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We revisit a two-component dark matter model in which the dark matter particles are a singlet fermion
(ψ) and a singlet scalar (S), both stabilized by a single Z4 symmetry. The model—proposed by Cai and
Spray—is remarkably simple, with its phenomenology determined by just five parameters: the two dark
matter masses and three dimensionless couplings. In fact, S interacts with the Standard Model particles via
the usual Higgs portal, whereas ψ only interacts directly with S, via the Yukawa terms ψcðys þ ypγ5ÞψS.
We consider the two possible mass hierarchies among the dark matter particles, MS < Mψ and Mψ < MS,
and numerically investigate the consistency of the model with current bounds. The main novelties of our
analysis are the inclusion of the yp coupling, the update of the direct-detection limits, and a more detailed
characterization of the viable parameter space. For dark matter masses below 1.3 TeVor so, we find that not
only is the model compatible with all known constraints, but it also gives rise to observable signals in future
dark matter experiments. Our results show that both dark matter particles may be observed in direct-
detection experiments and that the most relevant indirect-detection channel is due to the annihilation
of ψ . We also argue that this setup can be extended to other ZN symmetries and additional dark matter
particles.
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I. INTRODUCTION

Determining the nature of dark matter—the exotic form
of matter that accounts for about 25% of the energy
density of the Universe [1]—is one of the most important
open problems in fundamental physics today. A common
approach is to assume that dark matter is explained by one
elementary particle which, being neutral and stable, is not
part of the StandardModel (SM) [2,3]. Throughout the years,
many different models have been proposed along these
lines [4,5].
A simple alternative to this approach is that of multi-

component dark matter scenarios [6–47], in which dark
matter consists of several particles, each contributing just a
fraction of the observed dark matter density. These scenar-
ios are consistent with current observations and often
feature distinctive experimental signatures that allow to
differentiate them from the standard setup. Recently, it was
pointed out [38] that multicomponent scalar dark matter
models based on a single ZN (N ≥ 4) stabilizing symmetry

are well motivated and offer an interesting phenomenology
[14,19,23]. Two-component dark matter scenarios of this
type were studied in Refs. [41,44]. Here, we expand on this
discussion to models where dark matter consists of a scalar
and a fermion.
Specifically, we revisit the model proposed in Ref. [24],

which is based on a Z4 symmetry and extends the SM
particle content with a Dirac fermion (ψ ) and a real scalar
(S), both singlets under the gauge group but charged under
Z4. This model turns out to be remarkably simple, with
just five parameters dictating its phenomenology: the two
dark matter masses and three couplings. In this paper, we
expand and update the analysis of this model in multiple
ways. Among others, we include, for the first time, the
pseudoscalar coupling yp, which opens up new regions of
parameter space; we take into account the most recent
limits from dark matter direct-detection experiments, which
exclude a significant fraction of previously considered
viable models; we obtain the viable regions, and character-
ize them in detail by projecting them onto different planes;
we study the most relevant experimental signatures in
direct- and indirect-detection dark matter experiments;
and we show how this model can be straightforwardly
extended to other ZN symmetries and additional dark
matter particles. We find that the model is viable over a
wide range of masses and that it is experimentally very
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promising. A novel and crucial result of our analysis is that
both dark matter particles could be observed in current and
planned direct-detection experiments.
This Z4 model has several advantages: it is likely the

simplest two-component dark matter model that can be
conceived; it can be seen as a minimal extension of the
well-known scalar singlet model [48–50], with the benefit
of remaining viable for dark matter masses below 1 TeVor
so [51,52]; it leads to observable signatures that allow to
differentiate it from the more conventional models; and, as
will be shown, it belongs to a family of multicomponent
models featuring scalar and fermionic dark matter particles
that are stabilized by a single ZN symmetry.
The rest of the paper is organized as follows. The model

is presented in the next section. In Sec. III the dark matter
phenomenology is discussed in detail, including the new
processes that contribute to the relic densities and the
Boltzmann equations that determine them. Our main results
are presented in Secs. IV and V, where a random scan is
used to identify the viable regions of this model for each of
the two mass regimes. The direct- and indirect-detection
prospects are also analyzed there. In Sec. VI we briefly
examine possible extensions of this model to other ZN
symmetries and additional dark matter particles. Finally, we
draw our conclusions in Sec. VII.

II. THE MODEL

Let us consider an extension of the SM by a real scalar
singlet S and a Dirac fermion singlet ψ , both charged under
a new Z4 symmetry. S and ψ are assumed to transform,
respectively, as S → −S and ψ → iψ , whereas the SM
fields are singlets of the Z4. The most general Lagrangian,
symmetric under SUð3Þ × SUð2Þ ×Uð1Þ × Z4, contains
the new terms

L ¼ 1

2
μ2SS

2 þ λSS4 þ
1

2
λSHjHj2S2 þMψ ψ̄ψ

þ 1

2
½ysψcψ þ ypψcγ5ψ þ H:c:�S; ð1Þ

whereH ¼ ½0; ðhþ vHÞ=
ffiffiffi
2

p �T , with h being the SM Higgs
boson. The mass of the real scalar singlet is then given by

M2
S ¼ μ2S þ

1

2
λSHv2H: ð2Þ

From the Lagrangian one can see that ψ is automatically
stable, whereas S becomes stable for MS < 2Mψ. In the
following, this condition is assumed to hold so that both
S and ψ contribute to the observed dark matter density.
The model thus describes a two-component dark matter
scenario.
A couple of previous works discussed similar scenarios.

Recently, a model without the ys term and with no Z4

symmetry was considered in Ref. [45]. The structure of

their fermion interaction term is, however, ψ̄γ5ψS rather
than ψcγ5ψS. In Ref. [24], a model based on the Z4

symmetry and with the same particle content was proposed,
but the interaction term proportional to yp was left out and
only few of its implications were studied. A phenomeno-
logical analysis of the Z4 model described above, including
the impact of the most recent direct-detection data and the
characterization of its viable parameter space, is clearly due
and is the goal of this work.
Even if it contains two species contributing to dark

matter, this Z4 model is exceptionally minimal. A single
discrete symmetry stabilizes both dark matter particles, and
five parameters (MS, Mψ , λSH, ys, yp) dictate the model
phenomenology. It is probably the simplest model of two-
component dark matter that can be envisioned, and it is
simpler than many of the standard (one-component) dark
matter models that have been previously studied.
Among the three new couplings, the Higgs portal, λSH,

