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Freeze-in leptogenesis via dark-matter oscillations
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We study the cosmology and phenomenology of freeze-in baryogenesis via dark-matter oscillations,
taking the dark matter to couple to Standard Model leptons. We investigate viable models both with and
without a Z, symmetry under which all new fields are charged. Lepton flavor effects are important for
leptogenesis in these models, and we identify scenarios in which the baryon asymmetry is parametrically
distinct from and enhanced relative to leptogenesis from sterile neutrino oscillations. The models we study
predict the existence of new, electroweak-charged fields, and can be tested by a combination of collider
searches, structure-formation studies, x-ray observations, and terrestrial low-energy tests.
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I. INTRODUCTION

The nature of dark matter (DM) and the origin of the
baryon asymmetry are two of the most important open
questions in particle physics. In this paper we study an
extension of the Standard Model (SM) that simultaneously
addresses both questions. We consider a model of freeze-in
DM [1-6] involving two DM mass eigenstates, the mass
splitting between which is sufficiently small that DM
production, propagation, and annihilation are coherent
processes in the early universe. In this situation, the
different propagation phases associated with the two DM
mass eigenstates can lead to SM particle/antiparticle
asymmetries [7], along lines similar to asymmetry gen-
eration via oscillations of right-handed neutrinos in ARS
leptogenesis [8,9].

In the minimal version of the model we consider, the
particles beyond the Standard Model (BSM) are a pair of
gauge-singlet Majorana fermions y; (i = 1,2), which con-
stitute the DM, and a complex scalar @ with charges
(1,1, —1) under the SU(3). x SU(2),, x U(1), SM gauge
group. While @ is in equilibrium with the SM due to its
gauge interactions, we assume that one or both of the y; are
feebly interacting and never come fully into equilibrium. In
two-component notation, the interaction term responsible
for DM production is
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where ¢, are left-handed spinors with hypercharge +1,
representing the SU(2),,-singlet charged leptons of the SM,
with flavor index a. We work in the mass basis for both the
DM and the SM leptons. Since @ carries only hypercharge,
it can be as light as O(100 GeV) depending on its
couplings to DM and SM fermions. This simple model
is sufficient to obtain both the observed baryon and DM
abundances.

As in the ARS mechanism, the production and oscil-
lation of DM can generate asymmetries in individual
flavors of SM leptons. Although the leading-order lepton
flavor asymmetries sum to zero, flavor-dependent washout
of these asymmetries can lead to a nonzero total lepton
number asymmetry. However, our model also features
potential sources for a flavor-summed asymmetry that
are distinct from the ARS mechanism, arising from the
asymmetry that can be stored in ®. In particular, the particle
content allows @ to couple to the SM lepton doublets,

Ay .
L£> —Tﬁzazﬁcp +Hec., (2)

which can significantly impact both the asymmetry calcu-
lation and the collider phenomenology. This interaction
violates the Z, symmetry under which the BSM particles y
and @ are odd, leading to astrophysical signatures of DM
decay such as X-ray lines.

Reference [7] first established the mechanism of freeze-
in baryogenesis via DM oscillations by studying a related
model, in which the DM couples to a QCD-charged scalar
and SM quarks. We briefly summarize the main findings of
that paper. In the quark-coupled case, flavor mixing
prevents the quarks from having flavor-dependent chemical
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potentials. This spoils the ARS mechanism, which depends
critically on the presence of flavor-dependent asymmetries
to generate a flavor-summed one. To find a nonzero
asymmetry in the minimal realization, with a single
QCD-charged scalar and two DM states, one needs to
take into account the flavor-dependence of the quark
thermal masses, particularly of the top quark. The DM
must have a substantial coupling to the top quark for the
asymmetry to be large enough, and the viable parameter
space is tightly constrained, with the scalar having a mass
of at most a few TeV. The parameter space broadens in the
presence of an additional source of DM production, for
example a second, heavier scalar whose decays leave
behind a “primordial” coherent DM background. Even
in this second scenario, the lightest scalar is typically not far
above the TeV scale for parameters that work for both DM
and baryogenesis. In either scenario, the DM mass is in the
~10-1000 keV range, and the lifetime of the ~TeV-mass
scalar typically satisfies ¢z 2 cm, potentially leading to
events with displaced jets plus missing transverse momen-
tum at colliders. Finally, Z,-violating terms for the quark-
coupled case are tightly constrained by proton decay,
making it more challenging for those interactions to be
relevant for baryogenesis.'

As already mentioned, the mechanism of freeze-in
leptogenesis has most commonly been discussed in the
context of the production and oscillation of right-handed
neutrinos in SM neutrino mass models [8,9] (see Ref. [10]
for a review). There has also been a recent proposal in
which the freeze in of DM and baryogenesis are simulta-
neously achieved through the interference of tree and loop
processes in the decay of a heavy mediator particle [11],
and there exist earlier proposals of asymmetric DM models
in which SM and DM asymmetries are simultaneously
generated through out-of-equilibrium scattering [12—14].

A. Generation of flavor-dependent asymmetries

In this paper, we study three model benchmarks, each
with a different mechanism that ultimately generates a
baryon asymmetry. However, at leading-order in the DM
couplings, the process that generates asymmetries in
individual lepton flavors, depicted in Fig. 1, is always
essentially the same.

Consider the DM interaction of Eq. (1), involving a
single BSM scalar ®@. For a generic DM coupling matrix

'More precisely, the Z,-violating terms can be relevant in
quark-coupled models only for certain matter content and
coupling choices. Reference [7] focused on the case in which
the DM couples to the u¢ quarks of the SM, £ D —F ,,®;uy;.
With this choice, the relevant Z,-violating term, ®*dd° is B-
violating (with the DM assigned B = 0). If the DM instead
couples to d° (and always defining ® to be an SU(3), triplet), the
Z,-violating couplings ®*gl and ®ue¢ are B-conserving but
O*ud® and ®ggq are not. Finally, if the DM couples to g, the only
relevant Z,-violating coupling is ®d¢I, which is B-conserving.

FIG. 1. Feynman diagram illustrating the production of DM
(v:), its propagation, and subsequent annihilation. First, the scalar
@* decays into y; and the SM particle e; following propagation,
the y; field annihilates with another SM field ej to reconstitute
@*. The net reaction is ey®* — e;®*. The process is a coherent
sum over y; mass eigenstates since y; is out of equilibrium.

F,;, each ®*) decay produces a coherent superposition of
DM mass eigenstates that depends on the flavor of the
lepton produced in association. The DM abundance thus
arises at O(F?). Subsequent DM oscillations and inverse
@) decays generate flavor-dependent ¢S /ef, asymmetries
at O(F*). SM-Yukawa interactions and sphalerons then
produce asymmetries in other SM species as well.
Neglecting neutrino masses, the three charges

Xa EB/3 _La (3)

are conserved in the SM, where B is baryon number and L,
is lepton flavor number. The final baryon asymmetry is
proportional to X = > X,,, the B — L charge stored in the
SM sector, at the sphaleron decoupling temperature 7', ~
131.7 GeV [15]. In our bookkeeping, we always define
the X, charges of the BSM particles to be zero,
Xo(®) = X,(x;) =0, even when we find it useful to
regard one or both of these particles as carrying lepton
number.

For sufficiently small F;, and assuming that the universe
starts with X, = O after reheating, a perturbative calcula-
tion of the X, asymmetries is appropriate. The leading-
order asymmetries turn out to be proportional to the
coupling combination [8,9]

Im[Fa1Fflz(F+F)1z]’ (4)

which means that the flavor-summed asymmetry X van-
ishes at this order,

Zlm[Fmelz(FTF)m] =Im[[(F'F)p,[’] =0. (5)
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In the absence of additional model ingredients, then, no
baryon asymmetry is generated at O(F*). We now define
our three benchmark models, specifying how a final baryon
asymmetry arises in each.

B. Model benchmarks

(1) The minimal model: Without the need for additional
model ingredients, effects of O(F®) and higher spoil the
cancelation that leads to zero net X charge at O(F*) [8,9].
As in ARS leptogenesis, flavor-dependent washout can
deplete the asymmetry in certain lepton flavors more than
others, leading to an X charge density that is equal to the
asymmetry in DM. We take these effects into account at
the perturbative level in Sec. II, and in Sec. III A we use the
network of quantum kinetic equations (QKEs) presented in
the Appendix D 2 to solve for the cosmological evolution
of the various flavor asymmetries and identify the viable
parameter space for DM and leptogenesis.

(2) The UVDM model: The cancelation of the baryon
asymmetry at fourth-order in DM couplings assumes that
the interaction of Eq. (1) is entirely responsible for DM
production and annihilation. As for the case of DM
couplings to QCD-charged states [7], an additional source
of coherent y production can strongly enhance the asym-
metry [7,16]. There are many possibilities for this addi-
tional DM interaction; for concreteness, in Sec. III B we
follow Ref. [7] by adopting a model with a second, heavier
scalar @,, leading two coupling matrices, F!, for ®; and
F?2, for @,. In this scenario the O(F*) baryon asymmetry is
proportional to

Im[(FHFl)zl (FNF2>12]’ (6)

which does not vanish in general.

(3) The Z2V model: Even if the interaction of Eq. (1) is
the only coupling of the DM to the SM sector, additional ®
interactions with SM fields can also qualitatively impact
the asymmetry calculation, as we explore in Sec. IV. The
Z,-violating case admits two additional renormalizable
interaction terms,

ﬂaﬂ *
E ) _haila’)(iH - TZalﬂCD + H.C., (7)

where H is the SM Higgs doublet, /, are the SM lepton
doublets, and we assume only a single scalar ®@. X-ray line
constraints on DM decay prevent the neutrino-portal
couplings h,; from playing a role in leptogenesis if y is
taken to be the DM [9,17]. By contrast, the Z2V couplings
Aqp can be large enough to significantly modify the
asymmetry calculation while being consistent with all
experimental and observational constraints. These inter-
actions violate X,, and they shift the O(F*)X, charge
densities produced by the DM interactions to produce a
baryon asymmetry at O(F*A?). Moreover, we will see that

the Z2V couplings can be large enough that the baryon
asymmetry is dramatically enhanced relative to the minimal
model. To be more precise, if all three independent Z2V
couplings come into equilibrium, the lepton chemical
potentials are driven to be flavor universal, which in turn
drives all asymmetries to zero. If, however, only one or two
of the Z2V couplings come into equilibrium, the baryon
asymmetry is not washed out and effectively arises
at O(F*).

C. Structure formation constraints

With the DM abundance generated at O(F?) and the
baryon asymmetry arising at O(F*) or higher, a general
challenge in these models is to produce a large enough
baryon asymmetry without overproducing DM. Because
we require the DM energy density to match the observed
value, lighter DM means a larger DM number density and
larger DM couplings, leading to a larger asymmetry. The
DM/leptogenesis tension is therefore minimized by taking
the DM to be as light as allowed by observational probes of
structure formation. Constraints from Lyman-a forest data
are often expressed as a lower bound on M 4,,,, the mass of
a warm thermal relic. Recent studies have obtained lower
bounds on M4, ranging from 1.9 keV [18] to 5.3 keV [19]
at 95% confidence level; see also Refs. [20-22]. A more
stringent constraint on the dark matter mass applies in the
type of freeze-in model we consider, with a heavy particle
in thermal equilibrium decaying to out-of-equilibrium DM
plus an additional light state. By matching matter power
spectra, Refs. [23,24] find that the constraint Mg, >
5.3 keV translates to My, = 16 keV for freeze-in via two-
body decay.

In the models we consider, with two DM mass eigen-
states, it is possible for y; to be much lighter than this
~16 keV lower bound, provided that the DM energy
density is dominated by y,. Moreover, this type of scenario
is particularly advantageous for getting a large asymmetry,
because y; can have larger couplings than would otherwise
be allowed by the observed DM energy density. The authors
of Refs. [21,25,26] present constraints on mixed cold/warm
dark matter in the M 4,, — r plane, where r is the fraction of
DM energy density in the warm state. The most stringent
constraints are obtained in Ref. [21], which uses Lyman-«
forest data to find, at 26 CL, r < 0.3 for M4, ~2 keV,
going down to r < 0.08 for M4, =~ 0.7 keV, at which point
the bound on r appears to have leveled off.

We take these findings into account in an approximate
way. We require the mass of y,, the heavier DM particle,
to satisfy M, > 15 keV. The lighter DM particle, y;, can
be arbitrarily light provided that the fractional y; con-
tribution to the DM energy density is sufficiently small.
For Majorana-fermion DM that decouples at temperatures
around or above the electroweak scale (as is the case in the
models we consider), and which comes fully into equi-
librium before decoupling, the observed DM energy
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density is realized for a DM particle mass of ~0.1 keV.
For M| <« 0.1 keV, then, r is acceptably small regardless
of the sizes of the y; couplings. We call M| <« 0.1 keV
the massless y; limit.

We will study the massless y; limit to determine, for
example, the full range of @ masses and lifetimes that work
for DM and leptogenesis. We will also identify viable
parameter space with larger M, under the assumption that
points with r < 0.1 give acceptable matter power spectra
for arbitrary M,. A detailed and robust determination of
the (M, M,,r) parameter space allowed by structure-
formation constraints is work in progress, and beyond
the scope of this paper. It is clear, however, that there exists
abundant parameter space for DM and leptogenesis that
does satisfy these constraints.

D. Outline of our analysis

The outline of the rest of the paper is as follows. In
Sec. II, we present a perturbative analysis of DM and
leptogenesis in the minimal model. The analysis provides
useful context for understanding the results of subsequent
sections while also motivating the need to work with the
full system of QKEs to map out the viable parameter space
more completely.

We present DM and leptogenesis results for the minimal,
UVDM, and Z2V models in Secs. III A, III B, and IV,
respectively. For each model, we show results for the
massless-y; limit to determine the range of allowed masses
and lifetimes for the collider target @ (or lightest scalar, @,
in the UVDM model), along with the allowed range of DM
masses. We also investigate what parts of the parameter
space survive departure from the massless-y; limit: how
heavy is y; allowed to be, and to what extent (if at all) must
the couplings of the lighter DM state y; dominate over the
couplings of y,?

We find viable parameter space for all three models. In the
minimal model, the upper bound on Mg is ~1.5 TeV, and @
decays promptly in much of the viable parameter space.
Moreover, the minimal model is constrained to be near its
massless-y; limit: we need M; < 0.05 keV, and the y,
couplings must be much larger than those of y,. In contrast,
the UVDM model has ample parameter space with M =
15 keV and a long-lived ®; particle. To a lesser degree,
the Z2V model also has viable parameter space with
M Z 15 keV, with the scalar typically decaying promptly
for scenarios in which the Z2V couplings significantly
impact leptogenesis. Although larger @ masses are viable
in the UVDM and Z2V models, the largest asymmetries
are realized for Mg < 1 TeV. We discuss implications for
collider searches and other experimental probes, including
Gy — 2,1n Sec. V.

*Even if it into equilibrium, a Majorana fermion of negligible
mass that decouples at 7 2 T, gives a contribution to Nz well
within the BBN and CMB constraints [27].

We relegate certain technical details to a series of
Appendixes. These include benchmark DM coupling
matrices (Appendix A), equilibrium chemical potential
relations (Appendix B), reaction density calculations
(Appendix C), background for our adopted system of
QKEs (Appendix D), and a discussion and collection of
perturbative results (Appendix E).

II. PERTURBATIVE ANALYSIS
OF THE MINIMAL MODEL

A. DM versus O(F*) flavor-dependent asymmetries

In this section, we quantitatively study the O(F*)X,
asymmetries alongside the O(F?) DM abundance, all
within the minimal model. In addition to highlighting
certain qualitative aspects of asymmetry generation, this
perturbative analysis also illustrates how the combined DM
and leptogenesis requirements predict upper bounds on the
masses of the new particles, making @ in particular a
promising target for colliders. Our three model benchmarks
share the same basic mechanism for the leading-order X,
asymmetries, so this discussion is also a useful starting
point for understanding our final DM and leptogenesis
results. The reader more interested in those final results
should skip ahead to Secs. III and IV.

This section draws from the perturbative results derived
and collected in Appendix D 1 and Appendix E. For those
results to apply, two conditions must be satisfied. First,
the abundances of both y mass eigenstates must remain
well below their equilibrium values. Second, we need
I'y/Heyw <2, where H., is the Hubble parameter at
sphaleron decoupling and where

Tr[FTF)

r =
@ 167 ®

(8)

is the @ decay width in the minimal model, at leading order
(e.g., neglecting thermal mass effects). This second con-
dition ensures that washout processes, including those that
do not depend on the DM abundance, have at most an
order-one effect on Ya.3 The leading-order calculation of
the DM abundance in Appendix E 1 leads to

@)
Y 500 GeV\2 /T
o016 x () (), 9)
Yo Mo He

where Y;(f) is the O(F?) DM number-density divided by
entropy density (defined to include both DM mass eigen-
states but only one helicity state: y or ¥, not both), and

For Mg, > Ty, a @ /" asymmetry generated at T ~ Mg, has
decayed by a factor ~eTe/(He) by the time of sphaleron
decoupling. We therefore adopt I'y,/(2H,,) = 1 as our criterion
for washout effects to be important, although this is of course
based on a rough estimate.
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Y1~ 1.95x107% is the equilibrium abundance for an
individual helicity and mass eigenstate of y particle.
Equation (9) shows that the I'q/H,, <2 perturbativity
condition is the limiting one for larger @ masses.

