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In this paper we develop a quantum theory of synchrotron radiation of massive and massless fermions in
(2þ 1)-dimensional electrodynamics with a doubled fermionic representation based on an exact formula
for the radiation shift of electron energy in a constant magnetic field. Analytical formulas describing the
dependences of the spectral distribution and the total radiation power of a massive fermion on the dynamic
parameter of synchrotron radiation and the spin quantum number of the initial electron are obtained. The
power of synchrotron radiation of a massless charged fermion is calculated in the case of large values of the
main quantum number and a relatively weak magnetic field. It was shown that the radiation power of a
massless fermion is described by a formula that coincides with the main term of the asymptotic expansion
of the radiation power of a massive electron in the ultraquantum case.
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I. INTRODUCTION

The study of radiation effects in an intense external field
with the participation of two-dimensional charged fer-
mions, both massive and massless, is one of the topical
problems in modern physics.
It should be noted that synchrotron radiation of a two-

dimensional charged fermion is one of the main effects
associated with the propagation of a fermion in an external
magnetic field, the theory of which has not been fully
created in (2þ 1)-dimensional quantum electrodynamics.
For example, in Ref. [1], within the framework of the
classical theory, the power of synchrotron radiation
of a massive charged particle in space-time of any odd
dimension was calculated, including the case of (2þ 1)-
dimensional classical electrodynamics, but the correspond-
ing quantum theory of synchrotron radiation in
(2þ 1)-dimensional space-time has not yet been created.
Massless quantum electrodynamics in an external mag-

netic field is of great interest in connection with the
prediction of magnetic catalysis of chiral symmetry break-
ing, in the physics of solids and low-dimensional systems,
as well as in cosmology [2–4]. In graphene and in a number
of other planar structures, the dynamics of electronic
excitations is described by the effective two-dimensional
Dirac equation for both massless and massive charged
fermions. The effective electron mass can arise not only as a
result of dynamic generation due to electron-electron and
other interactions in graphene [5–8], but also due to

radiative effects with the participation of two-dimensional
electrons in an external magnetic field [2,4,9–11].
In the classical theory, many authors have considered the

problem of radiation of a massless charged particle (see, for
example, [12,13]). In (3þ 1)-dimensional space-time, the
electromagnetic field created by a massless charged particle
in the eikonal approximation is described in Ref. [14], and
the emission of a photon by an electron in a constant
electric field in the Dirac model of graphene is considered
in Ref. [15]. The report on the discovery of a massless
charged quasiparticle is given in the work [16].
The problem of synchrotron radiation of a massless

charged particle in (3þ 1)-dimensional scalar and spinor
electrodynamics was first solved within the framework of
the quantum theory of synchrotron radiation in Ref. [4]. It
was shown that massless electrodynamics and the zero-
mass limit in the initially massive quantum theory give
coinciding results when calculating the spectral distribu-
tion and total power of synchrotron radiation. In Ref. [10],
using the amplitude of elastic scattering of a fermion in a
constant magnetic field calculated in Ref. [9], the prob-
ability of synchrotron radiation of a massless charged
fermion in the reduced QED3þ1 with a two-component
fermion was obtained. Note that in this model fermions
remain on the plane during their motion, while the carriers
of electromagnetic interaction propagate in three-dimen-
sional space [2,9,10,17,18].
The photon polarization operator was calculated in the

low-energy effective model of graphene in a relatively
weak external magnetic field based on the massless reduced
QED3þ1 [19]. The result of these investigations was used in
Refs. [19,20] to study the absorption of light passing*peminov@mail.ru
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through a graphene membrane. Analytical dependences of
the transmitted light intensity and the polarization rotation
angle on the frequency of the incident plane electromagnetic
wave were calculated at different values of the magnetic field
strength. Induced bremsstrahlung, as indicated in Ref. [20],
may be the main mechanism of perpendicular light reflection
in the case when the incident monochromatic wave is
perpendicular to the graphene layer.
The purpose of this work is to develop, taking into

account the results obtained earlier in Refs. [4,9–11,21,22],
the quantum theory of synchrotron radiation of both
massive and massless charged fermions in the (2þ 1)-
dimensional model of quantum electrodynamics with
doubled fermionic representation.
In Sec. II, exact formulas are obtained that describe the