plays a prominent role as it couples the dark matter sector
with the SM particles. Notice that ψ interacts directly only
with S, which in turn couples to the Higgs and, through it,
to the rest of the SM particles. Hence, λSH must necessarily
be different from zero, but either ys or yp can in principle
vanish—but not both, as ψ would become a free particle. In
our analysis, it will be convenient to consider the cases
yp ¼ 0 and ys ¼ 0 separately, which we refer to as the
scalar portal and the pseudoscalar portal, respectively. In
this work, we focus on the freeze-out regime [53] of this
model,1 where the couplings are large enough for the dark
matter particles to reach thermal equilibrium in the early
Universe, and which typically leads to observable signals in
dark matter experiments.
This model can be seen as a merging of two (one-

component) dark matter models that have been extensively
studied in the literature: the singlet scalar [48–50] and the
singlet fermion [55–58]. Both are highly constrained by
current data stemming from the relic density and direct-
detection limits, but (as we will show) these constraints can
be greatly relaxed when we combine these two models into
the single two-component dark matter scenario described
by Eq. (1). In fact, in our model there are novel dark matter
processes that affect the relic density and open up new
viable regions of the parameter space.

III. DARK MATTER PHENOMENOLOGY

A. Dark matter processes

The terms in L affect the dark matter phenomenology in
different ways. The interplay of the interactions controlled
by λSH and ys;p lead to ψψ and ψS semiannihilations
[59,60] (top panels of Fig. 1), while the Yukawa inter-
actions ys and yp lead to dark matter conversions (bottom

1Freeze-in production [54] can also be realized.
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panel of Fig. 1). On the other hand, the Higgs portal
interaction induces scalar self-annihilations into a pair of
fermions, weak gauge bosons, and Higgses, as usual. At
large MS the main annihilation channel is SS → hh, with a
cross section of the order of

σvðSS → hhÞ ∼ λ2SH
16πM2

S
: ð3Þ

1. ψψ annihilation

The processes ψψ → Sh and ψ̄ ψ̄ → Sh generate a
modification in the ψ number density by two units (and
in the S number by one unit). The cross section for ψψ →
Sh is given by

σvðψψ → ShÞ

¼ λ2SHv
2
HβðMS;MhÞ

16πs2ðs −M2
SÞ2

½ðs − 4M2
ψ Þjysj2 þ sjypj2�; ð4Þ

where

βðMi;MjÞ ¼ ½s2 − 2sðM2
i þM2

jÞ þ ðM2
i −M2

jÞ2�1=2: ð5Þ

Expanding it in terms of even powers of the relative
velocity v, we obtain σvðψψ → ShÞ ¼ a1 þ b1v2, with

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

h þ ðM2
S − 4M2

ψÞ2 − 2M2
hðM2

S þ 4M2
ψÞ

q
64πM2

ψðM2
S − 4M2

ψÞ2
λ2SHjypj2;

ð6Þ

b1 ¼ ð−Cpjypj2 þ Csjysj2Þ
λ2SHv

2
H

Δ
: ð7Þ

The expressions for Δ; Cp and Cs are reported in the
Appendix. This process becomes velocity suppressed for

yp ¼ 0 and the process is kinematically favorable as long
as 2Mψ > MS þMh.
Concerning the reverse process Sh → ψψ , the expres-

sion for σvðSh → ψψÞ ¼ ã1 þ b̃1v2 at order Oðv0Þ is

ã1 ¼
v2Hλ

2
SH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MhMS þM2

h þM2
S − 4M2

ψ

q
32πM3

hMSðMh þMSÞðMh þ 2MSÞ2
× ½ððMh þMSÞ2 − 4M2

ψÞjysj2 þ ðMh þMSÞ2jypj2�:
ð8Þ

Due to the relative minus sign present in the coefficient
ððMh þMSÞ2 − 4M2

ψÞ accompanying jysj2, some interfer-
ence effects are expected to occur in the resulting thermally
averaged cross section, which can be enhanced when both
portals are opened.

2. ψS semiannihilation

The processes ψS → ψ̄h and ψ̄S → ψh generate a
modification in the S number density by one unit. The
differential cross section can be written as

dσ
dΩ

ðψS → ψ̄hÞ ¼ λ2SHv
2
HβðMψ ;MhÞ

32π2sβðMψ ;MSÞðt −M2
SÞ2

× ½ð2M2
ψ − t=2Þjysj2 − t=2jypj2�: ð9Þ

The corresponding cross section in terms of v gives
σvðψS → ψ̄hÞ ¼ a2 þ b2v2, with

a2¼κ0λ2SHv
2
H½ðM2

S−M2
hÞjypj2þððMSþ2MψÞ2−M2

hÞjysj2�;
ð10Þ

b2¼
λ2SHv

2
HM

2
ψ

ðMSþMψ Þ3Δ0

× ½ðM2
h− ðMSþ2Mψ Þ2ÞC0

sjysj2þðM2
h−M2

SÞC0
pjypj2�;

ð11Þ

and

κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

S −M2
hÞ½ðMS þ 2MψÞ2 −M2

h�
q

32πMSðMS þMψÞ½M3
S þMψð2M2

S −M2
hÞ�2

: ð12Þ

The expressions for Δ0; C0
p, and C0

s are reported in the
Appendix.2

This cross section does not suffer a velocity suppression
in either case: ys ¼ 0 or yp ¼ 0. Instead, it receives an

FIG. 1. Dark matter semiannihilation (top) and conversion
(bottom) processes.

2We notice that these results are not in agreement with those
reported in Ref. [24].
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enhancement in the case yp ¼ 0, due to the dependence on
Mψ in the velocity-independent factor a2, which strengthens
the S semiannihilation in comparison with the case ys ¼ 0
(see Fig. 2). ForMS ≫ Mh, the ratioa2jyp¼0=a2jys¼0 reaches
the asymptotic value ð1þ 2Mψ=MSÞ2.
Comparing the rates for the scalar self-annihilation and

semiannihilation processes, the former will dominate if

jysj >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þMψ=MSÞ
ð1þ 2Mψ=MSÞ

s
MS

vH
; ð13Þ

jypj >
2

ffiffiffi
3

p
MS

vH
ð14Þ

for the cases of yp ¼ 0 and ys ¼ 0, respectively. Thus, the
semiannihilation processes are typically efficient for not so
large scalar masses and in the ys ¼ 0 case if yp ≳ 1 is also
fulfilled.

