 1, and YP is the coupling
strength of the Pomeron to the proton. The single Pomeron
form factor was traditionally assumed to have a dipole form
[60], FPðtÞ ∼ 1=ð1 − t=0.71 GeV2Þ2 analogous to the pro-
ton electromagnetic form factor. However, recent analyses
[63] have used an exponential form in the parametrization,
F2
PðtÞ ¼ A expðatÞ þ ð1 − AÞ expðbtÞ. Finally, ηPðtÞ ¼

− exp ð− 1
2
iπαPðtÞÞ is the signature factor. The relevant

parameters are listed in Table I.
In principle one should also include the Reggeon f2, a2,

ρ, and ω exchanges, but at large energies
ffiffiffi
s

p
≫ 10 GeV

FIG. 9. The sensitivity reach for dark photon decays at the
FASER experiment, comparing bremsstrahlung production via
the quasireal approximation (solid red) with the modified WW
approximation (dashed black). This plot was generated using
the FORESEE [48] software package, and it includes various
existing constraints and projections, and accounts for addi-
tional dark photon production modes.
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these contributions with intercepts αR ≃ 0.5 are suppressed,
which allows us to focus on the Pomeron only [60].
Note that the electromagnetic contribution must also be
included in order to fit elastic scattering data at very small t.
However, this coulomb amplitude will be negligible for the
parameters of interest here.
Measured high energy pp elastic scattering at the

LHC [103,104] may also point toward an additional
hard-Pomeron contribution [62], although it is not strictly
necessary to fit the data [63,105]. Instead, multiple-
Pomeron exchange, which one has to take into account
to avoid the breakdown of unitarity, effectively behaves as a
simple power of sϵ over a very wide range of energies.
Following Ref. [63], we model the double-Pomeron effec-
tive propagator and vertex as

GPPðs; tÞ ¼
ð2να0PÞαPPðtÞ

2ν
ηPPðtÞ; ðA4Þ

Γμ
PPðtÞ ¼ −iYPPFPPðtÞγμ; ðA5Þ

with the corresponding trajectory,

αPPðtÞ ¼ 1þ 2ϵP þ 1

2
α0Pt; ðA6Þ

where the effective coupling strength of the double
Pomeron exchange takes the form YPP ¼ Y2

P=4
ffiffiffi
π

p
. The

signature factor reads ηPPðtÞ ¼ exp ð− 1
2
iπαPPðtÞÞ, and the

form factor squared takes the semieikonal form,

F2
PPðtÞ ¼

A2

a=α0P þ L
e
1
2
at þ ð1 − AÞ2

b=α0P þ L
e
1
2
bt; ðA7Þ

with additional logarithmic factors L ¼ logð2να0PÞ − iπ=2
in the denominator.
The dominant contribution to the elastic cross section

at larger values of jtj≳ 3.5 GeV2 exhibits an energy-
independent behavior ∼t−8, in agreement with triple-gluon
exchange [64], with an amplitude of the form

G3gðtÞ ¼
8<
:

jt0j3
t4 ; t < t0
1
jt0j e

2ð1−t2=t2
0
Þ; t0 < t

; ðA8Þ

Γμ
3g ¼ −iY3gγ

μ; ðA9Þ

where for jtj < jt0j, a smooth transition was adopted to
avoid a divergence as t → 0.
The full parametrization involves adding these contri-

butions, and the values of the best fit parameters of the DL
model are given in the Table I.

APPENDIX B: MATRIX ELEMENTS FOR
QUASIELASTIC RADIATION

In this Appendix we present details of the matrix element
calculation for the ISR plus FSR process,

pðp1Þ þ pðp2Þ → pðp3Þ þ pðp4Þ þDðkÞ; ðB1Þ
where the dark state D ¼ fS; Vg is emitted from either the
beam or scattered proton with momentum p1 and p3,
respectively (see, e.g., [100]). We define the Mandelstam
variables s¼ðp1þp2Þ2, s0 ¼ ðp1þp2−kÞ2, and t ¼ q2 ¼
ðp4 − p2Þ2. When s ≫ t, the matrix elements for the
bremsstrahlung processes depicted in Fig. 5 are given by

