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In this paper, we investigate the quantum coherence for two flavor neutrinos propagating in a
Schwarzschild metric. In fact, this issue is explored both qualitatively via calculating the parameter K3 in
Leggett-Garg inequality and also quantitatively by evaluating the l1-norm, CðρÞ. Using the weak field
approximations, we show that the gravitational effects decrease the maximum value of K3 for some
intervals of energy in such a way that there is no violation, while it leaves the maximum amount of the
quantum coherence, CðρÞ, unchanged.
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I. INTRODUCTION

Gravitation and quantum mechanics usually do not play
an important role simultaneously in low energy physical
phenomena. However, at 1975 for the first time, Collela
et al. proposed an experiment in which the results depended
on both the gravitational and Planck constant [1]. This
effect could be explained by considering a Newtonian
potential inserted in the Schrodinger equation. Soon after,
using semiclassical approximation, Stodolsky obtained the
quantum mechanical phase of a free particle propagating
in an external gravitational field in the weak field limit
and investigated the gravitational effects by matter and
light wave interferometry [2]. In addition to the subject of
interferometry for neutrons and photons, the other place in
which the gravitational effects and quantum mechanics
coexist, is the context of neutrino oscillations. Neutrinos
are known to be the most fascinating particles of the
standard model, since they can be utilized as special probes
to study physics from quantum scales up to celestial scales.
In fact, they have the ability to pass through ordinary matter
with minimum interactions because they can only partici-
pate in weak interactions and their masses are extremely
tiny to experience any reasonable gravitational influence.
Nevertheless, the effects of gravitation on neutrino oscil-
lation have been investigated through calculating the
change in quantum phase due to neutrino propagation in
curved space-time [3–5].
On the other hand, quantum correlations are known as

one of the cornerstones of the foundation of quantum

information sciences and quantum technologies, since we
can consider them as resource theories in quantum commu-
nications. In addition to their technological applications, one
can use quantum correlations to study fundamental physical
effects such as gravity at quantum mechanical scales.
For instance, the gravitational effects on Clauser-Horne-
Shimony-Holt (CHSH) inequality which is known as one of
the forms of the Bell inequalities have been studied [6]. Also
it has been investigated that the circular motion of particles in
a Schwarzschild metric causes a decrease in the degree of
violation of Bell’s inequality [7]. In a similar study, the
effects of a curved space-time described by the Kerr-
Newman metric on the Einstein–Podolsky–Rosen (EPR)
correlations have been investigated [8].
One of the other subjects in physics that neutrinos are

used to study, is quantum information which is based
mostly on quantum correlations such as entanglement and
quantum coherence [9–18]. They can usually be expressed
in terms of transition amplitudes and, hence, oscillation
probabilities [13]. Among the several researches on quan-
tum correlations examining the quantumness in neutrino
oscillations, are Refs. [16,18] that characterize the Leggett-
Garg inequality (LGI) for neutrino oscillation. Nonlocality
in neutrino oscillation via Bell type inequalities, i.e., the
spatial counterparts of Leggett-Garg inequalities, has also
been studied [15]. Moreover, quantum effects such as
entanglement and quantum coherence which seem to be
distinct resource theories [19,20], have been investigated in
the context of neutrino oscillation by Blassone et al. [11]
and Xue-Ke Song et al. [12]. Though it has been shown that
these two quantum correlations, in the case of neutrino
oscillations, are not independent of each other [9]. In the
Refs. [9,12] quantum coherence has been treated quanti-
tatively by defining the l1–norm as a coherence measure,
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which assigns a number to neutrino states. The l1-norm is
described as the summation over absolute values of all the
off-diagonal elements of the corresponding density matrix.
For neutrinos in two flavors, it can be written as CðρÞ ¼ 2

j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PoscPsur

p j in terms of the oscillation and survival prob-
abilities [9].
In fact, quantum coherence as a quantum correlation, can

