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Dark matter particles may bind with nuclei if there exists an attractive force of sufficient strength.
We show that a dark photon mediator of mass ∼ð10–100Þ MeV that kinetically mixes with Standard Model
electromagnetism at the level of ∼10−3 generates keV-scale binding energies between dark matter and
heavy elements, while forbidding the ability to bind with light elements. In underground direct detection
experiments, the formation of such bound states liberates keV-scale energy in the form of electrons and
photons, giving rise to monoenergetic electronic signals with a time structure that may contain daily and
seasonal modulations. We show that data from liquid-xenon detectors provides exquisite sensitivity to this
scenario, constraining the galactic abundance of such dark particles to be at most ∼10−18–10−12 of the
galactic dark-matter density for masses spanning ∼ð1–105Þ GeV. However, an exponentially small
fractional abundance of these dark particles is enough to explain the observed electron recoil excess at
XENON1T.
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I. INTRODUCTION

Over the years, dark-matter (DM) direct detection
experiments have become extraordinarily sensitive to
sub-MeVenergy deposition by exotic sources, with thresh-
olds recently extending down to sub-keV energies. While
the primary motivation for these experiments is to search
for the elastic scattering of weakly interacting massive
particles (WIMPs) off nuclei, the scope of these searches
now includes, e.g., electron scattering, DM absorption, and
exothermic and endothermic inelasticity in DM-nucleus
scattering (see, e.g., Ref. [1] for a review). Each of these
searches seeks to measure the energy deposited from either
the kinetic (scattering) or mass energy (absorption, inelas-
ticity) of the incoming DM particle. In this paper, we point

out a third, distinct alternative: the energy released due to
the formation of a bound state between DM and a Standard
Model (SM) nucleus.
The phenomenology of DM-nuclear bound state for-

mation has been studied previously in the literature. For
instance, MeV-scale DM-nuclear binding was investigated
in Refs. [2–4], while Refs. [5–10] focused on keV-scale
bound states involving dark atoms to explain the DAMA
anomaly [11–13]. In contrast to these previously studied
models, all of which require some degree of intricate model
building, we instead consider bound states arising from one
of the simplest and most studied models in the literature
within the past fifteen years [14–16]: a DM particle χ
charged under a massive kinetically mixed dark photon. We
focus on a scenario where χ possesses a sizable interaction
with normal matter and constitutes a small fraction fχ ≪ 1

of the total galactic DM density. This model naturally leads
to (i) keV-scale DM-nuclear binding energies EB and
(ii) preferential binding to heavy nuclei, such that upon
penetrating the terrestrial overburden, χ only binds with the
much heavier nuclei (such as xenon and thallium) com-
monly found in underground DM detectors.
In a direct detection experiment whose target material

consists of atoms A of sufficiently large atomic number and
mass, the process of DM-atom “recombination” χ þ A →
ðχAÞ þ EB releases electromagnetic energy EB equal to the
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binding energy of ðχAÞ.1 For this reaction to occur, the
minimum required coupling between χ and A is sufficiently
large such that the galactic χ population quickly thermal-
izes upon encountering Earth’s environment, cooling down
to terrestrial temperatures. The implications of thermalizing
with the terrestrial environment are twofold. First, the
terrestrial χ density is drastically enhanced compared to
the galactic population, due to conservation of flux (the
“traffic-jam” scenario discussed in Refs. [17–19]). Second,
there are no observable elastic scattering signals of χ
despite its large couplings and enhanced terrestrial density,
since the thermal energy of underground laboratory envi-
ronments (≲300 K ∼ 25 meV) is well below existing
kinematic thresholds. However, since EB naturally lies
near the keV scale, the formation of DM-nuclear bound
states is readily detectable at large scale experiments
designed to search for WIMP-nuclear scattering.
Among such direct detection experiments, the suite of

large scale dual-phase xenon detectors plays an especially
important role. For instance, ionization-only data from
XENON10 and XENON100 place some of the strongest
constraints on MeV-scale DM-electron scattering [20],
and the large exposure and low background counts (below
10−5 per kg-day-keV) of the XENON1T experiment
enable new benchmark sensitivity not only to WIMP-
nuclear scattering but also to sub-keV electronic recoils
[21]. Intriguingly, the XENON1T collaboration recently
reported an excess of events consistent with electron recoils
with an energy deposition of ð2–3Þ keV [22]. This may be
consistent with a variety of recently proposed new physics
models, all of which invoke a substantial flux of particles
that feebly interact with normal matter (e.g., dark photons
[23,24], neutrinos and dark radiation [25–29], and exo-
thermic DM [25,30–32]). In this paper, we find that the
observed rate at XENON1T may be explained as a result of
a strongly coupled particle that makes up an extremely
small fraction fχ of the galactic DM density. In particular,
we find that a DM subcomponent that binds to xenon
nuclei with EB ¼ 2.5 keV is a viable explanation to this
anomaly. More generally, these signals are significantly
constrained by XENON1T for fractional abundances
greater than 10−18 ≲ fχ ≲ 10−12 and particle masses span-
ning 1 GeV≲mχ ≲ 30 TeV.

II. MODEL AND BOUND STATE
PARAMETER SPACE

We consider a subcomponent of DM χ that is directly
charged under a new massive dark Uð1Þ gauge boson A0

μ

that kinetically mixes with the SM photon,2

L ⊃ −
ϵ

2
F0
μνFμν þm2

A0

2
A02
μ ; ð1Þ

where mA0 is the dark photon mass and ϵ ≪ 1 controls the
strength of kinetic mixing [33]. If ϵ is generated radiatively
from particles charged under both the SM and dark sector,
the natural expectation is ϵ ∼ ðαDαÞ1=2=4π, where αD and α
are the dark photon and SM fine-structure constant,
respectively. χ interacts with normal matter through a small
effective coupling eqeff where qeff ≡ ϵ

ffiffiffiffiffiffiffiffiffiffiffi
αD=α

p
.

