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Particles may be emitted efficiently from the solar interior if they are sufficiently light and weakly
coupled to the solar plasma. In a narrow region of phase space, they are emitted with velocities smaller than
the escape velocity of the Solar System, thereby populating a gravitationally bound density that can
accumulate over the solar lifetime, referred to as a “solar basin.” Detection strategies that can succeed in
spite of (or even be enhanced by) the low particle velocities are therefore poised to explore new regions of
parameter space when taking this solar population into account. Here we identify “direct deflection” as a
powerful method to detect such a population of millicharged particles. This approach involves distorting
the local flow of gravitationally bound millicharges with an oscillating electromagnetic field and measuring
these distortions with a resonant LC circuit. Since it is easier to distort the flow of slowly moving particles,
the signal is parametrically enhanced by the small solar escape velocity near Earth. The proposed setup can
probe couplings an order of magnitude smaller than other methods for millicharge masses ranging from 100
to 100 eVand can operate concurrently as a search for sub-GeV millicharged dark matter. The signal power
scales as the millicharge coupling to the eighth power, meaning that even with conservative assumptions,
direct deflection could begin to explore new regions of parameter space. We also highlight novel features of
millicharge solar basins, including those associated with the phase-space distribution and the possibility for
the occupation number to vastly exceed that of a thermal distribution.
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I. INTRODUCTION

Stellar interiors are an excellent probe of physics beyond
the Standard Model (SM). Owing to their high density,
temperature, and volume, the interaction rate inside of stars
is extremely large, providing ample opportunities to pro-
duce weakly coupled particles through rare processes.
Moreover, if those particles have a sufficiently weak
coupling to the SM plasma, they will be able to stream
through the star and escape, an effect which has been
extensively studied in the context of stellar energy loss [1].
In analyzing the abundances and inferred lifetimes of
various stellar populations, one can bound the stellar
energy loss rate and consequently place extremely strong

limits on the emission of, e.g., light axions, hidden photons
and B − L vectors, scalars and pseudoscalars coupled
to nucleons and electrons, and millicharged1 particles
(MCPs). Stellar energy loss bounds provide some of the
strongest constraints on sub-keV particles in extensions of
the SM, and with a few exceptions (such as dark photons
[2–4] and sterile neutrinos [5,6]) these bounds are strong
down to arbitrarily low particle masses.
In addition to considering stellar energy loss and its

impact on stellar lifetimes, it may also be possible to
directly detect the particles ejected from stars in a labo-
ratory-based experiment. Due to its proximity to Earth, the
Sun is an ideal stellar source of these particles, rendering
such experiments “helioscopes.” Previous helioscopes
have searched for a solar flux of sub-keV relativistic
particles with energies comparable to the solar temperature,
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1Here we do not refer to particles with charge of order 10−3e
but rather follow the naming convention for referring to particles
with charges qMCP ≪ 1. We note that other nomenclature is
sometimes used to refer to the same particles, e.g., “minicharged.”
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T⊙ ∼ 1 keV. However, as was recently shown in
Refs. [7,8], there may additionally be a large density of
highly nonrelativistic particles produced from the Sun and
bound gravitationally to the Solar System, forming a solar
basin. Typically, for processes occurring at the keV energy
scale, the emission of a nonrelativistic particle with mass
m ≪ 1 keV is highly phase-space suppressed. However,
the accumulation of gravitationally bound particles over
billions of years can compensate for such phase-space
suppression. In fact, for certain particle masses, the
gravitationally bound density exceeds the predicted density
of relativistic particles.
One obstacle to the detection of these nonrelativistic

particles is that their kinetic energy at Earth is at most
∼10 μeV × ðm=keVÞ, since the local escape velocity of the
Solar System is ∼10−4. Such low energies are well below
the threshold of existing and proposed detectors [9],
indicating that single-particle elastic scattering processes
involving solar basin particles are undetectable (although
see, e.g., Refs. [10,11]). However, in certain theories the
limited kinetic energy of these particles may be circum-
vented by using their rest mass as a way to exceed the
energy threshold of a detector, enabling sensitivity down to
eV-scale masses [7,8]. For instance, inelastic single-particle
processes, such as absorption, are detectable so long as the
mass gap is above threshold, meaning that some kinds of
basin particles can be detected using standard dark matter
direct detection targets such as xenon-based experiments
[12–15], DAMIC [16], and CDMS [17]. However, such
absorption processes are forbidden if gauge or spacetime
symmetries forbid particle number violating interactions,

such as in the simplest theories of MCPs. In this case,
different detection strategies are needed, especially those
which may be able to explore new parameter space in spite
of or even because of the low velocity of gravitationally
bound particles.
In this article, we focus on a solar basin of MCPs in the

eV–keV mass range and identify direct deflection as the
optimal strategy to directly detect this solar basin. This
strategy (which was recently introduced in Ref. [20] in the
context of dark matter detection) involves inducing and
subsequently detecting oscillating overdensities of MCPs
using large driven fields and well-shielded precision
resonant detectors. A schematic of this approach is shown
in Fig. 1. Applied to MCPs in the solar basin, ambient
MCPs passing through a shielded region containing a
driven oscillating electric field are deflected, setting up
propagating wave trains of MCP charge density. These
charge overdensities penetrate a downstream electromag-
netic shield, establishing a small oscillating electric field
that can be measured with a resonant detector. A unique
qualitative feature of this technique is that it probes the
collective effects of the large number density of particles,
instead of relying on the energy deposition from a single-
particle scattering event. Relatedly, since more slowly
moving particles are more easily deflected by the driven
electric field, the signal is parametrically enhanced by the
reduced kinetic energy of the solar basin compared to the
typical kinetic energy of virialized dark matter. Thus, a
direct deflection helioscope is extremely well suited for
the detection of a MCP solar basin. The most stringent
existing constraints on sub-keV MCPs are derived from

FIG. 1. A schematic of the direct deflection helioscope setup. A gravitationally bound population of MCPs is created from plasmon
decay in the solar interior, building up a dense solar basin within the Solar System over gigayear timescales. In the Earth frame, a “wind”
of these MCPs is generated by the relative orbital motion of the Earth at a velocity of v⊕ ∼ 10−4. In the terrestrial lab, the local charge-
symmetric millicharge density passes into a shielded “deflector” region, in which a driven electric field Edef . oscillating with frequency
ω induces a propagating wave train of oscillating millicharge overdensities ρ�. Downwind, these charge densities penetrate a quiet
shielded “detector” region and source an oscillating electric field signal Esig that is resonantly detected using an LC circuit tuned to the
same frequency.
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considerations of stellar energy loss, which exclude MCP
charges larger than qMCP ≃ 2 × 10−14 [18,19]. Our pro-
jected sensitivity of a direct deflection setup—which
extends beyond existing constraints for 100 meV–
100 eV MCP masses—is shown in Fig. 2. This projected
sensitivity also extends well beyond the reach of conven-
tional helioscope searches for the elastic scattering of the
relativistic flux of solar MCPs, whose current sensitivity is
significantly weaker than existing astrophysical limits [21].
The rest of this article is organized as follows. We review

the parameter space of MCPs in Sec. II and present a
conceptual overview of directly deflecting the MCP solar
basin (including order-of-magnitude scaling arguments) in
order to provide intuition for our main results. In Sec. III A,
we show a first calculation of the full phase-space dis-
tribution of particles in the solar basin. In Sec. III B, we
point out that if production of the solar basin proceeds
through emission of multiple dark sector particles per

interaction (as is the case for MCPs), then the occupation
number of bound particles can greatly exceed that of a
distribution that is in equilibrium with the Sun. In the case
of fermions, the density saturates because of Pauli block-
ing, whereas the occupation number of bosons can greatly
exceed unity. We leave the detailed study of constraining
millicharged bosons (and other bosons with multiple
particles produced per interaction) to future work [22],
primarily focusing on constraining fermionic MCPs in
this article. We outline the main solar production mecha-
nisms for MCPs in Sec. IV. In Sec. V, we highlight the
experimental approach of direct deflection as a means to
discover the MCP basin and illustrate the projected
sensitivity of such a setup. In Sec. VI, we demonstrate
how MCP interactions with the solar environment or
among themselves may alter the characteristics of the
solar basin. Finally, in Sec. VII, we conclude and discuss
directions for future inquiry. A series of appendixes is also
provided that contains additional details of our calculations.
In Appendix A, we calculate the solar production rate of
MCPs, Appendix B outlines some details associated with
the calculation of the direct deflection signal, and in
Appendix C, we point out that if MCP self-interactions
efficiently drive the basin toward a state of hydrostatic
equilibrium, then the density profile of the solar basin can
be significantly altered.

II. MODEL SPACE AND CONCEPTUAL
OVERVIEW

MCPs possess a small effective electromagnetic charge
qMCP ≪ 1 and naturally arise in models where a light dark
photon A0 kinetically mixes with SM electromagnetism. In
this case, particles charged directly under the dark photon
appear as millicharged under normal electromagnetism
on length scales smaller than the dark photon Compton
wavelength with an effective charge qMCP ¼ ϵe0=e, where
ϵ ≪ 1 is the kinetic mixing parameter, e0 is the dark photon
gauge coupling, and e is the SM electric charge [23]. If ϵ is
generated radiatively from loops ofN0 generations of heavy
particles charged under both the SM and dark sector, the
natural expectation for the strength of the kinetic mixing is
ϵ ∼ N0e0e=ð4πÞ2 (although certain models predict para-
metrically smaller values [24]). Considerations of stellar
energy loss exclude MCP couplings larger than qMCP ≃
2 × 10−14 for masses mMCP ≲ 1 keV [18,19]. Hence, for
values of ϵ near the radiative estimate above, the dark sector
fine structure constant α0 ≡ e02=4π ∼ 4πqMCP=N0 needs to
be smaller than ∼10−13=N0, which controls the strength of
MCP self-interactions. Although very small gauge cou-
plings appear unnatural in a top-down framework of gauge
coupling unification [24], they are theoretically consistent
and can arise in large volume string compactifications [25].
Therefore, it behooves us to consider small MCP self-
couplings. As we will show, this implies that the MCP

FIG. 2. The projected sensitivity (blue lines) of a direct
deflection setup to a solar basin of fermionic MCPs compared
to existing constraints from stellar energy loss (shaded gray)
[18,19]. In each case, we assume an experimental integration time
tint ¼ 1 yr, a deflector/detector volume Vdef ¼ Vdet ¼ 10 m3, a
deflector electric field Edef ¼ 10 kV=cm oscillated at an angular
frequency of ω ¼ 10 kHz, and an LC circuit detector with quality
factor QLC ¼ 107 operating at a temperature TLC ¼ 10 mK. The
solid and dashed blue lines assume a basin phase space that is
maximally or minimally isotropized by gravitational encounters,
respectively. We restrict our sensitivity projections to regions of
parameter space in which the density is greater than 1=ð10 cm3Þ,
so that the solar basin of MCPs can be treated as a continuum. In
particular, we do not extend the projections below ∼0.2 or ∼1 eV
for a perturbed or unperturbed phase space, respectively, because
the basin density falls below this value and our approximations
are no longer valid. For a basin density that does not saturate the
upper bound from Fermi-Dirac statistics in Sec. III B and
assuming a deflector and detector of comparable size, the
sensitivity scales with the experimental parameters as
qMCP ∝ V−7=24

def E−1=4
def T1=8

LC ðωtintQLCÞ−1=8. The change in the mass
scaling of the projections near ∼0.8 and ∼20 eV for a perturbed
or unperturbed phase space correspond to the MCP mass below
which the basin density saturates the upper bound dictated by
Fermi-Dirac statistics.
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stellar basin is long-lived and can survive to the present
time. However, self-interactions can still be important. In
fact, we show in Appendix C that, for sufficiently large α0,
self-scatters can modify the local density and spatial profile
of the solar basin.
Independent of MCPs, direct constraints on light dark

photon mediators (such as those derived from stellar energy
loss [2,3], laboratory tests of Coulomb’s law [26], and
measurements of the cosmic microwave background
[27,28]) decouple as the dark photon mass is taken to
zero, thus motivating the consideration of ultralight or
massless dark photons. In this work, we focus on dark
photon masses mA0 ≲ 10−8 eV ∼ ð10 mÞ−1, in which case
the MCPs effectively couple to standard electromagnetism
over macroscopic length scales [20]. From the point of
view of solar production and terrestrial detection, in most
aspects we treat such particles as electromagnetically
charged. We note, however, that the formalism developed
to calculate the solar basin phase space in Sec. III assumes
that the MCPs do not efficiently couple to the long-ranged
solar magnetic field. As discussed in Sec. VI, this
assumption is valid in the parameter space region corre-
sponding to smaller qMCP and larger mMCP in Fig. 2
with mA0 ≪ 10−15 eV. The assumption becomes valid in
larger parts of the qMCP vs mMCP parameter space for
increasing dark photon mass and is valid for the full range
of qMCP and mMCP explored in this work provided that
mA0 ≳ 10−12 eV.
MCPs that are produced in the solar interior will only

remain gravitationally bound in a narrow region of phase
space. The density of emitted MCPs that satisfy this
criterion is significantly peaked near the Sun, due to its
large gravitational attraction. As a result, the terrestrial
density of the MCP solar basin is suppressed both by the
large Earth-to-Sun distance as well as the small region of
phase space below the solar escape velocity. As we show in
detail in Sec. IV, the dominant production mechanism for
MCPs is through the decay of electromagnetic plasmon
excitations in the solar interior. For this process, the
terrestrial number density nðr⊕Þ of gravitationally bound
MCPs is largest for masses mMCP comparable to the solar
plasma frequency ωp ∼ 100 eV, such that

nðr⊕Þ ∼
�
αemq2MCPω

4
p

4π3
r3⊙t⊙
r3⊕

�
× ½vescðr⊙Þvescðr⊕Þ2�

∼ 105 cm−3 ×

�
qMCP

2 × 10−14

�
2

; ð1Þ

where r⊙ ≃ 7 × 105 km ≃ 5 × 10−3 A:U: is the solar
radius, r⊕ ≃ 1 A:U: is the Earth’s distance from the Sun,
vescðrÞ is the solar escape velocity at heliocentric radius r,
and t⊙ ≃ 4.5 × 109 yr is the age of the Solar System. In the
first line of Eq. (1), the first set of brackets is the local
density of MCPs produced over a solar lifetime, assuming

that all such MCPs remain gravitationally bound. In
particular, the ratio r3⊙t⊙=r