be investigated in the two qualitative and quantitative
approaches; Leggett-Garg inequality is a qualitative criterion
and l1-norm is a quantitative measure. In the case of the
qualitative approach, we should clarify that the violation of
the LGI can be interpreted as appearing quantumness because
quantum is the only theory that contradicts the postulates of
the LGI. Moreover, this quantumness is revealed if
the states on which the measurements are carried out are
a coherent superposition of Hamiltonian eigenstates.
Therefore, when we have treated the LGI by a quantum
state which does not give violation, this means the quantum
state does not have enough coherence. In this paper, we aim
to study the gravitational effects on quantum coherence
in neutrino oscillation by the two approaches mentioned
above. We consider the propagation of the neutrino in a
Schwarzschild background for two flavors via the plane wave
approach. Indeed, we use the method in which the quantum
mechanical phase of neutrino is obtained by using the
semiclassical approximation. With this assumption, the
gravitational field is treated classically and it differs from
the stochastic interactions between neutrinos and virtual
black holes, which are due to fluctuations in space-time
itself if gravity is a quantum force [21].
In the next section, we will briefly review the neutrino

oscillation in flat and curved space-time. In Sec. III, we
will study LGI in radial propagation of neutrinos in a
Schwarzschild metric by calculating the K3 parameter
for neutrinos propagating outwards and inwards in a
gravitational field. In Sec. IV, we will compute the
l1-norm for neutrino oscillation in two flavor framework
via plane wave approach in a Schwarzschild metric in order
to study its variations with respect to the proper distance,
Lp, when the neutrino is propagating towards or away from
the gravitational source. Finally in Sec. V, we will discuss
our results and make the conclusion.

II. NEUTRINO OSCILLATION IN FLAT AND
CURVED SPACE-TIME

In this section, we will briefly review the context of
neutrino oscillation in flat and also curved space time. The
state of a neutrino produced in a space-time point AðtA; x⃗AÞ
is obtained from the superposition of mass eigenstates, jνki,

jναi ¼
X
k

U�
αkjνki; ð1Þ

in which U is the unitary mixing matrix and in case of the
two flavors it is shown as

U ¼
�

cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

�
: ð2Þ

This state as a weak interaction eigenstate is called the
flavor eigenstate. There exists a discrepancy in energies,
momenta, and masses of different mass eigenstates jνki
which leads them to propagate differently and, hence,
the neutrino oscillation takes place. In fact, the neutrino
oscillation exhibits a relative shift in mass eigenstate phases
when they arrive at the detector situated at the space-time
point BðtB; x⃗BÞ. Actually, while the plane wave approach
is adopted, the propagated mass eigenstates jνki are
described as

jνkðt; x⃗Þi ¼ e−iΦk jνki; ð3Þ

where Φk (k ¼ 1, 2) denoting the relative phase shift
acquired by the mass eigenstates during their propagation,
is given by

Φk ¼ EkðtB − tAÞ − p⃗k:ðx⃗B − x⃗AÞ: ð4Þ

In general, in the case of two flavors, the probability
of detecting a neutrino as jνμi that is produced as jνei is
given by

Pðνe → νμÞ ¼ jhνμjνeðtB; x⃗BÞij2 ¼ sin2ð2θÞ sin2
�
Φjk

2

�
;

ð5Þ
in which Φjk ¼ Φj −Φk. Of course, in order to have the
neutrino oscillation, the difference of the phase shift must
not lead to the decoherence of the flavor eigenstates due to
the propagation. In other words, the propagation length has
to be smaller than the coherence length.
In flat space-time described by the Minkowski metric,

applying the ultra relativistic limit of ðtB − tAÞ ≃ jxB − xAj,
together with the relativistic expansion mk ≪ Ek, one can
write

Φjk ≃
Δm2

jk

2E0

jxB − xAj: ð6Þ

Here, θ is the mixing angle, Δm2
jk is the mass squared

difference and E0 is the energy for the massless neutrino
measured by the observer at infinity.
Now, to generalize our discussion to a curved space-

time, we can replace the quantum phase given by the
Eq. (4) with its covariant form