The O(F?) DM energy density, pgi)l, is determined by

Y}(f), the DM masses M; and M,, and a mixing angle

0 = arctan [(F'F)y, /(F'F) ], (10)

which controls the DM composition produced by @ decays:
at O(F?), the y, and y, number densities are proportional
to cos’ @ and sin? @, respectively. In Appendix E 1 we find

pﬁsz Ty M\ (500 GeV\2 (i)
oo = N\ Hey J\I5keV)\ My )

dm

where
M = M, cos® 0 + M, sin? 0. (12)

is the average mass of the y particles, weighted by
abundance.

In Appendix E1, we also show that the O(F*)X,
asymmetry (charge density divided by entropy density),
evaluated at the sphaleron decoupling temperature 7,
satisfies

y®
* < (1.5 x 10%)sin?20

YoBbs ~

I'p \2/500 GeV+4

X (H(D> <M—¢) I(4>(xewvﬁosc)v (13)
ew

where Xey = Mg/ Tey» Y§ = 8.7 x 10711 is the observed
baryon asymmetry [28], and the function Z®* is defined in
Eq. (E10) and plotted in Fig. 21(a). It is at most of order
one, and depends on the oscillation parameter

MoAM?
ﬂosc = W ~0.2 x

(500 GeV>3 : AM? (14)

Mg 15 keV)?’

where AM? = M3 — M? is the DM mass-squared splitting
and My ~7.1 x 10" GeV is defined so that the relation
between Hubble parameter and the temperature is H =
T?/M, at early times. The inequality of Eq. (13) is
saturated when the phases and additional mixing angles
(besides ) that parametrize the DM coupling matrix F,;
take on appropriate values; see Eqs. (E9) and (E13) in
Appendix E.

A typical y state produced at high temperatures 7 > Mg,
undergoes ~f../10 oscillations by the time the temper-
ature drops to T = Mg, at which point the ® abundance
begins to become Boltzmann-suppressed. In Fig. 21(a), we
see that Z™ (Xey. fosc)> and therefore the asymmetry, is

suppressed at large and small values of .. For small .,
the oscillations do not have enough time to develop before
the temperature becomes too small to have an appreciable
rate for inverse ® decay. For large f,.., the oscillations
become rapid at early times, which cuts off the asymmetry
growth prematurely. In Fig. 21(a), ™ (Xey. fosc) is peaked
at Poe~1 for Mg~T,, and Po.~4x 1072 for
Mg > T,,,. The smallness of these optimal S, values
reflects the importance of lower-energy y particles (which
oscillate more rapidly) and oscillations that occur at
temperatures well below Mg (whose effects are enhanced
by the larger integrated time at lower temperatures).

We now take the massless-y; limit to see how large Y é )
can be, consistent with the DM constraint. For fixed masses
and fixed 0, the DM constraint allows us to determine
Tr[F'F] and therefore T',. Taking M; — 0 and p(ﬁl =p3
in Eq. (11), we find

Fq; 0.21 2 15 keV Mq) 2 (15)
H., \sino M, J\500Gev) "

which we can use to rewrite Eq. (13) as

y@

st <125 x cot29(
Yy

15 keV

2

)ZIW (taefos). (16)

Figure 2 shows T (x.y. fosc) Versus M, for various Mg, in
the massless-y; limit. In this figure, the location of the peak
shifts to higher M, as Mg is increased. As the available
time for oscillations is reduced (by increasing Mg), a
shorter oscillation timescale (realized for larger M,) is
preferred.

If @ decays produce equal abundances of y; and y,
(0 = n/4, i.e., maximal mixing), one can use Eq. (16) and
the properties of the Z(*) function to show that requiring

Y ,(14) > Y% leads to the upper bounds M, <300 keV
and My < 8 TeV.

10
My =1TeV
1 L
2
é 0.1 Mg =200 GeV
=
1072
1073 ]
1 10 100
M, (keV)

FIG. 2. In the massless-y; limit, Z(*) (x.y. fosc) Versus M, for
various M.
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Equation (16) shows a 1/6? enhancement of YE,4) for

small mixing, & <« 1. We can understand this enhancement
as follows. In the massless-y; limit, the y; contribution to
the energy density is negligible, and imposing the DM
constraint amounts to choosing the couplings of y,, which
are proportional to (Tr[F' F])!/? sin §, in such a way that the
x> energy density matches pS%. That is, decreasing 6 means
increasing (Tr[FTF])!/? to keep the y, couplings held fixed.
This causes an increase in the y; couplings, which are

proportional \/Tr[F'F]cos 0, and therefore an increase in

the asymmetry. Exploiting this effect allows Y 2,4) ~ Y9 to
be realized for somewhat larger ® and y, masses than for
the case of maximal mixing. However, the perturbativity
condition I'g,/H,,, <2 provides a ceiling. One can use
Egs. (15) and (16) to show that the DM constraint,

I'p/Heyw <2, and Y ((14) > Y9 can only be simultaneously
satisfied for M, < 700 keV and Mg <9 TeV.

Those are the largest masses that can give an asymmetry
in an individual lepton flavor that is comparable to the
observed baryon asymmetry, consistent with the DM
constraint and roughly consistent with the perturbative
assumption. A rather extreme optimization is required
to realize these values, for example a particular texture
for the F matrix that leads to @ decaying predominantly
to a lighter DM mass eigenstate with M; <« 0.1 keV.
Moreover, we remind the reader that the flavor-summed
asymmetry, and therefore the baryon asymmetry, is in fact
zero at O(F*) in the minimal model.

B. DM versus O(F%) baryon asymmetry

We now extend our perturbative study of the minimal
model to O(F?), the order at which a baryon asymmetry
arises. Throughout this section, we adopt an F matrix of the
form given in Eq. (A2), with @ and the overall scale Tr[F'F|
free to vary. The remaining parameters that define F are
fixed at values that are favorable for getting a large
asymmetry (but not exactly optimal; see Appendix A1
for details). For this choice of F matrix, we find in
Appendix E 1 that the final O(F®) baryon asymmetry is

B_ ~ 23sin220

I'y \3 /500 GeV©
X (H(D) <M—q>) I((’)(er7ﬂosc)v (17)
ew

where the function Z(©) is defined in Eq. (E23) and plotted
in Fig. 21(b). We get the maximum asymmetry, subject to
the DM constraint, by taking the massless-y; limit. In that
case we can use Eq. (15) to eliminate I'q, /7T, in Eq. (17),
leading to the upper bound

18 cos? 6 (15 keV\3
5 6 107) S0 (S5 O ) (19
for our benchmark F matrix.

Keeping in mind that Z(® is never larger than ~1/2,
it is clear at this point that @ must couple preferentially
to the lighter DM state, y;, for the asymmetry to be large
enough. If ® decays instead produce equal y; and y,
abundances (0 = z/4), the asymmetry of Eq. (18) is maxi-
mized for M, = 15 keV (which saturates our adopted
structure-formation bound) and Mg ~ 700 GeV. These
additional optimizations only get the asymmetry up to
Y9/ yehs o~ 8 x 1073,

To get a sense of the parameter space that opens up for
smaller 6, we set I'/H,, = 2, at the high end of what is
reasonable for our perturbative analysis, and use Eq. (15) to
eliminate € in Eq. (18); the bounds we obtain in this way are
guaranteed to apply only in the perturbative regime. We find

that the DM constraint and Ygf) = Y9 can only be simulta-
neously satisfied for M, <30 keV and Mg < 800 GeV,
with a maximum Yl(;) of about six times the observed value
for the optimal masses Mg ~ 400 GeV and M, = 15 keV.
For these optimal masses, Eq. (15) gives 8 ~0.12. So, our
perturbative analysis suggests that the minimal model works
for DM and leptogenesis within a rather constrained param-
eter space. In particular, ® must decay mostly to y;, which
must be quite light—otherwise there would be nothing
gained by y; having larger couplings than y,.

We now turn to a more detailed and comprehensive
analysis of DM versus leptogenesis in the minimal,
UVDM, and Z2V models.

III. RESULTS FOR Z,-PRESERVING SCENARIOS

A. Results for the minimal model

To extend our study of the minimal model to larger
values of I'g,/ H.,,, We turn to the system of quantum kinetic
equations (QKEs) presented in Appendix D2. In our
implementation of the QKEs, which follows that of
Refs. [29,30], the equations are integrated over momentum
using a thermal ansatz for the DM momentum distribution;
see Eq. (D21). The QKEs track the y and y density matrices
and the X, densities, all of which evolve slowly because
only F-induced interactions change them. The collision
terms in the QKEs involve the ® and e chemical
potentials, which can be expressed in terms of the X,
densities and the y and jy density matrices using the
asymmetry relations derived in Appendix B. For further
details we refer the reader to the Appendixes.

To present results for the minimal model, we will first
take the massless-y; limit to see the full range of ® masses
and lifetimes and DM masses that work for DM and
leptogenesis. Then we will see what happens to the viable
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FIG. 3. For the minimal model in the massless-y limit, contours of Y/ YOBbs (blue, solid) and O (gray, dashed) in the (Mg, c74) plane,
for (a) M, = 15keV, (b) M, = 25 keV, (c) M, = 50 keV, and (d) M, = 100 keV, with the F matrix set to the minimal model benchmark
form of Eq. (A2). At each point in the plane, 6 is chosen to satisfy the DM constraint.

parameter space as we increase M ;. We will take essentially
the same approach when we present results for the UVDM
and Z2V models.

For the benchmark F matrix given in Eq. (A2), p4n, and Yp
are determined once we specify Tr[F'F], 6, and the BSM
particle masses M, M,, and Mg, For Figs. 3 and 4, we take
the massless-y, limit. Figure 3 shows contours of ¥ 5/ Y™ in
the @ mass-lifetime space for various M,, with € chosen to
satisfy the DM constraint at each point. The relation

-1
~0.8 <”—“’) (19)
H., cm

is useful when connecting to our earlier perturbative analysis,
in which we adopted I'y,/ Hey, ~ 2 as a rough cutoff on the

perturbative regime, corresponding to czg ~ 0.4 cm. For the
DM masses chosen for Figs. 3(a)-3(d), we find that the QKE
asymmetry is about a factor ~2-3 smaller than the pertur-
bative one for Mg = 500 GeV and ',/ H,,, = 2. We will
present a more detailed comparison of QKE and perturbative
results for the UVDM and Z2V models, in which a more
significant proportion of the viable parameter space lives in
the perturbative regime.

In Fig. 3(a), we take M, to be equal to 15 keV, our lower
bound on the DM mass based on structure-formation
considerations. The Yz/Y$ =1 contour of this plot,
which lies within My < 1.5 TeV and c7g < 0.6 cm, there-
fore represents our estimate of the full mass-lifetime
parameter space for @ in the minimal model. The @
particle decays promptly (as far as collider searches are
concerned) in much of the viable parameter space, and the
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FIG. 4. For the minimal model in the massless-y; limit, Y5 versus Mq for various 6 and M,, with the F matrix set to the minimal
model benchmark form of Eq. (A2). For each combination of parameters, Tr[FTF] is chosen to satisfy the DM constraint.

relatively low ceiling on its mass makes ® a promising
target for colliders. Baryon asymmetries over 100 times the
observed value are in principle consistent with the DM
constraint, but those large asymmetries require 6 < 1.
Much of the viable parameter space has € < 0.1, consistent
with expectations based on the perturbative analysis. In
Figs. 3(b)-3(d) we see the mass-lifetime space contract for
larger M,, going up to 100 keV, which is roughly the largest
viable DM mass in the minimal model.

To obtain these results, we neglect thermal corrections to
the DM masses. A proper treatment of these effects is quite
involved due to the challenges of modeling the k ~ Mg
momentum modes that are important at x ~ 1. However, we
have performed some numerical estimates of DM thermal
mass effects that suggest that Yz may be suppressed below
the observed value in the small-M g, small-czq corners of
the plots in Fig. 3. The impact is most significant for the
M, = 15 keV plot, where our estimates indicate that life-
times below ¢z ~ 0.1 cm for Mg ~ 100 GeV, and below
¢ty ~ 1073 c¢m for Mg ~ 300 GeV, may not be viable. The
impacted lifetimes shift to lower values for larger M,, and
we still find viable parameter space with Mg as low as
100 GeV, without significant suppression in the peak
asymmetries realized at higher Mg, Apart from the lower
(Mg, c7e) region just described, the viable parameter space
is largely unaffected. We leave a more careful study of these
effects for future work.

Still working in the massless-y; limit, Fig. 4 shows how
the viable ranges of M and M, expand as 6 decreases. At
fixed Mg and O, the asymmetry is suppressed as M,
increases due to the smaller DM couplings required to
match the observed DM energy density. At fixed M, and 6,
the suppression of the asymmetry at large M is due to the
oscillations not having time to develop, while the suppres-
sion at small Mg arises because significant dark matter
production continues after asymmetry growth has slowed,
requiring smaller DM couplings. Finally, at fixed 8, larger
M, means a shorter oscillation timescale and a somewhat
larger Mg that maximizes the asymmetry. The more
dramatic shift of the 8 = 0.01, M, = 15 keV contour to
lower Mg, is a strong-washout effect. Washout suppression
of the asymmetry depends on I'q,/H.,, while the DM
energy density is proportional to 6>M,I"y,/ M2 for small 6.
Once the DM constraint is imposed, I'/H., is propor-
tional to M%/(6°M.,), leading to stronger washout at larger
Mg and lower M,.

Figures 5 and 6 show the impact on the parameter space
when we depart from the massless-y; limit, allowing a non-
negligible fraction of the DM energy density to be stored in
x1- In Fig. 5 we take Mg = 500 GeV and M, = 15 keV,
favorable for producing a large asymmetry, and show
baryon asymmetry contours in the M, — sin” @ plane. We
see that DM and leptogenesis require M; < 0.2 keV, even
before we impose a constraint on r, the fraction of dark
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FIG. 5. For the minimal model, contours of Y/ Y"Bbs (blue,
solid) and r (red, dashed) in the (M|, sin? 0) plane, for Mg =
500 GeV and M, = 15 keV, with the F matrix set to the minimal
model benchmark form of Eq. (A2). At each point in the plane,
Tr[F'F] is chosen to satisfy the DM constraint.

matter energy density in y;. Once we impose r < 0.1, as
favored by Lyman-a forest observations, the constraint
tightens to M < 0.05 keV. Figure 6 shows how the Mg —
M, space shrinks as M increases, with the effect becoming
more pronounced for a more stringent upper bound on r.

Our study of the minimal model shows that the viable
parameter space is quite constrained, with the various upper
bounds Mg < 1.5 TeV, crgp <0.6 cm, M, < 100 keV,
M, £0.05 keV and 6 < 0.2. For much of the parameter
space, the @ particle is a realistic discovery target for future
runs of the LHC, as we discuss in Sec. VA.

B. Results for the UVDM model

The parameter space for DM and leptogenesis opens up
significantly if we include an additional source of DM
production [7,16]. For concreteness, we consider a model
in which the DM couples to two scalars ®; and ®,, both
of which have the same SM quantum numbers as the
@ particle of the minimal model. We focus on the case
with Mg, > Mg, so that @, impacts the dark matter and
leptogenesis calculations only through the coherent y
background its decays leave behind. This “decoupled-
@,” regime highlights the fact that the basic mechanism
of asymmetry generation can work for any additional
source of coherent DM production at high temperatures.
Our study of the UVDM model in this section has close
similarities to the analysis of the scenario with two QCD-
charged scalars in Ref. [7], although there are important
differences as far as the associated collider phenomenology
is concerned.

In the UVDM, two interaction terms are relevant for DM
production,

LD —Flesy @ — F2esy®, + Hee. (20)
The cancelation of the flavor-summed asymmetry at O(F*)
is spoiled in the presence of the two coupling matrices F!
and F2. Furthermore, for both the asymmetry and DM
calculations, the dependence on Mg and I'y, is different
than for Mg and I'g in the minimal model. This is largely
because the DM abundance produced by @, decays is an
additional free parameter, which we label as YV (defined
to include both DM mass eigenstates but only one helicity
state). We also now have two separate mixing angles
describing the relative production of the two DM mass
eigenstates: 6; controls the branching ratios of @, to the
lighter and heavier DM states, and 6, does the same for @,.

r<0.1 r<0.3

My, =0.01 keV My, =0.01 keV r<l My, =001 keV
100} 100} 100F My =0.02 keV
M,,=0.02 keV
WX\ 0.02 keV \/H:UUS keV
< 50F < 50F \ 1< 50F
= % M, =0.05 keV %
=~ 2 2 M, =0.1 keV
< < <
= M, =0.05 keV = §
M, =0.1 keV
10k . . ] 10k . . ] 10& . .
100 500 1000 100 500 1000 100 500 1000

Mg (GeV)

Mgy (GeV)

My (GeV)

FIG. 6. For various M, the contours enclose the (Mg, M,) space that is viable for DM and leptogenesis in the minimal model, with
the F matrix set to the minimal model benchmark form of Eq. (A2). At each point in the plane, Tr[F F] and 6 are chosen to maximize Y
subject to both the DM abundance constraint and the upper bound on r indicated; for the contours shown, that maximum Y is

equal to Y.
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FIG.7. For the UVDM model, contours of Y /Y %bs in the (Mg 5 CTo 1) plane, for various DM masses and mixings, with the F matrices
set to the UVDM benchmark of Eq. (A9). At each point in the plane, the abundance of DM produced by ®, decays, Y}(JV, is chosen so
that the total DM energy density from ®,; and @, decays matches the observed value. The dashed contours are based on the O(F*)
asymmetry of Eq. (21), while the solid contours are based on numerical solution of the quantum kinetic equations presented in
Appendix D 2. The two calculations are in reasonable agreement in the perturbative regime, ctp, 2 1 cm. In (a) and (c) we take the
massless y; limit, with M, = 15keV. In (b) and (d) we take M| = 15keV and M, = 20keV.