The dark photon also mediates attractive self-inter-
actions, such that resonances and capture to ðχχ̄Þ bound
states can significantly reduce the cosmological χ density
[15,34–37]. It is therefore reasonable to consider a small
fraction of the DM energy density fχ ≡ ρχ=ρDM that is
composed of such particles. In the local vicinity of the
galaxy, we consider fχ to be a free parameter, noting that
deviations from a standard thermal cosmological history
could result in fχ ≪ 1.3

A massive dark photon only allows binding with heavy
nuclei. Intuitively, this selection arises because the char-
acteristic size of the bound state ðqeffZαμÞ−1 should be
smaller than the range of the interaction m−1

A0 , with both the
atomic number Z of the nucleus and the DM-nuclear
reduced mass μ increasing with larger nuclei. To incorpo-
rate effects associated with the finite size of the nucleus, we
use Bargmann’s limit [38], which can be used to show that
a DM-nuclear bound state exists only if

qeffZαμ≳mA0 ×

�
1=2 ðmA0Rnuc ≪ 1Þ
mA0Rnuc=3 ðmA0Rnuc ≫ 1Þ; ð2Þ

where the radius of a nucleus of atomic mass A is
Rnuc ∼ 1.1 fm × A1=3. In Fig. 1, we show the minimum
value of qeff that is required for χ to bind with various
nuclei as a function of the DM mass mχ , fixing
mA0 ¼ 50 MeV. We see a clear preference to bind to
heavier elements for all χ masses. This is most pronounced
for large DM masses mχ ≫ 100 GeV, in which case
μ ≃mN and the minimal coupling to bind strongly depends
on the nuclear mass.
This leads to the intriguing possibility that binding to

heavy elements, such as xenon and thallium, is allowed,
while for lighter elements, such as nitrogen and iron, no
bound state exists. In this case, χ does not bind to the light
elements it encounters when traversing Earth’s atmosphere
and crust, but does bind to heavy elements employed in

1We adopt the notation where a bound state is denoted by
parentheses surrounding the names of the constituent particles.

2For concreteness, our calculations assume that χ is fermionic,
although all considerations in this paper apply equally well to
scalar DM.

3As a concrete example, arbitrarily small abundances of χ are
cosmologically generated provided that the reheat temperature of
the universe TRH is significantly smaller than mχ . In this case,
electron annihilations freeze-in a fractional abundance of χ
corresponding to fχ∼ ðαqeffÞ2e−2mχ=TRHmχmpl=ðTRHTmreÞ, where
mpl ∼ 1019 GeV is the Planck mass and Tmre ∼ 1 eV is the
temperature at matter-radiation equality.
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direct detection experiments. In the Bohr-like regime
(mA0 ≪ qeffZαμ), the binding energy is

EðBohrÞ
B ∼ 10 keV ×

�
qeff
10−3

�
2
�
Z
54

�
2
�

μ

122 GeV

�
; ð3Þ

thus opening up an opportunity to search for the OðkeVÞ
energy release in the formation of such bound states
in xenon-based targets. From Eq. (2), for mχ ≫100GeV
this occurs when the dark photon mass is mA0 ∼
qeff ×Oð10Þ GeV. In Fig. 2, we show the value of qeff
that is required to achieve a binding energy of EB ¼
2.5 keV with xenon (corresponding to the recoil energy
of the observed excess at XENON1T [22]) as a function
of mA0 for various choices of mχ . This is determined
by numerically solving the Schrödinger equation (see the
Appendix for additional details). For mχ ≲mXe, larger χ
masses enhance μ and thus require smaller values of qeff for
fixed EB, while this effect saturates for mχ ≫ mXe.

4 As
expected, the required value of qeff decreases for longer-
ranged dark photons (smaller mA0 ), saturating once mA0 is
smaller than the inverse Bohr radius of the DM-nuclear
bound state. However, for even smaller values ofmA0 , χ also
binds with iron, the heaviest abundant element in Earth’s
crust (denoted by dashed lines in Fig. 2), thus preventing χ

particles from reaching underground detectors. We are
thus motivated to consider dark photon masses of
mA0 ∼ ð10–100Þ MeV.

III. TERRESTRIAL THERMALIZATION

Before ultimately binding to a heavy nucleus in an
underground direct detection experiment, χ thermalizes to
terrestrial temperatures after it elastically scatters many
times off the much lighter elements in Earth’s atmosphere
and crust. This is governed by the transfer cross section for
elastic DM-nuclear scattering χN → χN, which in the
perturbative Born limit (mA0 ≫ qeffZαμ) is approximately

σðBornÞT ≃
64πZ2α2q2effμ

2

3m4
A0

≃ 3 × 10−26 cm2 ×

�
qeff
10−3

�
2
�
50 MeV
mA0

�
4

; ð4Þ

where in the second line we have taken mχ ≫ mN and set
the nuclear parameters equal to that of silicon, one of the
most abundant elements in Earth’s crust. Taking a terrestrial
silicon density of nSi ∼ 1022 cm−3, the typical distance
ltherm ∼ ðmχmN=μ2ÞðnSiσTÞ−1 for χ to equilibrate to room
temperature is much smaller than 1 km for sub-TeV DM
masses.
Earth’s gravitational field g induces a radially inward bulk

flow of the thermalized χ particles. The drift velocity of this
flow is parametrically of size vdrift ∼ ðmχ=μÞglmfp=vrel,
where lmfp ∼ 1=ðnNσTÞ is the mean free path for scattering
off nuclei N and vrel is the relative thermal velocity between

FIG. 2. In the fmA0 ; qeffg plane, contours of fixed binding
energy EB ¼ 2.5 keV of ðχXeþÞ for different choices of mχ .
Along the dashed parts of the contours, χ also binds with Fe.

FIG. 1. The minimum coupling qeff required for dark matter to
bind with various nuclei, as a function of dark-matter mass mχ ,
fixing mA0 ¼ 50 MeV. A dark-matter–nuclear bound state exists
with an element for values of qeff above the corresponding line.

4Formχ ≲ 20 GeV and ϵ≲ 10−3 (see the right panel of Fig. 3),
a dark sector coupling of αD ≳ 1 is necessary for our choice of
model parameters, which is reasonable if χ is a composite state.
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χ and N. In the parameter space of interest, this drift is
very slow, e.g., vdrift ≪ 10−10 for sub-TeV DM masses.
Since the virialized galactic χ population continually bom-
bards Earth with a characteristic speed set by the much faster
galactic wind vvir ∼ 10−3, conservation of DM flux implies
that the terrestrial energy density ρχ is greatly enhanced5

compared to the galactic density [18]. Specifically, ρχ ∼
ðvvir=vdriftÞfχρDM, where ρDM ≃ 0.3 GeV cm−3 is the local
DM energy density.6 Taking the limestone rock of the Gran
Sasso overburden to be composed of an equal mixture of
calcium carbonate and magnesium carbonate with density
∼3 g cm−3 [39], we find that the terrestrial number density of
χ is approximately

nχ ∼ fχ × 108 cm−3 ×

8<
:

ðGeVmχ
Þ1.5 ðmχ ≪ mNÞ

ðGeVmχ
Þ2.1 ðmχ ≫ mNÞ:

ð5Þ

In performing this calculation, instead of the Born-like
estimate in Eq. (4), we have incorporated a full thermal
average of the scattering rate utilizing the semianalytic
results outlined in Ref. [40]. A more detailed discussion
will be provided in forthcoming work [41].