Φk ¼
Z

B

A
pðkÞ
μ dxμ; ð7Þ

where pðkÞ
μ is the canonical conjugate momentum to the

coordinate xμ and is given by

M.M. ETTEFAGHI et al. PHYS. REV. D 105, 095024 (2022)

095024-2



pðkÞ
μ ¼ mkgμν

dxν

ds
: ð8Þ

In above equation, gμν represents the metric tensor and
ds is the line element. For instance, let us consider the
Schwarzschild metric

ds2 ¼ BðrÞdt2 − BðrÞ−1dr2 − r2dθ2 − r2 sin2 θdϕ2; ð9Þ

where

BðrÞ ¼
�
1 −

2GM
r

�
; ð10Þ

in which G is the Newtonian constant and M stands for
mass of the gravitational source [22]. In this metric, the
gravitational field is isotropic, therefore, we may consider
the propagation of neutrinos in the equatorial plane
θ ¼ π=2. In this case, the phase obtained by the mass
eigenstates during the neutrino propagation from the source
at the space-time point AðtA; rA;ϕAÞ to the detector at the
space-time point BðtB; rB;ϕBÞ may be written as

Φk ¼
Z

B

A
½Ekdt − pkðrÞdr − Jkdϕ�: ð11Þ

Here, Ek ≡ pðkÞ
t , pr ≡ −pðkÞ

r , and JkðrÞ≡ −pðkÞ
ϕ , are the

components of the canonical momentum pðkÞ
μ [23]. For

convenience, in presence of the gravitational effects, it is
better to consider the neutrino propagation over the proper
distance Lp, which is generally defined by the relation

Lp ≡
Z

rB

rA

ffiffiffiffiffiffi
grr

p
dr

¼ rB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
rB

s
− rA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
rA

s

þ 2GM½lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rB − 2GM

p
þ ffiffiffiffiffi

rB
p Þ

− lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA − 2GM

p
þ ffiffiffiffiffi

rA
p Þ�: ð12Þ

Assuming the weak field approximation, one can easily
calculate Lp to be

Lp ≃ rB − rA þGM ln
rB
rA

; ð13Þ

where rA and rB are, respectively, the positions of the
source and the detector which are measured with respect
to the gravitational source reference frame. In addition, we
should note that using the ultra relativistic limit, one can
write the relation between proper time interval and proper
distance as

Lp ¼ cτ; ð14Þ

in which τ is the proper time.
At this point, we restrict our discussion to the motion of

neutrinos in a Schwarzschild gravitational field in radial
propagation. For radial propagation of neutrinos in a
Schwarzschild gravitational field, i.e., dϕ ¼ 0 in Eq. (11),
there is no angular momentum. As for the flat-space time,
the relativistic expansion mk ≪ Ek can be applied. Thus,
assuming 0 < BðrÞ ≤ 1, after some calculations we have [3]

ϕk ≃
Z

rB

rA

m2
k

2E0

dr; ð15Þ

which is integrated along the light-ray trajectory to be

Φk ≃
m2

k

2E0

jrB − rAj: ð16Þ

It should be noticed that jrB − rAj is the coordinate differ-
ence and, as mentioned earlier, in the curved space-time it
can be written in terms of the proper distance. Here, the
energy E0 is the energy of the massless neutrino that is
measured by the observer located at r ¼ ∞. However, it may
be convenient to rewrite the oscillation phase defined in
Eq. (16) in terms of the local energy, denoted by Eloc

0 ðrBÞ,
measured by the observer at the detector at rB. This local
energy is related to the E0 through the relation Eloc

0 ðrÞ ¼
jgttj−1=2E0 [24]. Thus regarding the Eq. (9), we can write

Eloc
0 ðrBÞ ¼

�
1þ GM

rB

�
E0: ð17Þ

Finally, using Eqs. (13) and (17) we can express the Eq. (16)
as follows [3]:

Φkj ≃
� Δm2

kjLp

2Eloc
0 ðrBÞ

��
1 − GM

�
1

Lp
ln
rB
rA

−
1

rB

��
: ð18Þ

In this equation, the corrections due to the gravitational
effects are evident from the second term in the square
parentheses. In the following, we wish to study the effects
of gravitation on the LGI violation as well as the amount of
quantum coherence (l1-norm). In order to have an appro-
priate evaluation, we take Δm2

12 ¼ 7.92 × 10−5 eV2,
θ12 ¼ 0.59, and GM ¼ 3 × 107 Km, which can be the
Schwarzschild radius of a supermassive black hole.