3
⊕ arises from assuming that

the entire volume of the Sun can produce particles over the
whole lifetime of the Sun and that those particles get
redistributed to the volume within 1 A.U. of the Sun; the
factor of ω4

p then arises to give dimensions of number
density (recall that here we have chosen mMCP ∼ ωp,
making ωp the only dimensionful quantity that determines
the particle production rate inside the Sun). The second set
of brackets accounts for the fact that these particles only get
bound to within 1 A.U. of the Sun for a small kinematic
subset of emitted MCPs, corresponding to the fraction of
phase space with MCP velocity smaller than vescðr⊙Þ yet
sufficiently large to make it to Earth, i.e.,

vescðr⊙Þ −
vescðr⊕Þ2
2vescðr⊙Þ

≲ vMCP ≲ vescðr⊙Þ: ð2Þ

We can think of the “velocity volume” of this three-
dimensional kinematic phase space as occupying a
thin spherical shell of radius vescðr⊙Þ and thickness
vescðr⊕Þ2=2vescðr⊙Þ over which the production rate does
not vary, giving rise to the scaling in the second set of
brackets of the first line of Eq. (1). In the second line
of Eq. (1), we have fixed the MCP coupling to saturate
existing constraints from stellar energy loss, as dis-
cussed above.
Direct deflection is an especially powerful detection

strategy for particles with low velocities, which tends to
enhance the overall strength of the signal [20]. From
Eq. (1), we see that, even for very small couplings, the
density of these particles is quite large, such that we can
describe the MCP solar basin as a continuum (i.e., using
continuous variables like the mean density and ignoring
Poisson fluctuations in the local number of particles). In the
solar frame, there is no bulk “flow” (as distinct from the
motions of individual particles) of the MCP basin.
However, the relative motion of the Earth’s orbit leads
to a headwind of MCPs flowing in the opposite direction in
Earth’s frame, analogous to the dark matter wind from the
Galactic motion of our Solar System. A simplified sche-
matic of the terrestrial laboratory setup is shown in Fig. 1,
which consists of two regions (a deflector and detector)
surrounded by electromagnetic shields. Inside the deflector
region, a large electric field Edef . is driven at frequency
ω≲ 10 kHz. As the wind of MCPs flows unimpeded into
this region (due to the small coupling), the electric field
induces a wave train of small MCP charge densities ρ�
oscillating at the same frequency that propagate into a quiet
downwind detection region. Inside the detector, these MCP
charge densities source a small oscillating signal electric
field Esig that can be resonantly detected with an LC circuit
tuned to the same frequency.
In Sec. V, we provide a technical description of the

induced charge densities and resulting signal. Here, we give
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a brief summary of the parametrics to provide an intuitive
picture of the signal. The most straightforward way to
derive the form of the MCP charge density ρ� is to first
consider the electric force on an individual MCP as it
traverses the interior of the deflector. Provided that ω is
sufficiently small, this MCP sees an effectively static
electric field. For simplicity, if we imagine the initial
MCP velocity in Earth’s frame to be the orbital velocity
of Earth v⊕ and the initial trajectory of this particle to be
perfectly aligned with the deflector-detector axis, then this
MCP gets a perpendicular “kick” from Edef , such that this
new component to its velocity is v�∼�eqMCPðEdef=mMCPÞ
ðRdef=v⊕Þ, where � corresponds to the sign of the MCP’s
charge and Rdef is the characteristic length scale of the
deflector. Since the MCP basin is charge symmetric, MCPs
of either sign contribute to a net current density oscillating
at ω with amplitude

j� ∼ eqMCPnðr⊕Þðvþ − v−Þ
∼ ðeqMCPÞ2ðnðr⊕Þ=mMCPÞðφdef=v⊕Þ; ð3Þ

where φdef ∼ EdefRdef is the electric potential of the
deflector, and we have assumed that v�=v⊕ ≪ 1 such that
the number density is approximately unperturbed. By
charge continuity, such a current density implies a corre-
sponding charge density of amplitude

ρ� ∼ −j�=v⊕ ∼ −
ðeqMCPÞ2nðr⊕Þ

mMCPv2⊕
φdef

∼ −m2
D;MCPφdef ; ð4Þ

where mD;MCP is the MCP contribution to the photon’s
Debye mass. The last equality in the expression above is the
standard result for how a weakly coupled plasma (the MCP
basin) Debye screens a quasistatic electric source (the
deflector) [29]. However, unlike standard Debye screening,
in this case these charge densities exist even in regions
where the deflector electric potential vanishes, e.g., inside
the detector shield placed downwind. This is because the
MCP charge densities that develop in the nonzero electric
potential of the deflector region are swept outside of the
deflector by the MCP wind. A key feature of Eq. (4) is that,
unlike traditional scattering-based detection experiments,
the signal in a direct deflection setup does not fall below
experimental thresholds at small kinetic energies; in fact, it
is enhanced at small velocities.2

These MCP charge densities source a real oscillating
electric field Esig ∼ ρ�Rdef of size

Esig ∼ 10−17 kV cm−1 ×

�
qMCP

2 × 10−14

�
2
�

mMCP

100 eV

�
−1

×
�

nðr⊕Þ
105 cm−3

��
Rdef

1 m

��
φdef

1 MV

�
; ð5Þ

inside the detection region, which drives a signal current in
an LC circuit resonantly tuned to the same frequency.
In Eq. (5), we have normalized the MCP model parameters
to be consistent with Eq. (1). As we discuss in Sec. V, a
meter-sized cryogenic LC circuit optimized to detect such
electric fields can measure oscillating fields as small as
∼10−21 kV cm−1, thereby enabling impressive sensitivity
to currently unexplored parameter space. In the remainder
of this paper, we provide a detailed derivation of the basin
density and direct deflection signal, which is ultimately
needed to derive the projected sensitivity shown in Fig. 2.

III. PHASE-SPACE DENSITY OF A
GRAVITATIONALLY BOUND POPULATION

A derivation of the total integrated number density
of particles in the solar basin was given in Ref. [7]. In
Sec. III A, we provide an alternative derivation, which for
the first time allows for the extraction of the raw basin
phase-space density from stellar production, which is of
particular importance for understanding the physics of
detecting a basin of MCPs. In particular, the strength
of MCP self-interactions, which can potentially alter the
basin density, as well as the detailed nature of the direct
deflection signal, are both intimately tied to the structure of
the MCP phase space.
Later in Sec. III B, we point out a feature of the phase-

space evolution that is unique to basin particles that are
pair-produced, like MCPs. In particular, for the models
considered in Refs. [7,8], the phase space saturates at
thermal occupancies. However, for models with higher
multiplicity production of basin particles (e.g., multiple
MCPs in the final state), the density instead saturates near
the degenerate limit for fermionic basin particles and
possibly at very high occupation numbers for theories
involving light bosons. Additional dynamics of the solar
basin, such as those stemming from interactions with the
solar magnetic field and self-interactions, are discussed in
detail toward the end of this work (see Sec. VI).

A. Phase space from production

In this subsection, we present a derivation (that differs
from Ref. [7]) that allows for the extraction of the basin
phase-space distribution as a function of heliocentric
radius r. The results for the velocity distribution f in
Eq. (20) and the number density n in Eqs. (22) and (24) are
the main results of this subsection.

2Note, though, that the small solar escape velocity at Earth
vescðr⊕Þ ∼ v⊕ suppresses the solar production rate, i.e., nðr⊕Þ ∝
vescðr⊕Þ2 as in Eq. (1), such that the MCP charge density ρ� ∝
nðr⊕Þ=v2⊕ is approximately independent of v⊕ or vescðr⊕Þ.
However, the fact that the signal does not fall off as vescðr⊕Þ→0
is a unique advantage of a direct deflection setup.
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The gravitationally bound MCP population is emitted
from the Sun with a speed less than the solar escape
velocity, vescðr⊙Þ ¼ Oð10−3Þ depending on the exact
location inside the Sun. Therefore, we work in the non-
relativistic limit where the luminosity of emitted MCPs per
solar volume, Q ¼ dL=d3x0, is an isotropic quantity that
can be expressed as3

dQ
d3v0

¼ v02ðk−1ÞQv: ð6Þ

Above, we have separated the dependence of the energy
loss rate into a dependence on the particle’s speed when it is
produced v0, with power-law index for integer k ≥ 1 and a
factor Qv that only depends on properties of the solar
interior (e.g., the density and temperature) and on intrinsic
parameters in the underlying particle physics model (e.g.,
the MCP coupling, mass, and spin). We take the properties
of the Sun to be spherically symmetric and constant in time
so that Qv depends only on the radius r0 where the particle
was produced. For the temperature and density of the Sun,
we adopt the values from the standard solar model of
Ref. [30], with the radial profiles of some key quantities
shown in Fig. 3.
To derive the phase-space density of particles at

heliocentric radius r, we first compute the phase-space
density upon production in the solar interior using the
definition of luminosity density in the nonrelativistic limit,
Q ≃mMCPdN=d3x0dt0, where N is the total number of
emitted MCPs. With this notation, the velocity phase-space
density fðx; v; t0Þ at the time of production t0 is given by

dfðx; v; t0Þ ¼ dNðx0; v0; t0Þδ3ðx − x0Þδ3ðv − v0Þ

¼ d3x0d3v0dt0

mMCP

dQðx0; v0Þ
d3v0

δ3ðx − x0Þδ3ðv − v0Þ:

ð7Þ

To obtain the distribution at later times, we assume that
the particles originating at position x0 free stream out of the
solar interior and follow trajectories solely determined
by the solar gravitational potential. For instance, we
temporarily neglect effects such as additional gravitational
interactions from planetary encounters in the Solar System,
reabsorption in the solar interior, interactions with the solar
magnetic field, or MCP self-interactions (these are dis-
cussed in detail in later sections). We thus time evolve the
primed arguments of the delta functions in Eq. (7) as

δ3ðx − x0Þ → δ3ðx − xtrajðx0; v0; t0; tÞÞ; ð8Þ

δ3ðv − v0Þ → δ3ðv − vtrajðx0; v0; t0; tÞÞ; ð9Þ

where xtraj and vtraj are the time-evolved points in phase
space corresponding to the orbital trajectory of a particle at
time t with initial conditions x0 and v0 at time t0 < t. This
time evolution is subject to a number of constraints given
the symmetries of the problem. For instance, since the
gravitational potential is taken to be spherically symmetric,
conservation of the direction of the angular momentum
vector implies that the trajectories are restricted to a plane
that passes through the center of the Sun. For any such
plane, we can therefore reduce the phase-space dimension-
ality of the problem from six to four and sum together all
such planes in order to integrate the total density.
In any given plane, it is most convenient to work in polar

coordinates r, θ, vr ¼ dr=dt, and vθ ¼ dθ=dt, so that the
time-evolved phase space can be expressed as

df¼dr0dθ0dv0rdv0θdt
0v

02ðk−1ÞQv

mMCP

�
r0

rtraj

�
2

×δðvr−vrtrajÞδðvθ−vθtrajÞδðθ−θtrajÞδðr−rtrajÞ; ð10Þ

FIG. 3. The temperature (left), plasma frequency (middle), and gravitational potential (right; note the scale of 10−5) radial profiles of
the Sun. The gravitational potential matches onto the 1=r scaling, shown as a dotted line, outside the radius of the Sun, marked by a
vertical dashed line.

3In this section, we adopt the notation in which primed
quantities denote properties of the MCP at production; e.g., t0,
x0, and v0 are the time, position, and velocity of the MCP upon
production in the solar interior, with the spatial origin being
located at the center of the Sun. Unprimed variables pertain to
properties of the MCP after it has escaped the solar interior; e.g., r
will be used to denote the radial distance of the MCP from the
center of the Sun after production. Later, starting in Sec. V, we
use vectors with tildes, such as x̃ and x̃0, to denote position
vectors with respect to the experimental apparatus, i.e., where the
spatial origin is located at the center of the deflector in Fig. 1.
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where we have suppressed the arguments of the time-
evolved trajectory variables. The first two of the four
remaining delta functions in Eq. (10) can be reexpressed
as constraints on the initial velocities v0r and v0θ using
conservation of energy

E ¼ 1

2
mMCPv2rtraj þmMCPΦeffðrtrajÞ ð11Þ

and conservation of the magnitude of the angular
momentum

l ¼ mMCPr2trajvθtraj : ð12Þ

along the entire trajectory, where

ΦeffðrÞ ¼ ΦðrÞ þ l2

2m2
MCPr

2
ð13Þ

is the one-dimensional effective potential in the radial
direction and Φ < 0 is the solar gravitational potential.
These constraints amount to making the following replace-
ments in Eq. (10):

δðvr − vrtrajÞ ¼
vr
v0r0

½δðv0r − v0r0Þ þ δðv0r þ v0r0Þ�;

δðvθ − vθtrajÞ ¼
�
r
r0

�
2

δðv0θ − v0θ0Þ; ð14Þ

where we have defined

v0r0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE=mMCP −Φeffðr0ÞÞ

p
; v0θ0 ≡

�
r
r0

�
2

vθ: ð15Þ

In the first line of Eq. (14), the delta functions enforce vrtraj
and vr to have the same sign in addition to the same
magnitude; e.g., if vr > 0, then the radial velocity delta
function only has weight in regions of t0 for which the
trajectory is outgoing at time t.
The angular delta function in Eq. (10) can be expressed

as an orbit equation, obtained by solving for the integrals of
motion r and θ and eliminating the time coordinate,

δðθ − θtrajÞ ¼ δ

�
θ0 − θ þ 1

mMCP

Z
r

r0
dr00

l
r002vr00

�
: ð16Þ

The final radial delta function in Eq. (10) can be used to
eliminate the time integral. In rewriting this spatial delta
function in terms of time t0, summing over all possible roots
amounts to including all possible previous times t0 < t at
which a particle was emitted at the right initial point in
phase space to have evolved to the phase-space point
ðr; θ; vr; vθÞ at time t. In particular, for gravitationally
bound orbits (E < 0), we make the following replacement
in Eq. (10):