IV. RATE OF BOUND STATE FORMATION

The formation of DM-nuclear bound states occurs by
the Migdal/Auger-like ejection of an atomic electron,
χ þ A → ðχAþÞ þ e−, followed by subsequent relaxation
of the nonejected atomic electrons to the ground state.
Bound state formation by bremsstrahlung emission of a
final state photon, χ þ A → ðχAÞ þ γ, is subdominant, as is
the case for the elastic scattering of light DM, since the rate
is suppressed by ∼keV=mN [42,43].
We estimate the probability of the transition χ þ A →

ðχAþÞ þ e− using quantum mechanical perturbation
theory. In the Appendix, we derive the cross section
for this process. We focus on the s-wave DM-nuclear final
state since it is guaranteed to exist if a bound state is
allowed. For an incoming DM particle that is also

s-wave, the cross section for this s-wave to s-wave
transition is

σBvrel ≃
4π

9

ðZαmeÞ5
ð2μEBÞ7=2

�
μ

mN

�
4

F2
χF2

e: ð6Þ

The numerical factors Fχ and Fe depend on the initial and
final state wave functions of χ and the ejected electron,
respectively, and must be determined numerically. For a
binding energy of EB¼2.5 keV in xenon, we find Fe ≃ 0.7.
Additionally fixing qeff as in Fig. 2 andmA0 ¼ 50 MeV, we
find that Fχ ∼Oð10Þ with the precise value depending on
the DM mass (see the Appendix for additional details).
Upon evaluating Fχ and Fe, we find that the cross section
for forming DM-xenon bound states with EB ¼ 2.5 keV
and mA0 ¼ 50 MeV is well fit by the functional form

σBvrel ≃ 6 × 10−34 cm2 ×

�
μ

100 GeV

�
0.55

: ð7Þ

In the Appendix, we show that although p-wave (and
higher) to s-wave transitions also occur, they are sup-
pressed by the small temperature of the thermalized DM
population and are thus subdominant to the s-wave to
s-wave transition discussed above.

V. RECOMBINATION SIGNAL

Direct detection experiments that employ heavy ele-
ments, such as liquid noble targets, have remarkable
sensitivity to the formation of these DM-nuclear bound
states. For a detector employing a target of atomic mass A,
the signal rate per unit target mass per unit time is

Rsig ¼ PsurvnχσBvrel

�
NA

A grams

�
; ð8Þ

where NA is Avogadro’s number and Psurv is the survival
probability that an incoming χ is not captured by naturally
occurring elements in the terrestrial overburden. Since we
are interested in dark photon masses that forbid χ from
binding with elements much lighter than xenon, premature
capture in the terrestrial crust can only occur from binding
with rare heavy elements.
The most abundant of such elements is barium, which

possesses an atomic number and mass slightly greater than
xenon. The average density of barium inEarth’s crust isnBa ∼
1018 cm−3 with an exact value that varies geographically. For
our estimates below, we adopt a range nBa ∈ ð0.7 − 6Þ×
1018 cm−3, whose log-central value of 2 × 1018 cm−3 is
representative of limestone [44], the dominant rock in the
overburden at Gran Sasso National Laboratory. The survival
probability is then given by Psurv ≃ exp½−nBaσcapvrelΔt�,
where σcap is the cross section for χ to bind with barium

5The rate to form bound ðχχ̄Þ states on Earth is much too slow
to affect the signals discussed here. This is because although such
dark interactions are unsuppressed by ϵ ≪ 1, the largest terrestrial
χ densities that we consider in this work are smaller than the
density of normal matter by at least 13 orders of magnitude.

6For our choice of model parameters, if mχ ≫ 10 TeV, then
the thermalization distance ltherm is much larger than the detector
depth h (which consists of h ≃ 1.4 km of rock at Gran Sasso). As
a result, χ particles bombarding the Earth from above do not
thermalize before reaching the detector. However, if ltherm is
much smaller than the radius of the Earth, χ particles approaching
the Earth from below travel more distance through Earth’s crust
and hence can thermalize above the detector. In this case, the local
value of ρχ is reduced by the small region of solid angles
corresponding to such trajectories, suppressing the thermalized χ
density at an underground detector by ∼h=ð2lthermÞ.
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and Δt is the time it takes for χ to penetrate the XENON1T
overburden,which consists ofh ≃ 1.4 kmof rock. The transit
time is given by the minimum of either the diffusion or
gravitational-drift timescales,Δt ∼minðtdiff ; tdriftÞ, where the
diffusion time tdiff and the gravitational-drift timescale tdrift
are approximately

tdiff ∼ h2
Γdragmχ

300 K
; tdrift ∼ h

Γdrag

g
; ð9Þ

and Γdrag ∼ ðμ=mχÞnNσTvrel is the drag rate [the inverse
timescale for a particle to change its momentum by an Oð1Þ
amount] from elastic scattering off of light nuclei with
density nN in the crust. Fixing EB ¼ 2.5 keV in xenon
and mA0 ¼ 50 MeV, we find that diffusion is efficient
(tdiff ≪ tdrift) for mχ ≪ 100 GeV, while gravitational drift
is most efficient (tdrift ≪ tdiff) for mχ ≫ 100 GeV, such
that Psurv ≃ 1 in either case. Instead, for DM masses of
mχ ∼ 100 GeV, Psurv ≪ 1 and premature capture by natu-
rally occurring bariummay exponentially reduce theDMflux
that is able to reach underground detectors.7

The time dependence of these signals depends on the
terrestrial χ density, which scales linearly with the velocity
of the virialized galactic population as nχ ∝ vvir. Since in
Earth’s frame vvir varies due to the relative motion of Earth
around the Sun, we expect an annual modulation of nχ .
Furthermore, the short mean free path in Earth’s crust
implies a sizable diurnal modulation. For the signals
discussed in this work, modulation over a timescale tmod
is not present if the diffusion time for χ to travel a length
vdrifttmod is shorter than tmod. We estimate that for masses
mχ ≪ 10 GeV or mχ ≪ 100 GeV, diffusion is strong
enough to wash out an annual or daily modulation in
XENON1T data, respectively. Since, unlike a WIMP, χ
does not free stream throughout Earth, the phase of the
annual modulation depends on the relative direction
between the vector normal to Earth’s surface at Gran
Sasso and Earth’s galactic motion. As a result, we find
that the annual modulation for such strongly interacting
relics peaks near the spring and fall equinox, which is
consistent with the findings of Ref. [10].
In Fig. 3 (left), we illustrate the existing sensitivity

of XENON1T to fractional abundances fχ as a function
of mχ , fixing mA0 ¼ 50 MeV and EB ¼ 2.5 keV in xenon.
Following Ref. [25], an S1-S2 signal rate of Rsig ≃
60 tonne−1 yr−1 accounts for the excess of electron recoil
events as measured by XENON1T. This model space is