III. LGI IN RADIAL PROPAGATION OF
NEUTRINO IN A SCHWARZSCHILD METRIC

In this section, we intend to study the gravitational
effects on the LGI using the time correlations in neutrino
oscillations. In fact, the violation of the LGI is a con-
firmation of the existence of quantum coherence. The LGI
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is based on the two main postulates; macroscopic realism
and noninvasive measurability [25–27]. The first postulate
means that the measurements performed on a system will
only reveal the values that already exist. The second
postulate implies that the noninvasive measurements can
be carried out on the system without changing the state of
the system. The simplest form of LGI is constructed in
terms of the parameter K3 which is defined as

K3 ¼ Cðt1; t2Þ þ Cðt2; t3Þ − Cðt1; t3Þ; ð19Þ

in which Cðti; tjÞ ¼ hQ̂ðtiÞQ̂ðtiÞi and Q̂ðtÞ is a dichotomic
variable that can take only one of two discrete values which
are usually labeled by convention þ1 and −1 [27].
According to LGI, this parameter should be smaller than
one; otherwise its assumptions are violated. We should
notice that in order to check the LGI inequality, we need
to use a physical state which is a coherent superposition of
some eigenstates to calculate the corresponding correlations.
Of course, this feature can occur in quantum mechanics,
while this theory is in conflict with the postulates on which
the LGI is constructed. So, if this inequality is violated, it
means that we have a phenomenon that is inconsistent with
the corresponding postulates. On the other hand, if we
choose a quantum state for which this inequality is not
violated, it could mean that the assumed state is not coherent
enough; therefore, for example, K3 does not exceed unity.
If one wants to investigate the validity of the LGI

postulates, it is necessary to provide appropriate conditions
that ensure compliance with the LGI postulates. However,
there are some experimental difficulties satisfying the
noninvasive measurement. Furthermore, its postulate is
in conflict with quantum mechanics and it is natural to
find a quantum mechanical set up that violates the LGI.
Meanwhile, the LGI may be derived instead under the
assumption of stationarity [28]. Accordingly, the correla-
tion functions Cij depend only on the time difference
τ≡ tj − ti between various measurements. There are
several studies based on the stationarity condition, in
which the LGI has been investigated using the neutrino
oscillation [16,17]. Nevertheless, since we take account of
the gravitational effects on LGI in the present study, the
condition of stationarity for neutrino oscillation is not
necessarily satisfied. Therefore, we expect the LGI viola-
tion by neutrino oscillation with the gravitational modifi-
cations unless the coherent superposition is deflected.
Hence, we can take the violation of the LGI as a qualitative
criterion for quantum coherence. The LGI for neutrinos
without assuming the condition of stationarity is

investigated in Ref. [18]. We must also write the parameter
K3 to be Lorentz invariant. Thus, one needs to rewrite the
time correlation functions in Eq. (19) in terms of the proper
time τ and, for simplicity, we adopt the equal proper time
intervals (τ3 − τ2 ¼ τ2 − τ1 ¼ τ). Furthermore, according
to the ultra relativistic limit introduced in Eq. (14), we can
write the parameter K3 in Eq. (19) in terms of the proper
distance Lp as follows:

K3 ¼ Cð0; LpÞ þ CðLp; 2LpÞ − Cð0; 2LpÞ: ð20Þ

Here, in the case of neutrino oscillation, the observable for
which the correlation functions are evaluated is
Q̂ ¼ 2jναihναj − 1. If the neutrino is still in its initial flavor
state the outcome is þ1 and otherwise it will be −1.
Now let us consider a neutrino source located at the

radial distance rA from the center of the gravitational field
of a nonrotating object with a spherical symmetry that is
described by the Schwarzschild metric. We intend to
construct the parameter K3 between the source and the
two hypothetical detectors that are placed in radial dis-
tances rB1 and rB2 from the center of the gravitational
source. We consider the case in which the initial neutrino
flavor state is jνμi. In general, the correlation of operator Q̂
between two different proper distances is defined by