As before, small § means that decays to y, are favored over
decays to y».

We present perturbative results for the UVDM model in
Appendix E 2. Equations (E27) and (E29) give the O(F?)
DM energy density and O(F*) baryon asymmetry, respec-
tively. The O(F*) asymmetry can be written as

(4) uv
Yy Y
~ (1.03 x 10° 4
=103 1007 ()
rq,l) <500 Gev>2~
X ) IW(xy,, , 21
<Hew Mq;.l ( ew ﬂOSC) ( )

where the Z(*) function is defined in Eq. (E30) and plotted
in Fig. 21(c), and we define x.,, = My, /Ty, in the context
of the UVDM model. The factor 7 depends on the phases
and mixing angles that determine the two DM coupling
matrices F! and F?; see Appendix A 2 for details. We adopt
an optimal benchmark for asymmetry generation with
J = sin 26, sin 26,, as realized for the coupling matrices
given in Eq. (A9).

For selected DM masses and mixing angles, Figs. 7 and 8
show the viable mass-lifetime parameter space for ®@;. At
each point on the mass-lifetime plane, the DM energy
density produced by ®; decays is determined, and the
DM constraint is therefore satisfied by adjusting Y;V.
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FIG. 8. The viable (Mg, ctq,) space for DM and leptogenesis in the UVDM model, for various DM masses and mixings. The
abundance of DM produced by @, decays, Y}(JV, is chosen so that the total DM energy density from @, and @, decays matches the
observed value. These contours are based on numerical solution of the quantum kinetic equations presented in Appendix D 2. In (a—c)
we take maximal DM mixing for M, =0, M; = 15 keV, and M|, = M, /2, and in (d) we take 6, = 6, = 1/10 and M, = 0.

In Fig. 7(a) for example, below and to the left of the
diagonal line where the various Yz contours become very
narrowly separated, the DM energy density produced by @,
exceeds pSs, and the DM constraint cannot be satisfied.

The dashed contours in Fig. 7 are based on our
perturbative results, Eq. (21) for Y and Eq. (E27) for
Pdms While the solid contours in both Figs. 7 and 8 are
obtained by numerically solving the QKEs introduced in
Appendix D 2, with the initial condition taking into account
the primordial abundance Y}(N. Figure 7 shows reasonable
agreement between the perturbative and QKE calculations
for czy, 2 1 cm; the differences at long lifetimes are
mainly due to the thermal ansatz adopted for the DM
energy distribution in the QKE approach.

For 0, = 0, = n/4, the case of maximal mixing, y; and
> have equal overall coupling strengths and are produced
with equal abundances. In this case, ®; is long lived
for most of the parameter space that works for DM
and leptogenesis, with ¢z, as large as tens of meters,
as Figs. 7(a) and 7(b) show. Moreover, there is viable
parameter space with comparable y; and y, masses,
as we see in Fig. 7(b). This is all in sharp contrast to the
minimal model, where we needed Y, >V, , M| <1keV,
and ¢ty <1 cm for DM and leptogenesis to work. The
UVDM parameter space extends out to larger ®; masses
than colliders will probe in the near future, but the largest
asymmetries, over 100 times the observed value, are
realized for Mg <1 TeV.
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Even larger Y is possible with small mixing (6,
6, < 1), but only in the massless y; limit. This is illustrated
in Figs. 7(c) and 7(d). For M; <« 0.1 keV, the suppression
of Y from the small mixing angles is more than compen-
sated by the larger overall size of DM couplings that match
the observed DM energy density. Comparing Figs. 7(a)
and 7(c), we see that small mixing allows for shorter @,
lifetimes. Indeed, for small enough 6, and 0,, ctg, can be
as small as in the minimal model. When the y; and y,
masses are comparable, on the other hand, nothing com-
pensates for the suppression of Y due to small 8, and 6,,
and the viable parameter space shrinks dramatically, as seen
in Fig. 7(d).

Figure 8 shows how the mass-lifetime parameter space
shifts and contracts as M, is increased. We take maximal
mixing for Figs. 8(a)-8(c), with M; =0, M| = 15 keV,
and M, = M, /2, respectively; the last of these three plots
shows that in the UVDM model, both DM masses can be
well above those currently probed by Lyman-a forest
observations. Figure 8(d) shows that even larger y, and
®; masses are possible in a small-mixing scenario with
0, =0, =1/10. Here we restrict our attention to the
massless-y; limit, because for these mixing angles and
M, Z 15 keV, the small viable parameter space shown in
Fig. 7(d) quickly disappears as M, is increased.

Figures 7 and 8 do not show the full extent of the UVDM
mass-lifetime space one would find by maximizing the
baryon asymmetry with respect to all other parameters. It
turns out that ®; masses of up to ~20 TeV can work for
DM and leptogenesis, but only in the massless-y; limit, and
with M, and all mixing angles and phases tuned appro-
priately. The required optimization is similar to what was
presented in Appendix B of Ref. [7] for the case with QCD-
charged BSM scalars. Our results here for the e“-coupled ®
are consistent with the results of Ref. [7], once one takes
into account the different spectator-effect factors and
different ® gauge multiplicities.

In summary, broad ranges of parameters work for DM
and leptogenesis in the UVDM model, including scenarios
with M, > 15 keV and comparably sized y; and y,
couplings. Unlike in the minimal model, ®; has a lifetime
ctp, > cm for much of the viable parameter space. We
discuss the implications for LHC searches in Sec. VA.

IV. THE Z2V MODEL

A. Qualitative discussion

In this section we do not impose the Z, symmetry that
guarantees absolute DM stability in the minimal and
UVDM models. There are now two interaction terms that
can induce changes in the X, charge densities: the Z,-
preserving DM coupling and a new “Z2V” interaction term:

c /Iaﬁ *
E D —Fa,-e(,)(l-q) - 7 lal/}q) + H.c. (22)

The Z2V term has the same gauge and flavor structure as an
R-parity-violating coupling often considered in supersym-
metric theories; because the SU(2),, indices of the SM
lepton doublets are contracted antisymmetrically, the 4,5 is
an antisymmetric matrix in lepton flavor, and there are
therefore three independent Z2V couplings. We neglect a
possible neutrino-portal coupling h,;l,y;H because, as we
discuss in Sec. V B 1, x-ray line constraints prevent them
from being large enough to be relevant for leptogenesis.
The A couplings, on the other hand, can significantly impact
the asymmetry calculation. The rough criterion for a Z2V
coupling 4 to come into equilibrium in the early universe
is that the A-induced @ decay width should be at least
comparable to the Hubble parameter at 7 = M, leading to

My \'2
_—° 23
500 GeV) 23)

221077 x <
This is a far smaller coupling than has been probed
experimentally. The x-ray line constraints on the A cou-
plings depend on the lepton flavors involved, but we will
show in Sec. VB 1 that they are rarely stronger than
) < 107*, and are often much weaker, for the parameter
space that works for leptogenesis and DM. Other con-
straints on A from low-energy experiments are never more
stringent than A < 1072, as we discuss in Sec. V C.

To see how Z2V couplings might be relevant for lepto-
genesis, consider for simplicity a scenario with e and u¢
(but not 7¢) coupled to DM, and a single Z2V interaction
involving [, and I,: £ D —Al [, ®* + H.c. At O(F*), there
are no asymmetries in @, y, or the third-generation leptons,
but we have equal and opposite asymmetries in e and p¢,
and thanks to SM processes, equal and opposite asymme-
tries in [, and [,. Then the number of /,/, — @ inverse
decays will differ from the number of [,/, — ®* inverse
decays, and a ® asymmetry is generated at O(F*1?). That
is enough to guarantee a net B — L charge in the SM sector
at the same order. To see this, note that the interactions
of Eq. (22) respect a generalized B — L symmetry, with
L(®) =2, L(y)=-1, and B(®)=B(y) =0." No y
asymmetry arises at O(F?*) and, because the A coupling
does not involve DM, the y asymmetry remains zero at
O(F*2?). At this order, then, the SM sector has a B — L
charge equal in magnitude to that stored in ®/®*.

Two simple observations turn out to have important
implications for the viable Z2V model parameter space.
First, larger Z2V couplings can produce a larger asymmetry
without increased DM production. Second, even if a A
coupling is large enough to invalidate the perturbative
O(F*?) calculation of the asymmetry, that A coupling does
not necessarily lead to washout of the asymmetry. To

“The DM Majorana masses do not res;z)ect this symmetry, but
the associated effects come with ~M)2( /T= suppressions and can
be neglected.
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illustrate the second point, we return to the simple example
of the previous paragraph and consider the case in which 1
is large enough that it comes fully into equilibrium.
Imagine that equal and opposite number density asymme-
tries for [, and [, are first generated at O(F*) (that is,

énz‘)
ing for simplicity spectator effects associated with SM

processes. By conservation of the generalized B — L, we
have

= —5n§j>) and subsequently processed by 4, neglect-

> oy, + 26ng =0, (24)

where we set the y asymmetry to zero because it arises only
at higher order in F'. With 4 in equilibrium we also have the
chemical potential relation

Hi, + py, — po = 0. (25)

We can solve this pair of equations for on,; + on, , taking
5n,ﬂ = 6n§#4) = —5n§f), because [, is not involved in the
Z2V coupling. This leads to a flavor-summed asymmetry

5 5, { 2/3 Mo )
n; ~—on; X
; la le 12(2)32e=Ma/T T « My, (

where we use the relativistic or nonrelativistic relation
between pg and dng depending on the temperature. We see
that the flavor-summed asymmetry effectively arises at
O(F*) when A comes into equilibrium. It makes sense that
the O(F*) asymmetry is Boltzmann suppressed at temper-
atures far below the @ mass. The B — L charge in the SM
sector is equal in magnitude to the sum of the B — L charge
stored in y/j, which is zero at O(F*), and the B — L charge
stored in ®/®*, which has essentially decayed away for
T < @. For sufficiently large Mg, the dominant contribu-
tion to the asymmetry arises at O(F®). As explained in
Appendix C b, this contribution is distinct from the O(F9)
ARS one. It arises from the generation of a @ asymmetry at
O(F*), followed by generation of an O(F%) y asymmetry
due to ®*) decays to DM.

In our simple example with only e and u¢ coupled to
DM, the asymmetry would be driven to zero if the Z2V
coupling that came into equilibrium were 4;, instead of 4;5.
In that case, no asymmetry develops in the third-generation
leptons, and Eq. (25) is replaced with p; + Hi, = Ho = 0,
which when combined with Eq. (24) forces all chemical
potentials to zero. More generally, for a generic F' matrix
involving all active flavors, we should expect an O(F*)
asymmetry if one or two of the three Z2V couplings come
into equilibrium. If all three Z2V couplings come into
equilibrium, then the chemical potentials of all three

Ma = 500 Gev | e AREA L
| My =0 cetteciieiattttatanens 4
10 My, =20 keV . Aiz=2A3=2
é 6=0.2 .u
= i
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FIG. 9. For a particular set of BSM particle masses and DM
couplings, the baryon asymmetry as a function of Z2V coupling
strength, with either one, two or all three independent Z2V
couplings turned on. The DM couplings are set to the minimal
model benchmark, Eq. (A2), with only the electron and muon
coupling to DM, and with TrF'F determined by the DM
abundance constraint.

leptons are forced to be flavor-independent, preventing
any asymmetry from being generated at all

In our full calculation of the asymmetry, described in the
following section, we take into account that the A inter-
actions continually process asymmetries as they are gen-
erated, and that SM spectator processes affect how the
various asymmetries are related [31].

B. Calculating Y in the Z2V model

In the QKEs of Appendix D 2, the Z2V interactions do
not enter into the evolution equations for the DM density
matrices ¥, and Y;. However, each Z2V interaction brings
about a change in the X, charges, so the evolution
equations for the associated charge densities Y, do get
modified. For example, if we have a single Z2V coupling
12, then each Z2V-induced @ decay, ® — [;[,, produces
the changes AX; = AX, = —1. As shown in Eq. (D29),
both dY,/dt and dY,/dt get contributions proportional to
\A12|*(uy, + p1, — po) at leading order. The chemical poten-
tials yg and y; can be expressed in terms of Y, Y5, and ¥,
using the results of Appendix B.°

Figure 9 shows the effect on the baryon asymmetry when
one or more Z2V couplings are large enough to come into

>This is true for the case of two DM mass eigenstates. For three
or more DM mass eigenstates, an asymmetry can arise at O(F9)
even if all active flavors have the same chemical potential [30];
this is the case in a model considered in Ref. [7] involving a single
QCD-charged scalar.

%The proportionality to (g, + py, — po) holds if [ug /T| < 11is
satisfied. In our numerical work we allow for the possibility of
highly asymmetric ®/®(*) abundances using the approach
described in Appendix D; see Eq. (D31). This refinement is
quantitatively unimportant in almost all scenarios we study in this
paper, however.
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equilibrium. For the chosen parameter point, ¢ and u¢
couple to DM, and a Y value well below the observed one
arises in the absence of Z2V couplings. If a single Z2V
coupling, 4,3, is large enough to come into equilibrium,
A3 2 1077, the final baryon asymmetry is enhanced by
about two orders of magnitude relative to the Z,-preserving
case. If both 4,5 and 4,3 come into equilibrium, the final
baryon asymmetry Y is again enhanced by a large factor,
although only about half as large as for the case with a
single Z2V coupling. Finally, if all three Z2V come into
equilibrium, the asymmetry is strongly suppressed, as
expected. For the parameters chosen, the asymmetry
happens to change sign as 4 is increased in this three-A
case, because the O(F®) and O(F*2?) contributions have
opposite sign.

If one or two of the Z2V couplings come into equilib-
rium, the final baryon asymmetry is insensitive to the
precise values of those couplings, as is evident in the Yp
plateaus at larger 4 in Fig. 9. In this case, Y effectively
arises at O(F*). To write down an expression for Yg), it is
convenient to define /3 to be the “special” flavor singled out
by the Z2V couplings: in the case of a single Z2V coupling
in equilibrium, f is the flavor whose lepton doublet is not
involved in that Z,-violating coupling, while in the case of
two Z2V couplings in equilibrium, it is the flavor whose
lepton doublet is involved in both of those couplings. In
Appendix E 3 we show that Yg” is determined by Y (4), the
O(F*) asymmetry in the special flavor , calculated in the
absence of Z2V couplings, i.e., using the minimal model
result of Eq. (E9). For example, if only 4, comes into
equilibrium, we have = 3, and we get a baryon asym-
metry at O(F*) if and only if one would calculate an O(F*)
asymmetry in X3 in the absence of the Z2V coupling.

More precisely, we find

@) o y@ o 300co :
Yy ~Y, xm onelineq. (27)
@) o _y® 150cq i
Yp' ==Y, x 337 1 5294 twol’sineq., (28)
where the cq function is defined in Eq. (B11) and plotted in
Fig. 20. The exponential suppression of cq(x) at large x

leads to a Boltzmann-suppressed Yg) for T < Mg, as we
anticipated in the discussion surrounding Eq. (26). We
evaluate cq(x) at xo = Mg /T, in Egs. (27), (28) to get
the final asymmetry. For our numerical studies in the rest of
this section, we adopt the Z2V benchmark F matrix of
Eq. (A13) and take one A coupling in equilibrium, such that
the O(F*) asymmetry is maximized.

For Eq. (27) or (28) to be a good approximation for the
baryon asymmetry, three conditions must be satisfied. First,
one or two A couplings must be large enough to come into
equilibrium, >10~7 while the remaining A coupling(s) are

small enough to remain well out of equilibrium, <1073,
Second, we need the F couplings to be small enough to
justify a perturbative treatment of the F' couplings, which
means Y, < Yy Third, the O(F°®) contributions to the
asymmetry must be subdominant, which is not the case if
the O(F*) asymmetry is strongly Boltzmann suppressed.

In the large-M g, regime, Y is dominated by the O(F®)
contribution discussed earlier, given in Eq. (E48) for our
72V benchmark F matrix. The O(F*) ® asymmetry leads
to an O(F®) y asymmetry that persists after the ® particles
have disappeared, ensuring a surviving baryon asymmetry.
The interplay between the O(F*) and O(F®) asymmetries
will be evident in the results we present in the following
section.

C. Results for the Z2V model

We now present numerical results for DM and lepto-
genesis in the Z2V model. We adopt the Z2V benchmark F
matrix of Eq. (A13) and take one 4 coupling in equilibrium.
In Fig. 10 we see that the large enhancement of the
asymmetry relative to the minimal model opens up a
narrow region of viable parameter space with
M, > 15 keV. In this plot, # and TrF'F are chosen to
maximize the asymmetry subject to the DM constraint. One
finds that 6 is relatively large, @ ~ 1, for the parameter space
shown. We therefore expect that the perturbative result of
Eq. (27), which is used in Fig. 10(a), should be more
accurate than QKE results based on a thermal ansatz for the
DM momentum distribution. The QKE calculation gives a
smaller viable parameter space, but we see in Fig. 10(b) that
the difference is mostly due to the thermal averaging. We
show this by modifying the perturbative calculation to
incorporate the same thermal ansatz, which amounts to
using the Z t(t) function defined in Eq. (E20) in place of Z(*
in Eq. (E9). The remaining discrepancy between the QKE
and perturbative results is mostly due to the fact that our
perturbative treatment approximates sphaleron decoupling
to occur instantaneously at T = T.,,, whereas we take into
account that sphaleron decoupling is a gradual process
when we numerically solve the QKEs, following the
approach of Ref. [32] (see Appendix D 2 for details).