δðr − rtrajÞ ¼ Θð−EÞΘðE − EminÞ
X
t0
0

δðt0 − t00Þ
jvrj

¼ Θð−EÞΘðE − EminÞ
t

2torb

δðt0Þ
jvrj

; ð17Þ

where

Emin ≡mMCP max ðΦeffðrÞ;Φeffðr0ÞÞ; ð18Þ

and the sum is over all roots t0 ¼ t00 that satisfy r ¼
rtrajðx0; v0; t00; tÞ and vr ¼ vrtrajðx0; v0; t00; tÞ. The step func-
tions enforce that the orbit is gravitationally bound and also
able to reach out to radius r. In the limit where the age of
the solar basin t is much longer than the orbital period, we
have expressed the sum over the roots in Eq. (17) as a
product of a single delta function times the number of
phase-space crossings t=ð2torbÞ, where torb is the time it
takes to get from the perihelion rmin to the aphelion rmax of
the orbit,4

torb ¼
Z

rmax

rmin

dr00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE=mMCP −Φeffðr00ÞÞ

p : ð19Þ

For general orbits, this must be calculated numerically
since the gravitational potential inside the Sun does not
scale as 1=r.
With the formalism outlined above, integrating Eq. (10)

then yields the total velocity phase space at time t for bound
orbits of energy E > Emin,

fðr; vr; vθÞ ¼
t
torb

Z
dr0

ðv00Þ2ðk−1Þ
v0r0

Qvðr0Þ
mMCP

Θðv02r0Þ; ð20Þ

where we have defined ðv00Þ2 ≡ ðv0r0Þ2 þ ðr0v0θ0Þ2. Note that
when integrating over r0, the solar production rate Qv only
has weight for radii within the solar interior, r0 < r⊙.
For any point x outside the Sun, the planar phase-space

distribution of Eq. (20) can be rotated azimuthally along the
axis between the center of the Sun and x, due to cylindrical
symmetry; thus, jxj ¼ r can be identified with the longi-
tudinal cylindrical coordinate z and rθ can be taken to be
the transverse radial cylindrical coordinate ρ. The perihe-
lion is constrained to be within the Sun where MCP
production can occur, i.e., rmin < r⊙. This upper bound
on rmin also bounds vθ from above, since larger vθ (and
hence larger l) strengthens the corresponding centrifugal
barrier in Φeff . As a result, the phase-space density tends to
be quite collimated along the radial direction in the limit
that r⊙ ≪ r. This can also be seen from the Heaviside step

4Note that we have ignored an additional term in Eq. (17) that
is only relevant for unbound orbits, E > 0. In this case, the
number of phase-space crossings is instead just equal to unity, so
that Eq. (17) is replaced by δðr − rtrajÞ ¼ ΘðEÞδðt0Þ=jvrj.
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function Θ in the integrand of Eq. (20), which enforces
ðv0r0Þ2 > 0; from the definition of v0r0 in Eq. (15), this is
equivalent to

v2ρ ¼ ðrvθÞ2 < ðvmax
ρ Þ2 ≡ v2r þ 2ðΦðrÞ −Φðr0ÞÞ

ðr=r0Þ2 − 1
: ð21Þ

Thus, far outside the Sun (r ≫ r0 ∼ r⊙), the transverse
velocity is constrained to be vρ ≪ vescðr⊙Þ, as expected.
In Fig. 4, we show the phase-space density from solar

production as a function of energy E and angular momen-
tum l for representative values of the MCP mass and
coupling. Along the dotted and dashed lines we also show
values of the perihelion rmin and aphelion rmax, which are
determined by l and E, respectively. We find that the
phase-space density is enhanced for more radial and deeply
bound orbits with aphelia closer to the Sun. We also note
that, as expected from Liouville’s theorem, for a fixed
choice of E and l, the phase-space density is independent
of position r, provided that rmin ≲ r≲ rmax and energy and
angular momentum are conserved.

The number density n is obtained by integrating Eq. (20)
over velocity. Switching variables from vr to E, this
corresponds to

nðr;tÞ¼ 2kπt
m2

MCP

Z
dr0Qvðr0Þ

Z
vmax
ρ

0

dvρvρ

×
Z

0

Emin

dE
t−1orb

h
E

mMCP
−Φðr0Þ

i
k−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

mMCP
−Φeffðr0Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

mMCP
−ΦeffðrÞ

q ; ð22Þ

where the energy integral is restricted to Emin ≤ E ≤ 0.
We can make further analytic progress by noting that
very far away from the Sun the orbits are approximately
radial, E=mMCP ≫ v2ρ, in which case the aphelion is
rmax ≃ −GM⊙mMCP=E ≫ rmin and the orbital time of
Eq. (19) is approximately

torb ≃ πGM⊙ð−mMCP=2EÞ3=2: ð23Þ

Also in this limit, the total orbital energy of a bound particle
at r is negligible compared to the gravitational potential
energy at production; the magnitude of E is bounded by
jEj < mMCPjΦðrÞj ≪ mMCPjΦðr0Þj. With these approxima-
tions, the integral over E and vρ in Eq. (22) are analytically
tractable, such that

n ≃ 2k−
5
2
3GM⊙t
mMCPr4

Z
d3x0 Qvðx0ÞjΦðx0Þjk−1

2: ð24Þ

We note that Eq. (24) agrees with the limiting form given
in Refs. [7,8].5 We have numerically checked that the
approximate expression in Eq. (24) underpredicts the local
density at Earth as determined from Eq. (22) by at most a
couple percent, making it both accurate and conservative.
We emphasize that the 1=r4 scaling of Eq. (24) is only valid
outside the Sun, and that the profile is flattened inside the
Sun; this means that the integrated number of MCPs
produced is finite and does not diverge as r → 0. Note
that this flattening of the density profile is purely a
consequence of classical orbital dynamics.
From the derivation outlined above, we can glean several

insights. First, the dependence on the velocity power-law
index k [introduced in Eq. (6)] primarily enters in the
spatial integral of Eq. (24). Since the solar potential is
Oð10−5Þ inside the Sun (see the right panel of Fig. 3),
production rates for processes with larger values of k are
suppressed. This can be interpreted as being due to the fact
that processes whose rates have steeper velocity scalings
are more penalized by the requirement that the velocity
of the particle not exceed the solar escape velocity. We also
see that compared to an unbound flux, which has a

FIG. 4. The momentum phase-space density fp of a fermionic
MCP solar basin for a mass and coupling ofmMCP ¼ 100 eV and
qMCP ¼ 10−16, as a function of orbital energy E and angular
momentum l. Note that fp is related to the velocity phase space f
by fp ≃ ð2π=mMCPÞ3ðf=4Þ [see the discussion near Eq. (25)].
The coupling qMCP has been chosen to be sufficiently small such
that fp ≪ 1 for the displayed values of E and l. In this case, the
phase-space density scales as fp ∝ q2MCP. For sufficiently large
couplings, the density saturates at fp ≃ 1 (see Sec. III B). Also
shown as dotted and dashed black contours are values of the
perihelion rmin and aphelion rmax., respectively. For large values
of jlj, the solar plasma mass is sufficiently small at radii larger
than rmin such that plasmon decay to MCPs is kinematically
forbidden.

5Note that these references use a slightly different convention
for the production rate, Q̃ ¼ 23=2πQv.
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geometrical 1=r2 density profile, the bound population is
more centrally concentrated with a 1=r4 profile due to the
steepness of the gravitational potential closer to the Sun.
Finally, from Eq. (22), we see that the integral over energy
E has the most support when E ∼mMCPΦðrÞ, indicating
that at a given radius r the density of bound particles is
dominated by those near their aphelia with velocities very
close to zero. This is a direct consequence of the fact
that bodies orbiting the Sun spend most of their time near
their aphelia.

B. Phase-space saturation from absorption

In the previous subsection, we assumed that the particles
emitted in the solar interior are not reabsorbed, such that the
phase-space density of Eq. (20) continues to grow linearly
with time t. This is valid provided that fp ≪ 1, where fp is
the momentum phase-space density, which in the non-
relativistic limit is related to the velocity phase-space
density f of Eq. (20) by

fpðrÞ ≃ ð1=gspinÞð2π=mMCPÞ3fðr; vr; vθÞ; ð25Þ

where gspin is the number of internal spin degrees of
freedom.
However, at sufficiently large densities, the absorption

of MCPs in the Sun can balance the rate of production,
preventing further density growth. For instance, as dis-
cussed in Refs. [7,8], for a solar basin consisting of axions
or dark photons, detailed balance implies that this satu-
ration point occurs once fp ∼ feq., where feq is the Bose-
Einstein equilibrium distribution at solar temperature
T⊙ ∼ 1 keV. However, as we now discuss, this argument
only applies to processes in which a single basin particle is
emitted and absorbed by interacting with the stellar
environment and hence cannot be applied straightforwardly
to models where the emission of a single dark sector
particle is forbidden, as is the case for MCPs.
The dominant production process arises from the decay

of a solar plasmon into a pair of MCPs, γ� → MCPMCP.
Depending on the MCP mass, one or both of the outgoing
states can be emitted nonrelativistically with a velocity
below the solar escape velocity. Energy-momentum con-
servation implies that the decay of a plasmon into two
nonrelativistic MCPs only occurs when the energy of the
plasmon is nearly equal to twice the MCP mass (i.e., just
above threshold). Plasmons only have this energy for a
narrow range of electron densities, corresponding to a thin
spherical shell within the solar volume. As a result, the rate
for pair-producing MCPs that both contribute to the solar
basin density is parametrically suppressed (by the volume
ratio of the thin shell and the total solar volume) compared
to decays that produce one nonrelativistic and one relativ-
istic particle in the final state. As we now show, this implies
that fp saturates very close to unity for fermionic MCPs
and well above unity for bosonic MCPs.

To see this explicitly, consider the evolution of the basin
phase-space density fp as described by the Boltzmann
equation, which schematically is of the form

_fp ∼ Cð1Þprodð1� fpÞ − Cð1Þabsfp þ Cð2Þprodð1� fpÞ2 − Cð2Þabsf
2
p;

ð26Þ

where the dot denotes a derivative with respect to time and

� correspond to bosonic/fermionic MCPs. Above, Cð1;2Þprod

and Cð1;2Þabs encapsulate all the factors dictating production or
absorption that do not directly depend on fp, where the
superscripts (1,2) denote whether the velocities of one
or both of the MCPs are below the solar escape velocity.
In the case that only a single MCP is nonrelativistic, the
other one is relativistic, which we denote with a phase-
space density f0p.
Equation (26) can be simplified by noting that produc-

tion requires an initial state thermal plasmon, Cð1Þprod ∝ fγ� ,
where the plasmon density fγ� is described by a Bose-
Einstein equilibrium distribution at temperature T⊙. On the

other hand, the absorption coefficient Cð1Þabs is suppressed by
the small phase space of the relativistic solar flux of MCPs,

Cð1Þabs ∝ f0p ≪ fγ� . As a result, the absorption of one non-
relativistic MCP along with one relativistic MCP is

subdominant to the time-reversed process, Cð1Þabs ≪ Cð1Þprod.
For the remaining terms in Eq. (26) corresponding to two
nonrelativistic MCPs, we can factor out the plasmon phase-
space density, in which case detailed balance yields

Cð2Þprod

Cð2Þabs

¼ fγ� ð2mMCPÞ
1þ fγ�ð2mMCPÞ

; ð27Þ

where fγ� is evaluated at an energy of twice the MCP mass.
With these simplifications, the saturation density of the
MCP solar basin is determined by setting _fp ¼ 0 in
Eq. (26) and solving for fp. We find that fp saturates near

fpðbosonÞ ≃
Cð1Þprod

Cð2Þprod

fγ� ð2mMCPÞ ≫ 1 ð28Þ

for bosonic MCPs and

fpðfermionÞ ≃ 1 −
Cð2Þprod

Cð1Þprod

1þ fγ� ð2mMCPÞ
fγ� ð2mMCPÞ

≃ 1 ð29Þ

for fermionic MCPs, where we used that production of a
single nonrelativistic MCP is much more likely than the

emission of two nonrelativistic MCPs (Cð1Þprod ≫ Cð2Þprod).
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The above argument demonstrates that, unlike models
of singly produced basin particles, as considered in
Refs. [7,8], the stellar basin density of pair-produced
particles saturates at much larger values, i.e., once the
phase-space occupancy fp is nearly or highly degenerate,
for fermions or bosons, respectively. We note that for
bosonic MCPs, the timescale to obtain fp ≳ 1 can be much
shorter than the age of the Solar System, at which point the
density begins exponentially growing to its final saturated
value. A precise calculation of the rate of exponential
growth and the saturation density for bosonic MCPs is
beyond the scope of this paper. We leave a detailed
exploration to future work [22]. For the remainder of this
study, we therefore mostly focus on the case of fermionic
MCPs and self-consistently incorporate the effect of solar
absorption by imposing the upper bound fp ≲ 1. The
corresponding upper bound on the number density n can
be evaluated by integrating over the basin phase space. As
noted in the previous subsection, the occupied phase space
is limited to lie within the interval jvr;ρj≲ vmax

r;ρ where
vmax
r ≃ vescðrÞ and vmax

ρ ∼ ðr0=rÞvescðr0Þ [see Eq. (21)].
Taking fp ≃ 1 and four spin degrees of freedom, the
integrated number density for fermionic MCPs is thus
bounded by n≲ nsat., where the saturation density is

nsatðrÞ ≃
m3

MCP

π2
vescðrÞhðvmax

ρ Þ2iV⊙
∝

1

r5=2
; ð30Þ

and the angle brackets denote an average over the solar
volume, weighted by the differential production rate
dn=d3x0.
We conclude this section by briefly commenting on a

possible modification to the arguments detailed above. In
particular, our analysis has assumed that the basin phase
space from solar production remains unperturbed over the
solar lifetime. However, as discussed in Refs. [7,8], it is
possible that gravitational interactions with other planets,
such as Earth and Jupiter, may perturb the orbits of MCPs
on timescales shorter than the age of the Solar System.
Such interactions can significantly modify the phase-space
density of Sec. III A for aphelia larger than rmax ∼ 1 A:U.
In fact, such effects may gravitationally eject bound
particles over a timescale shorter than the total age of
the Solar System. The results of Ref. [31], which inves-
tigated the ejection time of primordial dark matter that
became gravitationally bound to the protosolar gas cloud,
were argued by Ref. [8] to conservatively imply a solar
basin lifetime longer than half the total age of the Solar
System. Furthermore, in the scenario under consideration
here, the phase-space distribution is very different from that
of Ref. [31] and our MCP basin is continually replenished
on the relatively short timescales relevant for phase-space
saturation even in the event of particle ejection from the
basin. We do not incorporate a careful analysis of such
effects since this requires a dedicated numerical simulation

matched to the distinct initial conditions of the solar basin
and including the effects of Pauli blocking. Instead, we take
the basin lifetime to be ∼τ⊙ and follow the approach of
Refs. [7,8] by bracketing the range of possible effects from
planetary encounters on the phase-space structure. For
instance, if the initial radial orbits are completely isotrop-
ized due to gravitational interactions, then we can deter-
mine the maximum density by integrating fp ≃ 1 but now
over 0≲ v ≲ vescðrÞ, such that

nsatðrÞ ≃
2m3

MCP

3π2
vescðrÞ3 ∝

1

r3=2
: ð31Þ

Note that the radial profile of the saturation density nsat in
either Eq. (30) or (31) differs from the profile of the
unsaturated density n ∝ r−4 in Eq. (24).