CðLð1Þ
p ; Lð2Þ

p Þ ¼ hμj 1
2
fQ̂ðLð1Þ

p Þ; Q̂ðLð2Þ
p Þgjμi; ð21Þ

where Q̂ðLðiÞ
p Þ ¼ U†ðLðiÞ

p ÞQ̂UðLðiÞ
p Þ. Superscript (i) refers

to either the source or one of the detectors. Here, UðLpÞ
is the time evolution matrix in the flavor space, whose
elements are defined as

UδλðLpÞ ¼
X
k

U�
δke

−iϕkðLpÞUλk: ð22Þ

In fact, UδλðLpÞ is the transition amplitude. We should note
that the time evolution operator in Eq. (22) is unitary when
using Eq. (16); i.e., one gives the ϕk in terms of the rB.
However, in Eq. (22), we have written rB in terms of the Lp

using Eq. (13) and thusUðLpÞ is not unitary in terms of Lp.
Thus we have for the three correlations in Eq. (20):

Cð0; κLpÞ ¼ 2Pνμ→νμðκLpÞ − 1; for α ¼ μ

¼ 1 − 2Pνμ→ναðκLPÞ; for α ≠ μ ð23Þ

in which κ ¼ 1, 2, and

CðLp; 2LpÞ ¼ ð1=2Þ½hνμj4U†ðLpÞjναihναjUðLpÞU†ð2LpÞjναihναjUð2LpÞjνμi þ hνμj4U†ð2LpÞjναi
× hναjUð2LpÞU†ðLpÞjναihναjUðLpÞjνμi − hνμj4U†ðLpÞjναihναjUðLpÞjνμi
− hνμj4U†ð2LpÞjναihναjUð2LpÞjνμi þ 2�: ð24Þ
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One can simplify the recent equation as follows:

CðLp; 2LpÞ ¼ 4UμαðLpÞUαμðLpÞŪμαð2LpÞUαμð2LpÞ
þ 2ŪμαðLpÞUαeðLpÞŪeαð2LpÞUαμð2LpÞ
þ 2Ūμαð2LpÞUαeð2LpÞŪeαðLpÞUαμðLpÞ
− 2Pνμ→ναðLpÞ − 2Pνμ→ναð2LpÞ þ 1: ð25Þ

Consequently, we obtain the following expression for K3

in terms of the probabilities and the transition matrix
elements:

K3 ¼ 1 − 4Pνμ→νeðLpÞ þ 4ŪμeðLpÞUeμðLpÞŪμeð2LpÞ
×Ueμð2LpÞ þ 4Re½Ūμeð2LpÞUeeðLpÞUeeð2LpÞ
× ŪeμðLpÞ� for α ¼ e; ð26Þ

and

K3 ¼ 1 − 4Pνμ→νμð2LpÞ þ 4Pνμ→νμðLpÞPνμ→νμð2LpÞ
þ 4Re½Ūμeð2LpÞUμμðLpÞUμμð2LpÞŪeμðLpÞ�
for α ¼ μ: ð27Þ

We preform our calculations in the weak field approxi-
mation, since in the distance scales we intend to work in,
the weak field approximation holds. Albeit, we should
write our relations in terms of the local energy Eloc

0 ðrBÞ
measured by the observers situated at the two detectors,
since we intend to study the behavior of K3 with respect to
variations of an unique energy, we rewrite both energies
measured by the two detectors in terms of the energy E0

measured by the observer at the infinity. To better enlighten
the gravitational effects on the parameter K3, we will
evaluate and compare the parameters K3 for the two
different cases of the neutrinos propagating radially out-
wards and towards the gravitational source.