For the relatively large values of M; shown in Fig. 10,
the O(F*) contribution to the asymmetry dominates
throughout the viable parameter space. We consider the
massless-y; limit in Fig. 11, which opens up the parameter
space to smaller @ and larger M. For Figs 11(a)-11(c) we
take M, = 15 keV and compare the QKE calculation with
(a) the O(F*) contribution, (b) the O(F®) contribution, and
(c) the sum of those two perturbative contributions. We see
the Boltzmann suppression of the O(F*) contribution for
Mg 2 1 TeV, with the O(F®) contribution dominating at
larger M. The same effect is evident in Figs. 11(d)-11(f),
for which we take M, = 50 keV. Here we see that
increasing the DM mass shifts the parameter space for
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FIG. 10. Baryon asymmetries in the larger-M; regime of the Z2V model, with the F' matrix set to the Z2V benchmark form of
Eq. (A13). We take Mg, = 500 GeV, which roughly maximizes the range of viable M, values. At each point in the plane, Tr[F' F] and 6
are chosen to maximize Y subject to the DM abundance constraint. In (a), we show contours of Y5/ Y%, using the O(F*) perturbative
calculation of Eq. (27), without thermal averaging. In (b) we compare Yz = Y3 contours based on the nonthermally-averaged
perturbative calculation, the O(F*) pertrubative calculation with thermal averaging [see the discussion leading to Eq. (E20)], and

numerical solution of the QKEs (see Appendix D 2).

DM and leptogenesis to larger Mg and smaller 6. In
Figs. 11(c) and 11(f) the sum of the two perturbative
contributions gives good agreement with the QKE result for
sufficiently large 6.

For smaller 8, higher-order effects in F become impor-
tant and the perturbative treatment is not reliable. The
relevant quantity for determining whether higher-order
effects are important is ¥, /Yy', which is why the pertur-
bative range for € depends on Mg,. We get close agreement
in the perturbative regime because we implement the same
thermal ansatz for the DM momentum distribution in the
perturbative calculation as in the QKE calculation. The
poorer agreement at lower Mg is mostly due to thermal
mass effects, which are only significant in this region, and
which are only included in the QKE calculation.

In Fig. 11, we include thermal averaging in our pertur-
bative calculations as a consistency check with our QKE
calculations. However, at least in the perturbative regime,
not performing thermal averaging should yield a more
accurate result. In Fig. 12, we include the full momentum
dependence in the perturbative calculation. For
M, =15 keV, the My and @ parameter space that works
for DM and leptogenesis is limited to €2 0.4 and
300 GeV < Mg <700 GeV, as we see in Fig. 12(a).
Meanwhile, Figs. 12(b) and 12(c) should be compared
with Figs. 11(c) and 11(f), which take the same DM masses
but with thermal averaging. We see that the agreement with
QKE results is not as close when we take thermal averaging
out of the perturbative calculation. The discrepancy is again

largest for Mg ~ 100 GeV, where thermal mass effects are
also significant, leading to QKE asymmetries more than
five times smaller than the nonthermally averaged pertur-
bative ones. The QKE calculation nevertheless gives a
reasonably accurate picture of the viable parameter space.
Because the perturbative calculation becomes unreliable for
sufficiently small 8, in the remainder of this section we use
the QKE calculation to explore the full parameter space.

Figure 13 shows the viable ranges of y, and ® masses in
the Z2V model for various 0, in the massless-y; limit. We
see larger Yp values compared with those in Fig. 4 for
minimal model. Maximal mixing is viable for M, <
20 keV and Mg <1 TeV, while for small §, DM and
leptogenesis can work for Mg, well beyond 10 TeV and M,
well beyond 1 MeV.

For fixed 60, the peaks of the contours in Fig. 13 tend to
shift to larger Mg as the DM mass is increased. Larger
DM mass means a shorter timescale for oscillations and
asymmetry generation, which in turn means a larger
optimal My for generating an asymmetry subject to the
DM constraint. This shift is obvious, for example, in the
0 = 0.1 and € = 0.05 plots, in which the DM couplings are
big enough that O(F®) contributions tend to give the largest
asymmetries, but not so big to completely invalidate the
perturbative approximation. The shift is less noticeable for
the plots with large mixing, @ = 0.4 and 6 = z/4. Here, the
O(F®) contribution is unimportant, and the Boltzmann
suppression of the O(F*) contribution prevents much
movement to larger M.

095027-15



BERMAN, SHUVE, and TUCKER-SMITH PHYS. REV. D 105, 095027 (2022)

1- My, =0keV E My, =0keV E - My, =0keV E
', = 15 keV M,, = 15keV N My, =15keV
10 .
0.1
100
‘51072
1000 g .
1073 £ o : o
--== 0(F*), thermally averaged, — === O(FS), thermally averaged ’r/, ,/l d---- O(F) + O(FS), thermally avemgedt
10—4 / _QKE ! L —— OKE i 10746/ — QKE J
100 500 1000 5000 100 500 1000 5000 100 500 1000 5000
Mgp(GeV) Myp(GeV) My(GeV)
@ _— L@ _— NG _— .
= === O(F*), thermally averaged M,, =0keV = === O(F), thermally averaged My, =0keV = === O0(F* + O(F®), thermally averaged My, =0keV
QKE My, =50keV QKE My, =50keV QKE My, = 50keV
0.1
>
£ 1077
103} /
1074 L P S . . B L P . . A
100 500 1000 5000 100 500 1000 5000 100 500 1000 5000

Mp(GeV) Map(GeV) Myp(GeV)

FIG. 11. In the Z2V model, contours of ¥5/Y% in the (Mg, sin? @) plane for M, = 15 keV (a—c) and M, = 50 keV (d-f), in the
massless-y; limit, with the F' matrix set to the Z2V benchmark form of Eq. (A13). We compare the results from numerical integration of
the QKEs with the O(F*) contribution of Eq. (27) (a, d), the O(F®) contribution of Eq. (E48) (b, €), and the sum of both (c, f). For the
perturbative contributions, we adopt the same thermal ansatz for the DM momentum distribution as used to derive the QKEs, which
means using the It(i)_ function defined in Eq. (E20) in place of Z) in Eqs. (E9) and (E45), and we impose the DM constraint using the
O(F?) result for pg, based on Egs. (E3)—(E6).
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FIG. 12. Similar to Fig. 11, except without thermal averaging in the perturbative calculation. In (a), we take M; = 15 keV and
M, = 20 keV to provide a view of the larger-M ;| parameter space that complements Fig. 10. Comparison of (b) and (c) with Figs. 11(c)
and 11(f) shows the effect of thermal averaging.
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Similar to Fig. 4, except for the Z2V model instead of the minimal model: in the massless-y limit, Yz versus Mg, for various

0 and M,, with the F matrix set to the Z2V benchmark form of Eq. (A13). For each combination of parameters, Tr[F'F] is chosen to

satisfy the DM constraint.

Because we take the massless-y; limit in Fig. 13, the DM
couplings become larger for smaller € and fixed M,. The
O(F®%) contribution therefore increases in importance
relative to the O(F*) one as 6 is reduced. For example,
the features in the § = 0.2, M, = 50 keV contour reflect
comparably sized, well separated peaks from the O(F*)
and O(F®) contributions, whereas for 6 =0.1 and
6 = 0.05, the peak in the M, = 50 keV contour is heavily
dominated by the O(F®) contribution. For similar reasons,
the M, = 30 keV peak shifts to larger Mg for smaller 6,
but the movement for M, = 15 keV is less pronounced
because the O(F®) contribution is itself peaked at lower
My, due to the longer oscillation timescale.

A power-law scaling of Y with Mg, is evident at large
Mg in Fig. 13. From Eqgs. (E48) and (E47) one can show

that for fixed 6, the O(F®) asymmetry is proportional to
M5'Mg’ in the regime in which only a small fraction of an
oscillation has time to develop, S, < 1. In Appendix Cb
we show that the maximum O(F%) asymmetry, optimized
with respect to M, and @, falls off as Mgf/ * for large M,
and that this delicate tuning of parameters can allow DM
and leptogenesis to work out to Mg ~ 100 TeV and M, ~
10 MeV while staying at least roughly within the pertur-
bative regime.

Finally, although many of the features of Fig. 13 can be
understood at the perturbative level, the 8 = 0.01 plot in
particular is heavily impacted by effects higher-order in F.
For & = 0.01 and M, = 15 keV, for example, we are in the
strong-washout regime, and the interesting shape of the
associated contour does not emerge at the perturbative
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FIG. 14. Similar to Fig. 5, except for the Z2V model instead of
the minimal model: contours of Y/ YOBbS (blue, solid) and r (red,
dashed) in the (M,,sin?>@) plane, for My = 500 GeV and
M, = 15 keV, with the F matrix set to the Z2V benchmark
form of Eq. (A13). At each point in the plane, Tr[FF] is chosen
to satisfy the DM constraint.

level. Moreover, the contours in the 8 = 0.01 plot clearly
do not satisfy the perturbative relation Yz « 1/M, for fixed
Mg and f < 1.

The impact on the parameter space due to structure
formation constraints, which come into play for
M, z 0.01 keV, can be seen in Figs. 14 and 15. For
Fig. 14 we take the same My and M, as for Fig. 5 for
the minimal model, where we found we needed M; <
0.05 keV for DM and leptogenesis to work while satisfying
r < 0.1. Applying the same r < 0.1 constraint to the Z2V
model, we see that Yp values two orders of magnitude

larger the observed one are possible for M; ~ 0.05 keV,
and that M, values up to several keV are viable. The
appropriate bound on r is dependent on the DM masses, the
details of which we leave for future work. Figure 15, which
can be compared with Fig. 6 for the minimal model, shows
how parameter space with larger M; opens up as the upper
bound on r is relaxed.

In this section, we have seen that Z,-violating inter-
actions can qualitatively impact the parameter space for
DM and leptogenesis. If one or two of the three indepen-
dent A couplings are large enough to come into equilibrium,
the asymmetry is typically dramatically enhanced relative
to the minimal model. This leads, for example, to viable
parameter space with larger mixing angles 6 ~ z/4 and y,
masses, M; 2 15 keV. Finally, for a Z2V coupling to come
into equilibrium, we need

500 GeV)\?
CT@ 1/HT Mg ~ 6 mm X <Ale> . (29)
0]

For much of the Z2V-model parameter space that works for
DM and leptogenesis, 4 far exceeds the minimum value for
equilibration, and we have c7q < mm, in which case ©
qualifies as promptly decaying as far as collider searches
are concerned.

V. PHENOMENOLOGY

A. Collider constraints

At the LHC, @ pair production would be followed by
® — [+ invisible, where the invisible particle is either a
neutrino (in the Z2V model) or DM (in the minimal and
UVDM models). In much of the viable parameter space for
the minimal and Z2V models, c7g4 is short enough for CMS
and ATLAS searches for promptly decaying sleptons to be
effective [33-36]. In the UVDM model, on the other hand,
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FIG. 15. Similar to Fig. 6, except for the Z2V model instead of the minimal model. For various M, the contours enclose the (Mg, M)

space that is viable for DM and leptogenesis in the Z2V model, with the F matrix set to the Z2V benchmark form of Eq. (A13). At each
point in the plane, Tr[F'F] and @ are chosen to maximize Y subject to both the DM abundance constraint and the upper bound on r
indicated; for the contours shown, that maximum Y is equal to Y "Bbs.
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FIG. 16. LHC constraints from searches for promptly decaying
sleptons [33-36], displaced leptons [37], and HSCPs [38], along
with parameter space for the minimal model [from Fig. 3(a)] and
for the UVDM model, under two different DM coupling
assumptions [from Figs. 7(a) and 7(c)]. As discussed in the text,
the green prompt and purple displaced excluded regions are for
B, = 100%; the corresponding limits for B, = 100% are roughly
similar. For the prompt case, the cyan region is a tentative
estimate of the limits for B, = B, = 50% (see the text). The
lifetime cutoffs for the prompt and HSCP exclusion regions are
highly approximate. We take the CMS HSCP exclusion contour
from Ref. [41] and extend it from Mg = 270 GeV to Mg =
360 GeV by assuming a similar behavior.

ctg 1s typically long enough to bring searches for long-
lived particles (LLPs) into play, including the ATLAS
displaced lepton search [37] and the CMS search for heavy
stable charged particles (HSCPs) [38]. Similar signatures
have been proposed for other models of freeze-in DM [39]
(for a recent study of LHC-friendly freeze-in models,
see Ref. [40]).

Figure 16 shows viable parameter space for the minimal
model and, for selected parameters, the UVDM model. For
our Z2V model benchmarks, with one or two Z2V
couplings coming into equilibrium, much (but not all) of
the parameter space has ¢ty < 1 mm, and the full ® mass
range shown in Fig. 16 is viable; see Eq. (29) and Fig. 13.
Figure 16 also shows exclusion regions from LHC
searches, with flavor-coupling assumptions and caveats
specified below. The essential takeaway is that while LHC
analyses have already probed some of the interesting
parameter space for the each of the models, much of it
remains open for exploration, particularly so if @ has an
appreciable branching ratio to 7 + invisible.

While we have chosen models with an SU(2),,-singlet ®
for detailed study, it is worth emphasizing that scenarios

with an SU(2),,-doublet ® coupled to DM through an
F,;®*1,y; interaction term can work equally well for DM
and leptogenesis. The collider phenomenology of a doublet
@ can differ significantly from the singlet, especially in the
presence of Z2V couplings, which can have arbitrary flavor
structure provided that they are small enough to satisfy
FCNC constraints. For example, a ®le¢ coupling can lead
to decays of the neutral component of @ to opposite-sign,
dileptons of any flavor combination. Alternatively, ® might
decay hadronically via ®gd¢ and/or ®qu‘ couplings; if
these hadronic decays are displaced and/or produce top
quarks, they might result in a detectable signal. We set aside
investigation of potential collider probes of the doublet case
for future work, and now provide details on the various
collider constraints on an SU(2),,-singlet ®.

1. Prompt searches

The collider constraints on a promptly decaying ®
depend on its branching ratios B, , ., where for example
B, = B(® — u + invisible). In the models we consider, it
is appropriate to regard the DM as massless in the collider
context. LHC searches [33—36] then rule out 110 GeV <
Mg <425 GeV and 100 GeV < Mg < 450 GeV for
B, =100% and B, = 100%, respectively, while there is
no LHC constraint for B, = 100% [42]. At the top of the
green shaded region in Fig. 16, which represents the
exclusion for B, = 100%, the gradual fade-out around
cTq ~ 1 mm is meant to reflect our uncertainty regarding
the degradation of prompt searches with increasing
lifetime.

The leptogenesis mechanisms in the minimal and Z2V
models both require @ to couple to two or more lepton
flavors. In fact, if Z2V couplings dominate ® decay, the
largest branching ratio that any one flavor can have is 50%;
specializing to the simple scenario in which a single Z2V
coupling 4,; dominates, we have B, = B; = 50%. Going
beyond the single-flavor assumption in interpreting existing
slepton search results is not completely straightforward.
Consider, for example, a scenario with B, = B, = 50%.
Because of the same-flavor requirement, the signal effi-
ciency for @ pair-production would be ~1/2 that for a
mass-degenerate &g, fig pair in SUSY. Reference [34] gives
cross-section limits for combined &;  and ji; z production.
Bounding the NLO-NLL @ pair-production cross sections
[43—48] to be below twice those limits, we obtain the cyan
exclusion region in Fig. 16: 130 GeV < Mg, < 290 GeV.’
This exercise ignores that @ production would also lead,
in the chosen scenario, to opposite-sign, different-flavor
dilepton events, which are used to define control regions
for background estimation in the analysis of Ref. [34].

"Performing the same steps with the cross-section limits
reported in Ref. [33] does not appear to lead to any excluded
region.
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For that reason, our B, = B, = 50% exclusion region is
tentative at best. We have also ignored that kinematic
differences between I, and I pair-production might lead to
different efficiencies. However, the separate cross-section
limits for LH and RH sleptons given in an earlier 13 TeV
CMS analysis [35] are similar enough to suggest that this
issue is unimportant.

The most recent ATLAS and CMS slepton search results
do not include separate cross-section upper limits for
selectrons and smuons. This complicates extracting limits
when the e or p signals are suppressed by a significant
branching ratio for ® — 7 + invisible, even if we simply
neglect the potential contribution to the signal from events
with taus.® For example, consider the two cases B, = B, =
50% and B, = B, = 50%. Ignoring ® events with s, the
signal efficiency is now ~1/4 that for slepton pair-pro-
duction. Taking into account the reported relative efficien-
cies for muons and electrons, the cross-section limits for
combined &; p and ji; x production given in Ref. [34]
can be used to exclude narrow regions within the range
155 GeV < Mg < 185 GeV for B, = B, = 50%, while
no region is excluded for B, = B, = 50%. However, this
exercise presumably underestimates the true sensitivity,
because it includes background with both flavors of
dilepton pairs even though the signal has a single flavor,
electrons or muons. The 35.9 fb~! CMS analysis [35] does
give separate cross-section upper limits for smuons and
selectrons, but they are not strong enough to constrain the
B, = B, = 50% and B, = B, = 50% scenarios, assuming
we can neglect @ decays to zs.