3. ψ̄ψ → SS

The differential cross section for ψ̄ψ → SS is

dσ
dΩ

ðψ̄ψ → SSÞ ¼ βðMS;MSÞ
64πsβðMψ ;MψÞ

�
Σt

2ðt −M2
ψ Þ2

þ Σu

2ðu −M2
ψÞ2

þ Σtu

ðt −M2
ψÞðu −M2

ψ Þ
�
; ð15Þ

where the Σ functions are reported in the Appendix. The corresponding cross section in terms of v turns out to always be
velocity suppressed; in other words, expressing σvðψ̄ψ → SSÞ ¼ a3 þ b3v2 implies that

a3 ¼ 0; ð16Þ

b3 ¼
Mψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ −M2
S

q
24πðM2

S − 2M2
ψ Þ4

Δ3; ð17Þ

with

Δ3 ¼ −2M2
SM

2
ψð−y2py2s þ y4p þ 4y4sÞ þM4

Sðy4p þ 2y4sÞ þM4
ψð−2y2py2s þ y4p þ 9y4sÞ: ð18Þ

B. The Boltzmann equations

The processes that may affect the ψ and S relic densities are summarized in Table I, and classified according to their type.
For this classification, ψ and S are assumed to belong, respectively, to sectors 1 and 2, while the SM particles belong to
sector 0. Notice, in particular, that processes of the type 1100 are not allowed as ψ cannot annihilate at tree level into SM
particles. The Boltzmann equations for our model can then be written as

FIG. 2. a2jyp¼0=a2jys¼0 as a function of MS for different mass
ratios Mψ=MS.

TABLE I. 2 → 2 processes that are allowed (at tree level) in the
Z4 model and that can modify the relic density of ψ (left) and S
(right). h denotes the SM Higgs boson. Conjugate and inverse
processes are not shown.

ψ Processes Type

ψ þ ψ̄ → Sþ S 1122
ψ þ ψ → Sþ h 1120

S Processes Type

Sþ S → SM þ SM 2200
Sþ S → ψ þ ψ̄ 2211
Sþ h → ψ þ ψ 2011
Sþ ψ → ψ̄ þ h 2110
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dnψ
dt

¼ −σ1120v

�
n2ψ − nS

n̄2ψ
n̄S

�
− σ1122v

�
n2ψ − n2S

n̄2ψ
n̄2S

�
− 3Hnψ ; ð19Þ

dnS
dt

¼ −σ2200v ðn2S − n̄2SÞ − σ2211v

�
n2S − n2ψ

n̄2S
n̄2ψ

�
−
1

2
σ1210v ðnψnS − nψ n̄SÞ þ

1

2
σ1120v

�
n2ψ − nS

n̄2ψ
n̄S

�
− 3HnS: ð20Þ

Here σabcdv stands for the thermally averaged cross section, which satisfies

n̄an̄bσabcdv ¼ n̄cn̄dσcdabv ; ð21Þ

whereas nψ ;S denote the number densities of ψ and S, and
n̄ψ ;S denote their respective equilibrium values. To numeri-
cally solve these equations and obtain the relic densities, we
rely on micrOMEGAs [21] throughout this paper. Since its
version 4.1, micrOMEGAs has incorporated two-component
dark matter scenarios, automatically taking into account all
of the relevant processes in a given model.
To illustrate the solutions to the Boltzmann equations in

our model, Fig. 3 shows the total relic density, Ωψ þ ΩS,
for four diverse sets of couplings. In the benchmark model
(green solid line), all three couplings are equal to one:
λSH ¼ ys ¼ yp ¼ 1; the other lines differ from the bench-
mark only in the value of one coupling, which is specified
in the key. Thus, the dashed blue line, for instance,
corresponds to λSH ¼ ys ¼ 1 and yp ¼ 0. In the left panel,
we set MS ¼ 300 GeV and vary Mψ, whereas in the right
panel the roles of MS and Mψ are exchanged. The vertical
(gray) dotted line separates the two possible mass regimes

in this model: MS < Mψ and MS > Mψ . Since MS < 2Mψ

(to ensure a two-component dark matter scenario), in the
left panel the minimum allowed value of Mψ is 150 GeV,
whereas in the right panel the maximum possible value of
MS is 600 GeV. The horizontal (cyan) band represents
the observed values of the dark matter density. From this
figure, we can already see that it is possible to satisfy the
dark matter constraint in both mass regimes and for
different values of the couplings. To better understand
the behavior observed in this figure, it is necessary to look
separately at the relic densities of ψ and S, as done in
Figs. 4 and 5.
Figure 4 displays the relic densities of ψ (upper lines)

and S (lower lines) as functions of MS for three sets of
couplings. The difference between the two panels is the
value of Mψ=MS—1.2 (left) and 1.8 (right)—which both
correspond to the regimeMS < Mψ . The S relic density has
the well-known shape of the singlet scalar model (the Higgs
resonance is clearly visible) up to MS ∼Mh, where the
semiannihilation process Sþ ψ → ψ̄ þ h becomes kine-
matically allowed. The semiannihilations are more efficient

MS = 300 GeVM  < MS M  > MS

Benchmark
ys = 0
yp = 0

SH = 0.3

D
M

 h2

0.01

0.1

1

10

M  [GeV]
200 300 400 500 600 700 800

M  = 300 GeVM  > MS M  < MS

Benchmark
ys = 0
yp = 0

SH = 0.3

D
M

 h2

0.01

0.1

1

10

MS [GeV]
100 200 300 400 500 600

FIG. 3. Total relic density as a function ofMψ (left) orMS (right) for different sets of parameters. In the left (right) panel,MS (Mψ ) is
fixed to 300 GeV. The benchmark model (solid green) features ys ¼ yp ¼ λSH ¼ 1. The other lines differ from the benchmark only in
the value of the coupling shown in the key.
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at decreasing ΩS for yp ¼ 0 than for ys ¼ 0, as expected
(see Fig. 2). The ψ relic density instead drops, for the
benchmark and for ys ¼ 0, around MS ¼ 90 GeV, where
the process ψ þ ψ → Sþ h starts contributing to the
annihilation rate. For yp ¼ 0 (dotted blue line) this process
is velocity suppressed and its effect on the relic density
becomes negligible, being driven by the dark matter
conversion processes. Notice that the relic densities for
the benchmark and yp ¼ 0 tend to converge at high masses
(where the annihilations via the Higgs portal are the
dominant ones) while differing from the ys ¼ 0 case.