(i) In the case of neutrinos propagating radially out-
wards the gravitational source, we can write the
distances rB1 and rB2 from the Eq. (13) as follows:

rB1 ¼ Lp þ rA −GM ln

�
Lp

rA
þ 1

�
; ð28Þ

rB2 ¼ 2Lp þ rA −GM ln

�
2Lp

rA
þ 1

�
: ð29Þ

Therefore, up to the first order of the weak field
approximation, OðGM=rÞ, we can express the
oscillation phases as

ΦkjðLpÞ ≃
Δm2

kjLp

2E0

�
1 −GM

�
1

Lp
ln

�
Lp

rA
þ 1

���
;

ð30Þ

and

Φkjð2LpÞ≃
Δm2

kj2Lp

2E0

�
1−GM

�
1

2Lp
ln

�
2Lp

rA
þ1

���
:

ð31Þ

By using these two recent relations and Eqs. (5)
and (22) in Eqs. (26) and (27), the parameter K3 can
be constructed. In order to specify the gravitational
effects on the parameter K3 and to checkout the LGI
violation, we take the relative parametric space such
that the gravitational effects might be remarkable in
neutrino oscillation. Hence, we choose the locations
of the two detectors such that the proper distance
becomes Lp ≃ 3 × 108 Km. The radial distance of
the source is selected to be rA ≃ 108 Km and the
energy order is taken about several hundred TeVs.
Maybe it should be enlightened that our choices of
the parameters are not far from the outputs of the
astrophysical models. Among the existing models
describing the production of high energy neutrinos
near a massive object [29–34], there is a conjecture
that would create a sort of physics case for our
parameter choices [34]. According to this conjec-
ture, the production of neutrinos with the energy
scale of TeV can take place within a half of the
Schwarzschild radius of a supermassive black hole.
Accordingly, the variations of the parameter K3 are
plotted with respect to E0 in the interval 1.5 × 102 to
5 × 102 TeV in Fig. 1(a). For comparison, the
parameter K3 for the case of the flat space time,
i.e., M ¼ 0 is also drawn.

(ii) In the case of neutrino propagating radially towards
the gravitational source, we place the neutrino
production source at ŕA. The parameter K3 is
calculated for the neutrinos propagating from this
point to the detectors situated at the places ŕB1 and
ŕB2 given by the relations

ŕB1 ¼ ŕA − Lp −GM ln

�
1 −

Lp

ŕA

�
; ð32Þ

and

ŕB2 ¼ ŕA − 2Lp −GM ln

�
1 −

2Lp

ŕA

�
: ð33Þ

Consequently, we can again evaluate the oscillation
phases as
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Φ́kjðLpÞ ≃
Δm2

kjĹp

2E0

�
1þ GM

�
1

Ĺp
ln

�
1 −

Ĺp

ŕA

���
;

ð34Þ

and

Φ́kjð2ĹpÞ≃
Δm2

kj2Ĺp

2E0

�
1þGM

�
1

2Ĺp
ln

�
1−

2Ĺp

ŕA

���
:

ð35Þ

Similar to the case of neutrinos propagating out-
wards, we can plot the parameter K3 as shown in
the Fig. 1(b), by considering ŕA ¼ 6.5 × 108 Km
and Ĺp ¼ 3 × 108 Km.

The following two points are obvious from the two
diagrams in Fig. 1:

(i) It is seen that due to the presence of gravitational
effects, there exists a damping in the maximum value
of the parameter K3 in some intervals of energy such
that the LGI violation diminishes for these intervals.
Indeed, as was said, the violation of the LGI can be
interpreted as appearing as quantumness because
quantum is the only theory that contradicts the
principles of the LGI. This quantumness is revealed
if the states on which the measurements are carried
are a coherent superposition of Hamiltonian eigen-
states. When we have treated the LGI by a quantum
state which does not give violation, it means that this
quantum state does not possess enough coherence.
Therefore, the LGI investigation shows the decrease
in coherence due to the gravitational effects.