spectral distribution and total power of synchrotron radi-
ation in (2þ 1)-dimensional quantum electrodynamics.
The calculation is carried out by the method of exact
solutions of wave equations in a magnetic field. The chosen
calculation method allows one to calculate the exact
spectral power density of the radiation for a massive and
massless fermion in a unified manner.
In Sec. III, the spectral distribution of the synchrotron

radiationpowerofamassive relativistic electron inQED2þ1 in
a relatively weak magnetic field is calculated. Analytical
results are obtained that describe the dependences of the
radiation power on the dynamic parameter of synchrotron
radiation in the classical approximation and in the ultra-
quantum limit. The dependence of the synchrotron radiation
powerontheelectronspinintheinitialstateisalsoinvestigated.
In Sec. IV, the power of synchrotron radiation of a

massless charged fermion in (2þ 1)-dimensional QED is
calculated in the case of high excited states of a fermion in a
relatively weak magnetic field. The calculation is carried
out both directly based on the exact formula for the spectral
distribution of the radiation power, obtained in the massless
case in Sec. II, and using formula (3.3) from Sec. III for the
emission of a massive electron, which makes it possible to
pass to the limit of zero fermion mass.
In Sec. V, we discuss the results of the work.
We shall adopt the units where c ¼ ℏ ¼ 1.

II. SPECTRAL DISTRIBUTION
OF RADIATION POWER

To determine the power of synchrotron radiation, we will
use a method based on calculating the total radiative shift of
the electron energy in a constant magnetic field.
We consider the four-component fermions in QED2þ1,

connected with a four-dimensional reducible representation
of Dirac’s matrices [21]:

γ0 ¼
�
σ3 0

0 −σ3

�
; γ1;2 ¼

�
iσ1;2 0

0 −iσ1;2

�
;

where σ1;2;3 are the Pauli matrices.

In a magnetic field given by the potential

Aμ
ext ¼ ð0; 0; xHÞ; ð2:1Þ

the energy of a two-dimensional electron with charge
−e < 0 and mass m is determined by the formula

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eHn

p
; ð2:2Þ

where n ¼ 0; 1; 2;… is the principle quantum number.
In the one-loop approximation, the electron mass oper-

ator in the QED2þ1 with the doubled fermion representation
is described by the formula [21]

Σðx; x0Þ ¼ −ig2γμScðH; x; x0ÞγνDμνðx − x0Þ: ð2:3Þ

We note that in QED2þ1 theory g2 in (2.3) has the
dimensions of mass.
Here the photon propagator in the Landau gauge

Dμνðx − x0Þ ¼ −igμν
Z

d3p
ð2πÞ3

exp½−ipðx − x0Þ�
p0

2 − p⃗2 þ i0
; ð2:4Þ

and for the causal Green’s function of an electron in a
constant magnetic field, we use the representation [23]

ScðH; x; x0Þ ¼ −
1

2πi

Z þ∞

−∞
dω exp½iωðt − t0Þ�

×
X

s;ε¼�1

Ψε
sðx⃗ÞΨ̄ε

sðx0
!Þ

ωþ εEsð1 − iδÞ ; ð2:5Þ

where the summation is carried out over all quantum
numbers s ¼ fn0; p0

y; ζ0g of positive frequency ðε ¼ þ1Þ
and negative frequency ðε ¼ −1Þ solutions of the Dirac
equation.
In the QED2þ1 model with a doubled fermionic repre-

sentation, the wave function of the stationary state of a two-
dimensional electron in a constant magnetic field is
determined by the formula [11,21]

Ψε¼þ1¼
ðeHÞ14ffiffiffiffiffiffiffiffi
2En

p exp½−iEntþiypy�

2
6664D1

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Enþm

p
Un−1ðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En−m
p

UnðηÞ
0

0

1
CCCA

þD−1

0
BBB@

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En−m

p
Un−1ðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Enþm
p

UnðηÞ

1
CCCA

3
7775: ð2:6Þ

P. A. EMINOV PHYS. REV. D 105, 095014 (2022)

095014-2



Here the electron energy is determined by formula (2.2),
the Hermite function is expressed in terms of the Hermite
polynomials by the formula