FIG. 3. Left: limits derived from XENON1T (green) on the fractional abundance fχ , in the case that the binding energy between χ and
xenon is EB ¼ 2.5 keV and mA0 ¼ 50 MeV. The solid green line assumes an abundance of barium in the Gran Sasso overburden of
2 × 1018 cm−3, whereas the upper and lower dashed green lines assume a barium density that is larger or smaller by a factor of 3,
respectively. Also shown are existing constraints (shaded gray) from searches for χ-nuclear elastic scattering at CRESST [45], CDMS [46],
and XENON1T [47]. Right: contours of ðχXeþÞ binding energy 2 keV ≤ EB ≤ 3 keV for various choices of αD, fixing mχ ¼ 1 TeV, in
the fmA0 ; ϵg plane. Along the dashed parts of the contours, χ also binds with Fe. The gray regions are currently excluded by accelerator and
beam dump searches for visibly decaying dark photons [48]. Future accelerator searches, for instance APEX [49], FASER [50], HPS [51],
LHCb [52–55], NA64 [56,57], and SeaQuest [58], will explore nearly all of the currently allowed parameter space shown.

7Even if capture by barium is significant, a flux of DM particles
can be inadvertently delivered to a lab through other means, such
as air ventilation, bypassing the need to diffuse through the rock.
We conservatively neglect such processes in our analysis.
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shown as the green lines in Fig. 3 (left) for various
assumptions regarding the possible barium abundance in
the Gran Sasso overburden (from bottom to top, these
contours assume a barium density of 0.7 × 1018, 2 × 1018,
and 6 × 1018 cm−3, respectively). Thus, values of fχ that
lie significantly above these lines are presently excluded
by XENON1T. We see that if a component of DM can
bind to heavy nuclei, XENON1T probes fractional
abundances as small as fχ ∼ 10−18. Previously existing
constraints on this parameter space are also shown as
shaded gray regions. These are derived from searches at a
surface-level CRESST run [45], as well as underground
CDMS [46] and XENON1T [47] runs that are sensitive to
the nuclear elastic scattering of χ particles that do not
thermalize with the terrestrial environment. For small χ
masses, these limits are significantly weakened due to the
increased likelihood for χ to thermalize in the overburden,
and thus are typically many orders of magnitude weaker
than those derived from bound state formation in
XENON1T.
We also note that a search for anomalously heavy gold

atoms (in this case, due to heavy χ particles bound to the
nucleus) can be recast as constraints in this model space
[59]. Conservatively assuming that the gold nuggets used in
these tests originated below the point of thermalization for
χ throughout the entire age of the Earth, and that the capture
rate in gold is similar to that of xenon, the corresponding
limits are subdominant to the direct detection constraints
described above. In particular, we estimate that these
searches are sensitive to fractional abundances of fχ ≳
10−9 for mχ ∼ 100 GeV and fχ ≳ 10−6 for mχ ∼ TeV, with
no sensitivity outside this mass range.

VI. DISCUSSION

We have explored the intriguing possibility that the
excess of events at XENON1T is explained by an expo-
nentially small subcomponent of DM that binds with
heavy nuclei through a dark photon mediator of massmA0 ∼
Oð10–100Þ MeV that generates a sizable DM-SM coupling
qeff ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffi
αD=α

p ≳ 10−3. For a perturbative model in which
αD ≲Oð1Þ, we are thus motivated to consider ϵ≳ 10−4.
This parameter space can be efficiently probed by searching
for visible decays of dark photons that are produced in the
collisions of dedicated accelerator experiments.8 This is
illustrated in Fig. 3 (right) in the fmA0 ; εg plane. For two
representative choices of αD shown as red and blue bands,
the χ − Xe binding energy is varied from ð2–3Þ keV, while
fixing mχ ¼ 1 TeV. Also shown in dark gray are existing
constraints from searches for the production and visible

decay of dark photons in accelerator and beam dump
experiments [48]. Near future accelerator experiments, such
as APEX [49], FASER [50], HPS [51], LHCb [52–55],
NA64 [56,57], and SeaQuest [58], will be able to decisively
probe this region of parameter space [61].
We have focused on exhibiting the salient features of

how DM-SM bound state formation can give rise to
signals in the XENON1T S1-S2 data of Ref. [22] since
this search has the largest exposure among experiments
sensitive to OðkeVÞ electron recoils. However, other
experiments may have sensitivity to new parameter space
for two reasons. First, when threshold energies are
reduced to below ∼1 keV at the expense of reduced
exposure or larger backgrounds, smaller couplings qeff
can be probed for larger fχ. Examples in this vein are the
XENON1T S2-only [62] and XENON10 [63] searches,
which are sensitive to energy depositions as small as
Oð100Þ eV and Oð10Þ eV, respectively. Second, nuclear
targets which are heavier than xenon are sensitive to
smaller qeff. Examples among these are tungsten in the
CRESST experiment [45] and thallium dopant present in
the DAMA experiment [11–13]. However, since CRESST
vetoes on electron recoil events and reports limits only on
nuclear recoil events, its public results are at present
insensitive to this model.
The DAMA experiment has reported a long-standing

annual modulation signal in the ð1–6Þ keV energy range
[11–13]. Since iodine has a similar atomic mass to xenon,
we generically expect DM particles that can bind to xenon
nuclei to also bind to iodine nuclei; however, the DAMA
event rate is significantly higher than the Xenon1T rate, and
thus relevant constraints from DAMA on this model are
significantly weaker than the Xenon1T limit. While the
primary target materials (sodium and iodine) are lighter
than xenon, thallium is present at the ∼10−3 level. Since
thallium nuclei are much heavier than xenon, this raises the
tantalizing possibility that qeff is large enough such that χ
binds deeply in thallium but is too small to deposit a
significant energy above threshold in xenon-based experi-
ments, thus explaining the DAMA observation. For
mχ ≳ 100 GeV, explaining the modulated rate at DAMA
requires fractional abundances of fχ ≳ 10−9, which is in
conflict with limits derived from CDMS [46] [see Fig. 3
(left)]. Instead, for mχ ≲ 100 GeV, fχ ∼ 10−12–10−9 pre-
dicts a rate consistent with DAMA, provided that qeff lies in
a narrow range to facilitate a χ − Tl binding energy of EB ∼
2 keV without being in tension with an S2-only search at
XENON1T [62]. However, as discussed above, the phase
of the annual modulation of these signals is inconsistent
with DAMA’s observation of peak rates near the beginning
of June and December. Although strongly interacting relics
cannot accommodate this excess of events, it is interesting
to note that DAMA can place some of the most stringent
constraints on models in which χ preferentially binds to
thallium (and heavier elements).