(ii) As another interesting result, we see that the gravi-
tational effects lead to the occurrence of a phase shift
in the value of the parameter K3 in comparison to
the corresponding one in the flat space-time. This
phase shift depends on both energy and the relative

proper distances. So, there exists some range of the
parameter by which the value of K3 in curved space-
time is larger than the one in the flat space-time. Of
course, we know that even in presence of the
quantum coherence, it is not the case that we will
be able to see the LGI violations for any choice of
parametric space. Rather, if there is enough coher-
ence, one can find a region of parametric space in
which this inequality violates. Therefore, according
to the results obtained from this study, the gravita-
tional effects cause changes in the region of the
parametric space suitable for violating LGI. The
physical justification is as follows: we describe
neutrinos by plane waves in this study and the
corresponding phases are modified by the gravita-
tional effects. Hence, when we encounter the LGI
violation, this means that the phase of the distin-
guished terms constructing K3 is such that they are
summed constructively and otherwise destructively.

IV. CALCULATION OF l1-NORM FOR NEUTRINO
OSCILLATION IN SCHWARZSCHILD METRIC

After investigating the gravitational effects on the
quantumness of neutrino oscillation via calculating the
parameter K3 for the two different cases described in
the last section, we wish to study quantitatively the
quantum coherence in neutrino propagation in presence
of the gravitational effects. As was said in the introduction,
the amount of quantum coherence can be obtained for the
neutrino oscillation by calculating the l1-norm [9,12]. In
general, this quantity is defined as [35]:

CðρÞ ¼
X
i≠j

jρijj ≥ 0; ð36Þ

where the summation is over the absolute values of all the
off-diagonal elements ρij of a corresponding density matrix

(a) (b)

FIG. 1. Variations in K3 as a function of the energy E0 in TeV, for neutrinos radially propagating outwards (a) and inwards (b) the
gravitational source. Blue (solid) and orange (dashed) curves represents the K3 in flat and curved space time, respectively.
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ρ. The maximum possible value for CðρÞ is bounded by
Cmax ¼ d − 1, where d is the dimension of the density
matrix ρ. Here we consider the two flavor neutrino, thus the
maximum value of l1-norm will be 1. The l1-norm can be
expressed in terms of the transition and survival proba-
bilities between different flavor modes written in terms of
the proper distance Lp. Therefore, if the initial flavor state
is jνμi we have

Cμ ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PμeðLpÞPμμðLpÞ

q
Þ: ð37Þ

We consider the gravitational effects in the weak field
approximation for the Schwarzschild metric. The calcu-
lations are carried out for the two cases of the neutrinos
propagating radially outwards and inwards. Using the plane
wave approach, one can obtain straightforwardly the
transition probabilities as

Pνμ→νeðLpÞ ¼ sin2ð2θÞsin2
�
Δm2

12Lp

4Eloc
0

×

�
1 −GM

�
1

Lp
ln

�
Lp

rA
þ 1

�
−

1

Lp þ rA

���
; ð38Þ

and

Ṕνμ→νeðĹpÞ ¼ sin2ð2θÞsin2
�
Δm2

12Ĺp

4Eloc
0

×

�
1þ GM

�
1

Ĺp
ln

�
1 −

Ĺp

ŕA

�
þ 1

Ĺp þ ŕA

���
: ð39Þ

The survival probabilities are also

Pνμ→νμðLpÞ ¼ 1 − Pνμ→νeðLpÞ; ð40Þ

and

Ṕνμ→νμðĹpÞ ¼ 1 − Ṕνμ→νeðĹpÞ: ð41Þ

Here, in our calculations, Eloc
0 ðrBÞ i.e., the energy of the

massless neutrino measured by the observer at the detector
situated at the radial distance rB from the center of the
gravitational source is used. In order to plot the variations
of Cμ in Eq. (37) in terms of the proper distance Lp we take
Eloc
0 ðrBÞ ¼ 3 × 102 TeV. For neutrinos propagating out-

wards, we suppose rA ¼ 108 Km and 2 × 108 Km ≤ Lp ≤
4 × 108 Km and for neutrinos propagating inwards, ŕA ¼
4 × 108 Km and 1.5 × 108 Km ≤ Ĺp ≤ 3 × 108 Km. The
corresponding diagrams are found in Figs. 2(a) and 2(b).