UnðηÞ ¼
ðeHÞ14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nn!

ffiffiffi
π

pp e−
η2

2HnðηÞ;

HnðηÞ ¼ ð−1Þneη2 dn

dηn
e−η

2

; ð2:7Þ

and the argument of these functions

η ¼
ffiffiffiffiffiffiffi
eH

p �
xþ py

eH

�
: ð2:8Þ

Positive- and negative-frequency solutions of the Dirac
equation ε ¼ �1 obey the additional condition

ÂΨ ¼ ζΨ; Â ¼ iε
En

m
γ0γ1γ2;

where the quantum number ζ ¼ �1 has the meaning of the
projection of the electron spin on the direction of the
magnetic field. In formula (2.6), at ζ ¼ þ1 should be set
D1 ¼ 1; D−1 ¼ 0 (the spin is directed along the field), and
at ζ ¼ −1, on the contrary, D1 ¼ 0; D−1 ¼ 1 (the spin is
directed against the field).
In the one-loop approximation, the mass operator

Σðx; x0Þ determines the radiative correction to the electron
energy in the form

ΔEn ¼ −ig2
1

T

Z
d3xd3x0Ψn;qy;ζðxÞγμ

× ScðH; x; x0ÞγνDμνðx − x0ÞΨn;qy;ζðx0Þ; ð2:9Þ

where T is the interaction time.
Omitting the details of the calculations, we present the

exact expression in the one-loop approximation for the
radiative shift of the energy of a two-dimensional electron
in a constant magnetic field, obtained in Ref. [11]:

ΔEn ¼ −
m2g2

16π
3
2En

ei
π
4

Z
1

0

duffiffiffi
u

p
Z

∞

0

dyffiffiffi
y

p 1

F

× exp½−ip2⊥yðu − 1Þ − 2in arctan λ − im2uy�

×

�
ζ
En

m
Ω1 þΩ2

�
; ð2:10Þ

where the notations are accepted

Ω1 ¼ ð2 − uþ 2ue−2izÞ
− ð1 − δ0;nÞe2i arctan λ½2uþ ð2 − uÞe−2iz�; ð2:11Þ

Ω2 ¼ −ð2 − uþ 2ue−2izÞ
− ð1 − δ0;nÞe2i arctan λ½2uþ ð2 − uÞe−2iz�

þ 2i

�
p⊥
m

�
2

ðu − 1Þ sin ze−iz½1 − e2i arctan λ�

−
�
p⊥
m

�
2

ðu − 1Þ½e−2iz þ e2i arctan λ�

þ 2

�
p⊥
m

�
2 u − 1

F
e2i arctan λ−2iz; ð2:12Þ

λ ¼ tgz
1þ u

1−u
tgz
z

; F ¼ 1 − uþ ue−iz
sin z
z

;

z ¼ eHy; p2⊥ ¼ 2eHn: ð2:13Þ

Note that in formula (2.10), after averaging over the
electron spin, the term proportional to ζΩ1 vanishes.
This term is also equal to zero in the case of a massless
electron, which also directly follows from the obtained
formulas (2.10) and (2.11).
As in standard QED3þ1, it is necessary to renormalize the

electron mass by subtracting from the nonrenormalized
value in formula (2.10) its value in a zero external magnetic
field [24,25]. According to the optical theorem, the
imaginary part of the radiative correction to the electron
energy determines the total probability of the electron
radiative transition from the initial quantum state in the
given external field:

w ¼ −2ImðΔEnÞ: ð2:14Þ

As a result, for the power of synchrotron radiation in
QED2þ1, averaged over the spin states of the electron, we
obtain the following representation:

W ¼ −2Im
�
−
m2g2

16π
3
2

ei
π
4

Z
1

0

ffiffiffi
u

p
du

Z
∞

0

Ωffiffiffi
y

p
F

× exp½−ip2⊥yðu − 1Þ − 2in arctan λ − im2uy�dy
�
;

ð2:15Þ

where

Ω ¼ −ð2 − uþ 2ue−2izÞ
− e2i arctan λ½2uþ ð2 − uÞe−2iz� þ 2ðuþ 2Þ

þ 2i

�
p⊥
m

�
2

ðu − 1Þ sin ze−iz½1 − e2i arctan λ�

−
�
p⊥
m

�
2

ðu − 1Þ½e−2iz þ e2i arctan λ�

þ 2

�
p⊥
m

�
2 u − 1

F
e2i arctan λ−2iz: ð2:16Þ
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In the next sections, we consider some limiting cases that
follow from formulas (2.10)–(2.16) and are of the greatest
physical interest.