8For mA0 ≪ 1 MeV, accelerator searches for GeV-scale χ
particles exclude qeff ≳ 10−2 [60], but lack sensitivity to models
with much larger A0 masses, as considered in this work.
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APPENDIX: BOUND STATE FORMATION

In this Appendix, we provide a detailed derivation of
the cross section for bound state formation χ þ A →
ðχAþÞ þ e−.

1. Perturbation theory setup

The Hamiltonian for the system can be written as
Ĥ ¼ Ĥ0 þ V̂pert, with V̂pert being a small perturbation to
the unperturbed Hamiltonian Ĥ0. The cross section for
transitioning from an initial state jii to a continuum final
state jfi, both eigenstates of Ĥ0, is given by Fermi’s golden
rule. In the process we are considering, an electron is
ejected into a continuum final state, with a change in energy
given by EB, the binding energy of ðχAÞ, so that Fermi’s
golden rule reads [64]

dσ ¼ d3pe

ð2πÞ3 2πjhfjV̂pertjiij2δðEe − EB þ ωe;iÞ

¼ dΩe

ð2πÞ2 mepejhfjV̂pertjiij2; ðA1Þ

where pe and Ee are the momentum and energy of the final
state electron respectively, and ωe;i is the binding energy of
the initial state electron. In the second equality, we have
integrated over the delta function, which leaves just the
solid angle of the electron momentum Ωe and fixes
pe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðEB − ωe;iÞ

p
. We neglect the kinetic energy

of the incoming thermalized χ particle, which is much
smaller than EB. The appropriate normalization of the
states jii and jfi will be discussed below.
The total Hamiltonian involving the nucleus N, the DM

particle χ, and the ejected electron e contains the following
terms:

Ĥ ¼ T̂ þ V̂χN þ V̂eA; ðA2Þ

where T̂ is the kinetic energy terms of all the particles
involved, and the various potential energy contributions are
V̂χN between χ and the nucleus N and V̂eA between the
ejected electron and the atom (including both N and the

other unejected electrons).9 Let us now discuss both of
these contributions.
We model VeA by adopting the Thomas-Fermi model

for the neutral atom, which gives an effective screened
potential energy of the nucleus and the atomic electrons
as a function of the distance to the nucleus. In this model,
the effective screened potential energy of the entire atom
VA is [64]

VAðjre − rN jÞ ¼ −
Zα

jre − rN j
ϕ

�jre − rN j
b

�
; ðA3Þ

where b≡ ð9π2=2ZÞ1=3=ð4αmeÞ, and ϕðξÞ satisfies the
Thomas-Fermi equation,

d2ϕ
dξ2

¼ ϕ3=2ffiffiffi
ξ

p ; ðA4Þ

with the boundary conditions ϕð0Þ ¼ 1 and
limξ→∞ ϕðξÞ ¼ 0, which can be solved numerically. VeA,
the potential energy between the ejected electron and the
rest of the atom, can be obtained by subtracting the
contribution from the initial bound state electron, i.e.,

VeAðjre − rN jÞ ¼ VAðjre − rN jÞ− α

Z
d3r0

jψe;iðr0Þj2
jðre − rNÞ− r0j ;

ðA5Þ

where ψe;iðrÞ is the wave function of the initial bound state
electron before it is ejected. The explicit form of ψe;iðrÞ
will be discussed below near Eq. (A24).
The characteristic size of the ðχNÞ bound state is

1ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p ≃ 9 fm ×

�
100 GeV

μ

�
1=2

�
2.5 keV

EB

�
1=2

; ðA6Þ

which is comparable to typical nuclear radii Rnuc ∼
5 fm × ðA=100Þ1=3. Here, μ is the reduced mass of χ
and N. Finite size effects of the nucleus are therefore
important for describing the potential energy VχN between
χ and N. Modeling the nucleus as a uniformly charged
sphere of radius Rnuc centered at rN , the potential at rχ can
be written as

9The other potential energy terms involving solely the un-
ejected electrons are unimportant, since either the ejected electron
states or the χ states are eigenstates of these operators, and the
initial and final wave functions are orthogonal. Furthermore, we
do not include the potential arising from interactions between χ
and electrons because χ becomes tightly bound to the atom and
thus dominantly experiences just the bare nucleus: the typical size
of the bound state, given in Eq. (A6), is much smaller than the
size of the xenon atom.
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VχNðjrχ − rN jÞ ¼ −
Z
N
d3r0

ρ

jðrχ − rNÞ − r0j e
−mA0 jðrχ−rNÞ−r0j; ðA7Þ

where ρ≡ qeffZα=ð4πR3
nuc=3Þ, and the integral is performed over the volume of the nucleus. This integral can be evaluated

analytically to give

VχNðrÞ ¼ −
4πρ

m3
A0r

�
mA0r − e−mA0Rnucð1þmA0RnucÞ sinh ðmA0rÞ ðr < RnucÞ
e−mA0 r½mA0Rnuc coshðmA0RnucÞ − sinhðmA0RnucÞ� ðr ≥ RnucÞ;

ðA8Þ

where we have defined r≡ rN − rχ . Defining the origin to
be located at the ðχNÞ center of mass, rN ¼ ðμ=mNÞr and
rχ ¼ −ðμ=mχÞr. Hence, after bound state formation, the
position of N is parametrically μ=mN times the spatial
extent of the bound state, i.e., rN ∼ ðμ=mNÞ=

ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p
. Since

this is always much smaller than the typical size of the
atom, we may expand VeAðjre − rN jÞ in powers of the small
quantity rN to obtain

VeAðjre − rN jÞ

¼ VeAðreÞ þ riN∂iVeAðreÞ þ
1

2
riNr

j
N∂i∂jVeAðreÞ þ � � �

≡ Vð0Þ
eA þ Vð1Þ

eA þ Vð2Þ
eA þ � � � ; ðA9Þ

where i, j denote spatial components, with repeated indices
summed over. We now take the unperturbed Hamiltonian
to be

Ĥ0 ≡ T̂ þ V̂χN þ V̂ð0Þ
eA : ðA10Þ

The initial and final states of both χ and the ejected electron
e are bound states or asymptotically free states that are
eigenstates of Ĥ0; the actual wave functions will be worked
out below. The full perturbative portion of the Hamiltonian

is therefore V̂ð1Þ
eA þ V̂ð2Þ

eA þ � � �. We therefore define the
perturbative correction to the Hamiltonian as

V̂pert ≡ V̂ð1Þ
eA þ V̂ð2Þ

eA ; ðA11Þ

keeping just the first two terms in the expansion of
VeAðjre − rN jÞ. We assume that χ is captured into the
s-wave ground state of the potential VχN , since it is the
most deeply bound; as we show below, under this

assumption, V̂ð1Þ
eA leads to a p-to-s transition with a unit

change in angular momentum between the initial and final

χ states, while V̂ð2Þ
eA facilitates an s-to-s transition instead,

with no change in χ angular momentum. We compute the
rate for each angular state by incorporating each contri-
bution to V̂pert separately, estimating the total bound state
capture cross section as σB ≈ σs þ σp, where σs;p is the
cross section for an s-to-s or p-to-s transition, respectively.
This treatment is appropriate as long as σs ≫ σp or

vice versa, which is true across almost all relevant param-
eter space.