iM2→3
S ¼ iūðp4ÞΓμ

PðtÞuðp2Þūðp3ÞSμuðp1Þ; ðB2Þ
iM2→3

V ¼ iūðp4ÞΓμ
PðtÞuðp2Þūðp3ÞVμαuðp1Þϵα⋆k ; ðB3Þ

with

Sμ ¼ igSF
p
1;Sðm2

SÞ
�
GPðs0; tÞΓμ

PðtÞFpp⋆Dððp1 − kÞ2Þ ið=p1 − =kþmpÞ
ðp1 − kÞ2 −m2

p
þ ið=p3 þ =kþmpÞ

ðp3 þ kÞ2 −m2
p
Fpp⋆Dððp3 þ kÞ2ÞΓμ

PðtÞGPðs; tÞ
�
;

ðB4Þ

and

Vμα ¼ igVF
p
1;Vðm2

VÞ
�
GPðs0; tÞΓμ

PðtÞFpp⋆Dððp1 − kÞ2Þ ið=p1 − =kþmpÞ
ðp1 − kÞ2 −m2

p
γα

þ γα
ið=p3 þ =kþmpÞ
ðp3 þ kÞ2 −m2

p
Fpp⋆Dððp3 þ kÞ2ÞΓμ

PðtÞGPðs; tÞ
�
; ðB5Þ

TABLE I. The best fit parameters for the elastic scattering DL
model [63].

Parameter Value

ϵP 0.110
α0P 0.165 GeV−2
YP 13.019
Y3g 0.142
t0 −4.230 GeV2

A 0.682
a 7.854 GeV−2
b 2.470 GeV−2
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where the effective Pomeron propagator GP and vertex
function Γμ

P were introduced in Eq. (A1), gV and gS are the
effective dark vector and scalar couplings to the proton,
and ϵμ is the final state dark vector polarization withP

pol ϵ
μ
kϵ

ν
k ¼ −gμν þ kμkν=m2

V . When considering radiation
from the proton p, the timelike vector and scalar proton
form factors, Fp

1;Vðm2
VÞ and Fp

1;Sðm2
SÞ, as well as the off

shell form factor Fpp⋆D, can be introduced in the form
presented in Sec. III D.
The matrix element, averaged over spins and summed

over the initial spins takes the form,

jM2→3
D j2 ¼ 1

4

X
spin

jM2→3
D j2 ¼ TμνB

μν
D ; ðB6Þ

where the initial spin-averaged target and beam proton
tensors are given by

Tμν ¼ 1

2
Tr½ð=p4 þmpÞΓμ

Pð=p2 þmpÞΓν⋆
P �; ðB7Þ

Bμν
V ¼ 1

2
Tr½ð=p3 þmpÞVμαð=p1 þmpÞVβν⋆�

×

�
−gαβ þ

kαkβ
m2

V

�
; ðB8Þ

Bμν
S ¼ 1

2
Tr½ð=p3 þmpÞSμð=p1 þmpÞSν⋆�: ðB9Þ

The differential cross section for the process (B1) in the
lab frame,

dσ ¼ 1

4jp⃗1jmp
jM2→3

D j2ð2πÞ4δð4Þðp1 þ q − k − p3Þ

×
d3p⃗3

ð2πÞ32E3

d3p⃗4

ð2πÞ32E4

d3k⃗
ð2πÞ32Ek

; ðB10Þ

takes the following form after integrating over p⃗3 and
changing variables from p⃗4 to q⃗ [the three-momentum
of qμ ¼ ðpμ

2 − pμ
4Þ], and using the remaining δ function to

integrate out jq⃗j,

dσ¼ jM2→3
D j2d3k⃗

32ð2πÞ5jp⃗1jmpEk

Q2dcosθqdϕq

½QðE3þE4Þ−RE3cosθq�
: ðB11Þ

Here θq and ϕq are the polar and azimuthal angles of q⃗

in the direction of R⃗ ¼ k⃗ − p⃗1, Q ¼ jq⃗j, R ¼ jR⃗j, and
cos θq ¼ ðm2

p þ R2 þQ2 − E2
3Þ=ð2QRÞ.

