
Neutrino effective potential and damping in a fermion and scalar
background in the resonance region
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We consider the propagation of a neutrino or an antineutrino in a medium composed of fermions (f) and
scalars (ϕ) interacting via a Yukawa-type coupling of the form f̄νϕ, for neutrino energies at which the
processes like νþ ϕ ↔ f or νþ f̄ ↔ ϕ̄, and the corresponding ones for the antineutrino, are kinematically
accessible. The relevant energy values are around jm2

ϕ −m2
fj=2mϕ or jm2

ϕ −m2
fj=2mf, where mϕ and mf

are the masses of ϕ and f, respectively. We refer to either one of these regions as a resonance energy range.
Near these points, the one-loop formula for the neutrino self-energy has a singularity. From a technical
point of view, that feature is indicative that the self-energy acquires an imaginary part, which is associated
with damping effects and cannot be neglected, while the integral formula for the real part must be evaluated
using the principal value of the integral. We carry out the calculations explicitly for some cases that allow us
to give analytic results. Writing the dispersion relation in the form ω ¼ κ þ Veff − iγ=2, we give the explicit
formulas for Veff and γ for the cases considered. When the neutrino energy is either much larger or much
smaller than the resonance energy, Veff reduces to the effective potential that has been already determined in
the literature in the high or low momentum regime, respectively. The virtue of the formula we give for Veff

is that it is valid also in the resonance energy range, which is outside the two limits mentioned. As a guide to
possible applications we give the relevant formulas for Veff and γ, and consider the solution to the
oscillation equations including the damping term, in a simple two-generation case.

DOI: 10.1103/PhysRevD.105.095022

I. INTRODUCTION AND SUMMARY

As is well known, the properties of neutrinos that
propagate through a medium differ from those in the
vacuum. In particular, the energy-momentum for massless
neutrinosω ¼ κ, whereω is the energy and κ the magnitude
of the momentum vector, is not valid in the medium [1,2].
The modifications of the neutrino dispersion relation can be
represented in terms of an index of refraction, or more
suitable for our purposes, in terms of an effective potential
(Veff ) and a damping (γ), by writing it in the generic form

ω ¼ κ þ Veff − iγ=2: ð1:1Þ

It is now well established that an efficient method to
determine the dispersion relation, is to compute Veff and γ
from the calculation of the neutrino thermal self-energy
[3–6] in the framework of thermal field theory [7].
In several models and extensions of the standard electro-

weak theory the neutrinos interact with scalar particles (ϕ)
and fermions (f) via a coupling of the form f̄RνLϕ or just
with neutrinos ν̄cRνLϕ. Couplings of the latter form have
been explored recently in various contexts [8–16]. Such
couplings produce additional contributions beyond the
standard ones to the neutrino effective potential when
the neutrino propagates in a neutrino background, as it
occurs in the environment of a supernova, where the effect
leads to the collective neutrino oscillations and related
phenomena (see for example Refs. [17] and [18] and the
works cited therein), or in the hot plasma of the early
Universe before the neutrinos decouple [19,20]. Couplings
of the form f̄RνLϕ produce additional contributions to
the neutrino effective potential when the neutrino prop-
agates in a background of ϕ and f particles and their
possible effects have been considered in the context of dark
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matter–neutrino interactions [21–29]. More recently it has
been pointed out that observable effects of such scalar
interactions, although precluded in terrestrial experiments,
are still possible in future solar and supernovae neutrino
data, and in cosmological observations such as cosmic
microwave background and big bang nucleosynthesis
data [30].
Motivated by these developments, we carried out in

previous work a systematic calculation of the neutrino
effective potential in such models [31]. We considered
various cases, depending on the magnitude of κ relative to
other parameters such as the masses of the particles and the
temperature of the background. In the limit of small κ, the
effective potential becomes independent of κ and has a form
that is reminiscent of the Wolfenstein potential [1]. In the
opposite limit (relatively large κ), the effective potential has
a term proportional to 1=κ that mimics a contribution to the
neutrino mass [32].
The main point that is relevant to the present work, is that

in the intermediate κ region, to be defined precisely below,
neither limiting case is a valid approximation to the
effective potential. From a physical point of view, there
is a region of neutrino energies at which the processes like
νþ ϕ ↔ f or νþ f̄ ↔ ϕ̄, and the corresponding ones for
the antineutrino, become kinematically accessible. The
relevant energy values are around jm2

ϕ −m2
fj=2mϕ or

jm2
ϕ −m2

fj=2mf, which we refer to as a resonance energy
range. In those ranges, the one-loop integral formula for the
neutrino self-energy has a singularity, as was emphasized
recently in Ref. [33].
From a technical point of view, the singularity is

indicative of two things. Firstly, at those points the self-
energy acquires an imaginary part that cannot be neglected.
The imaginary part of the self-energy is associated with
damping effects, and determines the damping term γ in the
dispersion relation. A systematic calculation of the damp-
ing terms was carried out in Ref. [34].
Secondly, and what is our main observation here, the

effective potential, which is determined from the real
(dispersive) part of the self-energy, must be evaluated
using the principal value of the integral formula for the
self-energy. The principal value prescription allows us to
give a well-defined meaning to (the real part of) the integral
for values of κ around the singularities. Our purpose in this
work is to carry out the calculation of the effective potential
in the resonance regions using the strategy just explained.
Writing the dispersion relation in the form given in
Eq. (1.1), we give the explicit formulas for Veff and γ
for some cases that allow us to give analytic results, and
indications for carrying out extensions and generalizations
to other cases of interest. When the neutrino energy is either
much larger or much smaller than the resonance energy,
Veff reduces to the effective potential that has been already
determined in the literature in the high or low momentum
regime, respectively. The virtue of the formula we give for

Veff is that it is valid also in the resonance energy range,
which is outside the two limits mentioned. As a guide to
possible applications to neutrino oscillations in the case that
the neutrino energy is in the resonance region, we give the
relevant formulas for the Veff and γ terms that enter in the
oscillation equations in a simple two-generation case, and
consider their solution including the damping term.
In Sec. II we summarize our notation and conventions,

and the context in which we carry out the calculations. In
Sec. III we calculate the effective potential, paying special
attention to the contribution from the resonance terms,
which are expressed as an integral over the background
particle momentum distribution functions. We consider in
detail the evaluation of the relevant integral for the case that
the resonance term is the fermion background contribution,
and for concreteness we give the explicit formulas for the
case of a nonrelativistic and degenerate Fermi gas. Such
formulas can be particularly useful for considering the
implications and/or setting limits on the neutrino inter-
actions with light particle dark matter backgrounds from
their effect on the phenomenology in reactor, solar,
atmospheric, and accelerator experiments. In Sec. IV we
consider the damping term. We discuss some generaliza-
tions and possible extensions of the results in Sec. VA, and
the two-generation example case mentioned above in
Sec. V B.