For the higher value of Mψ=MS the behavior of the relic
densities is qualitatively similar. In particular, the fermion
relic densities are always larger than the scalar ones.
Figure 5 is analogous to Fig. 4 but for the other mass

regime, Mψ < MS. Two important differences appear in
this case. For the fermion, the dark matter conversion
process, ψ þ ψ̄ → Sþ S, is now kinematically suppressed
(more so in the right panel) so that the only efficient way to
reduce the ψ density is via the semiannihilation process,
ψ þ ψ → Sþ h. This process is allowed for Mψ ≳
156 GeV (left panel) and Mψ ≳ 625 GeV (right panel),

S

M /MS = 1.2

Benchmark
ys = 0
yp = 0

 h2

10−6

10−5

10−4

0.01

0.1

1

MS [GeV]
50 100 500 1000

S

M /MS = 1.8

Benchmark
ys = 0
yp = 0

 h2

10−6

10−5

10−4

10−3

0.01

0.1

1

10

MS [GeV]
50 100 500 1000

FIG. 4. ψ and S relic densities as functions of MS for Mψ=MS ¼ 1.2 (left) and Mψ=MS ¼ 1.8 (right). The benchmark model (solid
green) features ys ¼ yp ¼ λSH ¼ 1. The other lines differ from the benchmark only in the value of the coupling shown in the key.

S

MS/M  = 1.2

Benchmark
ys = 0
yp = 0

 h2

10−4

10−3

0.01

1

10

100

M  [GeV]
50 100 500 1000

S

MS/M  = 1.8

Benchmark
ys = 0
yp = 0

 h2

10−4

10−3

0.01

0.1

1

10

100

1000

104

M  [GeV]
50 100 500 1000

FIG. 5. ψ and S relic densities as functions of Mψ for MS=Mψ ¼ 1.2 (left) and MS=Mψ ¼ 1.8 (right). The benchmark model (solid
green) features ys ¼ yp ¼ λSH ¼ 1. The other lines differ from the benchmark only in the value of the coupling shown in the key.
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explaining the change of behavior observed in the figures.
For the scalar, there can be an exponential suppression of
the relic density induced by the process Sþ h → ψψ . This
exponential behavior is rather common in multicomponent
dark matter scenarios and was already observed in other
models [41]. From the figure it is seen to be particularly
relevant for high values of MS=Mψ (right panel). By
comparing the two panels, it is seen that the relic densities
are higher the larger MS=Mψ is. In the right panel, in fact,
the ψ relic density lies well above the observed value over
the entire range of Mψ and for all three sets of couplings,
suggesting that the dark matter constraint is more easily
satisfied for small values of MS=Mψ . Note also that, as
before, the fermion relic density tends to be larger than the
scalar one—a result that will be confirmed by our numeri-
cal analysis.
Besides the relic density, the parameter space of this

model is significantly restricted by direct-detection limits,
to which we now turn.

C. Direct detection

As is common in dark matter models with scalar singlets,
the elastic scattering of the dark matter particles off nuclei
is possible thanks to the Higgs portal interaction λSH (right
panel of Fig. 6). The expression for the spin-independent
(SI) cross section reads

σSIS ¼ λ2SH
4π

μ2Rm
2
pf2p

m4
hM

2
S
; ð22Þ

where μR is the reduced mass, mp is the proton mass, and
fp ≈ 0.3 is the quark content of the proton. Because we are
dealing with a two-component dark matter model, the
relevant quantity to be compared against the experimental
limits is, however, not σSIS itself but rather ΩS

ΩDM
σSIS , which

takes into account the fact that S contributes only a fraction
of the observed dark matter density, with the rest being
due to ψ .
At tree level, ψ cannot scatter elastically off nuclei, but it

will do so at higher orders. The one-loop diagram, which is
expected to be the dominant contribution, is shown in the

right panel of Fig. 6. Even if loop suppressed, this process
will turn out to be within the sensitivity of current and
future direct-detection experiments, due to the significant
values for ys, yp, and λSH that are required to annihilate ψ .
The corresponding SI cross section is given by

σSIψ ¼ 1

π

μ2ψpm2
pf2p

m4
h

�
λSH

jysj2fðrSψ Þ þ jypj2gðrSψ Þ
16π2Mψ

�
2

; ð23Þ

where rSψ ¼ M2
S=M

2
ψ and

fðrÞ ¼ r2 − 5rþ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4 − rÞrp arctan

� ffiffiffiffiffiffiffiffiffiffi
4 − r

p ffiffiffi
r

p
�

þ 1

2
½2 − ðr − 3Þ logðrÞ�; ð24Þ

gðrÞ ¼ ðr− 3Þ ffiffiffi
r

pffiffiffiffiffiffiffiffiffiffi
4− r

p arctan
� ffiffiffiffiffiffiffiffiffiffi

4− r
p ffiffiffi

r
p

�
þ 1

2
½2− ðr− 1Þ logðrÞ�:

ð25Þ

It is worth mentioning that the pseudoscalar portal yp leads
to a non velocity-suppressed SI cross section. In contrast,
the contribution proportional to the product ysyp has been
neglected since it is suppressed by the square of the dark
matter velocity (the corresponding direct-detection bounds
become weaker). Notice that in the limit yp ¼ 0 the
expression for σSIψ differs from that reported in Ref. [24].
We expect important restrictions on the viable parameter

space of this model arising from direct-detection limits,
which should be imposed on those points satisfying the
relic density constraint. In the next two sections, we will
randomly sample the five-dimensional parameter space of
this model so as to obtain a large set of models compatible
with all current data, including direct-detection bounds.
To facilitate the analysis, we will first study the regime
Mψ < MS and then switch to MS < Mψ .

FIG. 6. Diagrams leading to the elastic scattering of dark matter particles off nuclei at the one-loop level for the fermion (left panel) and
at tree level for the scalar (right panel).
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IV. THE Mψ < MS REGIME

In this and the next sections, we will obtain and analyze
viable regions for our two-component dark matter model.
To that end, the parameter space will first be randomly
scanned, and the points compatible with all current bounds
will be selected. Our selection criteria include the con-
straints obtained from the invisible decays of the Higgs
boson, the dark matter density [1], and direct dark matter
searches [61]; indirect dark matter searches do not signifi-
cantly restrict the parameter space, as will be shown. The
resulting sample of viable points will then be characterized,
paying special attention to the appearance of new viable
regions and the prospects for dark matter detection. Let
us emphasize that this random sampling of the parameter
space does not warrant a statistical interpretation of the
distribution of viable points (it cannot be used to find the
most favored regions or the best-fit points), but it will help
us to pinpoint the most relevant parameters and identify the
mechanisms that allow to satisfy the current bounds, which
are our main goals.
If S is lighter than half of the Higgs mass, the decay

h → SS would be allowed, contributing to the invisible
branching ratio of the Higgs boson (Binv). The decay width
associated with h → SS is