III. POWER OF SYNCHROTRON RADIATION
OF A MASSIVE ELECTRON IN QED2 + 1

Let us consider the most interesting case of relativistic
values of the electron energy in a weak magnetic field,
when the conditions fulfilled

H
H0

≪ 1;
p⊥
m

≫ 1;
p0⊥
m

≫ 1; ð3:1Þ

where H0 ¼ m2

e ≃ 4 and 41 × 1013 G is the Schwinger
value of the magnetic field strength.
The dynamic parameter of synchrotron radiation is

defined by the formula

χ ¼ e
m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

q
¼ H

H0

·
p⊥
m

ð3:2Þ

and can take any values within the framework of the
applicability of the one-loop approximation.
When conditions (3.1) are satisfied, the main contribu-

tion to the power of the synchrotron radiation is made
by the region in which the condition z ¼ eHy ≪ 1 is
satisfied. Carrying out the corresponding semiclassical
expansions, from formulas (2.15) and (2.16) for the
power of synchrotron radiation of a massive electron in
(2þ 1)-dimensional quantum electrodynamics, we obtain
the following expression:

W ¼ −
mg2

4π
3
2

Im

�
ei

π
4

Z
∞

0

ffiffiffiffiffi
z0

p
dv

ðvþ 1Þ2

×

�
3vþ 2

vþ 1
g1ðz0Þ þ

g0ðz0Þ
z0

�
4þ 2v

3

���
;

z0 ¼
�
v
χ

�2
3

; ð3:3Þ

where function g0ðz0Þ is the derivative of function

gðz0Þ ¼ i
Z

∞

0

ffiffi
t

p
exp

�
−i
�
z0tþ

t3

3

��
dt; ð3:4Þ

which is an analog of the Hardy-Stokes function in
(3þ 1)-dimensional quantum electrodynamics of an
intense external field [25,26], and the function g1ðz0Þ is
defined by the formula

g1ðz0Þ ¼
Z

∞

0

dtffiffi
t

p e−iz0t
�
e−i

t3
3 − 1

�
: ð3:5Þ

The spectral variables in formula (2.15) and in
formula (3.3) are related to the energy of the emitted

photon ω and the energy of the initial electron E by
the formulas

v ¼ u
1 − u

¼ ω

E − ω
: ð3:6Þ

Note that the integrand in formula (3.3) is the spectral
distribution of the synchrotron radiation power of a two-
dimensional electron in QED2þ1.
First, let us find the classical formula for the intensity of

synchrotron radiation of an electron in QED2þ1. For this, in
formula (3.3), we pass to integration with respect to the
variable

y ¼
�
v
χ

�2
3

and further in the integrand we put χ ¼ 0. As a result,
we get

Wcl ¼ 3mg2

4π
3
2

χImðeiπ4IÞ; ð3:7Þ

where the number I is determined by the integral

I ¼
Z

∞

0

yg1ðyÞdy − 2gð0Þ: ð3:8Þ

Let us show that integral (3.8) is calculated exactly. Using
the formula [27]

Z
∞

0

xμ−1e−βx
�
cos δx
sin δx

�
dx

¼ ΓðμÞ
ðβ2 þ δ2Þμ2

×

� cos½μ × arctanðδβÞ�; Reμ > 0;Reβ > jImδj;
sin½μ × arctanðδβÞ�; Reμ > −1;Reβ > jImδj;

�
;

ð3:9Þ

we get

gð0Þ ¼ i
Z

∞

0

ffiffi
t

p
e−i

t3
3dt ¼

ffiffiffi
π

3

r
ei

π
4: ð3:10Þ

The remaining integral is transformed to the form

Z
∞

0

ydy

�Z
∞

0

dtffiffi
t

p e−iytðe−it33 − 1Þ
�

¼ 1

3
ffiffiffi
3

p ðAþ iBÞ;