II. PRELIMINARIES

In this section we review the context of the present work
and state the problem on which we focus.

A. Context

For definiteness we consider only one neutrino flavor
coupling to the fermion and scalar, which we denote simply
by ν, and write

LðfνϕÞ ¼ λf̄RνLϕþ H:c: ð2:1Þ

We denote by kμ the momentum four-vector of the
propagating neutrino and by uμ the velocity four-vector
of the background medium. In the background medium’s
own rest frame, uμ takes the form

uμ ¼ ð1; 0⃗Þ; ð2:2Þ

and in this frame we write

kμ ¼ ðω; κ⃗Þ: ð2:3Þ

Since we are considering only one background medium, we
can take it to be at rest and therefore we adopt Eqs. (2.2)
and (2.3) throughout. For completeness, we briefly review
and borrow from Refs. [31] and [34] the formulas that
we will use to determine the dispersion relations from the
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self-energy calculation. We remind the reader that the
calculations are based on the application of the real-time
thermal field theory methods.
The neutrino dispersion relation is determined by the

solution of the equation

ð=k − ΣeffÞψLðkÞ ¼ 0; ð2:4Þ

where Σeff is the neutrino thermal self-energy. Σeff can be
decomposed into its dispersive (Σr) and absorptive (Σi)
parts,

Σeff ¼ Σr þ iΣi: ð2:5Þ

Σr is given by the real (dispersive) part of the 11 element of
the neutrino thermal self-energy matrix, while Σi is
determined from the 12 element.
The chirality of the neutrino interactions implies that Σeff

has the form

Σeff ¼ VL; ð2:6Þ

where L ¼ 1
2
ð1 − γ5Þ. Corresponding to the decomposition

of Σeff in Eq. (2.5),

Vμ ¼ Vμ
r þ iVμ

i ; ð2:7Þ

where Vμ
r and V

μ
i are real. Vr and Vi are functions of ω and

κ⃗, but to simplify the notation we omit writing the argu-
ments unless it is necessary to indicate them.
Equation (2.4) has two solutions. Denoting them by ωðλÞ

(λ ¼ �), they are determined by the equation

ωðλÞ ¼ V0ðωðλÞ; κ⃗Þþ λ½ðκ⃗− V⃗ðωðλÞ; κ⃗ÞÞ · ðκ⃗− V⃗ðωðλÞ; κ⃗ÞÞ�1=2;
ð2:8Þ

or to lowest order,

ωðλÞ ¼ V0ðωðλÞ; κ⃗Þ þ λðκ − κ̂ · V⃗ðωðλÞ; κ⃗ÞÞ: ð2:9Þ

The neutrino (ωðνÞ) and antineutrino (ωðν̄Þ)dispersion rela-
tions are identified as

ωðνÞðκ⃗Þ ¼ ωðþÞðκ⃗Þ;
ωðν̄Þðκ⃗Þ ¼ ð−ωð−Þð−κ⃗ÞÞ�: ð2:10Þ

Decomposing ωðνÞ and ωðν̄Þ in terms of their real and
imaginary parts in the form (x ¼ ν; ν̄),

ωðxÞ ¼ ωðxÞ
r −

i
2
γðxÞ; ð2:11Þ

and assuming that it is a valid approximation to set

γðxÞi ≪ jωðxÞ
r j;

ωðxÞ
r ≃ κ; ð2:12Þ

Eq. (2.9) gives, for the real part

ωðνÞ
r ¼ κ þ VðνÞ

eff ðκ⃗Þ;
ωðν̄Þ
r ¼ κ þ Vðν̄Þ

eff ðκ⃗Þ; ð2:13Þ

while for the imaginary part

−
1

2
γðνÞ ¼ n · Viðκ; κ⃗Þ

1 − n · ∂Vrðω;κ⃗Þ∂ω jω¼κ

;

−
1

2
γðν̄Þ ¼ n · Við−κ;−κ⃗Þ

1 − n · ∂Vrðω;−κ⃗Þ∂ω jω¼−κ

; ð2:14Þ

where

VðνÞ
eff ðκ⃗Þ ¼ n · Vrðκ; κ⃗Þ;

Vðν̄Þ
eff ðκ⃗Þ ¼ −n · Vrð−κ;−κ⃗Þ; ð2:15Þ

with

nμ ¼ ð1; κ̂Þ: ð2:16Þ

In those cases in which the correction due to the n ·
∂Vrðω; κ⃗Þ=∂ω in the denominator can be neglected, the
formulas in Eq. (2.14) simplify to

−
γðνÞðκ⃗Þ

2
¼ n · Viðκ; κ⃗Þ;

−
γðν̄Þðκ⃗Þ

2
¼ n · Við−κ;−κ⃗Þ; ð2:17Þ

which are the ones we will use here, borrowing from the
work in Ref. [34].

B. Statement of the problem

To state the problem in concrete terms and set the stage
for the work that follows, we recall (see, e.g., Ref. [31])
the following expression for the background-dependent
part of the 11 element of the thermal self-energy matrix in
the f and ϕ background,

Σ11ðkÞ ¼ ΣðfÞ
11 ðkÞ þ ΣðϕÞ

11 ðkÞ; ð2:18Þ

where1

1We take the opportunity to mention that by an abuse in
notation the symbols ηFðp; αfÞ and ηBðp; αϕÞ used in Eqs. (20)
and (21) in Ref. [31] are the same as the ηfðpÞ and ηϕðpÞ defined
in Eq. (17) of that reference, and reproduced below in Eq. (2.21).
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ΣðfÞ
11 ¼ −jλj2

Z
d4p
ð2πÞ3

pL
ðp− kÞ2 −m2

ϕ þ iϵ
δðp2 −m2

fÞηfðpÞ;