IV. PRODUCTION INSIDE THE SUN

In this section, we present the results for the solar
production rate Qv of nonrelativistic MCPs with power-
law index k ¼ 1 [see Eq. (6)], which is needed in Eqs. (20)
and (22) to calculate the phase-space and number density
of the solar basin. MCPs lighter than the typical plasma
frequency in the solar interior, ωp ∼ 100 eV, can be
produced efficiently. Such MCPs are dominantly produced
from the decay of plasmons, which are electromagnetic
excitations in the plasma with altered in-medium dispersion
relations and polarization vectors compared to the photon
in vacuum [18,19]. Plasmon decay into particle-antiparticle
pairs is the dominant production channel since this process
is lower order in αem compared to, e.g., Compton or
bremsstrahlunglike reactions, is lower order in qMCP than
photon fusion, and is not suppressed by a low initial state
number density as would be the case for, e.g., eþe−
annihilation [19].
The rate for plasmon decay depends on the spin of the

MCP (spin-0 or spin-1=2) and the polarization of the
plasmon (transverse or longitudinal). Although our primary
focus in this work is on fermionic MCPs, for completeness
we also show the production rates for scalar MCPs below.
In Appendix A, we present the detailed derivations for
each of these cases. The nonrelativistic production rate for
transverse plasmon decay to either fermionic or scalar
MCPs is approximately

Qvðγ�TÞ ≃
αemq2MCP

4π3
mMCPω

4
pfγ� ðω2

p=2mMCPÞ

×

8<
:

�
1 − 4m2

MCP
ω2
p

�
1=2 ðfermionÞ

Oðv02Þ ðscalarÞ;
ð32Þ

where fγ� ðωγ� Þ ¼ 1=ðeωγ�=T⊙ − 1Þ is the plasmon phase-
space distribution. Note that transverse plasmon decay to
scalar MCPs is parametrically suppressed by the small

ASHER BERLIN and KATELIN SCHUTZ PHYS. REV. D 105, 095012 (2022)

095012-10



MCP velocity, analogous to the well-known p-wave
suppression in the nonrelativistic limit of spin-1 mediated
annihilations of scalar particles [32]. Alternatively, the
decay rate for longitudinal plasmons is given by

Qvðγ�LÞ ≃
αemq2MCP

4π3
m3

MCPωpfγ� ðωpÞ

×

8<
:

2mMCP

�
1 − 2mMCP

ωp

�
1=2 ðfermionÞ

1
2
ωp

�
1 − 2mMCP

ωp

�
3=2 ðscalarÞ:

ð33Þ

From Eqs. (32) and (33) we take note of a few important
insights. First, for scalar MCPs, longitudinal plasmon
decay always dominates over transverse plasmon decay,
due to the different v0 dependence. Second, for fermionic
MCPs, the hierarchy between the different plasmon polar-
izations depends on the particular value of the mass; for
fermionic MCP masses near the kinematic threshold,
mMCP ∼ ωp=2, the decay of transverse plasmons is slightly
enhanced compared to longitudinal plasmon decays due to
the larger power of ωp in the former case. However, due to
the argument of the plasmon phase-space distribution fγ� in
Eq. (32), transverse plasmon decay to fermionic MCPs is
exponentially suppressed compared to the decay of longi-
tudinal plasmons for masses well below the kinematic
threshold, mMCP ≪ ω2

p=T⊙.
The results for the terrestrial number density of fermionic

MCPs are shown in Fig. 5 as a function of the MCP mass
and the coupling fixed to qMCP ≃ 2 × 10−14, the largest
allowed by existing constraints in this mass range [18,19].
The bound density can exceed the relativistic flux of
emitted MCPs by orders of magnitude for mMCP ∼ 100 eV.

V. DIRECT DEFLECTION

So far, we have discussed the formation of a gravita-
tionally bound population of MCPs. In this section, we
focus on the prospects for detecting this population. Direct
deflection was recently proposed in Ref. [20] as a new
technique to detect feebly interacting ambient particles that
couple to long-ranged forces, such as electromagnetism.
Although this setup was originally introduced to detect sub-
GeV dark matter, it also straightforwardly applies to the
gravitationally bound population of MCPs that is discussed
in this work.
A basic schematic of the setup is shown in Fig. 1. An

approximately spatially uniform charge-symmetric MCP
population passes into a shielded region, with an electric
field Edef oscillating at angular frequency ω. This region is
referred to as the deflector. Inside the deflector, the MCPs
are subject to an electric force that slightly separates
positively and negatively charged particles, resulting in
oscillating charge densities ρ� that propagate out of the
deflector and into a spatially distinct shielded detection

region. In the detector, these MCP charge densities induce a
small oscillating electromagnetic field Esig at the same
frequency ω, which can be measured using an electric field
pickup antenna coupled to a resonant LC circuit tuned to
the same frequency.
The detailed spatial dependence of ρ� is directly

sensitive to the MCP velocity distribution. However, the
typical magnitude of the electric field signal is largely
independent of these considerations, provided that the
deflector and detector regions are not too far spatially
separated. In particular, for an optimally configured exper-
imental setup, these millicharge densities source an electric
field that scales according to Eqs. (4) and (5) as

Esig ∼m2
D;MCPφdefRdefeiωt; ð34Þ

whereφdef andRdef are the electric potential and spatial size of
the deflector, respectively, mD;MCP ≃ eqMCP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr⊕Þ=TMCP

p
is the MCP contribution to the photon Debye mass, and
TMCP ≃mMCPhv2i=3 is the effective MCP temperature.
In Sec. VA, we give an overview of the basic formalism

needed to precisely calculate the deflector-induced MCP

FIG. 5. The local number density nðr⊕Þ of fermionic MCPs
bound to the Solar System as a function of the MCP mass mMCP,
assuming the basin lifetime is comparable to the solar age of
4.5 Gyr. The MCP coupling is fixed to be qMCP ≃ 2 × 10−14, the
largest value allowed by existing constraints for such masses
[18,19]. The solid and dashed dark blue lines show the number
density contributed by transverse and longitudinal plasmon decay
according to Eq. (24), which ignores Fermi statistics. The light blue
band indicates the point at which the density saturates due to Fermi
statistics; hence, the MCP density never actually exceeds this
saturation density. The top and bottom of this band corresponds to
a basin phase space that is maximally or minimally isotropized by
gravitational encounters, respectively (see Sec. III B). For com-
parison, we also show the relativistic flux of solar emitted MCPs
(dotted orange) and the local dark matter density assuming that it
consists of particles of mass mMCP (dot-dashed black).
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charge density ρ�. Additional details are provided in
Appendix B. As shown below in Eq. (35), ρ� is directly
related to the MCP velocity distribution in the laboratory
frame. We evaluate the charge density for a basin phase
space that is either minimally or maximally isotropized by
gravitational interactions in Secs. V B and V C, respec-
tively. We find that the signal electric field Esig roughly
matches the parametric form of Eq. (34) in either case.

A. Millicharge overdensities

In the following subsections, we adopt the notation
where vectors with tildes, such as x̃, denote positions with
respect to the center of the deflector apparatus, in order to
differentiate from the heliocentric notation of the previous
sections. As derived in Ref. [20], the induced MCP charge
overdensity at position x̃ with respect to the center of the
deflector is approximately

ρ�ðx̃;tÞ≃−
ðeqMCPÞ2
mMCP

eiωt

×
Z

dv
Z
Vdef

d3x̃0fðr⊕;vv̂þv⊕Þ
ρdefðx̃0Þ
jx̃− x̃0j ; ð35Þ

where ρdef is the amplitude of the oscillating deflector
charge density (which drives the electric field Edef ), the
integral over x̃0 is over the volume of the deflector Vdef,
v⊕ ≃ −10−4 ˆ̃x is Earth’s orbital velocity, and we have
defined the unit vector v̂≡ ðx̃ − x̃0Þ=jx̃ − x̃0j. The integral
over the basin velocity v includes the velocity distribution
fðr; vÞ of Eq. (20) boosted to Earth’s frame. For concrete-
ness, we will consider a deflector as depicted in Fig. 1,
consisting of an oscillating point charge Qdefeiωt located at
the origin jx̃j ¼ 0 surrounded by a grounded spherical
shield of radius Rdef , which possesses a corresponding
surface charge. This deflector charge density configuration
is thus expressed as the sum of these two components, i.e.,

ρdefðx̃Þ ≃Qdef

�
δ3ðx̃Þ − 1

4πR2
def

δðjx̃j − RdefÞ
�
; ð36Þ

such that the total integrated charge of the deflector and
shield is zero.
As discussed in Ref. [20], the derivation of Eq. (35)

assumes that the period of a deflector oscillation (∼1=ω) is
long compared to the time it takes for a typical MCP to
traverse the deflector, i.e., ω ≪ v⊕=Rdef Throughout, we
will work in this limit because for ω≳ v⊕=Rdef the induced
millicharge overdensity ρ� is parametrically suppressed, as
it averages out to zero when the oscillations are too rapid.
Equation (35) also relies on various other assumptions; in
addition to the previous criterion, the above expression
holds provided that the MCP population can be treated as a
continuum (i.e., many particles per experimental volume so
that Poisson fluctuations can be ignored) that is weakly

perturbed by the deflector6 (eqMCPφdef ≪ TMCP) and that
backreaction effects from self-interactions are negligible
[20]. The latter criterion requires that the MCPs do not
screen the deflector charge density ρdef on length scales
smaller than the deflector itself, i.e., ðm0

DÞ−1 ≫ Rdef , where
m0

D ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πα0nðr⊕Þ=TMCP

p
is the dark photon Debye mass.

For the range of α0 considered in this work, this is satisfied
(see Sec. VI).
We mentioned above that this formalism relies on

approximating the MCP population as a continuum whose
properties depend on orbital dynamics and on the deflection
from the experimental apparatus. However, for sufficiently
light MCPs, quantum mechanical effects are important once
the de Broglie wavelength of the MCP particle becomes
macroscopic. In order to investigate when such a transition
between classical and quantum behavior occurs, we note that
the Euler equation of classical fluid mechanics can be
applied to the quantum regime if an additional pressure
term is included, in the form of the Madelung equation (see,
e.g., Ref. [33]). The analysis above is unmodified provided
that the force from this quantum pressure term is negligible
compared to the electromagnetic force of the deflector, i.e.,
eqMCPmMCPEdef ≫ 1=R3

def . For a driven deflector of field
strength Edef ∼ 10 kV=cm over a region Rdef ∼ 1 m, the
classical limit corresponds tomMCP≫meV×ð10−17=qMCPÞ.
As we will show in Sec. VD, the proposed deflection setup
is sensitive to MCP masses and couplings that do indeed
reside in this classical regime.
Furthermore, the effect of Pauli blocking does not enter

into the formalism above, even though for sufficiently
large couplings the phase-space occupancy of fermionic
MCPs is expected to be nearly degenerate (as discussed in
Sec. III B). This is a consequence of time-reversal sym-
metry, which implies that two MCPs from initially distinct
regions of phase space cannot propagate along trajectories
such that they end up at the same point in phase space after
passing through the electric field of the deflector; if this was
possible, then the time-reversed classical trajectory would
not be deterministic.
As an aside, note that for a MCP velocity distribution

that is isotropic in Earth’s frame (such as a lab-frame
Maxwellian distribution), then Eq. (35) simplifies to

ρ�ðx̃; tÞ ≃ −m2
D;MCPφdefðx̃Þeiωt ðisotropicÞ; ð37Þ

6We note that the signal persists for couplings larger than this
perturbative limit, although the calculation is less tractable since it
cannot be estimated to leading order in perturbation theory, as was
done in Ref. [20]. For the experimental parameters adopted in this
work, the perturbative criteria holds for most of the parameter
space shown in Fig. 2, except for a small region corresponding to
qMCP ≳ 10−14 × ðmMCP=eVÞ. We note, however, that since the
reach only mildly depends on the strength of the deflector electric
field as qMCP ∝ E−1=4

def (see Sec. V D), the region over which this
weak-coupling approximation holds could be enlarged without
significantly effecting the projected sensitivity.
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where φdef is the electric potential of the deflector.7 Note
that this is not the case here; the MCP solar basin does not
corotate with Earth’s orbit, and so the velocity distribution
is anisotropic in the lab frame. Regardless of this differ-
ence, motivated by the form of Eq. (37), we define the
constant

ρðDebyeÞ� ≡ −
ðeqMCPÞ2nðr⊕Þ

mMCPv2⊕

Qdef

4πRdef
; ð38Þ

which serves as a useful comparison to our numerical
results in Secs. V B and V C below.

B. Unperturbed velocity distribution

In this and the following subsections, we explicitly
evaluate the induced MCP charge density ρ� for two
different basin phase-space distributions. We choose a
coordinate orientation such that the axis running from
the Sun to the Earth is along theþz̃ direction and the orbital
motion of the Earth is chosen to lie along the −x̃ direction.
To begin, let us assume that the basin phase space is

unperturbed by gravitational or hidden sector interactions,
such that Eq. (20) accurately describes the local MCP
velocity distribution. We can gain some analytic insight by
first roughly approximating Eq. (20) as a purely radial
distribution (with no velocity support in the transverse
directions) that is uniformly flat below the local escape
velocity, so that the velocity distribution in the solar
frame is

fðr⊕; vÞ ≃ nðr⊕Þ
δðvxÞδðvyÞ
2vescðr⊕Þ

Θðvescðr⊕Þ − jvzjÞ: ð39Þ

Using Eq. (39) in Eq. (35), the millicharge overdensity ρ�
can be evaluated analytically (see Appendix B for more
details). Figure (6) shows the total contribution to the
amplitude of the MCP charge density ρ�ðx̃Þ in the x̃ − ỹ

plane at z̃¼0, normalized by ρðDebyeÞ� as defined in Eq. (38).
We find that the driven point charge Qdef of the deflector

[corresponding to the first term of Eq. (36)] induces a MCP
surface charge density in the region ỹ ¼ 0 and x̃≳ jz̃j that
is parametrically of size

σðpointÞ� ∼ −
ðeqMCPÞ2nðr⊕Þ

2mMCPv2⊕
Qdef : ð40Þ

This MCP surface charge density is shown as the red region
of Fig. 6. This component of the induced MCP charge

density sources an electric field E ∼ σðpointÞ� , in agreement
with Eq. (34).
The driven spherical shell of the deflector [correspond-

ing to the second term of Eq. (36)] induces a MCP charge
density in the region x̃ > 0 and jỹj ≤ Rdef that is para-
metrically of size

ρðshellÞ� ∼
ðeqMCPÞ2nðr⊕Þ

4mMCPv2⊕

Qdef

Rdef
: ð41Þ

This contribution to the MCP charge density is shown as
the blue region of Fig. 6. A uniform charge density of this
magnitude over a length scale comparable to the deflector

size sources an electric field E ∼ ρðshellÞ� Rdef . Although this

contribution is of opposite sign compared to that of σðpointÞ� ,

the distinct spatial dependence of σðpointÞ� and ρðshellÞ� implies
that a shielded detector could be placed in a particular
location to measure either contribution individually.
Furthermore, since this is only a mild cancellation, in
most regions the total induced MCP charge density sources
an electric field comparable in magnitude to Esig ∼
jσðpointÞ� j ∼ jρðshellÞ� jRdef ∼ ðeqMCPÞ2nðr⊕ÞQdef=ðmMCPv2⊕Þ,
consistent with the generic expectation of Eq. (34).
These results relied on approximating the basin velocity

distribution using the simple delta function and top-hat
parametrization of Eq. (39). This vastly simplified the
evaluation of the integrals needed to compute the MCP
charge density in Eq. (35). We have explicitly checked
numerically that these approximations accurately describe
to withinOð10Þ% the MCP charge densities using the exact
form of the unperturbed velocity distribution in Eq. (20).