These various observations motivate dedicated LHC
analyses that target intermediate-mass “slepton-like” par-
ticles (M ~ 100-300 GeV) with lower values of o X
B(I"I~ + invisible) than those associated with the multiple
flavors of LH and RH sleptons of SUSY, including the
possibility of mixed flavor in the final-state dileptons.

2. Displaced searches

For the longer lifetimes typical of the UVDM model, the
ATLAS displaced lepton search [37] is relevant. The purple
excluded region in Fig. 16 applies to the case with
B, = 100%. The limits for B, = 100% are comparable;
for example, the maximum mass excluded (for the optimal
ctqp ~ 6 cm) lowers from ~580 GeV to ~550 GeV. For
B, = 100%, there appears to be no excluded region for
the optimal c7g ~ 4.5 cm (although the mass range from
100-200 GeV is on the borderline).

The asymmetry generation mechanism in the UVDM
model does not require ®; to couple to multiple lepton

8Light-ﬂavor leptons produced from tau decays will differ
kinematically from leptons directly produced by & decay, and
such decay modes have a total branching fraction of only 35%.
We leave an estimate of the potential impact of ® — 7 + invisible
decays on searches in the e, y channels for future work.

flavors, but it is certainly allowed. We use the cross-section
upper limits provided by Ref. [37] to obtain rough
estimates of the mass reach in such scenarios. For
B, =50%, and ignoring decays that do not involve
electrons, the maximum excluded mass falls from
~580 GeV to ~440 GeV. For B, = 50%, and ignoring
decays that do not involve muons, the maximum excluded
mass falls from ~550 GeV to ~410 GeV.

3. Searches for heavy stable charged particles

Taking into account only direct stau pair production, a
CMS search for HSCPs, Ref. [38], obtains a bound of
approximately 360 GeV for a long-lived stau, for a SUSY
parameter point in which the stau is mostly 7. This bound
should apply to the model we consider for cz4 2 several
meters. In Fig. 16 we roughly estimate the exclusion in the
mass-lifetime plane by using the results of Ref. [41] up to
Mg = 270 GeV and extrapolating those results up until
Mg = 360 GeV. The authors of Ref. [41] find that when
they apply their analysis to 8 TeV data, their results match
reasonably well with the earlier study of Ref. [49].

B. Astrophysical constraints

1. X-ray line constraints on the Z2V model

In the presence of the Z,-violating couplings of Eq. (7),
the DM is unstable, and the partial width for y — vy, vy
decays is constrained by x-ray observations. The neutrino
portal couplings induce y;-neutrino mixing, with mixing
angle

V Za'haiFU

0, ,~————
~1.2x% 10_6 V Z(l|h(li|2 15 keV (30)
o 10713 M; )
The partial width for y; — vy, vy is [50-57] is
G2
= 100;8 Fsin?20, M. (31)
/2

Results based on NuSTAR [58-61] and INTEGRAL [62]
data then constrain 6, _, < 107 —107% for DM masses
ranging from 10 keV to 100 keV, corresponding to upper
bounds on the overall neutrino-portal coupling strength
VD ou [hail? of ~(7x1071) = (5x 107'%). These strin-
gent limits justify neglecting the neutrino portal couplings
in our asymmetry calculations.

We now focus on the Z2V couplings 4,4, which induce
DM decays via diagrams such as that of Fig. 17, leading to
a y; — vy, vy partial width of
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Xi

Vo

FIG. 17. Feynman diagram for DM decay induced by Z2V
couplings.

a
Fi= 5127* M4 Z‘Zﬁ apFpiM <10g 1>

where M; is the y; mass and M are the masses of the SM
leptons.

For purposes of illustration, we specialize to benchmarks
with a single Z2V coupling in equilibrium and an F matrix
of the form described in Sec. A 3. These scenarios still
allow a wide range of possible partial widths, depending on
the SM lepton flavor running in the loop. For example,
if the single Z2V coupling involves [, and I3 (1 = 153)
while the DM couples to ef and e, we get

2
., (32)

r a|A|*Tr[F' Fsin*0 M3M? (l M’
2 =

2
®_1 33
10247 My \ %2 > (33)

for the partial width of the heavier DM particle. Permuting
the flavors involved in the 1 and F couplings leads to the same
result except with M, replaced by M, or M,. For these
benchmark scenarios, the partial width of y; is given by
replacing sin@ — cos 6 in I',, but because y; might be too
light to contribute to a detectable X-ray signal, we focus
onI',.

The “z-mediated” partial width of Eq. (33) leads to the X-
ray bounds on A shown in the left column of Fig. 18 (plots a,
d, and g), for various M, in the massless-y; limit. At each
point in the plane, Tr[F'F] is fixed by the DM density
constraint. In regions that work for DM and leptogenesis, the
upper bound on A is typically ~1072 — 1073 and never below
10~*. The middle and right columns of Fig. 18 show the
weaker bounds on A that result when DM decays are instead
mediated by muons or electrons, respectively, due to the
flavor structure of the DM and Z2V couplings.

The A couplings generate neutrino-portal couplings via
the diagram of Fig. 17 with the photon line removed. To
assess the potential impact of this radiative effect on DM
decay, we consider the case in which the h,; are negligible
at the cutoff scale A, leading to

o _Z a/)‘Fﬂzy/J (34)
al M®

at low energies, where yy is the SM Yukawa coupling for
lepton flavor . We continue to focus on benchmarks with a

single Z2V coupling, so that only one term contributes to
the sum in Eq. (34), and only for one value of @. The DM
decay amplitude has a 1 /M3 -suppressed “IR” contribution,
which persists for h,; =0, and a “UV” contribution
proportional to log(A/Mg), arising from radiative gener-
ation of the neutrino-portal couplings.

Although the IR and UV contributions should be
combined at the amplitude level, for a simple comparison
we evaluate the ratio

2
). e
1

where 'R is the y, partial width to vy, by in the h,; — 0
limit, while I'YV is calculated using the neutrino portal
couplings of Eq. (34) and otherwise neglecting the A
couplings (that is, ignoring 1/ M2 -suppressed contributions
to the amplitude). The ratio depends on the flavor f of SM
lepton running in the loop. We show contours of R, and R,
in Fig. 19, corresponding to z-mediated and e-mediated
scenarios. For Mg < 500 GeV, the IR contribution domi-
nates in either scenario, even for a Planck-scale cutoff. For
Mg ~ 1 TeV, the UV contribution dominates for A =
10" GeV in the 7-mediated scenario but is still subdomi-
nant in the e-mediated scenario up to A~ 10'¢ GeV.
Unlike the A upper bounds shown in Fig. 18, which are
based on the IR contribution, the x-ray constraints on 4 one
derives taking into account only the UV contribution get
stronger with increasing Mg, due to the larger DM
couplings required by the DM abundance constraint.
However, the bound is never stronger than 4 < 10~ for
the parameters shown in Fig. 18, even for A = 10'¢ GeV
with 7 in the loop.

RﬁE

Y 9Gimd, ( log 37

TR~ 327 M
2 4 logv‘/f—

2. Supernova constraints

Mixing of SM and sterile neutrinos is constrained by
SN1987A. If the mixing angle 8, is too large, an excessive
fraction of the energy of the supernova explosion is carried
away by the sterile neutrinos. One might expect the
couplings of the y particles in our models to be similarly
constrained, but this is not the case in the minimal and
UVDM models. Even if the DM couples to electrons, the
cross section for the process ete™ — yy inside the core
of the supernova is proportional to F*/Mg, versus the
G2 sin?(20,y) dependence for a weak interaction that
produces a sterile neutrino. The constraints in the sterile
neutrino case are never stronger than sin?(26,y) < 10713
for any mass; see for example the “no-feedback” results of
Ref. [63]. Meanwhile, we typically need F ~ 10~ for DM
and leptogenesis, so that F* is less than this upper bound by
about fifteen orders of magnitude. In the Z2V model, y can
be produced singly with cross sections that are proportional
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FIG. 18. Contours of Y/ Y"Bbs (blue, solid) and X-ray bounds on A (red, dashed) in the (Mg, sin? 0) plane for M, = 15 keV (a-c),
M, = 50 keV (d-f), and M, = 200 keV (g-i). We take the massless-y, limit and adopt benchmark scenarios with a single Z2V coupling
and the F matrix chosen as described in Sec. A 3. In the left column (plots a, d, and g), the flavor structure of the DM and Z2V couplings
is such that the charged fermion in the diagram of Fig. 17 is a z lepton; the 1 bounds for the cases of u-mediated and e-mediated decays
are shown in the middle column (plots b, e, and h) and right column (plots c, f, and i), respectively.

to A>F? instead of F*. Here it is less obvious that the C. Other Z2V phenomenology
supernova cooling constraint can be ignored, although even
a mild suppression from the 4> factor seems likely to be
enough to evade it. Moreover, these constraints become Various low-energy measurements constrain the 4 — Mg,
irrelevant if either the DM or Z2V couplings do not  parameter space of the Z2V model. Some of the bounds can
involve electrons, a scenario that works perfectly well — be inferred from earlier studies of LLE‘ superpotential
for leptogenesis. terms in the context of R-parity-violating supersymmetry,

1. Constraints from low-energy probes
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FIG. 19. Contours of R = 0.1 (blue) and R = 1 (red), where R
is the ratio of decay widths defined in Eq. (35). The solid and
dashed contours are for the tau-mediated and electron-mediated
scenarios, respectively.

summarized in Ref. [64]. To interpret these in the context of
the Z2V model, we replace the three flavors of right-handed
sleptons by a single @ field and decouple the left-handed
sleptons entirely.

Via tree-level @ exchange, a nonzero 4;, coupling affects
the muon decay rate and therefore G, which in turn affects
the extraction of |V,4|, |V, and |V,;| from nuclear $
decays, kaon decays, and charmless B meson decays.
References [64,65] obtain the 2o constraint

Mgy
100 Gev>' (36)

2| £5 % 10_2(

The constraint does not change appreciably when we
update the analysis using current PDG values for the
CKM matrix elements [28]. Measurements of atomic parity
violation in cesium lead to a similar constraint on |4,],
while neutrino-electron scattering gives a weaker bound.
Exchange of @ can also lead to tree-level violation of
lepton flavor universality. Focusing for simplicity on
scenarios in which a single A coupling dominates (neglect-
ing possible cancelations), the current PDG average for the
ratio I'(z — ub,v,)/T'(7 — eb,v,) leads to the constraints

M
Il <2x 1072 —2 37
sl 52 1072 (1ot ) 37)
M
<7%x1072(—2 ).
sl 57102 (e ) (38)

The upper bound on || is the same as reported in
Refs. [64,65], while the upper bound on |4,3| has strength-
ened following the BABAR measurement of Ref. [66].
Similarly, updating the analysis based on the ratio of partial
widths I'(z — ub,v,)/T'(u — ev,v,), we find

M
I <1 x 1072 —2 3
Ao 5 1 (100 GeV) (39)
M
<6x 1072 —2_ ). 4
Hasl 5 610 <100 GeV) 40)

The current 26 bound on |4,,] is significantly stronger than
that obtained at the time of the original analysis [64,65],
while the bound on |1,3| has again not changed much.

If two or more A couplings are sufficiently large, Z2V
interactions can lead to lepton flavor violating signals.
Updating the bound given in Ref. [64] to take into the
current experimental limit B(u — ey) < 4.2 x 10713
(90% CL) [67], we obtain

M 2
Iadia| <4 x 1075 —2
Aisdis| <4 (100 Gev>

as the u — ey constraint on the Z2V model.

To obtain the bound from y — e conversion we follow
Ref. [68]. The ratio of the conversion rate relative to the
overall muon capture rate is

(41)

4“SZ§ff|F(Q)|2mZ
ZT (ucap.)
x [|A} = A3? + Z2| AT - AR,

R(p—e) =
(42)

where we neglect any direct coupling of ® to quarks. The
effective vertices are [68]

Az
AL _ 13423 43
L 28822 M2, (43)
A3A5
AR = D723 44
* 19222 M7, (“44)
with the others zero. We therefore have
SZz4 F 2.5
R(u—e) = . eff| (@)l " |/113/123|2- (45)

829447 MAT (ucap.)

The strongest current limits are from the SINDRUM-II
experiment, where gold (Z = 79) was used as the target
nucleus. The muon capture rate for gold is I'y, = 13.1 x
10° s = 8.6 x 10~!8 GeV [69]. The effective atomic num-
ber is Z.; = 33.64 [69,70]. Finally, we need the nuclear
form factor |F(q)|. Although Ref. [70] does not provide
these form factors for gold, it does provide them for lead
(Z =82):

F, =025, (46)

F, =022. (47)
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Reference [68] appears to take a weighted average of the
form factors according to the number of protons and

neutrons. This gives us |F|=0.232. Using the
SINDRUM-II limit R(u — ¢) <7 x 10~ [71], we find
the limit
My \2
MaAis] S1.8x 1073 —2 ) . 48
|[A13433] < 1.8 % <100 GeV) (48)

This constraint is much stronger if there exist both LH and
RH sleptons due to log enhancements of the Feynman
parameter integrals, but since we only have a RH-type
scalar the bound is much weaker.

For an analysis of u — 3e decays, we again follow
Ref. [68]. In terms of the same loop-induced FCNC photon
vertices of Egs. (43), (44), the y — 3e branching fraction is

67202
BF(u — 3¢) =
(ﬂ_’ e) GIZ?
8 m: 11
X {|A%|2+§(logm—g—7> |A2R|2—4A}A§].
(49)
The current PDG limit, B(u — ey) < 4.2 x 10713, then
gives
|A134%5] < 9.1 x 10~ Mo\ (50)
17230~ 100 GeV ) °

a limit that is slightly stronger than for 4 — e conversion
but less stringent than y — ey.

2. The g, — 2 anomaly

Measurements of the muon anomalous magnetic
moment, a, = (g, —2)/2, by the BNL E821 and
Fermilab Muon g — 2 experiments may indicate the need
for new physics beyond the SM [72,73]. Reference [73]
puts the discrepancy between experiment and SM theory at

a,(Exp) — a,(SM) = (251 +59) x 107", (51)

using the combined BNL and Fermilab measurements
and the SM value determined by the Muon g —2 Theory
Initiative [74].

In the Z2V model of Sec. IV, a, receives a negative
contribution from a one-loop diagram with ® and SM
leptons running in the loop. We can extract the contribu-
tion from the results of Ref. [75], which considered a,
in the context of R-parity-violating supersymmetry. One
finds [75]

_ |Za’1a2|2 MI%

—. 2
4872 Mé (52)

(aﬂ)d). one loop =

In the model we have focused on in this paper, with an
electroweak-singlet @, it is therefore not possible to
explain the g, — 2 discrepancy.

On the other hand, a g, — 2 explanation may be possible
in the model variation with an electroweak-doublet @ for
special arrangements of parameters. Consider for concrete-
ness a scenario in which DM couples only to the SM lepton
doublets of the first two generations, while ® has a single
Z2V coupling, to [,e5:

E D) _Fliq)*ll)(i - in(p*lz)(i — /1@[26% + H.c. (53)

Taking A to be large enough to come into equilibrium in the
early universe, a baryon asymmetry is generated at O(F*)
via the mechanism discussed in Sec. IV. The one-loop
contribution to a, is [75]

AP M
(aﬂ)d),oneloop = 4877,'2 Méo (54)
2
~(240 x 10-1) x 2 (L0.GVY (5
Mq>0

where M 4o is the mass of the electrically neutral @ particle.
The g—2 discrepancy can thus be resolved for A~ 1
and Mg ~ 100 GeV.

The special flavor structure assumed in Eq. (53) evades
certain experimental constraints. In the absence of addi-
tional sources of lepton flavor violation (e.g., neutrino
masses), the operators IyH, l6""yHB,,, and l6"" yo,HW},
are not generated radiatively. This can be seen from a
symmetry under equal phase rotations of the fields H, [5,
e, and e$, which is respected by the interactions of Eq. (53)
and the SM charged-lepton Yukawa couplings. The inter-
actions responsible for neutrino masses presumably violate
this symmetry and cause these operators to be induced
at some level, but these effects are model-dependent and
generally come with additional loop and coupling suppres-
sions.” It is thus possible to satisfy the x-ray constraints
considered in Sec. V B 1, even for the small ®° masses and
large Z2V couplings required by the g — 2 anomaly.

At the LHC, ®°®°* pair production would lead to events
with uz pairs. A detailed study would be required to
determine the status of this scenario with respect to existing
LHC searches. The CMS search for LFV Higgs decays
[76], which constrains the branching ratio for H — zu to be
below 0.15% at 95% CL, might be relevant, but there are
various aspects of that analysis that would seem to
seriously reduce the signal efficiency for @ pair production.

’Radiative contributions to an H® mass-squared term, which
induces Higgs-® mixing, come with similar suppressions. As
usual for a mass-squared term in the scalar potential, these
radiative contributions are proportional to A%, where A is the
cutoff of the theory.
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These include a veto on extra leptons and boosted decision
tree variables chosen based on the kinematics of H — ur
events, which differ significantly from those of events with
pair-production of particles that decay to ur.

VI. CONCLUSIONS

The freeze-in production and oscillation of DM provides
a simple and well-motivated mechanism for baryogenesis.
When DM couples to SM leptons, there must exist at least
one new electroweak-charged scalar that can be as light
as 100 GeV, and its couplings to the SM affect both the
magnitude of the resulting asymmetry as well as the
phenomenology. We have identified three benchmark
models of interest that highlight the novel cosmology
and signatures: a minimal scenario in which there exists
a single new scalar and all non-SM fields are charged under
a Z, symmetry that stabilizes DM; a scenario where
primordial production of DM through an unspecified
mechanism can provide an enhancement to the asymmetry;
and, a scenario in which the Z, symmetry is broken, and
SM Iepton flavor effects likewise enhance the asymmetry
relative to the minimal model.