Γðh → SSÞ ¼ λ2SHv
2
H

32πMh

�
1 −

4M2
S

M2
h

�
1=2

: ð26Þ

To be consistent with current data, we require that
Binv ≤ 0.13 [62,63].
The relic density constraint reads

Ωψ þΩS ¼ ΩDM; ð27Þ

where ΩDM is the dark matter abundance as reported by
Planck [1],

ΩDMh2 ¼ 0.1198� 0.0012: ð28Þ

We consider a model to be compatible with this measure-
ment if its relic density, as computed by micrOMEGAs, lies
between 0.11 and 0.13, which takes into account an
estimated theoretical uncertainty of order 10%. Since we
have two dark matter particles, an important quantity in our
analysis is the fractional contribution of each to the total
dark matter density, ξψ ;S ≡Ωψ ;S=ΩDM, with ξψ þ ξS ¼ 1.
Regarding direct detection, we require the spin-indepen-

dent cross section, computed from Eqs. (22) and (23), to be
below the direct-detection limit set by the XENON1T
Collaboration [61]. Such a direct-detection limit usually
provides very strong constraints on Higgs-portal scenarios
like the model we are discussing. In particular, for the
singlet real scalar model [48–50] the minimum dark matter
mass compatible with the upper limit set by the XENON1T

Collaboration is ∼950 GeV (for the complex case, this
turns out to be ∼2 TeV). As we will show, however, the
new interactions present in our two-component dark matter
model permit to simultaneously satisfy the relic density
constraint and direct-detection limits for lower dark matter
masses.
We will also study the testability of the viable models at

future direct-detection experiments including LZ [64] and
DARWIN [65], as well as the possible constraints and
expected prospects from indirect-detection searches. For
these searches, the relevant particle physics quantity is no
longer hσvi, but rather ξiξjhσviij, where hσviij is the cross
section times velocity for the annihilation process of dark
matter particles i and j into a certain final state. On the
theoretical side, we will rely on the computation of the
different annihilation rates provided by micrOMEGAs and,
on the experimental side, on the limits and projected
sensitivities reported by the Fermi Collaboration from
γ-ray observations of dwarf spheroidal galaxies [66,67].
In our scans the parameters are randomly chosen (using a

logarithmically uniform distribution) according to

50 GeV ≤ Mψ ≤ 2 TeV; MS < 2Mψ ; ð29Þ

10−3 ≤ jλSHj ≤ 3; ð30Þ

10−2 ≤ jysj; jypj ≤ 3: ð31Þ

To better understand the role of the different parameters,
the analysis will be divided into three cases: the scalar
portal (yp ¼ 0), the pseudoscalar portal (ys ¼ 0), and the
general case (yp; ys ≠ 0).

A. Scalar portal

Here we have yp ¼ 0 so that σvðψψ → ShÞ and
σvðψ̄ψ → SSÞ are velocity suppressed. Figure 7 displays
a sample of viable models projected onto different planes.
First of all, notice from the different panels that the viable
models cover the entire range of dark matter masses below
1.3 TeV or so—an important result that demonstrates the
existence of new viable regions not present in the singlet
scalar or singlet fermion models. From the top panels
we see that, as expected, jλSHj and jysj tend to increase
with Mψ , reaching their maximum allowed value for
Mψ ∼ 1.3 TeV. Higher dark matter masses would require
couplings larger than those allowed in our scans. In the
center panel, two regions can be distinguished:
Mψ ≲ 400 GeV, where the ratio MS=Mψ can vary up to
1.5 (the maximum is 2) and semiannihilations play a crucial
role, as shown later; andMψ ≳ 400 GeV, whereMS=Mψ is
at most 1.1 and the two dark mater particles become more
degenerate with increasing mass. In this region, ψ þ ψ →
Sþ S is the key process that reduces the ψ relic density,
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explaining why a mass degeneracy is required (Mψ > MS).
The bottom panels compare the predicted elastic scattering
rate off nuclei against the current limit (solid) and the
expected sensitivities of planned experiments for the
fermion (left) and scalar (right). Notice that, for both dark
matter particles, most of the viable points in our sample lie
within the expected sensitivity of DARWIN, and for the

fermion, most of them lie within the reach of LZ.3 Direct-
detection experiments, therefore, constitute a very prom-
ising way to probe this scenario.

FIG. 7. Sample of viable models for Mψ < MS and yp ¼ 0 (scalar portal) projected onto different planes. The different panels show
the couplings λSH (top left) and ys (top right), the ratio of dark matter masses (center), and the direct-detection prospects of ψ (bottom
left) and S (bottom right). In the bottom panels the lines correspond, from top to bottom, to the current limit from XENON1T, and the
expected sensitivities of LZ and DARWIN.

3In Ref. [24] it was instead found that the fermion contribution
was always negligible.
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B. Pseudoscalar portal

When ys ¼ 0, the only velocity-suppressed process is
ψ̄ψ → SS. Figure 8 is analogous to Fig. 7, displaying a
sample of viable models for ys ¼ 0. In this case the viable
mass range extends only up to Mψ ∼ 400 GeV and
MS ∼ 600 GeV, due to the stronger direct-detection limits.
We have checked, in fact, that the relic density constraint

can be satisfied over a much wider range of dark matter
masses. The crucial point is that the relic density of the
scalar can be significantly reduced only for intermediate
fermion dark matter masses, i.e., 100≲Mψ ≲ 400 GeV.
Consequently, the rescaled spin-independent cross section
of the scalar only becomes consistent with Xenon1T data
within such a range. From the center panel, we see that

FIG. 8. Sample of viable models for Mψ < MS and ys ¼ 0 (pseudoscalar portal) projected onto different planes. The different panels
show the couplings λSH (top left) and ys (top right), the ratio of dark matter masses (center), and the direct-detection prospects of ψ
(bottom left) and S (bottom right). In the bottom panels the lines correspond, from top to bottom, to the current limit from XENON1T,
and the expected sensitivities of LZ and DARWIN.
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MS=Mψ can now take values as high as 1.7, but it varies
only along a narrow band. Regarding the detection pros-
pects, the bottom panels show that the fermion (left)
continues to have excellent prospects of being observed
in future experiments, with only few points lying below the
sensitivity of DARWIN; for the scalar (right), instead, a
non-negligible fraction may escape detection. At the same
time, however, several models feature a scalar cross section

right below the current limit, and so they could be easily
probed with new data.