Next we change variables from θq to t ¼ q2 to obtain

d2σ
dEkd cos θk

¼ 1

64ð2πÞ4p1m2
p

jk⃗j
jp⃗1 − k⃗j

×
Z

tmax

tmin

dt
Z

2π

0

dϕqjMpp→ppDj2; ðB12Þ

where t ¼ 2mpðmp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þm2

p

q
Þ, and the integration

boundaries of t correspond to

½Q�� ¼ R
2
� ðE1 − Ek þmpÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
p

ðE1 − Ek þmpÞ2 − R2

s
:

ðB13Þ

The equivalent center of mass (c.m.) version of Eq. (B12)
has a similar form,

d2σ
dE⋆

kd cos θ
⋆
k
¼ 1

64ð2πÞ4pc:m:E2
c:m:

×
Z

t̃max

t̃min

dt̃
Z

2π

0

dϕq̃jMpp→ppDj2; ðB14Þ

where we defined the invariant t̃≡ ðp1 þ p2 − p4Þ2 ¼
m2

p þ Ec:m:ðEc:m: − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̃2 þm2

p

q
Þ, and starred ð⋆Þ variables

are defined in the c.m. frame. The integration boundaries
for t̃ correspond to

½Q̃�� ¼k⋆
2
�ðEc:m:−E⋆

k Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
p

ðEc:m:−EkÞ2−k2

s
: ðB15Þ

APPENDIX C: INITIAL STATE RADIATION

Consider the process of scattering of a beam proton by a
target proton ppt → X, where X denotes any number of
charged (and neutral) particles in the final state. Along with
this process, let us consider another process, ppt → f þD,
involving an additional dark state D which is emitted from
the incoming proton as shown in Fig. 6. Under certain
kinematic conditions (formulated below), the cross section
for the second process can be represented as a product of
two independent factors, the cross section of the former
subprocess and the splitting probability for the emission of
a single dark state in the collision.
The corresponding amplitude for the hard process

ppt → X can be written as

Mppt→f
r ¼ Aðp; pjÞurðpÞ; ðC1Þ

where urðpÞ is the spinor of the incoming proton with the
helicity r and momentum p, and Aðp; pjÞ the remaining part
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of the amplitude for the hard scattering with pj denoting the
momenta of the other particles in the scattering.
For the process of dark state emission from the incoming

proton in the initial state, the matrix element can be
obtained from that for the original process by adding an
external dark state line, and reads

Mppt→Sf
r ðp; k; pjÞ

¼ igSAðp − k; pjÞ
ið=p − =kþmpÞ
ðp − kÞ2 −m2

p
urðpÞ; ðC2Þ

Mppt→Vf
rλ ðp; k; pjÞ

¼ igVAðp − k; pjÞ
ið=p − =kþmpÞ
ðp − kÞ2 −m2

p
=ϵ⋆λ ðkÞurðpÞ; ðC3Þ

where k and p0 ¼ p − k denote the four-momenta of the
dark state and the internal proton, respectively.
The kinematic variables in the infinite momentum frame

can be parametrized as follows:

pμ ¼
�
pp þ

m2
p

2pp
; 0; pp

�
;

kμ ¼
�
zpp þ

p2
T þm2

D

2zpp
;pT; zpp

�
;

p0μ ¼
�
ð1 − zÞpp þ

p2
T þm2

p

2ppð1 − zÞ ;−pT; ð1 − zÞpp

�
; ðC4Þ

where z is the fraction of longitudinal momentum
carried by D, and the transverse momentum pT ¼
ðpT cosϕ; pT sinϕÞ is a measure of the noncollinearity
of the radiated scalar which determines how far off shell the
intermediate proton is, as given by ðp − kÞ2 ¼ m2

p −H=z,
where we have defined the kinematic structure function

Hðz; p2
TÞ≡ p2

T þ z2m2
p þ ð1 − zÞm2

D: ðC5Þ

We use the representation for the intermediate proton
propagator of Eq. (C2) in the framework of the quasireal
approximation that appears suitable for evaluating the cross
section in the high energy limit. The intermediate proton
propagator corresponding to two possible time orderings
can be decomposed as follows:

ið=p − =kþmpÞ
ðp − kÞ2 −m2

p
¼ i

2Ep0

X
r0

�
ur

0 ðp − kÞūr0 ðp − kÞ
Ep − Ek − Ep0

þ vr
0 ð−p − kÞv̄r0 ð−p − kÞ
Ep − Ek þ Ep0

�
; ðC6Þ

where Ep, Ep0 , and Ek are defined in Eqs. (C4) as the
energy of the incoming proton, the intermediate proton and
the radiated dark state.