We have found the minimal model to be quite con-
strained, with the mass of the scalar, ®, required to lie
below approximately 1.5 TeV such that high-energy
collider searches could be sensitive to much of the
parameter space favored by baryogenesis. In the other
models, ® can be heavier, although in that case the
couplings are typically aligned to couple preferentially to
the lighter DM state, which has a mass well below 1 keV to
give a subdominant contribution to the dark matter energy
density. Current collider constraints arise from searches
for prompt or displaced leptons and missing transverse
momentum motivated largely by supersymmetry, but the
different flavor structure in our models leads to a weak-
ening of several of these constraints and motivates dedi-
cated searches for scalars that can decay to multiple flavors
of leptons.

Constraints from structure formation and dark radiation
significantly impact the parameter spaces of all of the
models, and so there are good prospects for observing a
signal if the sensitivities can be improved. Furthermore, the
model that violates the Z, symmetry can give an observable
x-ray line from DM decay and/or signals at low-energy
terrestrial experiments, including a possible explanation of
the (g, —2) anomaly for the case of an electroweak-
doublet ®.
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APPENDIX A: BENCHMARK F MATRICES

1. Minimal model

By appropriate phase transformations on the charged
leptons, the F,; matrix can be brought into the form

cosfcos 3 cosy; sinfcosf,cosy, e

F=\/Tr[FTF]| cos@sinf,cosy, sin@sinp,cosy,e'

cosfsiny, sinfsiny,e®s

(A1)

with 0 <0, By, P2, Y1, v2 < /2 and O < ¢y, ¢y, 3 < 2m.
The partial widths of @ to final states involving y; and
x> are proportional to (F'F);; = cos’? @Tr[F'F] and
(F'F),, = sin> Tr[F'F], respectively. The DM energy
density therefore only depends on M, M,, Tr[F'F], and
0, and not on any of the other angles or phases appearing
in F.

For our analysis of the minimal model, we adopt a
benchmark in which only two lepton flavors couple. We
takey; =y, =0, ¢, = n/2, and ¢, = 0, with 5, and S, set
to a common value, f; = f, = . With these choices, the
O(F®) asymmetry, which is given in Eq. (E23), is propor-
tional to cos2fsin?>2B. This factor is maximized for
cos2f = 1/+/3, and so we adopt

F cosf@cosp isinfcosp |
————= | cos@sinf sinfsinf |; cos2f=—
Tr[FTF] V3
0 0
(A2)

as our benchmark F matrix for the minimal model. Having
equal-strength couplings for the two active flavors,
p = r/4, gives zero asymmetry, because in that case the
washout rate is the same for both flavors, and the ARS
mechanism is spoiled.

For this benchmark, one finds that the combination of
couplings appearing in the O(F®) baryon asymmetry
evaluates to

Z(I(FFT)(I(IIm[F;]F(IZ(FfF)N]

. ~ 0.024 sin? 20.
(Te[FTF])? st

(A3)

Performing a full numerical optimization for three active
flavors, we find that this two-active-flavor benchmark gives
an O(F®) asymmetry that is ~0.82 and ~0.69 times the
fully optimized symmetry for 6 = z/4 and for 0 < 1,
respectively. So although our simple benchmark does not
maximize the asymmetry (even at the perturbative level), it
gives a reasonable estimate of the full viable parameter
space for DM and leptogenesis.
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2. Benchmark F matrices for the UVDM model

In the UVDM model, the matrices F' and F? represent
the couplings of DM to ®; and ®,, respectively. The
leading-order baryon asymmetry is proportional to

Im[(F”Fl)zl (FzTFz)lz]

_ %jTr[Fl"'Fl]Tr[FzTFz}’ (A4)

where 7 can be parametrized in terms of six mixing angles/
phases [7],

J = sin 20, sin 260, cos p; cos p, sin(¢, — 1),  (AS)
with
FitFi

cos; = @, (A6)

Tr(FI FY)

FiTFi
cosp; = |T( A )12,1 —, (A7)
V(FTF) (FTF),

bi = arg(F''F'),,, (A8)

and 0 < (6;,p;) < /2.

The O(F*) baryon asymmetry is maximized for p; =
p» =0 and ¢, — ¢p; = n/2, choices which define our
UVDM benchmark. These parameters are realized, for
example, for the coupling matrices

cosf, sin0,

F'' = /Tr[FYFY[ 0 0 (A9)
0 0
cos@, isinb,

F? =/ Tr[F?*"F?] 0 0 . (A10)
0 0

in which only a single flavor of charged lepton couples.

3. Benchmark F matrices for the Z2V model

For the Z2V model of Sec. IV, our benchmark F matrix
is motivated by scenarios in which either one or two of the
72V couplings come into equilibrium. In both cases there is
one “special” SM flavor: if a single Z2V coupling is in
equilibrium, it is the flavor of SM lepton doublet that does
not couple to @; if two Z2V couplings are in equilibrium, it
is the SM flavor involved in both of those couplings. For
this discussion, we label the special flavor with the index /.

As we discuss in Appendix E3, the O(F*) baryon
asymmetry turns out to be proportional to

4 .
V) o Im[F 1 F(FTF) ). (Al1)

We now refer back to the parametrization of the ' matrix in
Eq. (A1). For fixed values of § and Tr[F' F], the parameters
relevant for the DM energy density, the maximum possible
value of the quantity in Eq. (A1l) is

Im(Fy Fj (F'F)yy]  sin?20
(Tr[FTF))?2 16

(Al12)

For example, for # = 1 the maximum value is realized for
71 =72=0,p=pr=n/4 and ¢, — ¢, = /2. That is,
in scenarios with one or two Z2V couplings in equilibrium,
having only two active flavors couple to DM turns out to be
optimal for maximizing the asymmetry, in the perturbative
regime.

We take our benchmark F matrices to be ones in which e,
and one additional flavor of RH lepton couple, and in which
Eq. (A12) is satisfied. For = 1, one such F matrix is

TFTE cos@ sinf
F= r[z I coso ising |: (A13)
0 0

another would have zeros in the second row instead. For
p = 2, the row of zeros can be the first or the third, and for
f =3 it can be the first or second. These various flavor
structures are equivalent as far as leptogenesis is concerned,
although they have different collider implications.

APPENDIX B: CHEMICAL POTENTIAL
RELATIONS

1. General relations

Neglecting neutrino masses, SM interactions conserve
the three charges X, = B/3 —L,, where B is baryon
number and the L, are charges associated with the three
lepton flavors. We define the X, charges of the BSM
particles @ and y to be zero. The DM and Z2V interactions
are both X,-violating, which allows nonzero X, densities to
evolve starting from what we assume is a neutral state after
inflation. In Appendix D, we write down a set of quantum
kinetic equations (QKEs) that model the evolution of the
X, and DM abundances, while in Appendix E we provide a
perturbative calculation of these X, densities that are valid
in the weak-washout limit.

To calculate a final baryon asymmetry, we need to take
into account rapidly occurring SM spectator processes
using the appropriate relations among the asymmetries
of the various particle/antiparticle species. In this
Appendix, we derive those relations. We include possible
72V couplings from the start, which need not be in
equilibrium, but do not include a neutrino-portal coupling
for the DM. The X,-violating interactions are then
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LD —F,e5y®— ﬂ%ﬂlalﬁ(b* + H.c. (B1)
In the UVDM model, there exists an additional scalar field
®, whose interactions can affect the chemical potential
relations. However, in our work we restrict our discussion
of the UVDM model to the decoupled-®, regime such that
@, is absent from the thermal bath at all cosmological times
relevant for leptogenesis, and so its couplings are not
relevant here.

Because the DM is light enough to be ultrarelativistic at
sphaleron decoupling, we can neglect DM masses in this
discussion. This allows us to treat the negative-helicity and
positive-helicity DM states as a particle/antiparticle pair, y
and jy, carrying opposite values of conserved charges. We
define the B and L charges of y and ® to be B, = By, = 0,
L, =-1, and Ly = 2. With these definitions, the inter-
actions of Eq. (B1) conserve both B and L. We take B — L to
be conserved in general, with B and L separately conserved
below the sphaleron decoupling temperature. The violation
of B — L induced by y Majorana masses is inconsequential
for the masses and timescales we consider.

For particle species i, we define Y;=n;/s and
oY, =Y, —Y; where n; is the number density and s is
the entropy density. The X, charge densities are
Y,=> :(X,);0Y;, where (X,); are the charges of particle
species i. In this Appendix, we will see that we can express all
asymmetries, including the baryon asymmetry Yz=
> i B;6Y;, entirely in terms of the DM asymmetry &Y,
and the three Y,,.

In terms of the y and jy density matrices introduced in
Appendix D, the DM asymmetry is 6Y, = Tr[Y, — Y;].
There are eleven additional particle/antiparticle asymme-
tries to consider, encoded in the chemical potentials s, ¢,
Haes Hi,» Hecs Hp» and pg. We take the quark chemical
potentials to be flavor-independent due to flavor non-
conservation in the quark sector. Working in the electro-
weak symmetric phase and taking sphalerons to be
fully in equilibrium, we have the following system of
equations:

Hg + M + g =0 (B2)

g+ pae — b =0 (B3)

Hy, + Hee — p =0 (B4)

g+ Y my, =0 (BS)

Yy =) ydY; =0 (B6)

Ypp =) Yo—26Yg+6Y, =0 (B7)

Yo=Y (B/3-L,)8Y; =0. (B8)

ieSM

Equations (B2)-(B5) are enforced by SM Yukawa inter-
actions and sphalerons being in equilibrium. Equation (B6)
follows from hypercharge neutrality, with y; being the
hypercharge of particle species i, Eq. (B7) similarly
expresses neutrality under the conserved charge B — L,
and Eq. (B8) simply reflects the definition of the X,
charges, with the sum over i restricted to SM particles.
Equations (B2)—(B8) can be solved to express all asym-
metries in terms of Y, and Y, using the appropriate
relations between number-density asymmetries and chemi-
cal potentialsloz

(B9)

Here, s is the entropy density and g; counts gauge and
flavor degrees of freedom (e.g., g, =3 x3x2=18,
while ¢g; =2 for each flavor a). For simplicity, in
Eq. (B9) we neglect all masses (including thermal con-
tributions) except for that of the ® particle, giving ¢; = 1/6
for SM fermions and ¢; = 1/3 for the SM Higgs doublet.
We take into account the potentially large mass of the ®
particle, which leads to a temperature-dependent expres-
sion for cg. Defining

xX=Mgy/T, (B10)

we find

—l/wd _e Y (B
o= [ AV -2

1/3 k1 B1n
_{;—ilCz(x) x> 1. (B12)

Figure 20 shows a plot of cg.
It is convenient to define Y, to be the net B — L charge
stored in the SM sector:

Yin=> Yo (B13)
Solving our system of equations then leads to
25 3
Yp=—Y —==6Y B14
B 79 sm 79 X ( )

"®Here we linearize in all chemical potentials including y¢q,. In
our numerical work we make the replacement ug —
T sinh(pug/T) to allow for the possibility of a highly asymmetric
@ population at temperatures well below Mg; see also the
discussion leading to Eq. (D31).

095027-27



BERMAN, SHUVE, and TUCKER-SMITH

PHYS. REV. D 105, 095027 (2022)

0.1 05 1 510
X

FIG. 20. The temperature-dependent function cg, defined in
Eq. (BI1).
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pol? _ 1 (Yon + 6Y,) (B17)
s 2cp M x

In the QKEs, the washout terms depend on ¢, y; , and pg.
We use Egs. (B15)—(B17) to substitute in for these
quantities, leading to a closed system of equations for
tracking &Y, and the Y,,.

Equations (B14)—(B17) apply for all scenarios we
consider, in the electroweak symmetric phase and while
sphalerons remain in equilibrium. For the perturbative
calculations presented in Appendix E, we take these
relations to hold until sphaleron decoupling, which we
approximate as occurring instantaneously at T, =
131.7 GeV [15]; to calculate the final baryon asymmetry
we evolve Y, and 6Y, from high temperatures to 7' = T,
and then evaluate Eq. (B14) at T = T,,. When we numeri-
cally solve the QKEs of Appendix D2, we take into
account gradual sphaleron decoupling following the meth-
ods of Ref. [32], while continuing to use unbroken-phase
relations. Electroweak symmetry breaking could be taken
into account following Ref. [77], but we expect these
effects to be small. For example, for Z,-preserving scenar-
ios we find Y = (22/79)Y, in the unbroken phase (see
the discussion leading to Eq. (B18) below), versus Y =
(22/74)Y,, deep in the broken phase, a ~7% difference.

2. Chemical potential relations in Z,-preserving
scenarios

In the minimal and UVDM models, we set the Z,-
violating couplings 4,5 in Eq. (B1) to zero. In this case we
have an additional conserved U(1) with only @ and y
charged, oppositely. The @ and y asymmetries are thus
equal, and Eq. (B17) then gives Y, = 6Y¢ = &Y. These

relations can also be understood as direct consequences of
neutrality under B — L, for two alternative BSM-particle
lepton-number  assignments, {Le =1,L, =0} and
{Le =0,L, =1}, both of which are consistent with
B — L conservation in the Z,-preserving case (neglecting
y masses, for the second assignment). With this simplifi-
cation, Egs. (B14)-(B17) become

22
Y=Y B18
B 79 sm ( )
pee T? 14
© —_ Y 2Y B19
s 237 sm+ a ( )
mI™ 3y oy (B20)
s 237 ™ ’
% 1
fo :_Ysm (B21)
S Cq)

In these Z,-preserving scenarios, the present-day baryon
asymmetry is proportional to the ® asymmetry at sphaleron
decoupling. For heavy @ particles, Mq2 several TeV, the
final baryon asymmetry thus suffers an exponential sup-
pression if the @ lifetime is much shorter than the age of the
universe at sphaleron decoupling, c7¢ < ?,,, ~ cm. In the
72V model, on the other hand, the @ and y asymmetries
need not be equal, and this exponential suppression is not
guaranteed.

3. Chemical potential relations with
one Z2V coupling in equilibrium

For the Z2V model, we pay special attention to bench-
marks in which one or two of the three independent A
couplings are in equilibrium, with the remaining coupling(s)
small enough to neglect.

Consider the case in which exactly one Z2V coupling
comes into equilibrium, and take the other Z2V couplings
to be zero for simplicity. There is then one particular lepton
flavor I, that is not involved in Z2V interactions. The
chemical potentials of the two lepton flavors that do
participate in Z2V interactions, which we label as [, and
ls, satisfy the equilibrium relation

Hi, =+ pi, = Ho = 0. (B22)
Using this relation along with Eqgs. (B14)—(B17), which
apply generally, we can express Y entirely in terms of Y
and 6Y,. We find

_300cY; — 12[7 + co)5Y,
B 237 4 766¢q

(B23)

Although Eq. (B23) applies whenever the 4,5 coupling is in
equilibrium, (where f# # y and S # o), we will only use it
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when treating the DM couplings perturbatively, and under
the assumption that we can neglect Z2V couplings involv-
ing /4. In that context, Y4 and 6, can be calculated without
taking into account Z2V couplings and then plugged into
Eq. (B23) to get the baryon asymmetry. Provided a
perturbative treatment of the DM couplings is appropriate,
this is a good approximation even for nonzero Ag, and Az,
as long as those couplings are small enough not to come
into equilibrium. As discussed in Appendix E3, Yp
effectively arises at either O(F*) or O(F%) when one
72V coupling comes into equilibrium, while the contribu-
tions to Y from out-of-equilibrium Z2V couplings come
with an additional suppression.

4. Chemical potential relations with
two Z2V couplings in equilibrium
When two Z2V couplings come into equilibrium, we
instead define [; as the lepton involved in both of the
independent Z2V couplings, so that both 44, and 445 are in
equilibrium, but 4,5 is not. In this case it is convenient to
use the equilibrium relations

My, + mi, = o = i, + gy — o =0 (B24)

and Egs. (B14)—-(B17) to express the baryon asymmetry as

_75C¢(Yﬂ - Y}, — Y(g) + 3[28 4 C@]éYZ

Y =
B 237 + 529¢q

(B25)

The combination Y; —Y, —Y; is unaffected by the in-
equilibrium Z2V interactions. In the perturbative context,
we can calculate that quantity and 6Y, without taking into
account the Z2V couplings and then plug those values into
Eq. (B25) to get the baryon asymmetry, provided the
remaining coupling 4,5 is small enough to remain out of
equilibrium.

If all three Z2V couplings come into equilibrium, the
lepton chemical potentials are flavor-universal, and one can
use Egs. (B2)—(B8) to show that all asymmetries are
proportional to Y. In this paper we restrict our attention
to models with two y mass eigenstates, in which case it
turns out all asymmetries vanish [30].