ð2:19Þ

ΣðϕÞ
11 ¼ jλj2

Z
d4p
ð2πÞ3

ðpþ =kÞL
ðpþ kÞ2 −m2

f þ iϵ
δðp2 −m2

ϕÞηϕðpÞ:

ð2:20Þ

Using the label x to stand for either f or ϕ, the functions
ηxðpÞ are given by

ηxðpÞ ¼ θðp0Þfxðp0Þ þ θð−p0Þfx̄ð−p0Þ; ð2:21Þ

where fx;x̄ðp0Þ are the equilibrium momentum distribution
functions of the background particles and antiparticles,

ff;f̄ðp0Þ ¼ 1

eβp
0∓αf þ 1

;

fϕ;ϕ̄ðp0Þ ¼ 1

eβp
0∓αϕ − 1

; ð2:22Þ

where β ¼ 1=T and αx ¼ βμx, with T being the temper-
ature and μx the chemical potentials.
To be precise, we mention that in Eq. (2.18) we are

neglecting the term that involves the product of the two
thermal parts of the propagators, which does not contribute
to the real part of Σ11. Thus, going back to Eq. (2.5), the
dispersive part Σr is given by

Σr ¼ ΣðfÞ
r þ ΣðϕÞ

r ; ð2:23Þ

where

ΣðfÞ
r ¼ −jλj2

Z
d4p
ð2πÞ3

pL
ðp − kÞ2 −m2

ϕ

δðp2 −m2
fÞηfðpÞ;

ð2:24Þ

ΣðϕÞ
r ¼ jλj2

Z
d4p
ð2πÞ3

ðpþ =kÞL
ðpþ kÞ2 −m2

f

δðp2 −m2
ϕÞηϕðpÞ:

ð2:25Þ

In Eqs. (2.24) and (2.25), and the integrals that follow, the
integrations are to be interpreted in the sense of their
principal value.
Carrying out the integral over p0, we obtain

n · Vrðω; κ⃗Þ ¼ vfðω; κ⃗Þ þ vf̄ðω; κ⃗Þ þ vϕðω; κ⃗Þ þ vϕ̄ðω; κ⃗Þ;
ð2:26Þ

where

vfðω; κ⃗Þ ¼ −jλj2
Z

d3p
ð2πÞ32Ef

ðn · pÞ ffðp⃗Þ
Dfðk; pÞ

; ð2:27aÞ

vf̄ðω; κ⃗Þ ¼ jλj2
Z

d3p
ð2πÞ32Ef

ðn · pÞ ff̄ðp⃗Þ
Dfðk;−pÞ

; ð2:27bÞ

vϕðω; κ⃗Þ ¼ jλj2
Z

d3p
ð2πÞ32Eϕ

ðn · pþ ðω − κÞÞfϕðp⃗Þ
Dϕðk; pÞ

;

ð2:27cÞ

vϕ̄ðω; κ⃗Þ ¼ jλj2
Z

d3p
ð2πÞ32Eϕ

ð−n · pþ ðω − κÞÞfϕ̄ðp⃗Þ
Dϕðk;−pÞ

;

ð2:27dÞ

with

Ex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

x

q
; ðx ¼ f;ϕÞ; ð2:28Þ

Dfðk;pÞ¼ ðp−kÞ2−m2
ϕ ¼ k2−2p ·kþm2

f−m2
ϕ;

Dϕðk;pÞ¼ ðpþkÞ2−m2
f ¼ k2þ2p ·kþm2

ϕ−m2
f; ð2:29Þ

and

n · p ¼ Exð1 − κ̂ · v⃗xÞ: ð2:30Þ

In Eq. (2.30) v⃗x stands for the velocity of the background
particle.
To bring out the issue that we want to address, consider

for example the contribution from the f̄ background, and
suppose that the conditions are such that it can be treated in
the nonrelativistic limit. Then approximating

pμ → ðmf; 0⃗Þ; ð2:31Þ

in the integrand, vf̄ðκ; κ⃗Þ is inversely proportional to

Dfðk;−pÞjω¼κ ≃ 2mfω − ðm2
ϕ −m2

fÞ: ð2:32Þ

Identifying the effective potential by Eq. (2.15), in the low
momentum (heavy background) limit this gives a momen-
tum-independent contribution to the effective potential
reminiscent of the standardWolfenstein term. In the opposite
limit, the high momentum (or light background) limit this
gives a term proportional to 1=κ that mimics a contribution to
the neutrino mass [32]. But in the intermediate region the
expression is not valid and actually undefined at

ω ∼
m2

ϕ −m2
f

2mf
: ð2:33Þ

If mϕ > mf, physically this feature reflects the fact that in
that regime the process νþ f̄ → ϕ̄ is kinematically
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accessible. In some cases the singularity appears for ω
negative, which corresponds to the antineutrino dispersion
relation. This is the case, in the example above, ifmf > mϕ,
and in that case the singularity corresponds to the process
f̄ → ν̄þ ϕ̄. Similar considerations apply to the vf and the ϕ
background terms. An exhaustive list of the various pos-
sibilities is summarized in Table I.
The bottom line is that near the resonance ranges

indicated in the Table I, the integrals in Eq. (2.27) must
be handled following the principal value prescription, and
approximations such as those we have indicated in
Eqs. (2.31) and (2.32), which are commonly employed,
are not valid in the cases we are considering.
Moreover, in those energy ranges, the corresponding

damping term is not negligible. This can be seen from the
calculation of the imaginary part of the self-energy, or
equivalently Vμ

i , in Ref. [34]. We will borrow the results of
those calculations here without further ado. But regarding
Vr, our proposal is to go back to Eq. (2.27) and evaluate
those terms in a systematic way that is valid through the
entire neutrino energy range.