2. Wave functions in a central potential

Before we investigate each transition separately, we note
that χ and e are both subject to a two-body central potential
with the nucleus. In each case, the Schrödinger equation
is separable into an angular and a radial component. For a
central potential V, and a well-defined energy E and
angular momentum quantum number l, the radial wave
function RðrÞ satisfies the following equation:

1

r2
d
dr

�
r2

dR
dr

�
−
�
lðlþ 1Þ

r2
þ 2μV

�
R ¼ −2μER; ðA12Þ

where r is the relative coordinate between the two bodies,
and μ is the reduced mass of two bodies. For a bound state
wave function E < 0, whereas for a continuum wave
function E ≃ k2=2μ > 0 such that k is the momentum of
the particle far away from the nuclear potential.
For bound wave functions, the full wave function is

R times the appropriate spherical harmonic for angular
momentum l and azimuthal quantum number m. Instead,
continuum wave functions with definite total momentum k
can be expanded as [64]

ψðr; θÞ ¼
X∞
l¼0

2lþ 1

2k
ilPlðcos θÞRklðrÞ; ðA13Þ

where RklðrÞ is the solution to Eq. (A12) with E ¼ k2=2μ,
Pl is the lth Legendre polynomial, and cos θ≡ r̂ · k̂ (we
have neglected the phase shift factor δl, consistent with the
perturbative treatment used here). The constant prefactors
correctly normalize the asymptotic wave function to a
single particle plane wave.

3. s-to-s capture cross section

We first consider the case of s-to-s capture through V̂ð2Þ
eA .

Although this term is higher order in rN than V̂ð1Þ
eA , there is

no velocity suppression to this cross section, since there is
no change in l between the initial and final states. From
Eq. (A1), the matrix element for this process in the position
basis is
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dσ ¼ dΩe

ð2πÞ2mepe

����
Z

d3rψ�
χ;fðrÞψχ;iðrÞ

×
Z

d3reψ�
e;fðreÞψe;iðreÞVð2Þ

eA ðreÞ
����
2

; ðA14Þ

where the subscripts i and f denote initial and final states
for the position-space wave functions ψ for χ and e. We can
simplify this integral with the following identity that we
will utilize several times in this Appendix:

Z
d3xfðxÞxixj ¼ 1

3

Z
d3xfðxÞx2δij; ðA15Þ

for some function fðxÞ. Since the s-wave initial and final χ
states are spherically symmetric, in Eq. (A14) we can
therefore replace

Vð2Þ
eA ¼ 1

2
riNr

j
N∂i∂jVeAðreÞ →

r2N
6
∇2VeAðreÞ: ðA16Þ

By Gauss’s law, we can relate ∇2VeA to the charge density
of the atom, such that

Vð2Þ
eA ðreÞ →

2π

3
αr2Nð−Zδ3ðreÞ þ nTFðreÞ − jψe;iðreÞj2Þ;

ðA17Þ

where nTFðreÞ − jψe;iðreÞj2 is the number density of
electrons in the Thomas-Fermi model minus the number
density of the initial bound state electron, and the Dirac
delta function arises from the nucleus, which we take to be
a point charge from the point of view of the ejected
electron. The expression for the electronic number density
nTF is [64]

nTFðreÞ ¼
1

3π2

�
2Zαme

re
ϕ

�
re
b

��
3=2

; ðA18Þ

where ϕ is determined numerically from Eq. (A4). With
this, Eq. (A14) becomes

dσ ¼ dΩe

ð2πÞ2 mepe

�
2πα

3

�
2
����Zψ�

e;fð0Þψe;ið0Þ −
Z

d3reψ�
e;fðreÞψe;iðreÞðnTFðreÞ − jψe;iðreÞj2Þ

����
2

×

����
Z

d3r

�
μ

mN

�
2

r2ψ�
χ;fðrÞψχ;iðrÞ

����
2

; ðA19Þ

where we have used rN ¼ ðμ=mNÞr.
We now turn our attention to obtaining the wave

functions in Eq. (A19), beginning with the initial and final
state χ wave functions. These wave functions are eigen-
states of T̂ þ V̂χN , which are naturally obtained in the χ-N
center-of-mass frame using the variables defined above:
r≡ rN − rχ , such that rN ¼ ðμ=mNÞr and rχ ¼ −ðμ=mχÞr.
The initial state χ wave function ψχ;i is an l ¼ 0 state with
energy E ¼ k2=2μ and momentum k (in the χ-N frame);
based on the decomposition of continuum wave functions
in a central potential given in Eq. (A13), we have

ψχ;iðrÞ ¼
Rχ
k0ðrÞ

2k
ffiffiffiffiffiffiffi
vrel

p ; ðA20Þ

where vrel is the velocity of the incoming χ particle in the
χ-N center-of-mass frame, and 1=

ffiffiffiffiffiffiffi
vrel

p
normalizes ψχ;i to

the “one particle unit current density” prescription, which is
necessary to ensure that the right-hand side of Eq. (A1) is
correctly scaled to give the cross section on the left-hand
side [64]. Rχ

k0ðrÞ is the solution to Eq. (A12) with V ¼ VχN ,
μ the χ-N reduced mass, and E ¼ k2=2μ ≃ 0 (we neglect
the kinetic energy of the incoming χ, which is always small
relative to the binding energy EB). Asymptotically far away
from the nucleus, Rχ

k0 should tend to the free continuum
solution of Eq. (A12) (i.e., the solution with V ¼ 0 and

l ¼ 0), which is 2kj0ðkrÞ [64]. In the k ≪ 1=r limit, we
therefore expect limr→∞ ψχ;iðrÞ ¼ 1=

ffiffiffiffiffiffiffi
vrel

p
. To incorporate

the effect of the potential VχN on ψχ;iðrÞ at smaller radii, we
parametrize the general solution as