APPENDIX C: REACTION DENSITIES

In this Appendix, we provide expressions for reaction
densities and related quantities that appear in the QKEs of
Appendix D and in the perturbative results of Appendix E.
Focusing first on interactions involving the DM, the
momentum-integrated QKEs involve generalized reaction
density matrices in y; space, [y;];;, where a labels the
flavor of charge lepton involved, and X indicates whether
the associated effects survive in the absence of asymme-
tries (X =0), are driven by a ® — ®* asymmetry

(X = @1, ®2),"" or are driven by an ef, — e asymmetry
(X = el, e2). These reaction densities have the form

1)y = a8 [ anzr, (e
where the phase space factor is
Pk 1 &P 1
dIl = P
(27)*2E, (k) (27)* 2E,(p)
& 1
: (n)'s'(q—p-k). (C2)

" (2n) 2Eq(q)

with E, (k) = |k|, E,(p) = (M + |p[*)!/?, and Eq(q) =
(M% + |q|*)'/?. Here, the ® and e masses-squared,
including the leading thermal contributions from the
U(1), gauge coupling g,, are

- 1
Mz = M2, +Zg§T2, (C3)
_ 1

where we neglect contributions from the charged-lepton
Yukawa couplings and from possible |®|?|H|?> and |®|*
interaction terms.

The integrands appearing in the reaction densities are

FO=f-(vo)ll = f1(3e)] (C5)
F=F-a)f+ ()l = £1 ()] (C6)
F = fr)f+ 0l = f1 ()] (C7)
F = f_(vo)[1 + f-(ya)l[l = f1(ve)]  (C8)
FP = f () f-0o)[l + f-(Vo)] (€9)
with

and where

Fa) = (e £ 1) e

are the standard Bose-Einstein (f_) and Fermi-Dirac (f)
distribution functions for vanishing chemical potential.
Because we label f. by the + sign appearing in the

"Note that ®1 and ®2 label different reaction densities for a
single scalar, rather than reaction densities for different scalars.
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associated expression, f, and f_ apply to particles that are
odd and even under exchange, respectively.

Carrying out all integrations besides those over Eg and
E,, the reaction densities can be expressed as

F Fa _ © E.
A% (3 — M?) / dEg / dE,F¥, (C12)
Mo, E_

X
[]/a] 303

with the implied replacement E, — Eq — E, in F¥, and

with
M: —-M? (E E
E. = il Il A (e ) _q
2M g Mg Mg

In the Z2V model, we also need to consider ® <« l,,l/,w
processes and their CP conjugates. The relevant reaction
density (no longer a matrix in y space), is

(C13)

13 = g 0Ty = 283) [ v F,(c1d)

where a and f label the flavors of leptons involved, and
where the overall factor of two arises from summation over
SU(2),, gauge degrees of freedom. Here we use the
notation

Pk 1 dPp 1

72V __
A = 2y 2, (20 2E,(p)
LA L s p—k) (CI5)
(27) 2Eq(q) 7 M TP
and
F22V fo(o)[1 = fL DIl = f+(ve —y1)].  (C16)

where in addition to the ®-related quantities defined before,
we now have E/(p) = (13 + [p|2)"/2, y, = E/(p)/T. and

o _ (1 2 4 3 2

My = (16 167 >T

where g,, is the SU(2),, gauge coupling. (In an attempt to

avoid notational confusion below, we have used energy

conservation to express 22V in terms of Eq, and E;(p), the
energy of one of the two leptons.)

Carrying out the integration over k and then the

remaining angular integrations, the Z2V reaction density
can be expressed as

(C17)

|/1a |2 v \/ ® £
3 = ity =2it)) [ " ae, [ anFY. (c1s)
Mo, E_

where the limits of integration are now

(C19)

Eo  E, - M; ——
Ei:ébi%q/l — 4M3 | M.

The QKEs are challenging to solve numerically and we
therefore use reaction densities averaged over y momentum
in these equations. In our perturbative calculation, however,
we are able to determine the contributions of each y
momentum mode separately. For simplicity, we neglect
thermal masses in all of our perturbative calculations.
Reversing the order of integration in Eq. (C12) and carrying
out the Eg4 integral gives

M4 -2
F:.F,
327 3 ai

[72];‘,‘ =

A dygo(x,y),  (C20)
where

Lt e
m) (c21)

and where we continue to use the notation x = Mg, /T. The
go function will feature in the perturbative calculations of
Appendix D1 and Appendix E, in which we calculate
asymmetries and the DM energy density at leading order in
F, while taking into account the full momentum depend-
ence of the DM distribution function.

The perturbative calculations of Appendix E also involve
the y¢! and y®' reaction densities. Because we neglect
thermal masses in our perturbative work, we can replace the
E, integration in Eq. (C12) with an E, integration over the
same range, and we find that these two reactions densities
can be expressed as

o(x.y) = £+ () 1og(

M4 x—2 §
[751]11 - 3‘21)7[3 ai a/gel(x) (C22)
Mgx=
[ygl]lj 307 3 F* Fa]gfbl( ) (C23)
with
eyt’
d C24
gel / )’d>/ e)f 1)2(6);0 _ 1) ( )
[ Vi eYeedo
= d d C25
g(Dl('x) [ y@/y ye (€y€+l)(ey¢_1)2 ( )
and
1 2 2
yizi[ytbi\/ycb_x] (C26)
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APPENDIX D: QUANTUM KINETIC EQUATIONS

Consider a single comoving DM mode, characterized by
a particular value of y = |k|/T. For this mode, information
about the y; and y, occupation numbers and quantum
coherence in {y,y,} space can be encoded in a 2 x 2
matrix, f,. Following Refs. [29,30], we take the quantum
kinetic equation (QKE) for f, to have the form

df , 1 Iy ry
d_;( = —i[E,.f,] _§;<{E’fl} - {2—Ex’

In the absorption and emission terms, we neglect DM
masses by taking E, = |k| = yT(¢), whereas in the com-
mutator term we define E, to be diagonal 2 x 2 matrix
whose nonzero entries are E; = (M? + y>T(1)*)'/2. As
discussed in Sec. IIT A, we leave for future work the
inclusion of thermal corrections to the DM masses, whose
effects are most important for large DM couplings and
small values of Mg and AM?. We have chosen to work in
terms of flavor-specific rates for y absorption and emission,
with the lepton flavor involved in the interaction labeled
by a. In evaluating these rates we include only decay and
inverse decay processes, ®* < eSy;, which leads to

(D1)

T3]y = FaF o (Mg, — M7)

at

x/ﬂwmmm—mmn (D2)
[F;]ij = F;iFaj(Mé _M%)
x/ﬂ@m@m+mm» (D3)

where in general the ®@ and e, chemical potentials enter into
the distribution functions f¢- and f ., and where we define
the phase-space factor

dp 1 dq 1

dn® =
(27)3 2E,(p) (27)3 2E4(q)
x (27)*5* (g — p — k). (D4)
As we did in Appendix C, we define Eq(q) = (M3 +

[a*)"/* and E,(p) = (M + |p[*)"/?, with M and M,
defined in Egs. (C3)—(C4). In Eq. (D4), we can take k to be
any four-momentum satisfying k> = 0 and |k| = yT.

1. Perturbative treatment of the QKEs

We first analyze the QKEs with the goal of calculating
the X, densities in the minimal model, at leading order. For
this purpose, we can ignore chemical potentials in the
distribution functions appearing in Egs. (D2)—(D3). We will
also neglect thermal masses.

1-1,}).

We start by taking three steps to rewrite Eq. (D1) in a

more convenient form. First, we use the relation

)07 == £, ()]s, (DS)

which applies in the absence of chemical potentials. Here

f. is the Fermi-Dirac function defined in Eq. (C11), and

we continue to use y = |k|/T for the momentum of our
comoving DM mode.

Second, we switch our independent variable from ¢ to
The entropy density and Hubble parameter can then be
written as s(x) = 2729, Myx~3/45 and H(x) = M3x7%/
M, where g, ~ 106.75 is the effective number of relativistic
degrees of freedom and My~ My /(1.66,/g,) ~7.12x
10'7 GeV. We then have t = (2H)™! = x?M,/(2M3).

Third, we define interaction-picture quantities
f<a = U'r<u,

[, =Uf,U (D7)

where we take the time-evolution matrix to have the form
U = diag{1,e™?}. (D8)

The relative phase acquired between the two y mass
eigenstates is

: t o AM?
o= [ g0 = [T =gy (09
X
With fle = M08E

Following these three steps, the QKE for our comoving
mode can be written as

df af, fy
*dx 2 )"
To get the equation for ¥, we replace fx - ]‘2 and F — F*.
The number density of y particles, n,, is obtained by

integrating fx over momentum and taking the trace. We
define the 2 x 2 matrix ¥, so that its trace is n,,/s:

- 1 [ &k . 45 o ~
Y, =- = dyyf,.
X s/(2n-)3 I 471'4g*A WSy
In a DM interaction involving lepton flavor a, the changes

in the X, charge and in the y and jy populations are related
by AX, = AN, — AN;. We then have

(D10)

(D11)

dY
dx

dy, Ty dY
dx dx

] (D12)
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where the a subscripts on the right-hand side specify that
only contributions associated with lepton flavor a are to be
included. Integrating both sides of Eq. (D10) over momen-
tum, we obtain

I Nl
8ﬂg*xH/ vy {ZE “ij)}' (D13)

To evaluate Y, at leading order, we plug Eq. (D13) and the
corresponding equation for y into Eq. (D12), using the
O(F?) expressions for f, and f;; integrating Eq. (D10)
gives

a7,
dx |,

(D14)

7(2) _ * o dx E /
W=3 | s @

while for f}f) we replace F' — F*. After these steps, we get
the following O(F*) expression for the X, asymmetry:

875 g*z/ dyy /x d)z;l)lx‘xzzx(iz)
XTr HZFE< D <x2>}—<F~F*>] (D15)

h<
g =
|

Because we ignore chemical potentials in the emission
rate, we can express [, in terms of the g, function
introduced in Eq. (C21):

[F(f] ij M(D
~ l6x

X
FmFa] yz go(X y) (D16)

We can verify this relation by carrying out the integrations
in Eq. (D2). Equivalently, we can start with the fact that, in
the absence of chemical potentials, I';; is related in a simple
way to the 70 reaction density defined in Eq. (C1),

d3k rs M3 -3 rs
0 — a — d 2@
A0 = [ Gyt 00 =" [ a5 (0

(D17)

Using the expression for 79 given in Eq. (C20) again leads
to Eq. (D16).

In Eq. (D15), time evolution matrices appear through
the interaction-picture matrices I and 17. Defining the
matrices

M,);;=F,F,; and M,(x)=U"(x)M,U(x), (D18)

the trace involves

D Tel{#,(x)). My(xr)} = (F — F*)]
5

= St Pl F)sin 2223 =), (D19)

These steps lead to our final expression for the leading-
order X, asymmetry,

4 45 M,
Yg)(x)=256g* (Md) Im[FalFaz(F F)p)

[oe] dy X
XA y2f+(y)A dxlx%go(xl’)’)

[ vt sin P -) | 020

which is used extensively in our perturbative analyses.

2. Momentum-integrated QKEs

To go beyond a perturbative treatment of the QKEs, we
start by integrating Eq. (D1) over momentum, assuming a
thermal DM momentum distribution:

[Y)(]ij

€q
Y)(

i)

= [+ () (D21)

where Y,! = 135¢(3)/(87*g,) ~ 1.95 x 1073. The com-
mutator term can then be expressed in terms of the diagonal

matrix
. AM? /T
51—‘*%("’ 27 <E7>)

where (T/E,) = C~( 5 =

(D22)

potentials, we ﬁnd

dy, . LY R
st G2 = —isle 1)+ 3 (-3 {3} ). 02)

where y! and 72 can be expressed in terms of the reaction
densities introduced in Appendix C:

He, Ho

e =713 - Teyfx‘ - o (D24)
Mot I

y2 =79+ ; ye — ;,D 22, (D25)

The kinetic equations for y are obtained via the substitu-
tions Y)( g Y)?, Fai d F;;i’ Ho = —Hops and ,Llelcx d —ﬂeg:

Y

day, Y,
SHXE —is[E,.Y,] Z(ya——{ g,Ye{l}) (D26)
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with
> Heg Ho
1 _ 0% elx (OJ S D27
R RS Rt (D27)
> Heg Ho
2 _ 0% _ TCa, e2x <1>2*‘ D28
R R S A S (D28)

The X, densities change only due to DM interactions and
72V interactions. Each DM interaction involving SM flavor
a produces equal changes to the X, charge density and
the /¥ number-density asymmetry, AY, = ATr[Y, — Y;].
Each Z2V interaction that changes the number of I, (I,)
particles produces an opposite (equal) change in X,.

Working from these facts, we find

sHx dd);a = —Tr {yg Yy_gq — 0 j—é]
- Mgt - o megyp
ﬂ;aTr{ éq+},e2*;;?}
+E2Tr [}/a e ;ﬂ
- 22/; <”—7‘? Ee ’%) 2V (D29)
where y??V is defined in Eq. (C14).

As written, the QKEs presented in this Appendix are
valid assuming it is appropriate to linearize the ®*)
distribution functions in chemical potential:

—f +he f(1+f) (D30)

fo/or =

Although |ue/T| < 1 is almost always satisfied in the
scenarios of interest in this paper, we replace Eq. (D30)
with

(I+f-) (D31)

Sfoor = cosh(ue/T)f- £ sinh(ue/T)f -
in our numerical work, a recipe that effectively takes into
account the possibility of a highly asymmetric ®/®*)
background left behind at 7 <« M,, while remaining valid
in the |ue/T| < 1 regime.

We can express the chemical potentials appearing in the
QKEs in terms of Y, and Tr[Y, — Y], using the results of
Appendix B. Then we numerically solve the system of
QKEs to obtain Y, (x) = >, Y, (x) for temperatures down
to the T',,. Having done that, we determine the final baryon
asymmetry by following Ref. [32], which takes into
account gradual sphaleron decoupling. That is, we take

std— = -Tg(x)[Yp(x) = Y'(x)], (D32)
where Y3'(x) is calculated from Y, (x) using the relations
of Appendix B, which assume sphalerons to be in equi-
librium. We use the SM result for "5, because no new chiral

states couple to sphalerons in our model.

APPENDIX E: PERTURBATIVE RESULTS

1. Minimal model
a. O(F?*) DM density in the minimal model

To calculate the DM abundance at leading order, we
ignore inverse ®*) decays, neglect Pauli-blocking due to
the y/y abundance, and neglect thermal mass effects. Using
the leading-order calculation of Appendix D 1, the O(F?)
number density divided by entropy density (which is equal
to that for y) is

ﬁw—éﬂggmﬁm1 (E1)
45 0 ~
o [Tl )

where })((2) is given in Eq. (D14). Here and for all of our
perturbative results, we switch to a notation in which Y, is
number density divided by entropy density, a number rather
than a matrix. We restrict the notation in which Y,
represents a matrix to Appendix D. We continue to use
X = Mg /T as our independent variable; see the paragraph
containing Eq. (D6).

Using Egs. (E2), (D14), and (D16), and taking x — oo to
get the final abundance, we find

45
Yo —

M 0
- TrFTF Y% / dxx2go(x), (B3
6ary. My Jy T do(x),  (E3)

where we have defined the momentum-integrated quantity

o) = [ dvgotey) (B4)
with g, itself defined in Eq. (C21).

The dark matter energy density, pg,, is determined by Y,
the DM masses M| and M,, and the 8 parameter appearing
in Eq. (A1), which determines the relative abundances of y,
and y,. We have

Pam _ 2y, (ES)
s
where
M = cos* OM, + sin®> OM, (E6)
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is the average DM mass for the y particles produced in @
decays, and where the factor of two takes into account the
two DM helicity states, y and y. Taking the observed DM
energy density to be pg2 /s = 4.3 x 107 keV [28], we find

(2) v 2
pdi,n ~2) Iy M 500 GeV (ED)
pos H., ) \15 keV Mg

dm

where H.,, = T2,/M, is the Hubble parameter at spha-
leron decoupling and

Tr[FTF)

I'p = M E
0= Mo (ES)

is the @ decay width.

b. O(F*)X, asymmetry in the minimal model

In the Maxwell-Boltzmann approximation, the O(F*)
flavor asymmetry in X, = B/3 — L, can determined via a
relatively simple and physically motivated calculation that
separately considers ®*) decays, inverse decays, and DM
oscillations in between. This is the approach introduced in
Ref. [7]. In the present work, we fully incorporate quantum
statistics and find it more convenient to obtain the desired
result via a perturbative analysis of the QKEs, which we
perform in Appendix D 1, neglecting thermal mass effects.
There we find that the O(F*)X, asymmetry, as a function
of x=Mg/T, is

a5 (M2
 2569,7° \ Mg

x Im[F o Fop (FTF) )70

Y& (x)
D(x,fose)s  (E9)

with

@) (x,5) = A dy A drRgo(x1.)

xi Go(x2.y) . [ﬁ }
X dx,x2 2 L gin | S (a3 = 23 E10
/) 2 2y2f+(y> y< 1 2) ( )
and
MyAM?
Pose =—grri— (E11)
(o]
V\3  AM?
~0214 x (220 6@ 5. (E12)
Mg (15 keV)

Starting from the parametrization of Eq. (Al), one can
derive the bound (for any a)

Tr[FTF]\?2
[Im[F}, Fop(FTF)y]| < sin%@(%) (E13)

(E14)

42T\ 2
- sin229<”‘1’> .
Mg

Using this inequality and evaluating Eq. (E9) at the
sphaleron decoupling temperature, 7 = T.,,, we find

4)
Y(l ew .
Ya (o) ) 5 5 10%)sin%20
YoBbs
Iy \2 V 4
% [ =% M T4 (Xew» Bose)»
Hew Mtb
(E15)
where
Xew = MtD/Tew’ (E16)

and where Y9 =8.7x107!! is the observed baryon
asymmetry [28]. We use Eq. (E15) in the perturbative
analysis of Sec. IT A.