III. NEUTRINO EFFECTIVE POTENTIAL
IN THE Ωf REGION

For definiteness, we consider first the neutrino case in
detail. To be clear and precise, in what follows we assume

mϕ > mf; ð3:1Þ

throughout. The opposite case can be treated in a similar
way by making appropriate changes.
According to Table I, the vf̄ and vϕ̄ terms have a

resonance for ω ¼ Ωf and ω ¼ Ωϕ, respectively, which
we write in the form

Ωf ¼ Δ2
ϕf

2mf
;

Ωϕ ¼ Δ2
ϕf

2mϕ
; ð3:2Þ

where

Δ2
ϕf ¼ m2

ϕ −m2
f: ð3:3Þ

We assume that mf and mϕ are significantly different, such
that Ωf;ϕ are sufficiently far apart and the two resonance
regions do not overlap. For the purpose of evaluating the
integrals this assumption is not strictly necessary, but the
physical picture is conceptually clearer if we adopt it.
Under this assumption we can consider each region
separately. Thus we consider first the region

ω ∼ κ ∼Ωf; ð3:4Þ

which is the resonance region of vf̄ðω; κ⃗Þ.
From Eqs. (2.15) and (2.26) we then have

VðνÞ
eff ðκ⃗Þ ¼ U þ r; ð3:5Þ

where

U≡ vf̄ðκ; κ⃗Þ; ð3:6Þ

and

r ¼ vfðκ; κ⃗Þ þ vϕðκ; κ⃗Þ þ vϕ̄ðκ; κ⃗Þ: ð3:7Þ

As already mentioned, the evaluation of r is straightfor-
ward. For example, let us consider the case that the f
background can be treated in the nonrelativistic limit. In
this case vfðω; κ⃗Þ reduces to

vfðω; κ⃗Þ ¼
1
8
jλj2nf

mfðωþΩfÞ
: ð3:8Þ

Since we are considering the case mϕ > mf, the ϕ and ϕ̄
backgrounds must be considered in the nonrelativistic limit
as well. Thus in this case,

vϕðω; κ⃗Þ ¼
1
4
jλj2nϕ

mϕðωþ ΩϕÞ
; ð3:9aÞ

vϕ̄ðω; κ⃗Þ ¼
1
4
jλj2nϕ̄

mϕðω −ΩϕÞ
: ð3:9bÞ

Since we are consideringmϕ > mf and assuming that these
masses are such that the resonance regions ω ∼ Ωf and
ω ∼Ωϕ are well separated, for the case of neutrino
propagation near ω ∼ Ωf we can put ω ≫ Ωϕ in
Eq. (3.9). Thus,

TABLE I. List of possible resonance conditions in each
background contribution and the associated physical processes.
The parameters Ωx are defined as Ωx ¼ jm2

ϕ −m2
fj=2mx (for

x ¼ f;ϕÞ, and they give the value of ω for which the indicated v
term, given in Eq. (2.27), is undefined, in the sense discussed in
the text.

vf vf̄ vϕ vϕ̄

mϕ > mf −Ωf Ωf −Ωϕ Ωϕ

ν̄þ f → ϕ νþ f̄ → ϕ̄ ϕ → ν̄þ f ϕ̄ → νþ f̄

mf > mϕ Ωf −Ωf Ωϕ −Ωϕ

f → νþ ϕ f̄ → ν̄þ ϕ̄ νþ ϕ → f ν̄þ ϕ̄ → f̄
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vϕðω; κ⃗Þ ≃
1
4
jλj2nϕ
mϕω

;

vϕ̄ðω; κ⃗Þ ≃
1
4
jλj2nϕ̄
mϕω

; ð3:10Þ

and therefore

r ¼ jλj2
�

nf
8mfðκ þ ΩfÞ

þ ðnϕ þ nϕ̄Þ
4mϕκ

�
: ð3:11Þ

For later reference, it is useful to record that for ω and κ
away from the resonance region, vf̄ is given by a formula
analogous to those quoted above for the other potential
terms,

vf̄ðω; κ⃗Þ ¼
1
8
jλj2nf̄

mfðω −ΩfÞ

¼
1
8
jλj2nf̄
mf

� 1
ω ðω ≫ ΩfÞ
− 1

Ωf
ðω ≪ ΩfÞ:

ð3:12Þ

Regarding the damping terms defined in Eqs. (2.11) and
(2.14) we can borrow literally the results given in Ref. [34].

A. Solution

Away from the kinematic points where Dfðk;−pÞ does
not vanish, the procedure of taking the principal value is not
necessary. But if the kinematics is such that the integration
covers the point at which Dfðk;−pÞ ¼ 0, the principal
value operation defines the integral around that point.
We assume the f̄ gas can be treated in the nonrelativistic

(NR) limit. Therefore we take

pμ ¼ ðmf; p⃗Þ: ð3:13Þ

Then doing the angular integral, remembering the principal
value prescription, we get

vf̄ðω; κ⃗Þ¼
jλj2
8π2

Z
dpp2

ff̄ðpÞ
2pκ

log

����k2þ2mfωþ2pκ−Δ2
ϕf

k2þ2mfω−2pκ−Δ2
ϕf

����:
ð3:14Þ

Further, we put

k2 ¼ ðωþ κÞðω − κÞ → 2κðω − κÞ; ð3:15Þ

so that

k2 þ 2mfω� 2pκ − Δ2
ϕf

¼ 2κ

��
1þmf

κ

�
ðω − κÞ � pþmf

κ
ðκ −ΩfÞ

�
; ð3:16Þ

and therefore

vf̄ðω; κ⃗Þ ¼
jλj2

16π2κ

Z
dppff̄ðpÞ log

����ω − κ þ bþ ap
ω − κ þ b − ap

����;
ð3:17Þ

with

a ¼ 1

1þ mf

κ

;

b ¼ κ −Ωf

1þ κ
mf

: ð3:18Þ

Our next job is to evaluate the integral

Iðω; κÞ ¼
Z

dppff̄ðpÞ log
����ω − κ þ bþ ap
ω − κ þ b − ap

����; ð3:19Þ

which is of the form encountered in the original calculation
by Weldon [3] and similar calculations of the fermion self-
energy in various physical contexts [35].

B. Evaluation of vf̄ for a Fermi gas

For definiteness, we consider the case in which the f̄
background can be treated in the completely degenerate
limit. We then write

vf̄ðω; κ⃗Þ ¼
jλj2

16π2κ
IFðω; κÞ; ð3:20Þ

where

IFðω; κÞ ¼
Z

pF

0

dpp log

����pþ A
p − A

����; ð3:21Þ

with

A ¼ ω − κ þ b
a

¼ ω − κ þmf

κ
ðω −ΩfÞ: ð3:22Þ

A straightforward evaluation of the integral in Eq. (3.21)
leads to

IFðω; κÞ ¼
1

2
ðp2

F − A2Þ log
����pF þ A
pF − A

����þ ApF: ð3:23Þ

We can now use this to find the expression for the effective
potential (in a NR Fermi gas) which, we repeat, is valid for
the entire range of the neutrino momentum. vf̄ðω; κ⃗Þ is
given by Eq. (3.20), with A defined in Eq. (3.22).