ψχ;iðrÞ ¼ GðrÞ= ffiffiffiffiffiffiffi
vrel

p
; lim

r→∞
GðrÞ ¼ 1; ðA21Þ

for some dimensionless function GðrÞ that we compute
numerically by solving Eq. (A12) for the χ-N system.
The wave function of the final state χ, ψχ;f, is a bound

eigenstate of the potential VχN with l ¼ 0; we obtain the
radial component Rχ

b:s:ðrÞ of ψχ;f by again numerically
solving Eq. (A12) for the χ-N system but with E ¼ −EB
and adjusting the effective coupling qeff until we obtain a
solution that goes to zero as r → ∞ with no nodes.
Including the angular piece of the wave function (i.e.,
the spherical harmonic Y00 ¼ 1=

ffiffiffiffiffiffi
4π

p
), we have

ψχ;fðrÞ ¼ Rχ
b:s:ðrÞ=

ffiffiffiffiffiffi
4π

p
: ðA22Þ

Next, we consider the initial and final state wave
functions for the ejected electron. From Eq. (A19), we
see that the capture cross section is enhanced by Z2 for
electronic wave functions that have nonvanishing weight at
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the origin. Since wave functions of angular momentum l
scale as ∼rl at small radii, we focus on s-wave electronic
wave functions. The electron is treated as initially occupy-

ing a bound eigenstate of T̂ þ V̂ð0Þ
eA . For simplicity, we

adopt the Roothaan-Hartree-Fock electronic wave func-
tions for the atomic orbitals, where the radial part of the
wave functions is decomposed into a linear combination of
Slater orbitals, as computed in Refs. [65,66] (see also
Ref. [67]). This decomposition can be written as

Re
nlðreÞ ¼

X
j

CjnlSjlðreÞ;

SjlðreÞ ¼
ð2ZjlÞnjlþ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffið2njlÞ!
p a−3=20

�
re
a0

�
njl−1

e−Zjlre=a0 ; ðA23Þ

where Cjnl is the weight given to each Slater orbital
(indexed by j), Zjl is an effective charge, njl is the principal
quantum number of that Slater orbital (see, e.g., Table 4.1
of Ref. [67]), and a0 ¼ 1=αme is the Bohr radius. For a
χ − Xe binding energy of EB ¼ 2.5 keV, only the 3s, 4s,
and 5s electrons in xenon are shallowly bound enough to be
ejected in an s-to-s transition. The full initial state wave
function of the electron for each of these states is then
simply

ψe;i ¼
Re
n0ðreÞffiffiffiffiffiffi
4π

p ; ðA24Þ

after including the appropriate spherical harmonic.
For the outgoing electron, we obtain the radial wave

function Re
pe0

ðreÞ by numerically solving Eq. (A12) for

the e − A system, i.e., with μ ¼ me, V ¼ Vð0Þ
eA , l ¼ 0, and

E ¼ p2
e=2me ¼ EB − ωe;i. Asymptotically far away from

the nucleus, we again expect Re
pe0

ðreÞ to approach the free
continuum solution 2pej0ðperÞ up to a phase, which sets
the normalization of Re

pe0
ðreÞ. The full final electron wave

function is then [see Eq. (A13) for the normalization factor]

ψe;fðreÞ ¼
Re
pe0

ðreÞ
2pe

: ðA25Þ

Having determined the wave functions in Eq. (A19),
we are now ready to compute σs, the s-to-s capture cross
section after summing over all possible initial electron
states. Returning to Eq. (A19), we find that the contribution

to Vð2Þ
eA from the screening electrons (the second term in the

first set of vertical brackets) is subdominant (at the level of
∼0.5%) to the Z2 contribution from the nucleus itself (the
first term in the first set of vertical brackets). Keeping only
this Z2 contribution yields

dσs ¼ 2
X
n

dΩe

ð2πÞ2 mepe

�
2πZα
3

�
2
�

μ

mN

�
4
����ψ�

e;fð0Þ
Re
n0ð0Þffiffiffiffiffiffi
4π

p
Z

dr4πr4
Rχ
b:s:ðrÞffiffiffiffiffiffi
4π

p GðrÞffiffiffiffiffiffiffi
vrel

p
����
2

; ðA26Þ

where for EB ¼ 2.5 keV in xenon the sum is over the n ¼ 3, 4, and 5 electrons, and the factor of 2 accounts for the pair of
electrons in each of these s orbitals. Also note that pe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðEB − ωe;iÞ

p
depends on n through the orbital-dependent

electron binding energy ωe;i. Integrating over the outgoing electron solid angle, the above expression simplifies to

σsvrel ¼
4πðZαÞ2

9

�
μ

mN

�
4
����
Z

drr4Rχ
b:s:ðrÞGðrÞ

����
2X

n

2mepejψ�
e;fð0ÞRn0ð0Þj2: ðA27Þ

Noting that the continuum wave functionsG and ψe;f are dimensionless, while the bound state wave functions Rχ
b:s: and Rn0

have dimension ½length�−3=2, we can use the characteristic length scale of the χ-N bound state 1=
ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p
as well as the size

of the atom 1=ðZαmeÞ to construct the following dimensionless form factors:

F2
χ;s ¼ ð2μEBÞ7=2

����
Z

drr4Rχ
b:s:ðrÞGðrÞ

����
2

; F2
e ¼

2

ðZαmeÞ3
X
n

pe

me
jψ�

e;fð0ÞRn0ð0Þj2: ðA28Þ

Our final result for the cross section is then

σsvrel ¼
4π

9

ðZαmeÞ5
ð2μEBÞ7=2

�
μ

mN

�
4

F2
χ;sF2

e; ðA29Þ

or numerically
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σsvrel ≃ 7 × 10−34 cm2 ×

�
Z
54

�
5
�
122 GeV

mN

�
4
�
2.5 keV

EB

�
7=2

�
μ

100 GeV

�
1=2

�
F2
χ;s

49

��
F2
e

0.5

�
: ðA30Þ

Taking the ionization potentials for the 3s, 4s, and 5s xenon
states to be 1148.7, 213.2, and 23.3 eV [68], respectively,
for EB ¼ 2.5 keV we find F2

e ¼ 0.5 with a relative con-
tribution of 81%, 17% and 2% from each state. For F2

χ;s, we
find only a weak dependence on mχ , ranging from F2

χ;s ≈
35 for mχ ¼ 1 GeV to F2

χ;s ≈ 62 for mχ ≫ mXe. A numeri-
cal fit to the capture cross section in Xe with EB ¼ 2.5 keV
gives

σXe;svrel ≃ 6 × 10−34 cm2 ×

�
μ

100 GeV

�
0.55

: ðA31Þ

Figure 4 shows σXe;svrel as a function of mχ . In addition,
we also show (i) the capture cross section in barium,
assuming χ binds to Xe with EB ¼ 2.5 keV, which
determines the survival probability of an incoming χ
traveling through the terrestrial overburden of under-
ground detectors, and (ii) the capture cross section in
thallium, assuming χ binds to Tl with EB ¼ 2.5 keV,
which is relevant for signals in DAMA (see the main body
for further discussion).