For x > 1, corresponding to Mq > T, the asymptotic
behavior of Z( for large and small § is

1.71 x 102 <1
TW (0, B) = { pp (E17)
0.424/p p>1.
In Fig. 21(a), we see that peak values for Z(*) (x, #) range

from ~3 for x> 1 (at f~4 x 1072) to ~0.05 for x ~ 1
(at p~1).

The momentum-integrated QKEs of Appendix D2
incorporate a thermal ansatz for the DM momentum
distribution; see Eq (D21). Adopting the same ansatz in
the perturbative context amounts to modifying Eq. (E10) by
the replacements

1
sin [g (x3 - xg)} — sin [ﬂ<—> (xf - x%)} (E18)
y y
and
go(x2¥) S dygolxa,y) 2
— Jol(x2), E19
2f+ fo dyy2f+( ) 34’(3) olz) ( )
where in the first replacement, (1/y) = E46)] C ~ (.46 is the

average T'/E, for a thermal distribution, whlle the second
replacement involves the momentum-integrated function g,
introduced in Eq. (E4). After making these substitutions
and carrying out the y integration, Eq. (E10) becomes
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FIG. 21. For various Mg, (a) Z™, (b) Z©), (c) Z®¥, and (d) Z©), plotted against f.

ta(x p) = 3; )/ dxlx%go(xl)

X 2
[ (o sin | 22 03 - ).
(E20)

where “t.a.” specifies that a thermal ansatz has been
adopted for the DM momentum distribution.

c. O(F®) baryon asymmetry in the minimal model

In the minimal model, one can use Eq. (E9) to show that
the flavor-summed asymmetry vanishes at O(F*):
Ygfn) =>, Y™ = 0. As discussed in Appendix (B 2), we
have 6Y, = Yg = Y, in the minimal model, so the ® and
x asymmetries vanish at O(F*) as well.

A flavor-summed asymmetry arises at O(F®), via the
standard ARS mechanism [8,9]. In the presence of an

O(F*) chemical potential y(‘f) for a particular flavor lepton

€q

(but with yg ) = 0, and continuing to neglect the DM
abundance), the difference between the rates per volume for
O — y 4 ey and @ — j + ef decays is —2(u,c /T)Tr[yg'],
where the y¢! reaction density is given by Eq. (C22) when
thermal mass effects are neglected. Each decay produces a
change AX, = =+1, so at O(FS), the flavor-summed
asymmetry at sphaleron decoupling is

(E21)

(6) Xew d.x Mea
Y = =2 Tr[ys!
* A stZ tlr
Equation (B19), with Y Efn) = 0, allows us to rewrite this as
4M
y§ = -0 } : / dxx*YS) (0 Tepel (x)]. (E22)

Finally, from Eq. (B18) we have Yz = KpY,, with
Kg =22/79. Using Egs. (E9) and (E10), we can write
the final O(F®) baryon asymmetry as

6 *
Y =3 (FF') Im[Fiy Fo(FF),)

a

45K M\ 3
. m (][4;) 1(6) (xew’ﬂosc), (E23)
with

) (x, ) = / Vg, (IO (. ). (E24)

For the numerical studies of Sec. III A, we adopt the
benchmark F matrix introduced in Appendix A 1, so that
Eq. (A3) applies. For this benchmark we find
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B‘ ~ 23 sin% 20

Ty \3 /500 GeV\ 6
2 ) (=) 7 o). (B2
() () T ) (E29

For x > 1, the asymptotic behavior of Z(©) for large and
small f is

1288 p<1

(E26)
0.157/8 p> 1.

Z9(co, ) = {

Figure 21(b) shows Z(%(x,,,. ) versus 8 for various M.

2. Perturbative results in the UVDM model

In the UVDM model, we include a “primordial” pop-
ulation of y particles produced at high temperatures. For
concreteness, we adopt a model with two scalars @ and
®,, which have hierarchical masses, My, > Mg, and
independent DM coupling matrices F' and F?. At O(F?),
the DM energy density can be expressed as

o " M \ /500 GeV' 2
P T\ Hey, ) \15 keV Mg,
yuv M(Z)
135 o ) (o )-
Y ) \15 keV

Here, M) and M® are the average masses for DM

(E27)

produced in ®; and @&, decays, respectively.
Generalizing Eq. (E6), we have
M) = cos? §;M, + sin”> O, M, (E28)

for i = 1,2; 0, and 6, are determined from the coupling
matrices F! and F? analogously to Eq. (A1) for the minimal
model. The first term in Eq. (E27) gives the DM energy
density due to @, decays, reproducing the result from
Eq. (E7) for the minimal model. The second term gives the
DM energy density due to ®, decays, which we express in
terms of YV, the number-density divided by entropy
density for DM particles from @, decays (defined to
include both DM mass eigenstates but only one helicity
state: y or jy, not both), and the reference value
Y;' =135¢(3)/8n%g, ~1.95x 1073, the equilibrium
abundance for an individual helicity and mass eigenstate
of y particle. We express the @, contribution in terms of
YV because we take ®, to be decoupled as far as
phenomenology is concerned. Its only impact is through
the coherent y background its decays leave behind.

In the UVDM model, a baryon asymmetry arises at
O(F*), due to y production by ®, decay followed by
inverse decays to ®@;. We can obtain an expression for the
leading-order baryon asymmetry by appropriate

modification of the flavor-summed version of Eq. (E9),
which applies in the minimal model. We get

(4) - 451CB M(z)
B 2569,7° My Mo,

X Im[(F]TFl)Zl (FZTFZ)IZ]iM)(xew’ﬁosc)’ (E29)
with
(4) _ [ 2 90(%2,)
W (x,p) / dy/o dxyx3 )
x [ andgo(ry) sinlprifyl.  (E30)

where we define x.,, = Mg, /T, in the context of the
UVDM model. Using the relations between F2 and Y}V
and F' and ['p,, the final baryon asymmetry can be
reexpressed as

(4) uv
Y Y
B ~(1.03><105)j< £ >

Y(l)}bs - Y)C(q
Te \ /500 GeV\2-
=) ¥ E31
) <Hew> < M(D| ) (xew»ﬁOSc), ( )

where J, which is defined in Appendix A 2, satisfies
J < sin 26, sin 20,. We take the bound to be saturated for
our UVDM benchmark scenario, as it is for the F' matrices
of Eq. (A9) for example.

For x > 1, the asymptotic behavior of Z(*) for large and
small f is

2000, ) o {303,3 p<1 (32

1.18/6 p> 1.
Figure 21(c) shows Z “) (Xew. f) versus f3 for various M, .

3. Perturbative results in the Z2V model

We restrict our perturbative analysis of the Z2V model to
cases in which one or two of the three independent Z2V
couplings come into equilibrium, and we neglect higher-
order corrections induced by Z2V couplings that remain
out of equilibrium. If all three Z2V couplings come into
equilibrium the baryon asymmetry essentially vanishes,
as discussed in Appendix B. In the Z2V model, the DM
abundance at O(F?) is given by Eq. (E3), as in the minimal
model. However, because we assume that the Z2V cou-
plings dominate the ® decay width, Eq. (E7), which
expresses the minimal model connection between the dark
matter abundance and the @ lifetime, no longer applies.
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a. Y at O(F?) in the Z2V model

One Z2V coupling in equilibrium: Consider the case of a
single Z2V coupling 4,5 = —45, in equilibrium. Then, for
the one lepton flavor that does not participate in Z,-
violating interactions, which we call 3, the O(F*) result
for Y is unaffected by the Z2V coupling, allowing one to
use Eq. (E9) for that flavor. Furthermore, at O(F*), there is
no y asymmetry, 5Y)((4) = 0. This is the case in the minimal
model, as discussed in Appendix B 2, and because the Z2V
couplings do not involve y, it remains true in the Z2V
model. Equation (B23) then allows us to write the O(F*)
baryon asymmetry in this scenario as

@) 300co L)
= , E33
B 70237 +766¢q * (E33)
with Y} calculated using Eq. (E9). The final baryon
asymmetry is given by evaluating all quantities at x = x,.
In fact, using 6Y)(( =0, the equilibrium relation
Eq. (B22), and the general relations Eqs. (B14)-(B17),
one can express all O(F*) asymmetries entirely in terms of
Yﬁ) and Y §4) -Y 554), the two combinations of X, asymme-

tries that are not affected by the Z2V couplings and so can
be calculated using Eq. (E9). For example, we find

(#) 2
Beo T° 474 4+ 129%cq )

- E34
s 237 +766¢c 7 (E34)
4) 2
Heo Ty 2374 54ce
Ty ey %y E35
s ! o 237 +766ce * (E35)
)2
Heo' T 237 + S4c
% @) _ y@ @ (4
=y -y - — 2 E36
s O =) = 37 766, 0 (B3O
4) 2
T 474

pu— Y N
s 237 + 766¢q *

which we use below.

Two Z2V couplings in equilibrium: Similarly, for the
case with two Z2V couplings 45, and 445 in equilibrium,
and neglecting the remaining coupling 4,5, Eq. (B25)
leads to

75
v o Ty

(
— -Y:),
237 +529¢q = 5)

(E38)
where we again use the result from the minimal model
Eq. (E9), to evaluate each of the three terms in the
combination Y};‘) — Yf) — Y((34), which is not affected by
Z2V couplings to the extent that we can neglect 4,;. We can

express this combination entirely in terms of the minimal

model result for Y};‘J , using the fact that Yﬁﬁ]) =3, yf;‘) -0

in the minimal model, giving

y@ _ __ 150ce L

=——° E39
B 237 +529¢¢ * (E39)

4)

In this equation, Y;} is to be calculated using the minimal

model result, Eq. (E9), even though that expression does
not in fact give correct result for ¥ /(34) in the particular Z2V

scenario under consideration.
Using 8Y." = 0, the equilibrium relation Eq. (B24), and
Egs. (B14)—(B17), one can also express the other O(F*)

4) Y((s4)

asymmetries in terms of Y;;U -Y J(, , which we can

again replace with twice the minimal model result for Y ;34).
We find

(4) 2
Boo T° 474 4+ 702¢q ()

= E40
s 237 +529¢q * (E40)
4 4
m T w2374 648cq YO (Ean
s s 2374529¢e *
b1 _ BTy (E42)
s 237+529¢q, P

We now take a moment to review the notation used in
Egs. (E33)-(E42). In Egs. (E33)—-(E37), which apply in the
case of a single Z2V coupling in equilibrium, f# is the
special flavor whose lepton doublet is not involved in that
72V coupling. In Egs. (E39)-(E42), which apply in the
case of two Z2V couplings in equilibrium, f is the special
flavor whose lepton doublet is involved both of those Z2V
couplings. Both sets of equations apply when both DM
mass eigenstates and the remaining Z2V couplings remain
well out of equilibrium: A4, and 445 for Eqs. (E33)—(37) and
Ays for Egs. (E39)-(E42). In both sets of equations, the
minimal model result, Eq. (E9), is to be used to calculate
the asymmetries appearing on the right-hand sides.

b. Y at O(F9) in the Z2V model

For large ® massses, Mg > T.,,, the overall factors of
cep in Egs. (E33) and (E39) exponentially suppress the
O(F*) baryon asymmetry (see Fig. 20). This is a conse-
quence of the fact there is no y asymmetry at this order,

oY )((4) = 0. The final baryon asymmetry is proportional to
the B — L charge in the SM sector at sphaleron decoupling.
For x.,, > 1, the @ abundance becomes Boltzmann sup-
pressed before sphaleron decoupling, along with any ®
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zalsymmetry.]2 When the surviving Y4 at sphaleron decou-
pling is negligible, conservation of B — L, expressed by
Eq. (B7), tells us that the surviving B — L charge in the SM
sector is determined by the y asymmetry at 7 = T,,.

A nonzero Y, is generated by @) decays to DM in the
presence of O(F*) chemical potentials for e and/or ®. For
sufficiently large Mg, then, the final baryon asymmetry
effectively arises at O(F9).

The p,c-induced contribution to Y )((@ is essentially the
standard ARS one, equal to the right-hand side of
Eq. (E22). However, when considering this contribution
in the Z2V model there are two differences that arise
relative to the minimal model.

First, the Z2V couplings complicate the dependence of
the final baryon asymmetry on the DM couplings. To
calculate the quantity in Eq. (E22), one needs to express ¢
in terms of X, using the temperature-dependent relations
in Egs. (E34)-(E36) or Egs. (E40)—(E41). The final
expression is a mess; in particular the coupling dependence
cannot be summarized in terms of the usual O(F®) ARS
factor Y (FF") ,Im[F* F o (F'F),,]. For our Z2V bench-
mark F matrix, given in Eq. (Al3), the pu,c-induced

contribution to §Y 5{6) is not generally zero, even though

the standard O(F®) ARS coupling factor vanishes.

Second, and more importantly, in the Z2V case the baryon
asymmetry does not necessarily disappear when the ®
particles do, and consequently it possible to get a sufficiently
large asymmetry for larger @ masses than in the minimal
model. In the minimal model, the final baryon asymmetry is
proportional to the @ asymmetry at sphaleron decoupling,
and Eq. (E23) is a good approximation for the final baryon
asymmetry only to the extent that we can ignore washout of
0Y g by @ decay, I'g, < H.,,. In the Z2V model, the baryon
asymmetry survives even in the absence of a @ asymmetry at
sphaleron decoupling, provided a y asymmetry has been
generated. For the Z2V perturbative result to be valid we only
need the DM abundances to remain well below their
equilibrium values, and in particular it is not necessary for
I'(® — ye.;) < H., to be satisfied. For large ® masses,
Mg > T, the perturbativity criterion based on the DM
abundance is the less restrictive one.

The pg-induced contribution is special to the Z2V

model, because in the minimal model we have ,ug) = 0.
In fact, the ug-induced contribution tends to dominate
the p,c-induced one in the Z2V case, due to the different
combinations of distribution functions appearing in the y®!
and y¢! reaction densities. The new contribution to oY, is
given by the analogue to Eq. (E21),

“In our perturbative analysis of the Z2V model, we assume
that at least one A coupling comes into equilibrium, which
guarantees that ug /T < 1 always holds. In Z,-preserving sce-
narios, it is possible for a @ asymmetry to survive at temperatures
T < Mg. In the Z2V model, @) decays via Z2V interactions
prevent this from happening.

rom Xew d (4)
sy fomia) _ / X o Spepen]. (E43)
0 a

sHx T

Using either Eq. (37) or Eq. (42) to express pg in terms of

Y;f), which we evaluate using Eq. (E9), we obtain

45 M3
O Ty[FFT
20487°g, M3,

X Im[F/}IFZZ(FTF)12]7(6)(xew1ﬂosc)f (E44)

5Y)({6 from pg) —F

with
10(x. p) = / CdrxAg(¥)gen (V)T (¥ B).  (E4S)
0

Here, the upper and lower signs apply to the cases of one and
two Z2V couplings in equilibrium, respectively, g is the
function defined in Eq. (C25), and A4 takes into account the

temperature-dependent conversion from yg Jto Y ;}4):

one Z2V couplings

Y= { (1+3.23¢q)~! (E46)

1(14223¢c4)™"  twoZ2V couplings.

As before, the flavor ff appearing in Eq. (E44) is the one that is
either not involved in the Z2V coupling or the one that is
involved in both Z2V couplings, for the cases of one or two
72V couplings in equilibrium, respectively.

Taking a single Z2V coupling to be in equilibrium
and x > 1, the asymptotic behavior of Z(® for large and
small f is

1948 p<1

(E47)
1.50/p B> 1.

1(e0.p) = {

Figure 21(d) shows 1) (x,,,8) versus f for various M.

For Mg > T.,which is the case in which the O(F9)
contributions to the baryon asymmetry dominate, we can
set ¢ = 0 when evaluating Eqgs. (B23) or Egs. (B25) at
sphaleron decoupling to get the final baryon asymmetry,
giving Yz = —(84/237)5Y,,. Using this relation and spe-
cializing to the Z2V benchmark F matrix defined in

Eq. (A13), we obtain
(2)\ 3
Y
~ (1.76 x 104)< ’gq)
Y
X

x $in22071) (X, Pose)-

B
obs
YB

‘ Y(6, from pgy)

(E48)

We have used Eq. (E3) to express the asymmetry in terms
of the number density of dark matter particles rather than
the DM coupling strength. Equation (E48) applies for large
@ masses, Mg > T, and relies on a perturbative expan-

sion that is valid for Y¥ < ¥4,
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To get a sense of how large Mg can be consistent with
the DM and baryon asymmetry constraints, take M| =0
and make the small angle approximation for 6. Imposing
the DM constraint, one finds

(6, frompg,) (2)\ 2
Y Y,
‘ e ~240 ( 7 )
B X
500 GeV 3/2 —1/2”(6)
X M— Posd 1 (er9ﬁosc)' (E49)
D

For large ® masses, x.,, > 1, the combination ﬂgslc/ ?7(6) has
a maximum of ~26 at f,. ~3.7 x 1072, Aggressively

taking ¥) = Y%, one finds that the observed baryon
asymmetry can be achieved masses for @ masses up to
Mg ~ 170 TeV, requiring a y, mass of M, ~40 MeV and
0 ~ 2 x 1073. For the more perturbative case Y\* = ¥/3,
the observed baryon asymmetry can be achieved with
masses up to Mg ~40 TeV for M, ~4 MeV and
0~9x1073.
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