C. General scalar portal

Let us now consider the general case for the Mψ < MS
regime. Figures 9 and 10 show a sample of viable models
projected onto different planes. The top right panel of Fig. 9

FIG. 9. Sample of viable models forMψ < MS projected onto different planes. The different panels show the ψ and S contributions to
the dark matter density (top left), the ratio of dark matter masses (top right), and the different couplings (center and bottom panels).
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displays, as a function ofMψ , the fraction of the dark matter
density that is due to ψ (blue) and S (red). We see that the
scalar always contributes less than 10% of the dark matter
density, with most points concentrated between fractions
of order 10−2 and 10−5 over the entire range of Mψ . For
Mψ ≲ 400 GeV, the scalar contribution can be significantly
smaller, reaching values as low as 10−10. It is clear then that
it is the fermion that accounts for most of the dark matter.
Let us stress, though, that this does not imply that the scalar
can be neglected because, as will be shown, it can lead to
observable signals in dark matter experiments.
Semiannihilations play a vital role in this model as they

allow the fermion relic density to decrease significantly—a
fact that was recognized already in Ref. [24]. To quantify
their relevance, it is useful to define the semiannihilation
fractions for the two dark matter particles as

ζ1SA≡
1
2
σ1120v

1
2
σ1120v þσ1122v

; ζ2SA≡
1
2
σ1210v

σ2200v þ 1
2
σ1210v þσ2211v

: ð32Þ

The top right panel of Fig. 9 shows the ratio MS=Mψ , with
the value of ζ1SA color-coded according to the scale on the

right. Unlike for the scalar and pseudoscalar portals, in this
case MS=Mψ can reach sizable values (of order 1.7) up
to Mψ ∼ 1 TeV. Over that range and for MS=Mψ ≳ 1.1,
semiannihilations are seen to be the dominant mechanism
responsible for the ψ relic density. It is only between 1 and
1.3 TeV that dark matter conversions becomes dominant
and that S and ψ are required to be highly degenerate. The
difference between this figure and the analogous one for the
scalar portal (Fig. 7) demonstrates that yp, which was not
considered in Ref. [24], plays a non-negligible role in the
phenomenology of the model. Indeed, there exist viable
regions of the parameter space that can be reached only
if yp ≠ 0.
The allowed values for the couplings in our sample of

viable models are illustrated in the center and bottom
panels of Fig. 9. As expected, either ys or yp must be
sizable (≳0.1), along with λSH. The highest ψ mass in our
sample corresponds to the region where λSH and ys both
reach the maximum value permitted by our scan.
Figure 10 shows the direct- and indirect-detection

prospects within our sample of viable models. The top
panels compare, for ψ (left) and S (right), the elastic

FIG. 10. Direct (top) and indirect (bottom) dark matter detection rates for our sample of models in the regime Mψ < MS. In the top
panels the lines correspond, from top to bottom, to the current limit from XENON1T, and the expected sensitivities of LZ and DARWIN.
In the bottom panel, the lines indicate the Fermi-LAT limit (solid) and the expected sensitivity of CTA (dashed).
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scattering cross section against the current limit set by
XENON1T (solid line) and the expected sensitivities in LZ
and DARWIN. From the figures we see that most models in
our sample lie within the expected sensitivity of DARWIN
and that a significant fraction of them feature cross sections
just below the current limit. This regime, therefore, offers
excellent prospects to be tested in current and planned

direct-detection experiments. And for dark matter masses
below 1 TeV it may be possible, thanks to the mass
difference, to distinguish the signal produced by each dark
matter particle, excluding in this way the standard scenario
with one dark matter particle.
Regarding indirect detection, the most promising process

in both mass regimes is ψψ → Sh. There is to date no

FIG. 11. Sample of viable models forMS < Mψ projected onto different planes. The different panels show the ψ and S contributions to
the dark matter density (top left), the ratio of dark matter masses (top right), and the allowed ranges of variation for the three couplings
(center and bottom panels).
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reported experimental limit on such a process; however, it is
possible to set a limit from the related process DM þ
DM → DM þ h [68] by rescaling [45] the cross section
hσviψψ→Sh by the factor

Rc ¼
ðM2

h −M2
S − 4M2

ψ Þ2
ðM2

h þ 3M2
ψÞ2

: ð33Þ

The corresponding results are displayed in the bottom panel
of Fig. 10 (blue points), with the solid (dashed) blue
line being the limit (prospect) extracted in Ref. [68]
using the data reported by the Fermi Collaboration [66]
and the sensitivity of the Cherenkov Telescope Array
(CTA) [69].

V. THE MS < Mψ REGIME

For this regime, the parameters are randomly varied
using a log-uniform distribution within the ranges

50 GeV ≤ MS ≤ 2 TeV; MS < 3Mψ ; ð34Þ

10−3 ≤ jλSHj ≤ 3; ð35Þ

10−2 ≤ jysj; jypj ≤ 3: ð36Þ

Because the pseudoscalar portal (ys ¼ 0) turned out to be
viable only at the Higgs resonance, we directly display the
results for the general case in Figs. 11 and 12. Since the
scalar S is now the lightest dark matter particle, one may
expect some similarities with the singlet scalar model.
Currently, this model is consistent only at the Higgs
resonance and for MS ≳ 950 GeV. From Fig. 11 we see
that in the Z4 model viable models instead span the whole
range of MS above the Higgs mass. The restriction MS >
Mh is a consequence of the semiannihilation process
Sþ ψ → ψ̄ þ h, which plays a complementary role in
the determination of the S relic density.
Even though ψ is the heavier dark matter particle, it gives

the dominant contribution to the dark matter density for
MS ≲ 900 GeV (see the top left panel of Fig. 11). Above
that mass, the ψ fraction might decrease to just below 10%,

FIG. 12. Detection prospects in our sample of viable models forMS < Mψ. The top panels show the direct-detection cross sections for
the fermion (left) and scalar (right). From top to bottom, the lines correspond to the current limit from XENON1T and the expected
sensitivities of LZ and DARWIN. The bottom panel illustrates the indirect-detection signal due to the process ψ þ ψ → Sþ h. The lines
correspond to the Fermi-LAT limit (solid) and the expected sensitivity of CTA (dashed).
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and either dark matter particle could be dominant. From the
top right panel we conclude that the ratio of dark matter
masses, Mψ=MS, can take any value (unlike for the regime
Mψ < MS) and that the S relic density is not entirely driven
by annihilations. Although rarely dominant, semiannihila-
tions are crucial to open up the parameter space for
MS ≲ 950 GeV.
The center and bottom panels illustrate the viable ranges

for the three couplings. It is clear that yp can take pretty
much any value, while λSH and ys vary over a narrow band
and tend to increase with MS. In our scans, the maximum
allowed values ofMS andMψ are 2 and 6 TeV, respectively.
From the figures, one can see that when MS ∼ 2 TeV, the
couplings λSH and ys have not converged to 3 (the
maximum allowed), indicating that it is possible to go to
slightly larger masses. In any case, the most interesting
region is MS ≲ 950 GeV, where the singlet scalar model is
excluded but our model is not.
The detection prospects are demonstrated in Fig. 12. The

top panels show the scattering cross section off nuclei for
the fermion (left) and scalar (right). In both cases, most
points in our scan lie within the sensitivity of DARWIN. In
fact, for the scalar there are practically no points that could
escape future detection. Direct detection thus provides a
reliable way to test this scenario. Regarding indirect
detection (bottom panel), the most promising process is
ψ þ ψ → Sþ h, with a gamma-ray flux arising from the
decay of the Higgs. From the figure we see that no points
are currently excluded.