C. Perturbed velocity distribution

As mentioned previously, perturbations to the MCP
phase space may arise via gravitational perturbations from
planetary encounters. If the timescales associated with
these effects are short compared to the age of the Solar
System, the velocity distribution at Earth is expected to
differ qualitatively from Eq. (20). For a strongly isotropized
velocity distribution, we model it as a Gaussian in the
solar frame,

fðr⊕; vÞ ≃
nðr⊕Þ

π3=2σ2⊥σ==
e−ðv2xþv2yÞ=σ2⊥e−v

2
z=σ2== ; ð42Þ

where the velocity dispersions σ⊥ and σ== in the direction
perpendicular (x̃ and ỹ) and parallel (z̃) to the heliocentric
radial direction, respectively, are taken to be independent.
At the level of this Gaussian approximation, we have
ignored the fact that Eq. (42) unphysically populates phase
space above the solar escape velocity vescðr⊕Þ ∼ 10−4.
However, because the deflection signal is enhanced for
the more slowly moving MCPs in the distribution,

7Note that Eq. (37) is analogous to how a SM photon mass mγ
modifies Gauss’s law, i.e., ∇ · E ¼ ρ −m2

γφ. In this sense,
mD;MCP is playing the role of the photon mass in the limit that
the MCP velocity distribution is isotropic in the lab frame.
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including particles in the tails of the Gaussian amounts to
introducing a small error when calculating ρ�. We will
enforce that the dispersion satisfies σ⊥; σ== ≲ vescðr⊕Þ to
ensure that this error is negligible.
To model a maximally isotropized distribution, we take

the isotropic limit of Eq. (42), i.e., σ⊥ ≃ σ== ≃ vescðr⊕Þ,
whereas a less perturbed distribution is modeled with a
smaller perpendicular dispersion, σ⊥ < σ== ≃ vescðr⊕Þ. We
then numerically calculate the resulting MCP charge
density using Eq. (35). The results are shown for both a
moderately isotropized and maximally isotropized velocity
distribution in the left and right panel of Fig. 7, respectively.
As in Fig. 6, ρ�ðx̃Þ is plotted in the x̃ − ỹ plane and is

normalized by ρðDebyeÞ� . In the left and right panel of Fig. 7,
we have set σ⊥=σ== to 0.25 and 1, respectively, fixing σ== ≃
vescðr⊕Þ in both cases.
In the left panel of Fig. 7, the charge density distribution

consists of a narrow positive region of ρ�ðx̃Þ=ρðDebyeÞ�
(shown in shades of red, orange, and yellow) centered
near the x̃ − z̃ plane at ỹ ¼ 0, along with a region of

negative ρ�ðx̃Þ=ρðDebyeÞ� (shown in shades of blue) away
from ỹ ¼ 0 but still roughly within −Rdef ≲ ỹ≲ Rdef for
0 < x̃≲ few × Rdef . This spatial dependence with respect to
the deflector origin and the Earth velocity v⊕ is qualitatively
similar to the minimally isotropized case shown in Fig. 6,
which indicates that ρ�ðx̃Þ quickly approaches the unper-
turbed limit as σ⊥ drops further below σ==.
In the right panel of Fig. 7, the charge density distribu-

tion consists nearly entirely of a large positive region of

ρ�ðx̃Þ=ρðDebyeÞ� for x̃ > 0 surrounded by a region of

negative ρ�ðx̃Þ=ρðDebyeÞ� that is much smaller in magnitude.
Note that the magnitude of the charge density falls off much
more rapidly as a function of r̃ ≫ Rdef for σ⊥=σ== ¼ 1

(right panel) than for σ⊥=σ== ¼ 0.25 (left panel). As
discussed in Ref. [20], this can be understood from the
relative size of the velocity dispersion in either case, which
can be thought of as “diluting” the induced charge densities
in the ỹ − z̃ plane as they are “dragged” downwind starting
from the interior of the deflector shield to large positive x̃
(≫ Rdef .). In both panels, the charge densities are of the

expected size, i.e., jρ�ðx̃Þ=ρðDebyeÞ� j ∼ 10−1 − 10, and hence
source electric fields consistent with the generic expect-
ation of Eq. (34).

D. Experimental setup and reach

The MCP charge densities discussed in the previous
subsections oscillate at the frequency of the deflector ω
and propagate at a speed v⊕ in the þx̃ direction [20].
The MCP constituents are extremely feebly coupled,
with a mean free path many orders of magnitude larger
than the size of the experimental setup. Thus, they
can easily penetrate a shielded detector region placed
“downwind” of the deflector. For concreteness, we take
the detector shield to be of the same size as the deflector
but centered on the point ðx̃; ỹ; z̃Þ ¼ ð2Rdef ; 0; 0Þ
(referring to the coordinates of Figs. 6 and 7). Upon
penetrating the detector shield, the oscillating charge
densities of MCPs source oscillating electromagnetic
fields of the same frequency inside the quiet detection
region.
As mentioned above, this setup is assumed to operate in

the quasistatic limit, ω≲ v⊕=Rdef ≃ 30 kHz × ð1 m=RdefÞ,
because this maximizes the signal strength. The optimal
detector that can resonantly respond to such frequencies is
an LC circuit because its resonant frequency is not directly
dictated by its geometric size. The electric field sourced
by the MCP charge density capacitively couples to the
circuit, driving a small voltage at ω. If the resonant
frequency of the circuit is tuned to the same frequency,
then the small MCP-induced electric field rings up over
many cycles inside the circuit, as quantified by the large
quality factor, QLC ≫ 1, of the detector. Similar technol-
ogy has been implemented by the AURIGA experiment
[34–37] to detect gravitational waves, which utilized a
thermal-noise limited LC circuit operating at kilohertz
frequencies with a quality factor of QLC ∼ 106. This
technology will be further developed by Dark Matter
(DM) Radio [38,39] to search for ultralight coherent
bosonic dark matter; a future version of the existing
prototype is expected to ultimately achieve an inductively
coupled thermal-noise limited setup with QLC ∼ 107 and a
detection volume of Vdet ∼ 10 m3 [40].

FIG. 6. The amplitude of the MCP charge density ρ�ðx̃Þ (red
and blue regions) in the x̃ − ỹ plane at z̃ ¼ 0, in units of ρðDebyeÞ�
[see Eq. (38)], for a MCP velocity distribution that is un-
perturbed by gravitational interactions [see Eq. (39)]. The green
region is the shielded deflector, with a driven charge configu-
ration consisting of a point charge and grounded spherical shell.
The heliocentric radial direction is along the z̃ axis and the
orbital motion of the Earth is along the negative x̃ axis. The
point charge of the deflector induces the red region, which
consists of a MCP surface charge density at ỹ ¼ 0, as in
Eq. (40). The spherical shell of the deflector induces the
oppositely charged blue regions, as in Eq. (41).
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The signal power is given by

Psig ≃QLCω

Z
Vdet

d3x̃jEsigj2; ð43Þ

where Esig is the electric field sourced by ρ� inside the
detection region and the integral is performed over the
detector volume Vdet. We evaluate Psig numerically for
the charge densities ρ� discussed in Secs. VA–VC. We
assume that the detector shield is grounded; in this case,
image charges need to be included when evaluating jEsigj,
which we evaluate in the quasistatic limit.
We parametrize the integral of Eq. (43) as

Z
Vdet

d3x̃jEsigj2 ≡ 1

15
ηðRdefρ

ðDebyeÞ
� Þ2Vdef ; ð44Þ

which defines the dimensionless constant η. For a charge
distribution that is spatially uniform inside the detector

shield with magnitude ρðDebyeÞ� [see Eq. (38)], then Gauss’s
law gives η ¼ 1. More generally, η ≠ 1 accounts for the
fact that the MCP charge density ρ�ðx̃Þ is not spatially
uniform throughout the detector volume. The precise
value of η depends on the velocity distribution of the
MCPs. Evaluating Esig numerically, we find that η ∼
Oð10−2Þ–Oð10Þ where the lower and upper part of this

range corresponds to a maximally and minimally isotrop-
ized velocity distribution, respectively. In our sensitivity
projections, we accordingly modify the particular value of η
depending on the form of the velocity distribution that is
assumed. Note that although this range of η spans 3 orders
of magnitude, Psig ∝ ηq4MCPn

2 ∝ ηq8MCP implies that this
only amounts to a factor of ∼2 variation in the sensitivity
to qMCP.
Stray electromagnetic fields can be efficiently attenuated

by the detector shield. In our projections, we assume that
the experimental reach is limited by thermal Johnson-
Nyquist noise. This is the case for existing light-shining-
through-wall experiments, as in, e.g., Ref. [41], and is
expected to dominate over other forms of noise, such as
fluctuations intrinsic to the readout amplifier, in future LC
circuit setups such as DM Radio [38–40]. The signal-to-
noise ratio is given by SNR ¼ Psig=Pnoise, where Pnoise is
the noise power arising from thermal fluctuations. The
phase and frequency of the oscillating electric field signal is
determined from the deflector and the Earth velocity v⊕.
Hence, if the deflector phase and frequency are monitored
throughout the experimental run, this allows for a meas-
urement of the signal amplitude, as opposed to power. If the
signal phase can be determined in this manner, then Pnoise ≃
TLC=tint in the SNR, where TLC is the temperature of the
LC circuit and tint is the total integration time of the
experiment [42]. In our sensitivity projections, we will

FIG. 7. The amplitude of the MCP charge density ρ�ðx̃Þ (red/orange/yellow and blue regions) in the x̃ − ỹ plane at z̃ ¼ 0, in units of

ρðDebyeÞ� [see Eq. (38)], for a MCP velocity distribution that is slightly (left) or maximally (right) isotropized by gravitational encounters,
corresponding to relative velocity dispersions of σ⊥=σ== ¼ 0.25 and σ⊥=σ== ¼ 1, respectively, fixing σ== ¼ vescðr⊕Þ [see Eq. (42)]. The
green region is the shielded deflector, with a driven charge configuration consisting of a point charge and grounded spherical shell. The
heliocentric radial direction is along the z̃ axis and the orbital motion of the Earth is along the negative x̃ axis. The red/orange/yellow and

blue regions correspond to positive and negative values of ρ�ðx̃Þ=ρðDebyeÞ� , respectively. Along the dashed gray lines, ρ�ðx̃Þ crosses
through zero.
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assume that this is the case. We note, however, that if
instead the deflector phase is not measured, then
Pnoise ∼ TLC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=ðQLCtintÞ

p
; for the experimental parame-

ters adopted here, e.g., ω ∼ 10 kHz, tint ∼ 1 yr, and
QLC ∼ 107, this corresponds to a relative increase in noise
power of ∼200, translating to a factor of ∼2 degradation in
sensitivity to millicharge qMCP.
The estimated sensitivity of a direct deflection setup,

corresponding to SNR > 1, is shown in Fig. 2 compared to
existing constraints (shaded gray) for fermionic MCPs
and various assumptions concerning the evolution of the
solar basin (solid and dashed lines). In each case, we
assume that Vdef ¼ Vdet ¼ 10 m3, ω ¼ 10 kHz, Edef ≡
Qdef=ð4πR2

defÞ ¼ 10 kV=cm, QLC ¼ 107, TLC ¼ 10 mK,
and tint ¼ 1 yr. In constructing the solid lines and dashed
lines, we assume that phase-space mixing from gravita-
tional perturbations occurs on timescales shorter or longer
than t⊙, respectively.
As mentioned in Sec. VA, the deflection experimental

approach relies on the MCPs being approximated as a
continuum. In Fig. 2, we enforce that n ≳ 0.1 cm−3×
ð10 m3=VdefÞ, such that Poisson fluctuations in the relative
number of MCPs in the deflector/detector are less than
∼10−3. For a MCP solar basin that saturates the upper limit
from Fermi statistics in Sec. III B, this imposes a lower
bound on the MCP mass, corresponding to the leftmost part
of the sensitivity contours for each case shown in Fig. 2.
From the discussion above, we can understand the

differences between the two sensitivity projections shown
in Fig. 2. As illustrated in Fig. 7 and discussed further in
Sec. V C, the signal electric field from a MCP population
that is significantly isotropized by gravitational encounters
is suppressed compared to an unperturbed population,
assuming comparable basin densities. As a result, a direct
deflection setup has a reduced reach to a perturbed basin
(compared to one that is unperturbed) for MCP masses near
the upper part of the mass range shown in Fig. 2. However,
for smaller masses, a direct deflection setup is sensitive to
couplings qMCP such that Fermi statistics suppresses the
MCP solar production rate at times before t⊙. As discussed
in Sec. III B and evident in Fig. 5, the saturation density nsat
is larger for a basin phase space that is significantly
perturbed by gravitational interactions. Hence, for a per-
turbed basin, the deflection setup has an enhanced sensi-
tivity to small MCP masses, significantly extending the
range of masses that satisfy the continuum criterion of the
previous paragraph, n≳ 0.1 cm−3, by nearly an order of
magnitude.
As discussed above, the sensitivity of direct deflection to

a solar basin of MCPs depends on the timescale of
gravitational interactions compared to the age of the
Solar System. Under various assumptions, the projected
sensitivity can explore viable couplings roughly an order of
magnitude smaller than existing constraints for masses
ranging from Oð100Þ meV to Oð100Þ eV. The most

stringent existing constraints in this mass range are shown
in gray in Fig. 2. In dark gray, we show the limit derived
from the standard solar model; a sizeable relativistic solar
flux of MCPs would unacceptably modify the observed
helioseismology and solar neutrinos [19]. Limits derived
from energy loss from horizontal branch and red giant stars
are shown in light gray. These are comparable to those
derived from solar observations, but are sensitive to larger
masses [18].