C. Formula for vf̄ ðκ;κ⃗Þ
First of all, as a check, let us consider the limit of small

pF. Expanding the log function up to terms of order p3
F, it

follows that
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IF ¼ 2p3
F

3A
: ð3:24Þ

From Eq. (3.20), this gives

vf̄ðω; κ⃗Þ ≃
1
8
jλj2nf̄

mfðω − ΩfÞ
; ð3:25Þ

where we have used p3
F ¼ 3π2nf̄, and from Eq. (3.22),

A ∼ mf

κ ðω −ΩfÞ for ω ∼ κ. It is reassuring to see that
the formula for vf̄ðω; κ⃗Þ in Eq. (3.25) coincides with

Eq. (3.12), which is obtained by taking pμ → ðmf; 0⃗Þ from
the beginning in the integrand. However, as we have
emphasized, this limiting form is not valid for values of
κ near the resonance point.
In the general case, going back to Eq. (3.23),

IFðκ; κÞ
p2
F

¼ 1

2
ð1 − η2Þ log

���� 1þ η

1 − η

����þ η; ð3:26Þ

where

η ¼ mf

pF

ξ − 1

ξ
; ð3:27Þ

with

ξ ¼ κ

Ωf
: ð3:28Þ

Using Eq. (3.26) in Eq. (3.20),

UðκÞ ¼ vf̄ðκ; κ⃗Þ

¼ U0

1

ξ

�
1

2
ð1 − η2Þ log

���� 1þ η

1 − η

����þ η

�
; ð3:29Þ

where

U0 ¼
jλj2p2

F

16π2Ωf
: ð3:30Þ

The formula in Eq. (3.29) is our main result. For reference,
a plot of UðκÞ is shown in Fig. 1.
We note the following. Away from the resonance region,

η has the limiting values

η ¼ mf

pF

�− 1
ξ ðlow κÞ

1 ðhigh κÞ:
ð3:31Þ

Therefore, either in the high (κ ≫ Ωf) or low (κ ≪ Ωf)
momentum limit, η is large and we can approximate
IFðκ; κ⃗Þ by its limiting value for large η, which gives

IFðκ; κ⃗Þ
p2
F

≃
2

3η
¼ 2pF

3mf

�
ξ

ξ − 1

�
: ð3:32Þ

Then from Eq. (3.20), this reproduces, again, Eq. (3.25).
Thus, in these asymptotic limits, namely high or low
momentum as specified above, the expression for
vf̄ðκ; κ⃗Þ given in Eq. (3.29) coincides with the results that
are obtained by approximating from the beginning the
integrals for vf̄ under the same conditions, namely,
away from the resonance and for the nonrelativistic
limit. However, as we can see from Eq. (3.27), jηj < 1
for values of κ such that jξ − 1j < pF=mf, so that in this
range the asymptotic form of IF given in Eq. (3.32) is
not valid.
The virtue of Eq. (3.29) is that it is valid also in the

resonance region, interpolating between the asymptotic
expressions corresponding to high or low κ mentioned
above, and they allow us to consider the propagation in the
resonance region, including the range jκ=Ωf − 1j < pF=mf

mentioned. On the other hand, the imaginary part of the
dispersion relation is important in that region, as we have
remarked, and it must be included in the treatment of the
propagation equation. As a guide to possible applications
we consider that next.

IV. DAMPING TERM

The damping term γðνÞ in Eq. (2.11) is not negligible in
the resonance region. As indicated in Eq. (2.14), it is
determined from the absorptive part Vμ

i of the effective
potential which in turn is determined from the Σ12 element
of the thermal self-energy matrix. That calculation was
carried out in detail in Ref. [34]. As shown in that reference,
the resulting formula for γðνÞ is related to the transition

FIG. 1. Plot of UðκÞ, for κ ∼ Ωf, with some example values
of pF=mf.
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probabilities for the various processes in which the neutrino
may be annihilated or created, such as νþ f̄ ↔ ϕ̄ and
νþ ϕ ↔ f, in the forward and reverse directions. The
formulas involve the phase space integrals weighted by the

appropriate momentum distribution functions. Here we
just need to borrow the results of those calculations.
Quoting the results that are summarized in Eq. (3.38)
of Ref. [34],

γðνÞðκÞ
2

¼ jλj2
32πκ2β

�Δ2
fϕ½log ð1þ e−βE

ðIÞ
minþαfÞ − log ð1 − e−βΩ

ðIÞ
minþαϕÞ� ðmf > mϕÞ

Δ2
ϕf½log ð1þ e−βE

ðIIÞ
min−αfÞ − log ð1 − e−βΩ

ðIIÞ
min−αϕÞ� ðmϕ > mfÞ:

ð4:1Þ

The corresponding formulas for γðν̄ÞðκÞ
2

are obtained by
making the substitutions

αf;ϕ → −αf;ϕ: ð4:2Þ

To be consistent with Eq. (3.1), we focus on the second
formula in Eq. (4.1). In that formula,

ΩðIIÞ
min ¼ Δ2

ϕf

4κ
þ κm2

ϕ

Δ2
ϕf

;

EðIIÞ
min ¼ Δ2

ϕf

4κ
þ κm2

f

Δ2
ϕf

; ð4:3Þ

with Δ2
ϕf defined in Eq. (3.3). The term involving αf

corresponds to the contribution from the f̄ gas in the
background, while the term with αϕ corresponds to the ϕ̄

gas, which are associated with the processes νþ f̄ ↔ ϕ̄
and νþ ϕ ↔ f, respectively.
To complement our calculation of the effective potential

in the previous section, here we want to calculate the f̄
background contribution to the damping in the case that it
can be considered as a completely degenerate fermion gas.
In order to bring out the physical picture in a clearer way,
let us consider first the case that both the ϕ̄ and f̄ gases can
be treated in the classical and nonrelativistic limit.