ð3:11Þ

whence, taking into account (3.9), we obtain
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B ¼
Z

∞

0

x−
3
2 sin xdx ¼

ffiffiffiffiffiffi
2π

p
;

and it remains to calculate

A ¼
ffiffiffi
2

p Z
∞

0

x−
3
2 sin2 xdx: ð3:12Þ

This integral is also tabular [27]:

Z
∞

0

tμ−1 sin2 tdt ¼ −
ΓðμÞ
2μþ1

cos
πμ

2
;

− 2 < Reμ < 0: ð3:13Þ

In our case μ ¼ − 1
2
, and, taking into account also that

Γð− 1
2
Þ ¼ −2

ffiffiffi
π

p
, we find

A ¼ B ¼
ffiffiffiffiffiffi
2π

p
: ð3:14Þ

Thus, taking into account formulas (3.7), (3.8), (3.10)–(3.12),
and (3.14) we have

Imðeiπ4IÞ ¼ −
4

3

ffiffiffi
π

3

r
; ð3:15Þ

and the power of synchrotron radiation, whichwe obtained as
the limiting case of formula (3.3), is determined by the exact
formula in the classical approximation

Wcl
2þ1 ¼

mg2

π
ffiffiffi
3

p χ: ð3:16Þ

In another limiting case, when χ ≫ 1, the main contribution
to integral (3.3), as in standard QED3þ1, comes from the
region z0 ¼ ðvχÞ

2
3 ≪ 1.

In this region, the function g0ðz0Þ in the leading approxi-
mation can represented in the form

g0ðz0Þ ≃ g0ð0Þ ¼ lim
ε→0

Z
∞

0

t
3
2e−i

t3
3
−εtdt; ð3:17Þ

where the integral is tabular and we find

g0ðz0Þ ¼ 3−
1
6Γ
�
5

6

�
e−i

5π
12: ð3:18Þ

Let us now find the asymptotic expression for the
function Imðeiπ4g1ðyÞÞ in the formula (3.3), when the
argument y → 0.
To do this, note that the function g1ðyÞ defined by

formula (3.5) is a solution of the differential equation

g01ðyÞ ¼ −gðyÞ þ
ffiffiffi
π

p

2y
3
2

e−i
π
4; ð3:19Þ

and it admits the following exact representation:

ei
π
4g1ðyÞ ¼ ei

π
4

Z
∞

y
gðtÞdt −

ffiffiffi
π

y

r
: ð3:20Þ

Thus, from formula (3.20) for the function of interest to us,
it follows that

Imðeiπ4g1ðyÞÞ ¼ Im

�
ei

π
4

Z
∞

y
gðtÞdt

�
: ð3:21Þ

Using further integral representation (3.4) for the function
gðtÞ, we obtain

Z
∞

0

gðtÞdt ¼ ilim
ε→0

Z
∞

0

ffiffiffi
x

p
e−i

x3
3 dx

�Z
∞

0

e−itðx−iεÞdt
�

¼ i
Z

∞

0

ffiffiffi
x

p
e−i

x3
3

�
πδðxÞ − i

1

x

�
dx

¼
Z

∞

0

dxffiffiffi
x

p e−i
x3
3 ¼ 3−

5
6Γ
�
1

6

�
e−i

π
12; ð3:22Þ

where the Dirac delta function δðxÞ is introduced and the
last integral in (3.22) is calculated using formula (3.9).
Thus, for z0 → 0, as follows from formulas (3.21) and

(3.22), the leading term of the asymptotics of the function
Imðe−iπ4g1ðz0ÞÞ is determined by the formula

Imðe−iπ4g1ðz0ÞÞ ≃
1

2
3−

5
6Γ
�
1

6

�
: ð3:23Þ

This means that, in formula (3.3) in the ultraquantum limit,
the main term of the asymptotics of the first term ∼χ−1

3, and
the main contribution to the total radiation power is made
by the second term:

W ≃
mg2

4π
3
2

3−
1
6Γ
�
5

6

�Z
1

0

u−
2
3ð1 − uÞ−5

6

�
2ð1 − uÞ þ u

3

�
du:

ð3:24Þ

The remaining integral over the spectral variable is calcu-
lated using the Euler beta function

Bðx; yÞ ¼
Z

1

0

uμ−1ð1 − uÞν−1du ¼ ΓðμÞΓðνÞ
Γðμþ νÞ ;

Reμ > 0; Reν > 0:

As a result, we find that in the ultraquantum limit the
main term of the asymptotics of the power of synchrotron
radiation of a massive electron in QED2þ1 is determined by
the formula
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W ¼ 4mg2

9
ffiffiffiffiffiffi
3π

p 3−
1
6Γ
�
5

6

�
χ
1
3

¼ 4g2

9
ffiffiffiffiffiffi
3π

p 3−
1
6Γ
�
5

6

�
ðeHp⊥Þ13; χ ≫ 1: ð3:25Þ

It follows from (3.25) that the result obtained does not
depend on the electron mass. We also note that in the
classical approximation the contributions of the first and
second terms in the square bracket of the formula (3.3) to
the total radiation power of a massive electron are propor-
tional to the same parameter equal to χ.
Let us also calculate that part of the radiation power of an

electron in P-even QED, which explicitly depends on the
spin quantum number of the initial electron.
From formulas (2.10)–(2.14) under conditions (3.1) for

that part of the total radiative shift of the electron energy,
which depends on the orientation of the spin of the initial
electron, we obtain the following formula:

ΔEnðζÞ ¼ ζ
mg2

8π
3
2p⊥

ei
π
4

Z
1

0

u − 2

1 − u
gðz0Þdu; ð3:26Þ

where the function gðz0Þ is defined by formula (3.4).
Using the Mellin transformation with respect to the
parameter a ¼ 1

χ for the function gðz0Þ, we find the integral
representation for the part of the synchrotron radiation
power that depends on the spin of the initial electron:

WðζÞ ¼ ζ
mg2

16π
3
2

Im

�
e−i

π
2
1

2πi

Z
γþi∞

γ−i∞
3−

s
2
þ1

2a−se−i
πs
2 ðsþ 2Þ

× Γ
�
3s
2

�
Γ
�
−
s
2
þ 1

2

�
ΓðsÞΓð2 − sÞds

�
;

0 < γ <
2

3
; ð3:27Þ

where ΓðzÞ is Euler’s gamma function.
Closing the integration contour in formula (3.27) at

χ ≪ 1 in the right half-plane, we obtain the following
asymptotics for the quantity WðζÞ in the quasiquantum
approximation:

WðζÞ ¼ −ζ
mg2

π
ffiffiffi
3

p χ2; χ ≪ 1: ð3:28Þ

IV. SYNCHROTRONRADIATIONOF AMASSLESS
CHARGED FERMION IN QED2 + 1

The exact expression for the power of synchrotron
radiation of a massless charged fermion is determined
by the formula following from (2.15) and (2.16) at m ¼ 0:

Wðm ¼ 0Þ ¼ −2Im
�
g2p2⊥
16π

3
2

ei
π
4

Z
1

0

ffiffiffi
u

p ð1 − uÞdu
Z

∞

0

Ω0ffiffiffi
y

p
F

× exp½−ip2⊥yðu − 1Þ − 2in arctan λ�dy
�
;

ð4:1Þ

where

Ω0 ¼ 2i sin ze−iz½1 − e2i arctan λ� − ½e−2iz þ e2i arctan λ�

þ 2

F
e2i arctan λ−2iz: ð4:2Þ

Let us consider the case of strongly excited states of a
fermion in the initial and final states ðn ≫ 1; n0 ≫ 1;
n − n0 ≫ 1Þ and in a relatively weak magnetic field
ðH ≪ H0Þ, when the integrals in formula (4.1) can be
calculated by expanding the trigonometric functions in the
integrand, depending on the quantity z ¼ eHy, in power
series z ≪ 1.
As a result, we obtain the following formula for the

power of synchrotron radiation of a massless charged
fermion in QED2þ1:

Wðm ¼ 0Þ ¼ −Im
�
g2p2⊥ei

π
4

3π
3
2

ffiffiffiffiffiffiffi
eH

p
�
3

2n

�5
6

×
Z

1

0

ð1 − 2u
3
Þdu

u
1
3ð1 − uÞ23

Z
∞

0

x−
1
6e−ixdx

�
: ð4:3Þ

Further calculating the integral over the variable x using
formula (3.9)