VI. POSTPRODUCTION INTERACTIONS

In our analysis above, we assumed that once produced in
the solar interior, MCPs do not significantly interact to the
present day. However, for strong enough interactions with
themselves or normal matter, this is no longer the case. In
the remaining sections, we show that the validity of this
assumption depends on the details of the particle physics
model. Self-interactions, for instance, may or may not
significantly modify the basin density. Regardless, as we
show below, over a large region of parameter space, such
dynamics have little effect on the claims of the previous
sections.

A. Interactions with the Standard Model

For strong enough interactions with the solar environ-
ment, MCPs may become trapped, or at least significantly
perturbed, in their journey through the solar interior. In this
section, we evaluate the impact of such processes. For
instance, MCPs may Coulomb scatter off of the solar
plasma. In the nonrelativistic limit, the transfer cross
section for fermionic MCPs scattering off of electrons is
given by [43]

σT ≃
16πα2emq2MCPm

2
MCP

m4
D⊙

; ð45Þ

where mD⊙ ≃ 6 keV is the photon’s Debye mass in the
solar core. Note that mD⊙ is much greater than the typical
momentum transfer involved in the scattering, mMCPve,
where ve ∼ few × 10−2 is the characteristic solar electron
velocity. The MCP mean free path is then λmfp ∼
v0=ðveneσTÞ, where ne ∼ 1026 cm−3 is the electron density
in the solar core and ve ∼ few × 10−2 is the thermal
electron velocity. In the parameter space of interest, the
mean free path is larger than the solar radius by many
orders of magnitude,

λmfp ∼Oð1013Þr⊙ ×

�
qMCP

10−14

�
−2
�

mMCP

100 eV

�
−2
; ð46Þ

such that MCPs do not scatter in the solar interior over the
entire age of the Solar System.
MCPs can also couple to the solar magnetic field, which

is B⊙ ∼ 1 G near the Sun. However, its influence on the
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MCP trajectories is model dependent. For instance, if
MCPs can be thought of as coupling directly to SM
electromagnetism, their gyroradius in the solar vicinity is

rg ∼
mMCPv0

eqMCPB⊙
: ð47Þ

Such motion does not significantly perturb the MCP
trajectories if rg is larger than the coherence length of
the magnetic field. If we take that length to be its maximum
possible size, i.e., the solar radius r⊙ ∼ 106 km, this
criterion is satisfied for

qMCP ≲Oð10−14Þ ×
�

mMCP

100 eV

�
; ð48Þ

where we have taken the MCP velocity at production v0 ∼
10−3 to be comparable to the escape velocity near the
Sun. If the solar magnetic field was perfectly coherent
over r⊙ (which is an unphysical and overly conservative
assumption), then MCPs with charges above the value in
Eq. (48) would be efficiently confined to the solar interior,
as their trajectories would simply follow the solar magnetic
field lines. However, the dynamics and structure of the solar
interior’s magnetic field is far from understood at a detailed
level [44]. Hence, it is not unreasonable to consider the
possibility that an O#1ð1Þ fraction of MCPs are able to
escape the solar interior even for gyroradii much smaller
than the solar radius.
Alternatively, if MCPs do not directly couple to the

SM photon, but instead couple to SM currents through a
light kinetically mixed dark photon as outlined in Sec. II,
then they only effectively couple to normal electromagnetic
fields on distance scales smaller than the Compton wave-
length of the dark photon; on greater distance scales, the
interactions are exponentially screened. As a result, MCPs
only couple to the solar magnetic field sourced within the
A0 Compton wavelength. Approximating the electromag-
netic currents responsible for the solar magnetic fields as
spatially uniform (which is unphysical and maximally
conservative), the effective magnetic field that such
MCPs couple to is suppressed by m−1

A0 =r⊙ for dark photons
shorter ranged than the solar radius (mA0 ≫ r−1⊙ ∼
10−15 eV) [45]. In this scenario, instead of Eq. (48), we
find that the solar magnetic field does not perturb the MCP
trajectory if

qMCP ≲Oð10−14Þ ×
�

mA0

10−15 eV

��
mMCP

100 eV

�
: ð49Þ

Hence, in the parameter space of interest, MCPs of mass
mMCP ∼ 100 meV or ∼100 eV are not perturbed by the
solar magnetic field for mA0 ≳ 10−12 or mA0 ≳ 10−15 eV,
respectively. Note that this is consistent with the previous
requirement that MCP interactions are long ranged on the

scale of terrestrial experiments, which requires mA0 ≲
10−8 eV (see Sec. II). Throughout this study, we assume
that the dark photon is long ranged compared to a detector
on Earth yet significantly massive to screen the effect of the
Sun’s magnetic field, leaving a more detailed investigation
to future work. It is worth noting, however, that for values
of qMCP near the upper bound in Eq. (49), repeated
encounters with the Sun’s and Earth’s magnetic fields over
the age of the Solar Systemmay lead to modifications to the
solar basin phase space, analogous to the gravitational
perturbations discussed in Sec. III B.8

Although not the focus of this section, it is worthwhile to
estimate the effects of Earth’s terrestrial magnetic and
electric fields on the local density of the MCP basin, since
the calculation is nearly identical.9 The strength of Earth’s
magnetic field is comparable to the Sun’s. However, Earth’s
radius is smaller by a factor of ∼10−2 and the characteristic
velocity of the basin near Earth is smaller by a factor
of 10−1. Hence, for long-ranged MCP interactions, the
requirement that Earth’s magnetic field does not perturb
the local density of the MCP solar basin is weaker by an
order of magnitude in qMCP compared to the previous
upper bounds.
Unlike the Sun, the Earth’s atmosphere is an efficient

insulator, thereby allowing a large potential difference of
∼1 MV between the ground and ionosphere on Earth,
separated by ∼50 km ∼ ð10−11 eVÞ−1. This acts as either a
potential barrier or as a well to the local MCP basin,
depending on the sign of the millicharge. Approximating
the terrestrial electric charge configuration as a spherical
capacitor, the effect of Earth’s atmospheric voltage does
not effect the local MCP density provided that
eqMCPe−mA0=ð10−11 eVÞ × 1 MV≲mMCPv2, i.e.,

qMCP ≲ few × 10−13 × emA0=ð10−11 eVÞ
�

mMCP

100 eV

�
; ð50Þ

where we have set the MCP velocity at Earth v ∼ 10−4 to be
comparable to the local solar escape velocity. Hence, we
find that in a small fraction of the low-mass parameter

8Although the heliospheric magnetic field is much weaker far
from the Sun (e.g., B⊙ ∼ 1 nT at r ∼ 1 A:U:), this is partially
compensated by the smaller MCP velocity and larger B-field
coherence length at r ∼ 1 A:U:. Demanding that the gyroradius
near Earth is much greater than ∼1 A:U: yields qMCP ≲ 10−10 ×
ðmA0=10−15 eVÞðrcoh=A:U:Þ, where rcoh ≲ several × A:U: is the
coherence length of the heliospheric magnetic field [46]. Thus, for
massive dark photons in the parameter space of interest, the orbital
trajectories of MCPs with aphelia near Earth are not significantly
perturbed by the large scale heliospheric magnetic field; for much
longer-ranged dark photons or for MCPs with much larger aphelia,
such magnetic fields may have a more significant effect on the
resulting phase space of the solar basin.

9In our analysis, we ignore the effect of Earth’s gravitational
field, since near Earth the total gravitational potential is domi-
nated by the solar component.
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space shown in Fig. 2, for long-ranged interactions, the
atmospheric voltage can significantly accelerate and decel-
erate MCPs of opposite charge, leading to a charge
separation below sea level. We note that for MCPs that
are truly charged under electromagnetism, terrestrial charge
separation of MCPs leads to an enhancement in the local
MCP density underground. In this case, the larger under-
ground MCP density means that a direct deflection setup
placed beneath the Earth’s surface would have increased
sensitivity compared to one on the surface. Note that the
direct deflection signal is not very sensitive to the net
charge of the ambient MCP population (i.e., the expected
signals from a charge-symmetric and a charge-asymmetric
population are approximately the same up to factors of
order unity). If, on the other hand, such interactions are
mediated by a light A0, terrestrial charge separation does not
continue to today, since the influx of MCPs quickly shields
the dark electric field sourced by the Earth (note that the
density required for this is not particularly high because
MCP interactions with the atmospheric voltage are sup-
pressed by the kinetic mixing parameter compared to MCP
interactions with the population of shielding MCPs). For
these reasons, we can ignore the effect of Earth’s atmos-
pheric voltage on the direct deflection signal considered in
this work.

B. Self-annihilation

Our discussion so far has focused mainly on processes
that contribute positively to the total basin density, spe-
cifically the solar production rate in Secs. III and IV.
However, hidden sector processes can deplete this MCP
population over timescales comparable to the age of the
Solar System, t⊙ ≃ 4.5 × 109 yr, such as annihilations of
MCPs into dark photons A0 or SM photons γ. Note that for
MCP interactions mediated by a massive kinetically mixed
dark photon, MCPs solely couple to the A0. While MCPs
additionally annihilate to the SM photon when the dark
photon is massless, annihilations to A0 final states typically
dominate since eqMCP ≪ e0 for ϵ ≪ 1, leading to a relative
enhancement of this channel of order ðe0=eqMCPÞ4 ∼ 1=ϵ4.
For MCP interactions generated by means other than
kinetic mixing [47], annihilations directly to photon pairs
may be the leading process, but regardless are suppressed
by a factor of ðeqMCPÞ4, rendering them negligible in the
parameter space of interest. Hence, in this section, we
solely focus on the potential implications of annihilations to
an ultralight kinetically mixed dark photon.
The cross section for MCP annihilations to dark photons

is approximately

σannvrel ≃ πα02=m2
MCP; ð51Þ

where vrel is the relative velocity of the MCP pair. Bound
state formation via A0 emission is also possible if the dark
photon is sufficiently long-ranged, but the corresponding

rate is suppressed compared to that of perturbative anni-
hilations by multiple powers of α0=vesc [48], which is much
smaller than unity in the parameter space of interest.
Self-annihilations act as a sink for MCPs, and one could

naively determine whether the sink is relevant for depleting
the local density by comparing the rate for annihilation at
the location of Earth, nðr⊕Þσannvrel, to the rate of replenish-
ment of MCPs, _nðr⊕Þ=nðr⊕Þ ∼ 1=t for a basin that has not
yet saturated (see Sec. III B). However, this estimate would
be neglecting the fact that, along their orbits, MCPs see
dramatic variations in the basin density that must be
accounted for. Let us assume that the MCP solar basin
is unaffected by annihilations and self-consistently show
that under this assumption there exists a region of param-
eter space where each particle experiences fewer than one
annihilation, on average, over the solar lifetime t⊙.
For a given radial orbit rðt; E;lÞ, we integrate the

interaction rate of a particle along the radial trajectory
throughout the history of the Solar System, such that the
expected number of annihilations experienced by such a
test particle of energy E and angular momentum l is

NannðE;lÞ ≃ σannvrel

Z
t⊙

0

dt t _n½rðt; E;lÞ�

≃ σannvrelh _n½rðt; E;lÞ�itorbit
t2⊙
2
; ð52Þ

where the angle brackets denote a time average over a
single orbit and we conservatively integrate over the entire
lifetime of the Sun, even though many particles in the basin
have been present for only a fraction of that lifetime. In the
first equality of Eq. (52) we have approximated nðtÞ ≃ _nt
(self-consistently assuming that the presence of the basin
does not affect the production rate) and in the second
equality we have made use of the large separation of
timescales to average over the short orbit timescale torbit ∼
month (for orbits with aphelia near the Earth) before
integrating over the long solar timescale t⊙ ∼ Gyr. In other
words, we approximate the MCP density as being constant
during any individual orbit, and since _n at any given
location is independent of time we simply average the
appropriate density along the orbit and separate that from
the slow filling of the solar basin.10

Note that we cannot approximate the solar potential as
ΦðrÞ ∝ 1=r for portions of the orbit inside the Sun since
ΦðrÞ is approximately independent of r for r≲ 0.1r⊙ (see
the rightmost panel of Fig. 3). Therefore, we cannot assume
the scaling _n ∝ r−4 of Eq. (24) [assuming this would result
in Nann being highly sensitive to the choice of the minimum

10More formally, for a function fðtÞ evolving periodically
over a characteristic timescale τ that is much less than some
long integration time T such that T=τ is some large integer,R
T
0 dtfðtÞt ≃

R
τ
0 dtfðtÞðτ=2Þþ

R
2τ
τ dtfðtÞð3τ=2Þþ���þR

T
T−τdtfðtÞ

ðð2T−τÞ=2Þ¼ðτ=2ÞðR τ
0 dtfðtÞÞ

PT=τ−1
n¼0 ð2nþ1Þ¼ðT2=2ÞhfðtÞiτ.
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cutoff radius when regulating the integral of Eq. (52)].
Instead, we adopt the full form for ΦðrÞ when evaluating _n
via Eq. (22) and when numerically solving for the orbit
rðt; E;lÞ (assuming no dissipation of energy). These
are then used to evaluate the time-averaged quantity
h _n½rðt; E;lÞ�itorbit in Eq. (52). Numerically, we find that,
for orbits with aphelia near Earth such that E ≃mMCPΦðr⊕Þ,
a good approximation is h _n½rðt; EÞ�itorbit ∼ 107 × _nðr⊕Þ.
Using this in the result above, we then find

Nann ∼ 107 × nðr⊕Þσannvrelt⊙: ð53Þ

Annihilations do not modify the MCP density at r⊕
if Nann ≲ 1.
We note that Eq. (53) is most likely extremely

conservative in that it overestimates the likelihood for an
A0-coupled MCP to annihilate over a solar lifetime. In
particular, we have made various simplifying assumptions
that maximize the predicted self-interaction rate. For
instance, we assumed that the MCP has been gravitation-
ally bound over the entire age of the Solar System, its orbit
is purely radial, the aphelia of its orbit is near Earth,
and that the basin density is unsaturated by absorption and
is not affected by Pauli blocking, i.e., that the density scales
as n ∝ 1=r4 instead of n ∝ 1=r5=2 or n ∝ 1=r3=2 (see
Sec. III B). We have also neglected additional dynamics,
such as the possibility that particles on orbits with smaller
aphelia annihilate before orbits with larger aphelia, thus
depleting the density of target scatterers at small radii without
directly modifying the density near Earth. Each of these
assumptions strengthens the likelihood for self-interactions to
occur. For instance, MCPs on orbits with smaller eccentricity
(due to nonzero angularmomentum at production or late-time
gravitational interactions) or larger aphelia spend more time
in the less dense environment at larger radii, thus softening the
self-interaction rate. For purely circular orbits, the numerical
prefactor in Eq. (53) [and below in Eq. (57)] should be set to
unity, such that the predicted interaction rate is reduced by
several orders of magnitude.
By substituting Eq. (51) into Eq. (53) and taking

Nann ≲ 1, we place a conservative mass-dependent upper
bound on the MCP self-coupling α0. In doing so, we
conservatively adopt the largest MCP densities considered
in this work, which from Fig. 5 corresponds to nðr⊕Þ ∼
105 cm−3 formMCP ∼ 50 eV and qMCP ∼ 10−14. In this case,
we find that α0 ≲ 10−14. For smaller masses, the annihilation
cross section grows as σannvrel ∝ 1=m2

MCP, while the density
n ∝ Qv=mMCP falls faster than m2

MCP for fermionic MCPs
(see Sec. IV). Hence, this upper bound on α0 is significantly
less restrictive for fermions much lighter than ∼50 eV.