A. Damping in the classical and
nonrelativistic (NR) limit

In that case

γðνÞðκÞ
2

¼ jλj2
32πκ2β

Δ2
ϕf½e−βE

ðIIÞ
min−αf þ e−βΩ

ðIIÞ
min−αϕ �; ð4:4Þ

where in the nonrelativistic limit (as we have assumed in
Sec. III A), the chemical potentials are2

e−αf ¼ 1

2
nf̄

�
2πβ

mf

�3
2

eβmf ;

e−αϕ ¼ nϕ̄

�
2πβ

mϕ

�3
2

eβmϕ : ð4:5Þ

Therefore,

γðνÞðκÞ
2

¼ Ω2
f

κ2
γð0Þ
f̄

2
e−Λf þ Ω2

ϕ

κ2
γð0Þ
ϕ̄

2
e−Λϕ ; ð4:6Þ

where

γð0Þ
f̄

2
¼ jλj2

16

ffiffiffiffiffiffiffiffiffi
2πT
mf

s
nf̄
TΩf

;

γð0Þ
ϕ̄

2
¼ jλj2

8

ffiffiffiffiffiffiffiffiffi
2πT
mϕ

s
nϕ̄
TΩϕ

;

Λf ¼ mf

2T

ð κ
Ωf

− 1Þ2
ð κ
Ωf
Þ ;

Λϕ ¼ mϕ

2T

ð κ
Ωϕ

− 1Þ2
ð κ
Ωϕ
Þ : ð4:7Þ

with Ωf;ϕ defined in Eq. (3.2).
The picture that emerges is consistent with our previous

discussions regarding the resonances and complements it in
a practical way. Outside of either resonance range the
damping is exponentially small and can be neglected in the
formula for the dispersion relation. Therefore, if we are
considering a neutrino propagating in the Ωf resonance
region, we can discard the ϕ̄ contribution to the damping
term, assuming, as we do, that mf and mϕ are sufficiently
different that the resonances at Ωf and Ωϕ do not overlap.
For illustrative purposes we show a plot of γðνÞðκÞ in

Fig. 2 in the κ ∼Ωf resonance region, obtained as follows.
As already stated, we assume that mf and mϕ are
sufficiently different that the resonances at Ωf and Ωϕ

do not overlap; e.g., the κ ¼ Ωϕ point falls outside the
range shown in the plot. Under this condition, in the Ωf

resonance region we can neglect the ϕ̄ contribution in
Eq. (4.6) and consider simply

2These are obtained by requiring

nx̄ ¼ gx

Z
d3p
ð2πÞ3 e

−βEx−αx ðx ¼ f;ϕÞ;

with gf ¼ 2gϕ ¼ 2.
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γðνÞ

γð0Þ
f̄

¼ 1

ξ2
e−

mf
2T

ðξ−1Þ2
ξ ; ð4:8Þ

with ξ defined in Eq. (3.28). Equation (4.8) is plotted
in Fig. 2.

B. Damping in the degenerate limit

Armed with the results of the previous section, we thus
ignore the ϕ̄ contribution to the damping, and as a
complement to the formula for the effective potential in
Eq. (3.29) here we calculate the f̄ background contribution
to γðνÞ, that is

γðνÞðκÞ
2

¼ jλj2Δ2
ϕf

32πκ2β
log ð1þ e−βE

ðIIÞ
min−αfÞ; ð4:9Þ

in the limit of a completely degenerate fermion gas. This
formula, and the results discussed below, hold in all the
kinematic regime of the fermion gas, so they can be used in
the NR case, or in any other case as well.
Setting

αf ¼ −βEF; ð4:10Þ

where EF is the Fermi energy, and taking the degenerate
limit (β → ∞),

γðνÞðκÞ
2

¼ jλj2Δ2
ϕf

32πκ2
ðEF − EðIIÞ

minÞθðEF − EðIIÞ
minÞ: ð4:11Þ

The step function in Eq. (4.11) implies that γðνÞðκÞ is
nonzero if κ lies in the range such that

1

2
ðEF − pFÞ ≤

κm2
f

Δ2
ϕf

≤
1

2
ðEF þ pFÞ; ð4:12Þ

or it is zero otherwise.3 Equation (4.11) can be written in
the form

γðνÞ ¼ γð0Þf
1

ξ2

�
EF

mf
−
1

2

�
ξþ 1

ξ

��
; ð4:21Þ

for ξ, defined in Eq. (3.28), in the range

1

mf
ðEf − pFÞ ≤ ξ ≤

1

mf
ðEF þ pFÞ; ð4:22Þ

andFIG. 2. Plot of the damping term for κ ∼Ωf, given by Eq. (4.8),
for some example values of T=mf.

3To prove Eq. (4.12) we rewrite the condition EF ≥ EðIIÞ
min in the

form

1

4x
þ x ≤

EF

mf
; ð4:13Þ

where

x≡ κmf

Δ2
ϕf

: ð4:14Þ

The left-hand-side of Eq. (4.13) can be written in the form

1

4x
þ x ¼ 1

x
ðx − xþðtÞÞðx − x−ðtÞÞ þ t ð4:15Þ

where x�ðtÞ, given by

x�ðtÞ≡ t
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p
; ð4:16Þ

satisfy

1

4x�
þ x� ¼ t; ð4:17Þ

for any t ≥ 1. The functions x�ðtÞ are positive, have the same
value at t ¼ 1, and as t increases xþ increases while x− decreases.
Therefore for any value of x such that

x−ðtÞ ≤ x ≤ xþðtÞ; ð4:18Þ
1
x ðx − xþðtÞÞðx − x−ðtÞÞ ≤ 0, and therefore from Eq. (4.15)

1

4x
þ x < t; ð4:19Þ

for any such value of x. It then follows that all the values of x that
lie between x−ðEF=mfÞ and xþðEF=mfÞ satisfy Eq. (4.13), while
the values outside that range will violate it. Using the fact that

x�ðEF=mfÞ ¼
1

2

�
EF

mf

�
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
EF

mf

�
2

− 1

s

¼ 1

2

�
EF

mf

�
� 1

2

pF

mf
; ð4:20Þ

proves Eq. (4.12).
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γð0Þf

2
¼ jλj2m2

f

16πΩf
: ð4:23Þ

As already stated, the result given in Eq. (4.21) holds in all
the kinematic regime of the fermion gas.
Equation (4.21) is plotted in Fig. 3. The damping

becomes smaller as pF decreases. From Fig. 1 we see
that, at the same time, the width of the resonance peaks in
the effective potential become narrower. These features
indicate that the resonance effects are more important for
relatively large values of pF (high density) and less
important as pF decreases (lower density). A similar effect
occurs with the damping in the classical case, which
reduces as the temperature decreases, as shown in Fig. 2.