In the collinear limit, k · p=p2
p ≪ 1, where the dark

states are radiated almost parallel to the energetic beam
proton, the denominator of the first term on the right hand
side of Eq. (C6) is small relative to the denominator of
the second term, Ep0 þ Ek − Ep ≪ Ep0 − Ek þ Ep, which
implies

H
4zð1 − zÞ2p2

p
≪ 1: ðC7Þ

Provided that the above kinematic condition is satisfied,
one can retain the first term while neglecting the second.
Thus the numerator of the proton propagator in Eq. (C2)
can be replaced with the polarization sum of an on shell
fermion, with the result

Mppt→Sf
r ≈ −Aðp0; pjÞ

X
r0
ur

0 ðp0Þ ðgSū
r0 ðp0ÞurðpÞÞ

ðp − kÞ2 −m2
p

;

¼
X
r0
Mppt→f

r0 ðp0; pjÞ
�
z
H

�
VS
r0r; ðC8Þ

Mppt→Vf
r;λ ≈ −Aðp0; pjÞ

X
r0
ur

0 ðp0Þ ðgVū
r0 ðp0Þ=ϵ⋆λ ðkÞurðpÞÞ
ðp − kÞ2 −m2

p
;

¼
X
r0
Mppt→f

r0 ðp0; pjÞ
�
z
H

�
VV
r0r;λ; ðC9Þ

where we defined the vertex functions VS
r0r¼gSūr

0 ðp0ÞurðpÞ
and VV

r0r;λ ¼ gVūr
0 ðp0Þ=ϵ⋆λ ðkÞurðpÞ. Note that now the

matrix element Mppt→f involves the reduced momentum
p0 ∼ ð1 − zÞp.
To calculate the vertex functions above, we use the

Pauli representations of the right-handed and left-handed
helicity states urðpÞ, for r ¼ �, with momentum
p ¼ jp⃗jðsin θ cosϕ; sin θ sinϕ; cos θÞ, normalized to u†u ¼
2E particles per unit volume, which take the form

uðþÞðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p �
c; seiϕ;

jp⃗j
Eþm

c;
jp⃗j

Eþm
seiϕ

�
T
;

uð−ÞðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p �
−s; ceiϕ;

jp⃗j
Eþm

s;
−jp⃗j
Eþm

ceiϕ
�

T
;

ðC10Þ

where s≡ sinðθ=2Þ and c≡ cosðθ=2Þ. The expressions
for the circular and longitudinal polarization vectors
associated to the dark vector with momentum k ¼
jk⃗jðsin θ cosϕ; sin θ sinϕ; cos θÞ also read
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ϵμ�ðkÞ ¼
e�iϕffiffiffi

2
p ð0;∓ cos θ cosϕþ i sinϕ;

∓ cos θ sinϕ − i cosϕ;� sin θÞ;

ϵμLðkÞ ¼
1

mV
ðjk⃗j; Ek sin θ cosϕ; Ek sin θ sinϕ; Ek cos θÞ:

ðC11Þ

Thus, by using the kinematic variables defined in
Eq. (C4), one finds the following explicit expressions for
the spinors

uþðpÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep þmp

p
; 0;

ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þmp

p ; 0

�
T
;

u−ðpÞ ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þmp

p
; 0;

−ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þmp

p �
T
;

uþðp0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 þmp

p �
1;

pTeiðϕþπÞ

2ð1 − zÞpp
;
ð1 − zÞpp

Ep0 þmp
;

1
2
pTeiðϕþπÞ

Ep0 þmp

�
T
;

u−ðp0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 þmp

p �
−pT

2ð1 − zÞpp
; eiðϕþπÞ;

1
2
pT

Ep0 þmp
;