C. Self-scattering

In addition to facilitating the annihilation processes dis-
cussed in the previous subsection, a light dark photon also

mediates self-scattering of MCPs. In the weakly coupled/
Coulomb (α0mA0 ≪mMCPv2rel), classical (mMCPvrel≫mA0 ),
and perturbative/Born (mA0 ≫ α0mMCP) regimes, the limiting
formfor theviscosity cross section11 ofMCPelastic scattering
is [43,49,50]

σVvrel →
32πα02

m2
MCPv

3
rel

log

�
mMCPvrel

mA0

�
: ð54Þ

As can be seen by comparing Eq. (54) to Eq. (51) in the
previous subsection, MCP self-scattering is parametrically
enhanced in the low velocity limit by∼v−3rel ≫ 1 compared to
annihilations. The estimate of the number of scattering events
experienced by a MCP on a radial orbit is similar to that in
Eq. (52) in the previous subsection. However, the enhance-
ment of the scattering rate in larger density environments at
smaller radii is tempered by the corresponding larger veloc-
ities, which suppresses the scattering cross section.
Following the procedure outlined in Ref. [49], the rate

at which MCP self-scattering leads to significant energy
transfer between a test particle with velocity vtraj with
respect to the Sun (note this is distinct from vrel., the relative
velocity between MCPs in the basin) and the rest of the
basin population is

Γscatt ≃
n

4v2traj
hσVv3relibasin; ð55Þ

where the angle brackets denote an average over the basin
phase space. We conservatively adopt a basin phase-space
distribution that is unperturbed by gravitational encounters,
as in Sec. III. In evaluating the basin average of Eq. (55),
the approximate form for σV in Eq. (54) is not valid over the
entire velocity range. Instead, we use the complete set of
semianalytic expressions of Ref. [49], which is especially
important in regulating the rate at small velocities.
Similar to Eq. (52), the scattering rate ΓscattðrÞ allows us

to determine the number of scatters experienced by a test
particle of energy E and angular momentum l along an
orbit rðt; E;lÞ with velocity vtrajðt; E;lÞ,

NscattðE;lÞ ≃
Z

t⊙

0

dtΓscatt½rðt; EÞ�

≃
	

_n½rðt; E;lÞ�
vtrajðt; E;lÞ2

hσVv3relibasin



torbit

t2⊙
8
: ð56Þ

Numerically, we find that, for most orbits with aphelia near
Earth, Eq. (56) is well approximated by

11As discussed in Ref. [49], the viscosity cross section is the
relevant quantity for heat conductivity, is well defined for the
scattering of either nonidentical or identical MCPs, and prefer-
entially weights scattering that significantly modifies orbital
trajectories.
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Nscatt ∼ 104 × nðr⊕ÞðσVvrelÞ⊕t⊙; ð57Þ

where for concreteness we have chosen mA0 ¼ 10−8 eV
since this corresponds to the largest value of mA0 that we
consider in this work (we are not particularly sensitive to
this choice since σV only has a mild logarithmic depend-
ence on mA0 ), and ðσVvrelÞ⊕ is defined to be the simple
limiting form of the scattering cross section in Eq. (54) with
vrel → vescðr⊕Þ. MCPs with aphelia near Earth do not
scatter over the lifetime of the Solar System if Nscatt ≲ 1.
Comparing Eqs. (54) and (57) to Eqs. (51) and (53) of the
previous subsection, the number of scatters per annihilation
is Nscatt=Nann ∼ ð32=vescðr⊕Þ3Þð104=107Þ ∼ 1010. Hence,
appropriately rescaling the bound on α0 from the previous
subsection, we find that Nscatt ≲ 1 corresponds to
α0 ≲ 10−18. As discussed previously in Sec. II, in theories
involving light MCPs, small values of α0 are in fact
motivated from considerations of stellar energy loss.
Equation (57) and the resulting upper bound on α0 are

extremely conservative for the same reasons as discussed
in the previous subsection for the MCP annihilation rate.
However, unlike annihilations, the probability for MCP
self-scattering to efficiently transfer momentum between
particles is additionally suppressed by the fact that
Pauli blocking is significant for a nearly degenerate basin
phase space (see Sec. III B). Hence, we expect a more
accurate treatment of scattering that includes Pauli blocking
to significantly relax these upper bounds on α0.
Furthermore, for a basin that saturates Fermi-Dirac statis-
tics, one should replace t⊙ in Eq. (57) with the correspond-
ing saturation timescale tsat, which is parametrically much
smaller. For a wide range of masses centered around
mMCP ∼ 0.1 eV, tsat=t⊙ ∼ 10−4–10−2, where the range cor-
responds to the unperturbed and isotropized phase-space
distributions, respectively (as can be seen by comparing the
solid blue line and light blue band in Fig. 5). Accounting
for this effect relaxes the upper bound on α0 by 1–2 orders
of magnitude. Additionally, for a maximally isotropized
phase-space distribution, the large prefactor of Eq. (57)
should be significantly reduced, as circular orbits are less
likely to scatter by a factor of 10−4 due to the much lower
MCP densities encountered by particles on these orbits. In
total, we find that all of the effects described above are
likely to weaken the upper bound on α0 by several orders of
magnitude at least.
To access the largest millicharge couplings considered

in this paper, i.e., qMCP ∼ 10−14, the upper bound of α0 ≲
10−18 corresponds to a lower bound on the kinetic mixing
parameter of ϵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αem=α0
p

qMCP ≳ 10−6. For dark photon
masses of 10−15 ≲mA0 ≲ 10−8 eV, limits derived from
measurements of the cosmic microwave background
exclude values greater than ϵ ∼ 10−6 for mA0 ∼ 10−11 eV
and ϵ ∼ 10−7 for mA0 ∼ 10−8 eV [27,28]. Therefore, the
dark photon masses considered in this work with the

requisite couplings would naively appear to be excluded.
However, from the discussion above, we do not expect such
bounds to severely restrict the range of mA0 we consider.
A more realistic calculation that includes multiple effects
that parametrically suppress the self-scattering rate (Pauli
blocking, short phase-space saturation timescales, orbital
isotropization) would loosen the bound on α0 such that
much smaller (unconstrained) values of ϵ would lead to the
same values of the millicharge considered in this work.
We have determined the size of α0 for which most MCPs

self-scatter over a solar lifetime. As an aside, we may now
ask, what happens if such scattering does occur? Although
scattering does not directly alter the total number of MCPs
in the solar basin, once energy is efficiently transported
throughout the basin, the MCP population enters a state of
hydrostatic equilibrium. An investigation of these dynam-
ics is presented in Appendix C, where we show that the
phase-space properties of a basin in hydrostatic equilibrium
are significantly modified, potentially resulting in a reduc-
tion of the local MCP density.

VII. DISCUSSION AND CONCLUSIONS

We have outlined a new approach to detect millicharged
particles emitted from the Sun. In a small part of phase
space, such particles are produced with sufficiently small
velocities to remain gravitationally bound to the Solar
System over billions of years, constituting a solar basin
[7,8]. Traditional direct detection techniques, such as
searches for elastic scattering that deposits more than
1 eV of kinetic energy onto a target, are incapable of
detecting such a population due to the small mass and
velocities of millicharged particles in the solar basin.
We have shown that a helioscope consisting of a direct

deflection setup is a promising avenue to overcome these
difficulties. Applied to this scenario, the experimental
approach involves inducing collective disturbances into
the background of millicharged particles which can be
resonantly detected with precision sensors [20]. Crucially,
this setup lacks a classical kinematic threshold, since the
ability to induce collective effects into the basin is para-
metrically enhanced by the small velocity of gravitationally
bound particles. Our study indicates that a resonant detector
consisting of an∼meter-sized cryogenic LC circuit, similar
to the one being developed for the experiment DM Radio
[38–40], holds promising sensitivity to millicharged par-
ticles in the eV–keV mass range and with couplings well
below existing lab-based or astrophysical constraints. This
same setup can operate concurrently as a search for sub-
GeV dark matter [20]; a setup optimized for detecting a
millicharged solar basin and pointing along the direction
of the basin wind would still be sensitive to millicharged
dark matter.
In this work, we have for the first time determined the

phase-space density of the basin that is imparted onto it
from production processes in the Sun. This is needed for a
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detailed understanding of the experimental signal discussed
here and more generally is useful for a complete under-
standing of stellar basins. For instance, a detailed under-
standing of the phase space has allowed us to identify
new dynamics associated with millicharge solar basins (and
related models in which solar production requires at least
two dark sector particles in the final state). In this case,
unlike solar basins consisting of, e.g., axions or dark
photons [7,8], the role of solar absorption is greatly
diminished. As a result, the rate for pair production of
light bosons may continue to grow exponentially until the
phase-space occupancy of the solar basin is highly degen-
erate. We leave a more detailed investigation of this effect
and its potential consequences to future work [22].
Although we have focused solely on solar production in

this study, it may also be worth pursuing the detection
of the terrestrial basin of millicharged particles that are
produced in Earth’s core and remain bound through Earth’s
gravitational and/or electromagnetic fields. Millicharge
basins surrounding other stellar systems, such as neutron
stars and white dwarfs, may also have interesting impli-
cations since their densities are enhanced by the steeper
gravitational potential and strong trapping ability of astro-
physical electromagnetic fields.
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APPENDIX A: SOLAR PRODUCTION OF
MILLICHARGED PARTICLES

In this appendix, we derive the plasmon decay rate
function Qvðγ�T;LÞ, which was previously discussed in
Sec. IV. The MCP luminosity per unit solar volume Q is
related to the matrix element M for plasmon decay by

Q ¼ 2

Z
dΠγ�dΠMCPdΠMCPjMj2ð2πÞ4

× δ4ðpMCP þ pMCP − pγ� ÞωMCPF ; ðA1Þ

where we have included a factor of 2 to account for the
sum of both MCP and MCP populations (since MCPs are

produced symmetrically, the energy loss rate is the same for
antiparticles, denoted symbolically with an overline/bar).
The four-momentum of species i ¼ γ�;MCP;MCP is

denoted as pμ
i ¼ ðωi;kiÞ and jMj2 is the squared matrix

element for γ� → MCPMCP averaged over the initial and
final spins. Above, the Lorentz invariant phase-space
elements are defined as

dΠi ≡ gi
ð2πÞ3

d3ki

2ωi
; ðA2Þ

where gi are the number of internal degrees of freedom.
The phase-space distribution functions fi ¼ fiðωiÞ are
incorporated in Eq. (A1) as

F ≡ fγ� ð1� fMCPÞð1� fMCPÞ − fMCPfMCPð1þ fγ� Þ;
ðA3Þ

where � corresponds to bosonic/fermionic MCPs, respec-
tively. We will assume that the phase-space density of
MCPs is initially small, i.e., fMCP; fMCP ≪ 1, such that we
can approximate F ≃ fγ� ðωγ� Þ ¼ 1=ðeωγ�=T⊙ − 1Þ.
Let us now proceed by evaluating the expression in

Eq. (A1). Since we will be interested in the production of
gravitationally bound MCPs, we work in the nonrelativistic
limit by taking kMCP ≃mMCPv0, where v0 is the MCP
velocity at the solar radius where it is produced (the other
MCP of the emitted pair is produced relativistically, as
implied by energy-momentum conservation). We find

dQ
dv0

≃
gγg2MCP

16π3
m2

MCPv
0
Z

∞

0

dkγ�Θð1 − j cos θ̄jÞ kγ�
ωγ�

F jMj2;

ðA4Þ

where gMCP ¼ gMCP ¼ 2ð1Þ for fermion (scalar) MCPs,
Θ is the Heaviside step function,

cos θ̄≡ 2ωγ�ωMCP − ðω2
γ� − k2γ� Þ

2kγ�kMCP
ðA5Þ

is the cosine of the angle between kγ and kMCP, and p
μ
MCP is

the four-momentum of the nonrelativistic MCP.
Equation (A4) is the general expression for nonrelativ-

istic production of MCPs from plasmon decay. To further
evaluate the integral over kγ� in Eq. (A4), we need to
calculate the matrix element M as well as the dispersion
relation between ωγ� and kγ� , which depend on the spin of
the MCP (spin-0 or spin-1=2) and the polarization of the
plasmon (transverse or longitudinal). Here, we explicitly
evaluate Eq. (A4) for each of these cases.
Let us first consider the decay of transverse plasmons

to MCPs. In a nonrelativistic plasma such as the Sun, the
transverse plasmon dispersion relation is approximately

HELIOSCOPE FOR GRAVITATIONALLY BOUND MILLICHARGED … PHYS. REV. D 105, 095012 (2022)

095012-21



ω2
γ� ≃ k2γ� þ ω2

p, where the plasma mass squared is
ω2
p ¼ 4παne=me þOðT=meÞ. With this dispersion rela-

tion, Eq. (A4) simplifies to

dQðγ�TÞ
dv0

≃
g2MCP

8π3
m2

MCPv
0
Z

∞

ωp

dωγ�Θð1 − j cos θ̄jÞF jMj2:

ðA6Þ
For the production of nonrelativistic MCPs, the Heaviside
step function in Eq. (A6) only has weight in a small
region of phase space. In particular, in the nonrelativistic
limit we find that ωγ� is restricted to an interval charac-
terized by a central value ωγ� ≃ ω2

p=2mMCP and width
Δωγ� ≃ 2ωγ�v0ð1 − 4m2

MCP=ω
2
pÞ1=2. Since Δωγ� ≪ ωγ� for

v0 ≪ 1, the integral in Eq. (A6) can be approximated
analytically, yielding

Qvðγ�TÞ ≃
g2MCP

32π4
mMCPω

2
pð1 − 4m2

MCP=ω
2
pÞ1=2

× fγ� ðω2
p=2mMCPÞjMj2; ðA7Þ

where Qv is defined as in Eq. (6) with index k ¼ 1. In the
nonrelativistic limit, the spin-averaged squared matrix
element for transverse plasmon decay to a pair of fermionic