It is notable from the two diagrams in Fig. 2 that
although as we expect, the wave length shows local
dependence in both outwards and inwards propagation,
we have no decrease in the maximum value of the quantum
coherence.

V. CONCLUSION

One of the important questions in physics is about the
quantum effects of the gravitation, either we have a
quantum gravity or the gravitation can play any role at
the quantum scales. The most important quantum aspect
that plays role in neutrino oscillation is the quantum
coherence. In this paper, we have studied the gravitational
effects on quantum coherence in neutrino oscillation via
both qualitative (through investigating the violation of LGI)
and quantitative (by calculating l1-norm) manners.
In case of the former, we have rewritten the parameterK3

that is known as the simplest form of the LGI, in terms of

Blue (solid) and orange (dashed) curves represent the Cμ in the flat and curved space time, respectively.

(a) (b)

FIG. 2. Variations of Cμ as a function of Lp, for neutrinos radially propagating (a) outwards and (b) inwards to the gravitational source.
Blue (solid) and orange (dashed) curves represent the Cμ in the flat and curved space time, respectively.
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the proper distance Lp. Next we constructed the parameter
K3 for two flavor neutrinos propagating radially outwards
and inwards between a neutrino source and the two
detectors placed in a Schwarzschild metric. Then we have
given a numerical example for the variations of the
parameter K3 with respect to the energy E0 in the weak
field approximation. The results are demonstrated by Fig. 1.
We concluded that the gravitational effects decrease the
maximum value of the parameter K3 for some energy
intervals. More explicitly, there exists some energy intervals
for which we have no LGI violation for neutrinos propa-
gating in curved space-time but we do have the LGI violation
in flat space-time. In case of the latter, we have calculated the
l1-norm, CðρÞ, for the above physical situation. We reckon
that although a local dependence in wave lengths of the
oscillation is observable in CðρÞ when the neutrinos propa-
gate in curved space-time, the maximum amount of the CðρÞ
remains unchanged (please see Fig. 2.).
In this study, the considered setup seems to be a

gedanken experiment and the distances chosen for the
LGI experiment are somewhat exaggerated. However, the
issues presented in this study may be considerable for
future experiments which may be designed to examine the
decoherence effects for long baseline experiments by the
messaging particles other than neutrinos between satellites
at the vicinity of the Earth. Recently, some efforts have
been made to create a quantum network in space [36–38].
Therefore, it can be helpful to study the various quantum
resources such as quantum coherence in the curved
space-time.
Furthermore, we have treated neutrinos by plane wave

and the decoherence effects due to the separation of the
mass eigenstate wave packets (for instance see Ref. [39])
have been ignored. The wave packet decoherence effects in

the presence of the strong gravitational fields have been
studied in Ref. [40]. However, the plane wave assumption
does not make our discussion inaccurate because modifi-
cations due to neutrino localization (wave packet approach)
only play an important role when the propagation length is
of the order of the coherence one. Therefore, we do not see
any damping in the maximum value of l1-norm. But under
the same condition, we have a damping in the LGI which is
due to the constructive and destructive effects in some
terms constructing K3. Thus, this statement shows that the
LGI violation and l1-norm are independent measure criteria
of coherence. This reminds us of some mixed states such as
the Werner state [41], in which there are regions where we
have no CHSH violation and, therefore, no nonlocality but
still get a nonzero value for the measure quantities of the
entanglement.
In general, there exists another scenario for decoherence

of neutrino states in vacuum; the effects caused by the
real and microscopic virtual black holes, speculated from
the quantum gravity considerations, can lead to the
decoherence of neutrino states (for instance see [21]).
These theories could have an impressive role on the
neutrino oscillation but there is no empirical indication
for them and they are bounded via various studies per-
formed in this field [42–45]. Meanwhile, considering such
a hypothesis is a new issue that goes beyond the scope of
the current article.
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