V. DISCUSSION

Here we discuss some generalizations and extensions of
our work. On one hand, the case of antineutrinos, as well as
the other resonance region, around ω ∼Ωϕ in the notation
of Table I, can be treated in analogous form. In order to
point out possible differences in details and/or implemen-
tation we consider them briefly here.
On the other hand, since we have restricted ourselves to

the case of one neutrino flavor propagating and interacting
in the f and ϕ background, as a guide and example to
possible applications and generalizations, here we will
consider the application to the oscillation equations includ-
ing the damping term, in a simple two-generation case.

A. Antineutrino propagation near Ωf

Again we assume that mϕ > mf, and we consider the
propagation at energies ωðν̄Þ ∼Ωf. This is the resonance

region of the term vf, which is the term that must be singled
out for special consideration. From Eqs. (2.15) and (2.26)
we have in the present case

Vðν̄Þ
eff ðκ⃗Þ ¼ Ū þ r̄; ð5:1Þ

where

Ū ¼ −vfð−κ;−κ⃗Þ; ð5:2Þ

and

r̄ ¼ −vf̄ð−κ;−κ⃗Þ − vϕð−κ;−κ⃗Þ − vϕ̄ð−κ;−κ⃗Þ: ð5:3Þ

For vϕ and vϕ̄, we can simply borrow the formulas given in
Eqs. (3.9a) and (3.10), while for vf̄ðω; κ⃗Þ the corresponding
formula in this case is Eq. (3.12). Thus, mimicking the
steps leading to Eq. (3.11), we obtain

r̄ ¼ jλj2
�

nf̄
8mfðκ þ ΩfÞ

þ ðnϕ þ nϕ̄Þ
4mϕκ

�
: ð5:4Þ

Regarding vf, we go back to Eq. (2.27a). Carrying out
the angular integral, remembering the principal value
prescription,

vfðω; κ⃗Þ

¼ −
jλj2
8π2

Z
dpp2

ffðpÞ
2pκ

log

���� k2 − 2mfωþ 2pκ − Δ2
ϕf

k2 − 2mfω − 2pκ − Δ2
ϕf

����:
ð5:5Þ

As we can see, −vfð−ω;−κ⃗Þ is given by the same
expression given in Eq. (3.14) for vf̄ðω; κ⃗Þ, with the
substitution ff̄ → ff in the integrand. Thus, for example,
in the case that f gas can be treated in the NR and
degenerate limit, the net result of this is that the final
formula for Ū is the same as the formula for U given in
Eq. (3.29), but of course with pF given in terms of the f
number density, p3

F ¼ 3π2nf.
The damping can be treated similarly to the case of

neutrinos in Sec. IV, but in the present case the relevant
number densities are nf and nϕ. Explicitly, remembering
Eq. (4.2), in the classical and NR limit the damping is

γðν̄ÞðκÞ
2

¼ Ω2
f

κ2
γð0Þf

2
e−Λf þ Ω2

ϕ

κ2
γð0Þϕ

2
e−Λϕ ; ð5:6Þ

where

FIG. 3. Plot of the damping term in the case of a degenerate f̄
background, given by Eq. (4.21), for some example values
of pF=mf.
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γð0Þf

2
¼ jλj2

16

ffiffiffiffiffiffiffiffiffi
2πT
mf

s
nf
TΩf

;

γð0Þϕ

2
¼ jλj2

8

ffiffiffiffiffiffiffiffiffi
2πT
mϕ

s
nϕ
TΩϕ

; ð5:7Þ

with Λf;ϕ given by Eq. (4.7). For a degenerate f gas, the
formula for γðν̄Þ is the same as Eq. (4.21), but with the
reinterpretation of pF as the Fermi momentum associated
with the f gas number density nf, as we have stated above.
The sketches of the damping and the effective potential in
this case are therefore similar to those shown in Figs. 1–3
with the corresponding identification of the parameters
involved.
In the case of a neutrino or antineutrino propagating near

the Ωϕ energy region, the same method can be applied to
calculate the effective potential. In this case the term that
must be singled out for special treatment is vϕ̄ (or vϕ for
antineutrinos). The relevant integrals are of the same form
given in Eq. (3.19), but they involve the ϕ̄ or ϕ distribution
functions. In the classical limit of the distribution functions,
the task involves the computation of the generic integrals

Z
dx e−x

n
x log

���� xþ A
x − A

����; ð5:8Þ

with n ¼ 1, 2 in the ultrarelativistic and nonrelativistic
limits, respectively. Integrals of this form appear in similar
calculations in other contexts as already mentioned [35].
We do not pursue this case any further here.

B. Two-generation example

We consider a two-generation case, assuming that only
the first generation (e.g., electron neutrino) couples to f and
ϕ. Working at the level of the evolution of the flavor spinor,
the equation, including the damping term, is

i∂tϕ ¼
�
Hr −

i
2
Γ
�
ϕ: ð5:9Þ

Up to a term proportional to identity matrix, the
Hamiltonian is

Hr ¼
1

2

Δm2
21

2κ

�− cos 2θ sin 2θ

sin 2θ cos 2θ

�
þ 1

2

�
VðνÞ
eff 0

0 −VðνÞ
eff

�
;

ð5:10Þ

where Δm2
21 ¼ m2

2 −m2
1, while

Γ ¼
�
γðνÞ 0

0 0

�
≡ γðνÞIe; ð5:11Þ

with

Ie ≡
�
1 0

0 0

�
: ð5:12Þ

VðνÞ
eff and γ

ðνÞ are understood to be the effective potential and
damping term that we have obtained.
Following the usual steps, Hr can be written in the

standard form

Hr ¼
h
2

�− cos 2θm sin 2θm
sin 2θm cos 2θm

�
; ð5:13Þ

where

h ¼ Δ2
m

2κ
; ð5:14Þ

and

cos 2θm ¼ 1

Δ2
m
ðΔm2

21 cos 2θ − 2κVðνÞ
eff Þ;

sin 2θm ¼ Δm2
21 sin 2θ
Δ2

m
; ð5:15Þ

with

Δ2
m≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

21 sin2θÞ2þðΔm2
21 cos 2θ−2κVðνÞ

eff Þ2
q

: ð5:16Þ

Writing the solution in the form

ϕðtÞ ¼ Gϕð0Þ; ð5:17Þ

in the absence of the damping term

G ¼
X
s¼�

usu
†
se−iλst; ð5:18Þ

where λs ¼ sh are the eigenvalues of Hr, and us the
corresponding eigenspinors

uþ ¼
�
sin θm
cos θm

�
;

u− ¼
�

cos θm
− sin θm

�
: ð5:19Þ

In the spirit of a perturbative treatment of the damping
term, we construct the solution by taking the eigenvectors
of H to be the same as the eigenvectors of Hr, but with the
eigenvalues modified by the first order corrections; i.e.,