Z
∞

0

x−
1
6e−ixdx ¼ Γ

�
5

6

�
e−i

5π
12; ð4:4Þ

we transform formula (4.3) to the form

Wðm¼0Þ¼ g2p2⊥
6π

3
2

ffiffiffiffiffiffiffi
eH

p
�
3

2n

�5
6

Γ
�
5

6

�Z
1

0

ð1− 2u
3
Þdu

u
1
3ð1−uÞ23 : ð4:5Þ

The integral over the spectral variable has already been
calculated in Sec. III and is equal to 8π

9
ffiffi
3

p . Thus, the

asymptotics of the total power of synchrotron radiation
of a massless charged fermion in QED2þ1 is defined by the
formula

W2þ1ðm ¼ 0Þ ¼ 4g2

9
ffiffiffiffiffiffi
3π

p 3−
1
6Γ
�
5

6

�
ðeHp⊥Þ13: ð4:6Þ

This result coincides with the main term of the asymptotic
expansion of the total power of synchrotron radiation of a
massive relativistic fermion under conditions (3.1).
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Formula (4.6) can be obtained from formula (3.3), as a
result of the passage to the limit to zero mass of the
fermion. Indeed, the passage to the limit m → 0 corre-
sponds to χ ∼ 1

m3 → ∞; z0 ∼m2 ¼ 0; i.e., in the case of a
massless fermion in (3.3), one should put

mffiffiffiffiffi
z0

p ¼ ðeHp⊥Þ13
v

1
3

; g0ðz0Þ ¼ g0ð0Þ;

m
ffiffiffiffiffi
z0

p
Imðeiπ4g1ðzÞÞ ∼m2Im

�
ei

π
4

Z
∞

0

gðtÞdt
�

¼ 0: ð4:7Þ

Using also formula (3.18), we arrive at the result (4.5)
obtained directly from the exact formula (4.1).

V. CONCLUSION

In this paper, the influence of quantum effects on the
intensity of synchrotron radiation of a massive fermion in
P-even (2þ 1)-dimensional quantum electrodynamics with
a doubled fermion representation is investigated for the
first time. It was shown that, in (2þ 1)-dimensional space-
time, quantum theory predicts the finite values of the
synchrotron radiation power of massive and massless
charged fermions. Analytical formulas are obtained
describing the dependences of the spectral density and
total power of synchrotron radiation of a massive electron
on the magnetic field strength, fermion energy and electron
spin in the initial state.
The asymptotics (3.4), (3.5), and (3.23) of the functions

gðz0Þ, g0ðz0Þ, and g1ðz0Þ are found, which determine the
dependence of the synchrotron radiation power of a
massive relativistic electron at large and small values
of the dynamic parameter. In the classical approximation,
our formula (3.16) for the radiation power of a massive

relativistic electron does not contain divergence and
coincides with the results (4.21) and (3.15) in Refs. [28]
and [1], respectively, previously obtained by various
methods within the framework of two-dimensional
classical electrodynamics.
The main term of the asymptotics of the radiation power

of a massive relativistic electron in the ultraquantum limit
determined by the formula (3.25) and increases with an
increase in the dynamic parameter of synchrotron radia-
tion proportionally to χ

1
3. Note that in the standard, as well

as in the reduced QED3þ1, at χ ≫ 1 the power of
synchrotron radiation of scalar particles and electrons is
proportional to χ

2
3 [11,24,25].

The power of synchrotron radiation of a massless
charged fermion is calculated in the case of large values
of the main quantum number and a relatively weak
magnetic field. The calculation was carried out based on
the exact formula (4.1) and (4.2) for the synchrotron
radiation power of a massless fermion, as well as on the
basis of formula (3.3), obtained for a massive electron in the
semiclassical approximation with subsequent transition to
the zero fermion mass limit. It was shown that the main
term of the asymptotic expansion of the radiation power of
a massless charged fermion coincides with the leading term
of the asymptotic expansion of the synchrotron radiation
power of a massive electron in the ultraquantum case,
which does not depend on the mass of the electron.
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