VI. DISCUSSION

We have seen in the previous sections that the Z4 model
with a singlet fermion and a singlet real scalar is a simple,
predictive, and testable scenario to explain dark matter.
Here we want to demonstrate that this framework can be
straightforwardly generalized to other ZN symmetries and
additional dark matter particles.
Under a ZN symmetry, the operator ψcψS is invariant if

the condition that the product of the field charges gives 1 is
fulfilled; in other words, if

I∶ 2nψ þ nS ¼ N; or ð37Þ

II∶ 2nψ þ nS ¼ 0; ð38Þ

where ZNðψÞ ¼ ðwNÞnψ and ZNðSÞ ¼ ðwNÞnS . Since for
nS ¼ N=2 the scalar field is real, the condition I implies
nψ ¼ N=4, whereas II demands nψ ¼ −N=4 [that is,
ZNðψcÞ ¼ 3N=4].
It follows that the Z4 symmetry can be exchanged for a

larger symmetry Z4n with the charges of the fermion and
scalar dark matter particles given by

Z4nðψÞ ¼ wn
4n ¼ i; Z4nðSÞ ¼ w2n

4n ¼ w−2n
4n ¼ −1; ð39Þ

where w4n
4n ¼ 1. In this way, the fermion and scalar fields

remain as a Dirac fermion and real scalar, respectively, and
both conditions I and II are realized. The Z4 model we
studied is thus the lowest ZN model with a real scalar and a
fermion, and the results of our analysis directly apply to
other equivalent scenarios.
For ZN symmetries with N ≠ 4n the real scalar field

must be promoted to a complex field and, depending on the
transformation properties, the interaction Lagrangian can
take two possible forms:

LI½II� ¼ 1

2
ðysψcψ þ ypψcγ5ψÞS½�� þ H:c: ð40Þ

The simplest case is realized through a Z3 symmetry, since
in that case both conditions I and II are equivalent. It
follows that the fermion and scalar fields transform under
the Z3 symmetry in the same way, that is,

Z3ðψÞ ¼ Z3ðSÞ ¼ w3: ð41Þ

The interaction Lagrangian, however, comprises both
possible structures LZ3

¼ LI þ LII, leading to a larger
set of free parameters. In the case N ¼ 5, the two possible
charge assignments for ψ and S are

I∶ Z5ðψÞ ¼ w2
5; Z5ðSÞ ¼ w1

5; ð42Þ

II∶ Z5ðψÞ ¼ w1
5; Z5ðSÞ ¼ w−2

5 : ð43Þ

Similarly, for the case N ¼ 6, the fields must transform as

I∶ Z6ðψÞ ¼ w2
6; Z6ðSÞ ¼ w2

6; ð44Þ

II∶ Z6ðψÞ ¼ w1
6; Z6ðSÞ ¼ w−2

6 : ð45Þ

The case N ¼ 7 admits three possible charge assignments,
but two of them are actually equivalent:

IA∶ Z7ðψÞ ¼ w2
7; Z7ðSÞ ¼ w3

7; ð46Þ

IB∶ Z7ðψÞ ¼ w3
7; Z7ðSÞ ¼ w1

7; ð47Þ

II∶ Z7ðψÞ ¼ w1
7; Z7ðSÞ ¼ w−2

7 : ð48Þ

In this way, the Z4 symmetry of our model can be
generalized to other ZN’s. Notice that once the scalar field
is promoted to be complex, larger values for the relevant
couplings (λSH; ys; yp) are required due to the extra degree
of freedom contributing to the S relic abundance. On the
other hand, the scenarios based on a Z3N symmetry where
the scalar field has a charge wN

3N bring along an extra cubic
interaction term S3, which leads to S semiannihilation
processes that can significantly decrease the relic density of
the scalar particle [44].
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One can also envision scenarios in which these ZN
symmetries are actually remnants of a new Uð1ÞX gauge
symmetry. In this case, S must be a complex field and the
condition II becomes mandatory in order to have the same
interaction Lagrangian. In addition, the charges of ψ , S, and
ϕ [the additional scalar required to break down the Uð1ÞX
symmetry] must fulfill

2qψ ¼ −qS; jqSj ≠ jqϕj ≠ 2jqϕj ≠ 3jqϕj: ð49Þ
Another way to extend these ZN models is via additional

dark matter particles. With a Z4 symmetry, for instance, it is
possible to incorporate an extra complex scalar field S2,
with charge Z4ðS2Þ ¼ i, leading to a three-component dark
matter scenario. A more interesting scenario is two fer-
mions and one complex scalar, which can be realized under
a Z5 (or higher) symmetry with charges Z5ðψ1Þ ¼ w1

5,
Z5ðψ2Þ ¼ w2

5, and Z5ðSÞ ¼ w2
5. In such a scenario the

interaction Lagrangian couples both fermion dark matter
fields, ψc

1ψ2S. Notice that a different charge assignment for
the scalar Z5ðSÞ ¼ w1

5 leads to the interaction Lagrangian
ψ1ψ2S�. On the other hand, a Z6 scenario allows us to have
an interaction term for each fermion field via the charge
assignment Z6ðψ1Þ ¼ w1

6, Z6ðψ2Þ ¼ w2
6, and Z6ðSÞ ¼ w2

6.
By the same token, scenarios with even more dark matter
particles could be obtained.
With respect to the ZN scenarios for scalar dark matter

[38], these new scenarios with both fermion and scalar dark
matter feature two crucial advantages. First, they tend to be
simpler as they typically introduce fewer free parameters;
the fermion interactions are more restricted. Second, a
smaller ZN symmetry can often be used. To obtain a two
(three)-component dark matter scenario with only scalars
requires a Z4 (Z6) symmetry, whereas with fermions and
scalars a Z3 (Z4) is enough, as shown above.
This brief discussion makes it clear that the Z4 model we

investigated belongs to a large class of multicomponent
dark matter models in which the dark matter particles are
fermions and scalars that are stabilized by a single ZN
symmetry. From a different perspective, this class of
models can be considered as ultraviolet realizations of
the standard fermionic Higgs portals [70]

O1 ¼ ðH†HÞðψ̄ψÞ; O2 ¼ ðH†HÞðψ̄γ5ψÞ; ð50Þ

as well as of the d ¼ 5 operators

O3 ¼ ðH†HÞðψcψÞ; O4 ¼ ðH†HÞðψcγ5ψÞ: ð51Þ
The phenomenology of most of these models has yet to be
studied in detail.