λs ¼ sh −
i
2
u†sΓus: ð5:20Þ
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By explicitly calculation,

λs ¼
�
h − i

2
γs ðs ¼ þÞ

−h − i
2
γc ðs ¼ −Þ; ð5:21Þ

where we have defined

γs ¼ γðνÞ sin2 θm;

γc ¼ γðνÞ cos2 θm: ð5:22Þ

We then obtain the following explicit expression for the
evolution matrix:

G ¼ uþu
†
þe−ihte−

1
2
γst þ u−u†−eihte−

1
2
γct: ð5:23Þ

So, for example, for

ϕð0Þ ¼
�
1

0

�
; ð5:24Þ

we have the persistence and transition amplitudes,

ϕ1ðtÞ ¼ sin2 θme−ihte−
1
2
γst þ cos2θmeihte−

1
2
γct;

ϕ2ðtÞ ¼ sin θm cos θmðe−ihte−1
2
γst − eihte−

1
2
γctÞ; ð5:25Þ

and the corresponding oscillation probabilities can be
written in the form4

P1 ≡ jϕ1j2 ¼
1

2
ðe−γct þ e−γstÞ þ 1

2
cos 2θmðe−γct − e−γstÞ

−
1

2
sin2 2θm

�
1

2
ðe−γct þ e−γstÞ− e−

1
2
γðνÞt cos 2ht

�
;

P2 ≡ jϕ2j2 ¼
1

2
sin2 2θm

�
1

2
ðe−γct þ e−γstÞ− e−

1
2
γðνÞt cos 2ht

�
:

ð5:26Þ

The importance of the damping terms depends on the
interplay between h, defined in Eq. (5.14), and γðνÞ. To be
more specific, we can consider, for example, the propaga-

tion of neutrinos near the Ωf region, with VðνÞ
eff given by

Eq. (3.5) [with r and U given by Eqs. (3.11) and (3.29),
respectively] and γðνÞ by Eq. (4.8). For small values of γðνÞ,
many oscillation length cycles are required for the damping
effects to be observable. A distinctive feature of Eq. (5.26)
is the energy dependence of the damping and the oscillation

terms, based on the formulas for γðνÞ and VðνÞ
eff that we have

given. For example, if we consider a pure f̄ background (no

f and no ϕ; ϕ̄ backgrounds) then VðνÞ
eff is given only by U

[Eqs. (3.5) and (3.29)], which becomes zero for neutrino
energies very close to the resonance point Ωf. In that
regime h reduces to its vacuum value Δm2

21=2κ while the
damping term reaches its largest value.

VI. CONCLUSIONS AND OUTLOOK

In this work we have been concerned with the propa-
gation of a neutrino in a background of fermions (f) and
scalars (ϕ), interacting via a Yukawa-type interaction. Our
particular goal was to obtain the dispersion relation in the
case that the neutrino energy lies in the range in which the
absorption and production processes become kinematically
accessible, such as νþ f̄ → ϕ̄ or the crossed counterparts,
and the corresponding ones for the antineutrino. The
relevant energy values are around jm2

ϕ −m2
fj=2mf or

jm2
ϕ −m2

fj=2mϕ, which we refer to as a resonance energy
range. The distinguishing aspect of these energy ranges is
that the one-loop formula for the neutrino self-energy has a
singularity, which is the indication that the self-energy
acquires an imaginary part that cannot be ignored.
Technically, the imaginary part is associated with the
damping effects, while the integral formula for the real
part must be evaluated using the principal value of the
integral.
Writing the dispersion relation in the form ω ¼

κ þ Veff − iγ=2, we gave the explicit formulas for the
effective potential (Veff ) and damping (γ) for some cases
that allowed us to give analytic results. In particular we
considered in detail the evaluation of those quantities for a
neutrino propagating with the energy near (m2

ϕ −m2
fÞ=2mf

(corresponding, for mϕ > mf, to the processes νþ f̄ → ϕ̄

becoming kinematically accessible), in the case that the f̄
background can be treated as a nonrelativistic degenerate
Fermi gas. We also considered the analogous case for an
antineutrino.
The formulas obtained have the property that, when the

neutrino energy is either much larger or much smaller than
the resonance energy, VðνÞ

eff reduces to the effective potential
that has been already determined in the literature in the high
or low momentum regime, respectively. The virtue of the

formula we give for VðνÞ
eff is that it is valid also in the

resonance energy range, which is outside the two limits
mentioned. We outlined how the same strategy can be
applied to consider the case of a neutrino propagating with
an energy in the other resonance region jm2

ϕ −m2
fj=2mϕ, in

which case the terms in the effective potential that require
special consideration are those corresponding to the con-
tribution from the scalar backgrounds. For example, for
mf > mϕ, the resonance shows up in the vϕ contribution,

4We have used

sin4 θm ¼ 1

4
ð1 − cos 2θmÞ2 ¼

1

4
ð2 − 2 cos 2θm − sin2 2θmÞ;

cos4 θm ¼ 1

4
ð1þ cos 2θmÞ2 ¼

1

4
ð2þ 2 cos 2θm − sin2 2θmÞ:
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which corresponds to the processes νþ ϕ → f becoming
kinematically accessible.
For definiteness we restricted ourselves to the calculation

of the dispersion relation in the case that only one neutrino
flavor interacts with the f and ϕ background particles. As a
guide and example to possible applications and general-
izations, we gave the relevant formulas for the Veff and γ
matrices, and considered the solution to the oscillation
equations including the damping term, in a simple two-
generation case.
The same strategywe have used to determine the effective

potential for a neutrino propagating in an f background in

the energy range to produce aϕ particle, can be applied to the
case of a neutrino propagating in an electron background
with an energy in the Glashow resonance region [36].
Several technical aspects of the calculations are of course
different, but the idea of determining the effective potential
for such energy range by the method we have followed can
be applied to that case as well.
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