−ð1 − zÞppeiðϕþπÞ

Ep0 þmp

�
T
; ðC12Þ

and the polarization vectors,

ϵμ�ðkÞ ¼
1ffiffiffi
2

p
�
0; 1;�i;−

pT

zpp
e�iϕ

�
; ðC13Þ

ϵμLðkÞ ¼
1

mV
ðzpp; pT cosϕ; pT sinϕ; zppÞ: ðC14Þ

Straightforward algebra then yields the following vertex
functions up to Oðm2

p; p2
TÞ,

VS
r0r ¼

gSffiffiffiffiffiffiffiffiffiffi
1 − z

p eiðr−12 Þϕ½rð2 − zÞmpδr0r − pTδr0;−r�; ðC15Þ

VV
r0r;λ¼� ¼ gV

ffiffiffi
2

p

z
ffiffiffiffiffiffiffiffiffiffi
1 − z

p e−iλϕeiðr−12 Þϕ

× ½pTðð1 − zÞδr;−λ − δrλÞδr0r − λz2mpδrλδr0;−r�;
ðC16Þ

VV
r0r;λ¼L ¼ gV

z
ffiffiffiffiffiffiffiffiffiffi
1 − z

p reiðr−12 Þϕ

mV
ðp2

T þ z2m2
p − ð1 − zÞm2

VÞδr0r;

ðC17Þ
We then obtain

VS
r0;rðVS

r00;rÞ⋆ ¼ g2SðISδr0rδr00;r0 þ J Sr0ðδr0r − δr0;−rÞδr00;−r0 Þ;
ðC18Þ

and

X
λ¼�;L

VV
r0;r;λðVV

r00;r;λÞ⋆ ¼ g2VðIVδr0rδr00;r0

þ J Vr0ðδr0r − δr0;−rÞδr00;−r0 Þ; ðC19Þ

which involves the functions,

IS ¼
ð2 − zÞ2m2

p þ p2
T

1 − z
;

J S ¼ −
ð2 − zÞ
1 − z

mppT;

IV ¼ 2

ð1 − zÞ
�
1þ ð1 − zÞ2

z2
p2
T þ z2m2

p

þ 1

2z2m2
V
ðp2

T þ z2m2
p − ð1 − zÞm2

VÞ2
�
;

J V ¼ 0; ðC20Þ

which are independent of ϕ. Note that the last term in IV
arises only for the massive vector boson, due to the
longitudinal polarization given in (C14).
Inserting the vertex functions (C18) and (C19) into

Eq. (C8), the absolute square of the matrix element
summed over polarizations of the final proton can now
be expressed in the form,

1

2

X
rð;λÞ

jMppt→Df
rð;λÞ ðp; k; pjÞj2

¼
�
z
H

�
2 X
r;r0;r00ð;λÞ

VD
r0;rð;λÞðVD

r00;rð;λÞÞ⋆

×
1

2
Mppt→f

r0 ðp0; pjÞðMppt→f
r00 ðp0; pjÞÞ�;

¼ g2Dð
z
H
Þ2IDjMp0pt→fj2; ðC21Þ

which importantly is proportional to the matrix element
squared for the subprocess ppt → X. Note that terms with
ðδr0r − δr0;−rÞδr00;−r0 in Eqs. (C18) and (C19) vanish. This is
because collinear emission does not change the proton’s
helicity and only transitions in which the helicity is
conserved contribute to the unpolarized matrix element
in Eq. (C21).
Finally, by integrating over the final state phase space,

the cross section for dark state emission is expressed via
the unpolarized cross section of the subprocess ppt → X
without radiation at the reduced momentum ð1 − zÞpp,
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dσppt→DfðsÞ ¼ 1

4EpEpt

d3k
ð2πÞ32Ek

Y
f

d3pf

ð2πÞ32Ef
jMp0pt→Dfj2ð2πÞ4δðpþ pt − k − pfÞ;

≈ g2D

�
z
H

�
2

ID
dp2

Tdz
16π2z

Ep0

Ep

Z
1

4Ep0Ept

Y
f

d3pf

ð2πÞ32Ef
jMp0pt→fj2ð2πÞ4δðp0 þ pt − pfÞ;