VII. CONCLUSIONS

In this paper we reconsidered the scenario proposed in
Ref. [24]: a two-component dark matter model in which the

dark matter particles—a singlet fermion (ψ ) and a singlet
scalar (S)—are stabilized by a single Z4 symmetry. The
phenomenology of this model is controlled by just five
parameters: the two dark matter masses (Mψ ,MS) and three
dimensionless couplings (λSH; ys; yp). For the first time, we
incorporated the pseudoscalar coupling (yp) in the analysis,
and found that it has a significant impact on the viable
regions (compare, e.g., Figs. 7 and 9). We investigated how
these parameters affect dark matter observables and
obtained, for each regime (Mψ < MS and MS < Mψ ), a
large sample of models consistent with all current bounds,
including the most recent direct-detection limits, which are
quite relevant. Our analysis confirmed the essential role that
semiannihilations play in obtaining the relic density (a
point already stressed in Ref. [24]), but also uncovered
novel and important facts about this model: (i) dark matter
masses below 1 TeV or so are allowed for both regimes;
(ii) the fermion gives the dominant contribution to the relic
density when Mψ < MS and also when MS < Mψ and
MS < 900 GeV; (iii) the fermion direct-detection cross
section is detectable in spite of being generated at one loop;
(iv) both dark matter particles could be observed in planned
direct-detection experiments, providing a promising way to
probe the model and differentiate it frommore conventional
scenarios. In addition, we characterized in detail the
allowed regions of this model, and studied the prospects
for the direct and indirect detection of dark matter. Finally,
we showed that this model can be straightforwardly
extended to other ZN symmetries and additional dark
matter particles. In conclusion, we demonstrated that the
Z4 model with a singlet fermion and a real singlet scalar
currently offers a predictive and well-motivated alternative
to explain dark matter. The model not only is compatible
with all present bounds, but also yields observable signals
in ongoing and planned dark matter detectors.
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APPENDIX CROSS SECTIONS

In this appendix we report the expressions for terms
associated with the cross sections of the relevant dark
matter processes discussed in Sec. III. The cross section
for the self-annihilation process ψψ → Sh involves the
parameters
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Δ ¼ 256M2
ψ ðM2

S − 4M2
ψÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

h þ ðM2
S − 4M2

ψ Þ2 − 2M2
hðM2

S þ 4M2
ψÞ

q
; ðA1Þ

Cp ¼ ðM3
S −M2

hMSÞ2 − 4ð3M4
h − 5M2

hM
2
S þ 4M4

SÞM2
ψ þ 80ðM2

h þM2
SÞM4

ψ − 128M6
ψ ; ðA2Þ

Cs ¼ ðM2
S − 4M2

ψÞððMh −MSÞ2 − 4M2
ψ ÞððMh þMSÞ2 − 4M2

ψÞ; ðA3Þ

whereas the cross section for the semiannihilation process ψS → ψ̄h involves the parameters

Δ0 ¼ 192πMSMψ ½M3
S þMψð2M2

S −M2
hÞ�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

S −M2
hÞððMS þ 2MψÞ2 −M2

hÞ
q

; ðA4Þ

C0
s ¼ M8

hMψð9MSMψ þ 4M2
S þ 3M2

ψÞ
− 2M6

hð25M4
SMψ þ 38M3

SM
2
ψ þ 23M2

SM
3
ψ þ 15MSM4

ψ þ 5M5
S þ 6M5

ψÞ
þM4

hM
2
Sð211M4

SMψ þ 359M3
SM

2
ψ þ 307M2

SM
3
ψ þ 174MSM4

ψ þ 45M5
S þ 48M5

ψ Þ
− 2M2

hM
4
SðMS þ 2Mψ Þð3MS þ 2MψÞð28M2

SMψ þ 33MSM2
ψ þ 9M3

S þ 18M3
ψÞ

þM6
SðMS þ 2MψÞ2ð59M2

SMψ þ 66MSM2
ψ þ 19M3

S þ 24M3
ψÞ; ðA5Þ

C0
p ¼ M8

hMψð9MSMψ þ 4M2
S þ 3M2

ψ Þ
− 2M6

hð25M4
SMψ þ 40M3

SM
2
ψ þ 31M2

SM
3
ψ þ 21MSM4

ψ þ 5M5
S þ 6M5

ψÞ
þM4

hM
2
Sð203M4

SMψ þ 379M3
SM

2
ψ þ 411M2

SM
3
ψ þ 266MSM4

ψ þ 45M5
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ψ Þ
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hM
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Finally, the differential cross section for the dark matter conversion process ψ̄ψ → SS depends on

Σt ¼ −y4p½ðt −M2
ψÞð−M2

ψ þ sþ tÞ þ 2M2
SðM2

ψ − tÞ þM4
S�

− 2y2py2s ½ðM2
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ψ þ tÞ þ 3M4
S�

− y4s ½−sM2
ψ þ ðM2

S − 3M2
ψ ÞðM2

S − 3M2
ψ − 2tÞ þ tðsþ tÞ�; ðA7Þ
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ψ − tÞ þM4
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− 2y2py2s ½ðt −M2
ψÞð3ðsþ tÞ − 7M2

ψÞ þ 2M2
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ψ − 3tÞ þ 3M4
S�

− y4s ½−9sM2
ψ − ðM2

S þ 5M2
ψ Þð−M2

S − 5M2
ψ þ 2tÞ þ tðsþ tÞ�; ðA8Þ

Σtu ¼ −y4p½ðt −M2
ψÞð−M2

ψ þ sþ tÞ þ 2M2
SðM2

ψ − tÞ þM4
S�

þ 2y2py2s ½M2
ψð2M2

S þ sþ 6tÞ − 3ð−2tM2
S þM4
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