MCPs is jMj2 ≃ 4παemq2MCPωγ�mMCP [43]. Using this in
Eq. (A7) gives

Qvðγ�T → fermionicMCPsÞ

≃
αemq2MCP

4π3
mMCPω

4
pð1− 4m2

MCP=ω
2
pÞ1=2fγ� ðω2

p=2mMCPÞ:
ðA8Þ

Instead if the MCP is a scalar, we find that jMj2 ∝ v02 ≪ 1
in the nonrelativistic limit and therefore the rate is para-
metrically suppressed,

Qvðγ�T → scalarMCPsÞ ∝ v02: ðA9Þ

For the decays of longitudinal plasmons, the calculation
is similar to the previous one, except that the dispersion
relation isωγ� ≃ ωp. In this case, the step function in Eq. (A4)
enforces that kγ� is restricted to an interval characterized
by a central value kγ� ≃ωpð1−2mMCP=ωpÞ1=2 and width
Δkγ� ≃ 2mMCPv0. Equation (A4) can hence be evaluated
analytically such that

Qvðγ�LÞ ≃
g2MCP

32π4
m3

MCPð1 − 2mMCP=ωpÞ1=2fγ� ðωpÞjMj2:
ðA10Þ

In the nonrelativistic limit, the spin-averaged squared
matrix element for longitudinal plasmon decay to fermionic

MCPs is jMj2≃4παemq2MCPmMCPðωγ�=kγ� Þ2ðωγ� −2mMCPÞ
[43]. Using this in Eq. (A10) gives

Qvðγ�L → fermionicMCPsÞ

≃
αemq2MCP

2π3
m4

MCPωpð1− 2mMCP=ωpÞ1=2fγ� ðωpÞ: ðA11Þ

Instead, for scalar MCPs, the matrix element is jMj2 ≃
4παemq2MCPðωγ�=kγ� Þ2ðωγ� − 2mMCPÞ2, which yields

Qvðγ�L → scalarMCPsÞ

≃
αemq2MCP

8π3
m3

MCPω
2
pð1− 2mMCP=ωpÞ3=2fγ� ðωpÞ: ðA12Þ

APPENDIX B: MILLICHARGE OVERDENSITIES

In Sec. V, we discussed the MCP charge overdensities
sourced by the driven electric field of the deflector. In this
appendix, we now provide additional technical details
for the calculations of Sec. V. The general expression
for the induced MCP charge overdensity ρ� was provided
in Eq. (35). For a driven deflector charge configuration
consisting of a point charge surrounded by a grounded
spherical shield [as described by Eq. (36)], Eq. (35) can be
rewritten as

ρ�ðx̃; tÞ ≃ −
ðeqMCPÞ2
mMCP

eiωtQdefðIpointðx̃Þ þ Ishellðx̃ÞÞ; ðB1Þ

where we have defined

Ipointðx̃Þ≡
Z

dv
fðr⊕; v ˆ̃xþ v⊕Þ

jx̃j ;

Ishellðx̃Þ≡−
1

4πR2
def

Z
dv

×
Z
Vdef

d3x̃0fðr⊕; vv̂þ v⊕Þ
δðjx̃0j−RdefÞ

jx̃− x̃0j : ðB2Þ

The integrals Ipoint and Ishell correspond to the point charge
and spherical shell contributions of the deflector charge
configuration of Eq. (36).
At distances far from the deflector region (r̃ ≫ Rdef .), the

expression in Eq. (35) is analytically tractable. As shown
in Ref. [20], in this far-field limit ρ� ∝ R2

def , where
R2

def ¼ −Qdef R2
def is the charge radius squared of the

deflector, such that

ρ�ðx̃; tÞ

⟶
r̃≫Rdef −

ðeqMCPÞ2
6mMCP

R2
defe

iωt

Z
dv∇2

�
fðr⊕; v ˆ̃xþ v⊕Þ

r̃

�
:

ðB3Þ
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For an anisotropic velocity distribution given by a
Maxwellian shifted by the v⊕ wind, the integral over
velocity in the expression above is parametrically of size
∼ − 1=ðr̃3v2⊕Þ, leading to

ρ�ðx̃Þ ∼ −m2
D;MCPðQdef=4πRdefÞðRdef=r̃Þ3: ðB4Þ

The first two factors are the general expectation from
normal Debye screening. The 1=r̃3 falloff in the last factor
is the nontrivial modification arising from the fact that
the deflector point charge is surrounded by a conducting
shield of opposite charge, which screens the signal at large
distances.
Let us now discuss the explicit evaluation of the induced

MCP charge density ρ� for a few different basin velocity
distributions. For a basin velocity distribution that is
significantly isotropized by gravitational interactions, as
in Sec. V C, we adopt the Gaussian distribution of Eq. (42)
and evaluate Eq. (B2) numerically. Alternatively, for a
MCP velocity distribution that is unperturbed by gravita-
tional or hidden sector interactions, as in Sec. V B, we
approximate the velocity distribution in the lab frame using
Eq. (39), i.e., fðr⊕;vþv⊕Þ≃nðr⊕Þδðvx−v⊕ÞδðvyÞgzðvzÞ,
where we have defined

gzðvzÞ≡ 1

2vescðr⊕Þ
Θðvescðr⊕Þ − jvzjÞ: ðB5Þ

In this case, for the contribution from the shielded point
charge of the deflector, the integral over v in the first line of
Eq. (B2) can be evaluated analytically, yielding

Ipointðx̃Þ ¼
nðr⊕Þ
v⊕

gz

�
z̃
x̃
v⊕

�
Θðx̃ÞδðỹÞ: ðB6Þ

Since Eq. (B5) implies that gz ∼ 1=ð2vescðr⊕ÞÞ ∼ 1=ð2v⊕Þ,
from Eq. (B1) we see that this will contribute a MCP
surface charge density as shown in Eq. (40). Next, to
evaluate the contribution from the spherical shield of the
deflector, the second line of Eq. (B2) simplifies to

Ishellðx̃Þ ¼ −
ΘðRdef − jỹjÞ
4πRdefv⊕

nðr⊕Þ
Z

min ðx̃;
ffiffiffiffiffiffiffiffiffiffiffi
R2
def−ỹ

2
p

Þ

−
ffiffiffiffiffiffiffiffiffiffiffi
R2
def−ỹ

2
p

dx̃0

Z̃

×

�
gz

�
z̃þ Z̃
x̃ − x̃0

v⊕

�
þ gz

�
z̃ − Z̃
x̃ − x̃0

v⊕

��
; ðB7Þ

where we defined Z̃ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
def − ðx̃02 þ ỹ2Þ

p
. To estimate the

characteristic size of Ishellðx̃Þ, let us evaluate it at x̃ > Rdef .,
ỹ ¼ z̃ ¼ 0, approximating vescðr⊕Þ ∼ v⊕. This yields
Ishell ∼ −nðr⊕Þ=ð4Rdefv2⊕Þ. From Eq. (B1) we see that this
will contribute a MCP charge density as shown in Eq. (41).

APPENDIX C: HYDROSTATIC EQUILIBRIUM

Although, unlike annihilations, scattering is not a direct
energy sink, the distribution of the MCP population is
sensitive to such effects. If Nscatt: ≫ 1, then the solar
population of MCPs thermalizes, similar to the dynamics
considered in models of self-interacting dark matter in
which scattering equilibrates the innermost regions of
Galactic halos [51]. Upon thermalization, the basin MCP
population approaches hydrostatic equilibrium,

∇PMCP ≃ −mMCPn∇Φ: ðC1Þ

Approximating the MCPs as a nonrelativistic ideal gas of
temperature TMCPðrÞ, the pressure is PMCP ≃ TMCPn. Note
that we have assumed that the MCP basin does not saturate
Fermi-Dirac statistics, such that we can ignore additional
contributions to PMCP stemming from degeneracy pressure.
After settling into hydrostatic equilibrium, we additionally
model the MCPs as obeying the polytropic equation of state
PMCP ∝ nγ , where γ ≃ 5=3 is the corresponding polytropic
index for an isentropic monatomic gas. The ideal gas law
combined with the polytropic equation of state implies that
∇PMCP ≃ ð5=2Þn∇TMCP, which upon substituting into the
Euler equation in Eq. (C1) gives

TMCP ≃ −ð2=5ÞmMCPΦ: ðC2Þ

Note that this determines the mean MCP energy at radius r
to be hEMCPðrÞi ≃ −ð2=5ÞmMCPΦðrÞ, corresponding to a
typical speed that is below the gravitational escape velocity.
Regardless, MCPs in the high velocity tail of the Maxwell-
Boltzmann distribution have sufficient energy to escape,
leading to partial evaporation of the solar basin. We discuss
this below, but in order to first address the effects of
hydrostatic equilibrium that are independent of evapora-
tion, we first assume that the hydrostatic population is
efficiently bound to the Solar System.
The temperature profile of Eq. (C2) implies that the

resulting MCP number density scales as

n ∝ Φ3=2 ∝ r−3=2; ðC3Þ

for r≳ r⊙. Note that n falls less steeply in heliocentric
radius r compared to the initially unequilibrated density
nðiÞ ∝ r−4 (this latter scaling assumes that the phase space
has not yet been saturated, as discussed in Sec. III B). We
fix the proportionality constant in n by demanding that the
total number of particles are unchanged before and after
equilibration, i.e.,

Z
d3x n ¼

Z
d3x nðiÞ; ðC4Þ

where nðiÞ is the initial density before scattering occurs, as
in Eqs. (22) and (24). In order to analytically evaluate the
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integrals in the above expression, we take Φ ∝ 1=r. In this
case, the integrals diverge at small radii, which then
requires regulating the integrals by restricting r > rΦ.
We take this to be smallest radius at which the gravitational
potential of the Sun is well approximated by that of a
point mass, rΦ ∼ 0.1 × r⊙. We also note that the integral
over the hydrostatic density diverges at large radii.
We therefore regulate the integral by taking r < rhydro ∼
min ð107 A:U:; rscattÞ; 107 A:U: is the maximum distance
that a gravitationally bound particle could have traveled
over the lifetime of the Solar System and rscatt is defined to
be the radius of the last scattering surface, i.e., the point at
which a radially outward propagating MCP has an optical
depth smaller than unity (see, e.g., Chap. 5 of Ref. [52]),

Z
107 A:U:

rscatt

dr nðrÞσVðrÞ ∼ 1; ðC5Þ

where σV is the viscosity cross section (see Sec. VI C). In
this sense, rscatt corresponds to the point beyond which the
MCP basin is no longer in hydrostatic equilibrium; for
r > rscatt, the basin instead consists of free-streaming
particles, which we assume makes up a negligible fraction
of the total density compared to the hydrostatic population.
Following this procedure, if the initial unequilibrated

density is not yet saturated (nðiÞ ≲ nsat where nsat is defined
in Sec. III B), then nðiÞ ∝ r−4 and the hydrostatic MCP
density (normalized by the initially unequilibrated density)
at radius r is

nðrÞ
nðiÞðrÞ ≃

3

2

�
r

rscatt

�
3=2

�
r
rΦ

�
; ðC6Þ

where we have assumed rscatt: ≫ rΦ. Near Earth, the
relative change to the local density is therefore

nðr⊕Þ
nðiÞðr⊕Þ

∼
�
220 A:U:

rscatt

�
3=2

: ðC7Þ

Therefore, for a last scattering surface rscatt ≫ 200 A:U:,
thermalization leads to a suppression in the local MCP
density. Instead, note that if the phase-space density of the
basin has been gravitationally isotropized (as discussed in
Sec. III B) before self-scattering drives the population toward
hydrostatic equilibrium, then nðiÞ ∝ r−3=2 from Eq. (31).
Since this scaling is the same as that of the hydrostatic
population, we see that scattering does not alter the radial
profile of a gravitationally perturbed basin population.
As shown in Sec. VI, there is a wide range in which α0 is

sufficiently large such that scattering may modify the
distribution of the MCP solar basin, yet sufficiently small

such that annihilations do not deplete the overall density.
Note that when MCP self-scattering is classical and
perturbative such that the expression for σV in Eq. (54)
is valid, vrel ∼ vescðrÞ ∼ 1=r1=2 implies that nσV ∝ r1=2, i.e.,
the hydrostatic basin is more tightly coupled at larger radii.
As a result, we expect that rscatt ≫ 200 A:U: for
α0 ≫ 10−18, and thus from Eq. (C7) scattering may lead
to a strong suppression of the local density (n ≪ nðiÞ)
at Earth.
In order to simplify the analysis above, we ignored

scattering-induced evaporation of the thermalized popula-
tion of MCPs. The incorporation of this effect leads to an
additional suppression of the local MCP density after
reaching hydrostatic equilibrium, analogous to how
Jeans thermal escape in planetary atmospheres can deplete
the abundance of lighter elements [52]. This can be
modeled by estimating the fraction of MCPs in a
Maxwellian distribution at temperature TMCP that are
outwardly traveling at a speed above the solar escape
velocity at the last scattering surface r ∼ rscatt, since such
particles can travel into the collisionless regime of the
solar basin (r≳ rscatt.) and free stream out to infinity.
The outgoing flux of such MCPs is approximated as
jevap ≃ nðrscattÞhvout;escðrscattÞi, where hvout;escðrscattÞi is
the thermally averaged radially outward velocity of par-
ticles with sufficient energy to escape the Solar System at
the last scattering surface, i.e.,

hvout;esci ≃
Z
v>vesc

d3vgeqðvÞv cos θ

¼ v0ð1þ v2esc=v20Þ
2

ffiffiffi
π

p e−v
2
esc=v20

�����
r¼rscatt

: ðC8Þ

Above, geqðvÞ is the unit-normalized Maxwellian distribu-

tion with dispersion v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TMCPðrscattÞ=mMCP

p
and

vesc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM⊙=rscatt

p
is the escape velocity at the last

scattering surface. This outgoing flux depletes the solar
basin density at a rate of

_nevap ≃
jevap4πr2scatt
ð4π=3Þr3scatt

¼ 3n
2

ffiffiffi
π

p v0ð1þ v2esc=v20Þ
rscatt

e−v
2
esc=v20

�����
r¼rscatt

:

ðC9Þ

Since vesc=v0 is Oð1Þ for all radii, the evaporation rate is
only suppressed by the small value of nðrscattÞ and the large
value of rscatt. Hence, we expect evaporation of the hydro-
static population to be relevant.
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