4. p-to-s capture cross section

We now consider the case of p-to-s capture through V̂ð1Þ
eA .

This process results in a dipole transition of the final state
electron, and bears many similarities to the photoelectric
cross section of the atom.

To begin, let us consider the matrix element of Eq. (A1),

which in position space involves Vð1Þ
eN ¼ riN∂iVð0Þ

eA . In the

language of operators, this corresponds to V̂ð1Þ
eN ¼

ir̂iN ½p̂i
e; V̂

ð0Þ
eA �. The matrix element of V̂ð1Þ

eN between the
initial state jii ¼ jχiijeii and final state jfi ¼ jχfijefi is
then

hfjV̂ð1Þ
eN jii ¼ ihχfjr̂iN jχiihefj½p̂i

e; V̂
ð0Þ
eA �jeii

¼ ihχfjr̂iN jχiihefj½p̂i
e; Ĥ

ð0Þ�jeii
¼ −iEBhχfjr̂iN jχiihefjp̂i

ejeii; ðA32Þ

where in the second and third equalities we have made use
of the fact that the only contribution to Ĥ0 that does not
commute with p̂e is V̂eA, and that the initial and final
electron states are both eigenstates of Ĥ0, with the differ-
ence in energy between the two states being given by the
χ-N binding energy, EB. The square of this matrix element
can be simplified by averaging over the direction of the
electron momentum and using Eq. (A15), which allows us
to replace

jhfjV̂ð1Þ
eN jiij2 →

1

3
E2
Bjhχfjr̂N jχiij2jhefjp̂ejeiij2: ðA33Þ

Notice that we have successfully factored the contributions
into a DM-only piece and an electron-only piece. The
electron part of the matrix element is the same one that
appears in electromagnetic dipole transitions. In particular,
the photoelectric cross section in the long wavelength
limit (averaging over photon polarization) is σpe ¼
2αpejhefjp̂ejeiij2=ð3meEBÞ [69] for an incoming photon
with energy EB and outgoing electron with momentum pe.
This allows Eq. (A33) to be rewritten as

jhfjV̂ð1Þ
eN jiij2 →

meE3
B

2αpe
σpejhχfjr̂N jχiij2: ðA34Þ

The capture cross section is determined from this matrix
element as in Eq. (A1). Rewriting the DM matrix element
in position basis and using rN ¼ ðμ=mNÞr, we have

dσp ¼ dΩe

ð2πÞ2
m2

eE3
B

2α

�
μ

mN

�
2

σpe

����
Z

d3rψ�
χ;fðrÞψχ;iðrÞr

����
2

:

ðA35Þ

The DM wave functions can be derived in a similar manner
to the previous section. The final bound state wave function
ψχ;f is identically given by the s-wave state in Eq. (A22).

FIG. 4. The capture cross sections for the s-to-s process (solid)
and p-to-s process (dashed), for capture of χ onto xenon (red),
barium (green), and thallium (blue), as a function of dark matter
mass mχ . Cross sections for Xe and Ba assume the existence of a
χ − Xe bound state with EB ¼ 2.5 keV, while the calculation for
Tl assumes that χ binds to Tl with EB ¼ 2.5 keV.
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Since ψχ;f is spherically symmetric, we see that the integral
in Eq. (A35) vanishes if ψχ;i is also s-wave. Hence, we take
the incoming wave function ψχ;i as the l ¼ 1 term in the
continuum wave function expansion in Eq. (A13), which
gives

ψχ;i ¼
3i

2k
ffiffiffiffiffiffiffi
vrel

p ðk̂ · r̂ÞRk1ðrÞ; ðA36Þ

where Rk1ðrÞ is the solution to Eq. (A12) with l ¼ 1,
V ¼ VχN , and E ≃ 0. Far away from the nucleus, Rk1

should tend toward the free l ¼ 1 solution Rk1ðrÞ →
2kj1ðkrÞ ≃ 2k2r=3 for k ≪ 1=r. As in the last section, to
incorporate the effect of the potential VχN on ψχ;iðrÞ at
smaller radii, we parametrize the general solution as

ψχ;i ¼ iðk · rÞFðrÞ= ffiffiffiffiffiffiffi
vrel

p
; lim

r→∞
FðrÞ ¼ 1; ðA37Þ

for some dimensionless function FðrÞ that we compute
numerically by solving Eq. (A12) for the χ-N system.
Having determined the DM wave functions, Eq. (A35)

reduces to

σpvrel ¼
2m2

eE3
Bμ

3T
3αm2

N
σpe

����
Z

drRχ
b:s:ðrÞFðrÞr4

����
2

; ðA38Þ

where we integrated over the outgoing electron solid angle
and used Eq. (A15) to replace ðk · rÞr → ðr2=3Þk in the
integral over r. Finally, we replaced k2 with its thermally
averaged value k2 → 3 μT, where T ≃ 300 K is the temper-
ature of the thermalized χ particle; as a result, the cross
section is suppressed by the small thermal velocity. As in
the last section, we can construct the following dimension-
less quantity:

F2
χ;p ¼ ð2μEBÞ7=2

����
Z

drRχ
b:s:ðrÞFðrÞr4

����
2

; ðA39Þ

such that the p-to-s capture cross section is given by

σpvrel ¼
m2

eTF2
χ;pσpe

12αm2
Nð2μEBÞ1=2

: ðA40Þ

For parameters that are representative of EB ¼ 2.5 keV in
xenon, we find

σpvrel ≃ 10−35 cm2 ×

�
T

300 K

��
122 GeV

mN

�
2

×

�
2.5 keV

EB

�
1=2

�
100 GeV

μ

�
1=2

×

�
F2
χ;p

176

��
σpe

2.5 × 10−19 cm2

�
: ðA41Þ

The photoelectric cross section σpe for various elements,
including xenon, with a photon energy of 2.5 keV can be
interpolated from data in Refs. [70,71]. Fixing EB ¼
2.5 keV in xenon, we find only a weak dependence of
F2
χ;p on mχ , ranging from F2

χ;p ≈ 81 for mχ ¼ 1 GeV to
F2
χ;p ≈ 287 for mχ ≫ mN.
The dashed lines in Fig. 4 show σpvrel for various

elements as a function of mχ . For xenon, we find that the
p-to-s rate is smaller than the s-to-s rate, with more than an
order of magnitude suppression once mχ ≳ 10 GeV; for
simplicity, we can therefore neglect the contribution of σp
to the full capture cross section in xenon. For capture in
barium and thallium, however, the p-to-s cross section
dominates over the s-to-s rate for mχ ≲ 5 GeV.
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