≈ wDðz; p2
TÞdp2

Tdzσ
ppt→fðs0Þ≡ dPp→p0D × σppt→fðs0Þ; ðC22Þ

where the difference in the energy conservation arguments
in the delta functions is neglected in the collinear limit,
pT ≪ pp. Here we have introduced the differential splitting
probability dPp→p0D ¼ wDðz; p2

TÞdp2
Tdz for radiating a

dark state with longitudinal momentum fraction z of the
initial beam proton and transverse momentum pT . The
splitting functions have the form

wSðz; p2
TÞ ¼

αθ
2π

1

2H

�
zþ zð1 − zÞ

�
4m2

p −m2
S

H

��
; ðC23Þ

and

wVðz; p2
TÞ ¼

αϵ
2π

1

H

�
z − zð1 − zÞ

�
2m2

p þm2
V

H

�
þ H
2zm2

V

�
;

ðC24Þ

with αθ ¼ g2SNNθ
2=4π, αϵ ¼ αemϵ

2. The expression in
Eq. (C23) agrees well with the result of [50] in the case
of scalar bremsstrahlung. Adding the timelike and off shell
form factors introduced in Sec. III D to the splitting
functions above is straightforward.

APPENDIX D: WW APPROXIMATION:
2 → 2 SUBPROCESS

Consider the 2 to 2 process pþ P → p0 þD, a sub-
process of the full 2 to 3 interaction that is relevant
for the WW approximation. The matrix elements take
the form,

iM22
V ¼ igVF

p
1;Vðm2

VÞϵ̃μqϵν⋆k ūp0

�
Fpp⋆Dððp − kÞ2ÞΓμ;Pðq2Þ

ið=p − =kþmpÞ
ðp − kÞ2 −m2

p
γν

þ γν
ið=p0 þ =kþmpÞ
ðp0 þ kÞ2 −m2

p
Fpp⋆Dððp0 þ kÞ2ÞΓμ;Pðq2Þ

�
up; ðD1Þ

iM22
S ¼ igSF1;Sðm2

SÞϵ̃μqūp0

�
Γμ;Pðq2ÞFpp⋆Dððp−kÞ2Þið=p−=kþmpÞ

ðp−kÞ2−m2
p
þ ið=p0 þ=kþmpÞ
ðp0 þkÞ2−m2

p
Fpp⋆Dððp0 þkÞ2ÞΓμ;Pðq2Þ

�
up; ðD2Þ

where p, p0, and k are the momenta of the incoming and
outgoing protons and the radiated dark state D ¼ V; S,
while ϵ̃μq stands for the phenomenological polarization of
Pomeron with momentum qμ, and the polarization sum isP

pol ϵ̃
μ
qϵ̃νq ¼ −gμν. We assume that the on shell Pomeron

state is massless, and in the following we set the virtuality
t ¼ q2 effectively to zero.
The squared matrix element, averaged (summed) over

the initial (final) spins takes the form,

jM22
D j2 ¼ 1

4

X
spin

jM22
D j2;

≈ g2DjFDðm2
D;m

2
p þUÞj2Y2

PF
2
PðtÞA22

D ; ðD3Þ
where

A22
V ¼ 4ð2m2

p þm2
VÞ
�
m2

p

�
SþU
SU

�
2

þ Sþ U −m2
V

SU

− 2
S2 þ U2

SU

�
; ðD4Þ

and

A22
S ¼ −2ð4m2

p −m2
SÞ
�
m2

p

�
Sþ U
SU

�
2

þ SþU −m2
S

SU

−
ðSþ UÞ2

SU

�
: ðD5Þ

We have defined the following invariant quantities
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U ≡ ðp − kÞ2 −m2
p ¼ m2

D − 2p · k; ðD6Þ

S≡ ðp0 þ kÞ2 −m2
p ¼ m2

D þ 2p0 · k: ðD7Þ

In the infinite momentum frame, these invariants are related
to the kinematic structure function Hðz; p2

TÞ and take the
following simple form

U ¼ −
H
z
; S ¼ H

zð1 − zÞ : ðD8Þ

Note that we have approximated Fpp⋆Dðm2
p þ SÞ ≈

Fpp⋆Dðm2
p þ UÞ in Eq. (D3) in the soft radiation limit.
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