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In recent years, a growing experimental program has begun to search for sub-GeV dark matter through
its scattering with electrons. An associated theoretical challenge is to compute the dark matter scattering
rate in experimental targets, and to find materials with large scattering rates. In this paper we point out that,
if dark matter scatters through a mediator that couples to electromagnetic charge, then electromagnetic sum
rules place limits on the achievable scattering rates. These limits serve as a useful sanity check for
calculations, as well as setting a theoretical target for proposed detection methods. Motivated by this
analysis, we explore how conductor-dielectric heterostructures can result in enhanced scattering rates
compared to bulk conductors, for dark matter masses <MeV. These effects could be especially important in
computing the scattering rates from thin-film targets, e.g., superconducting detectors such as super-

conducting nanowire single-photon detectors, transition edge sensors, or microwave kinetic inductance
detectors, for which the scattering rate could be enhanced by orders of magnitude at low enough dark
matter masses, as well as introducing or enhancing directional dependence.

DOI: 10.1103/PhysRevD.105.095009

I. INTRODUCTION

There is very strong evidence that some form of non-
relativistic, non—Standard Model matter makes up most of
the Universe’s matter density. While it is possible that this
“dark matter” (DM) only interacts gravitationally, in many
theories it possesses other interactions with Standard Model
(SM) particles, which may allow its detection in laboratory
experiments.

For fermionic dark matter candidates, or those for which
some symmetry prevents absorption, the leading interaction
with a SM target is usually via scattering. An extensive
experimental program searching for the scattering of heavy
(> nucleon mass) DM particles has been in progress for
decades, with the latest detectors operating at the multiton
scale [1]. So far, no convincing DM signals have been seen,
which—along with other observations—has ruled out some
of the most natural models for electroweak-scale DM.

Recently, there have been efforts to extend searches for
DM scattering to smaller masses (mpy << GeV). While
such DM particles would be produced in too large an
abundance via weak-scale thermal freeze-out [2], other
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early-Universe production mechanisms are possible,
including freeze-out via lighter mediators [3], or thermal
freeze-in [4—6]. The small energy depositions arising from
such scatterings mean that they would not be detectable in
standard direct detection experiments searching for weakly
interacting massive particles. Consequently, new experi-
ments with lower energy thresholds are required, and there
has been an extensive theoretical effort to identify suitable
target materials and detection strategies [7-22].

An important set of models is those in which the DM
scatters through a mediator that couples to electromagnetic
(EM) charge. This includes models with a “dark photon”
mediator, which are some of the best-motivated and least-
constrained possibilities for light DM [23]. In addition, for
models in which the mediator is not nucleophilic, it is often
the case that electrons dominate the target response, so the
scattering is very similar to that for a mediator which
couples to charge. Recently, it has been emphasized [24,25]
that, for these models, the scattering rate of nonrelativistic
DM particles in a material is controlled by the material’s
“energy loss function,” Im(—e;!), where ¢, is the longi-
tudinal dielectric permittivity [26]. Electromagnetism con-
strains the properties of this energy loss function; for
example, it must satisfy “sum rules” imposed by causality
[27,28], including

am(m) =30 -can) o
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for any wave number k. We point out that this
sum rule imposes nontrivial constraints on the maximum
DM scattering rate; parametrically, it shows that
[ < g mg2mpmUpm, Where gpy is the DM-mediator cou-
pling, g, is the electron-mediator coupling, and vy is the
typical DM velocity. We derive precise bounds in Sec. IT B.

In addition to serving as a sanity check, the sum-rule
constraint sets an obvious target—can we find materials
which come close to saturating the achievable scattering
rates? While this can be achieved with theoretically
simple dielectric functions—e.g., a plasmon pole at a
frequency close to the DM kinetic energy scale—finding
practical materials with the appropriate properties can be
difficult.

We discuss how conductor-dielectric heterostructures
could enable more optimized response functions, compared
to bulk materials, for DM masses <MeV. As well as
analyzing toy examples of periodic bulk heterostructures,
we analyze the very simple system of a single conductive
layer. This is the physical form taken by low-energy-
threshold detectors such as transition edge sensors
(TESs) [29-34], microwave kinetic inductance detectors
(MKIDs) [35-37], and superconducting nanowire single-
photon detectors (SNSPDs) [38-41], and we illustrate how
the scattering rates of low-mass DM in such devices may be
orders of magnitude larger than a naive prediction based on
the bulk material properties may suggest. While existing
detectors usually have energy thresholds that are too high
for such effects to be significant (e.g., the results reported in
[42]), they will become important for future devices.

In addition to modifying the overall scattering rate,
conductor-dielectric heterostructures also introduce pre-
ferred directions, even for isotropic constituent materials,
resulting in directional dependence of the DM scattering
rate. Since the DM velocity distribution at Earth is expected
to be anisotropic, this leads to modulation of the DM
scattering rate as Earth rotates over the course of the day.
By introducing (or, for anisotropic materials, potentially
enhancing) this modulation, heterostructures could help to
distinguish DM signals from other backgrounds.

We also comment on how, when the dynamics of nuclei
are important, the DM scattering rate for mediators which
do not couple to EM charge can exceed the sum-rule
bounds. This is true even for mediators which only couple
to electrons. We illustrate how scattering into acoustic
phonons may have significantly higher rates than into
optical phonons, for mediators with couplings not precisely
those of a dark photon.

II. DARK MATTER SCATTERING

Suppose that a DM state y with mass m, couples to a
(scalar or vector) mediator of mass m, with coupling strength
gy~ If the mediator couples to EM charges, with coupling
strength g, [i.e., £ D g, X, (ey*e — py* p) forits couplings to
electrons and protons], then as discussed in [24,25] the

scattering rate of sufficiently light, nonrelativistic DM in a
material will be given by

22 3 2

Fz29;(29e/ ci/c3 2k 221m< 1 > 2)
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where ¢; (w, k) is the material’s longitudinal permittivity in
response to charge density perturbations with frequency w
and wave vector k, and w; = k- v — k?/(2m,,) is the energy
loss corresponding to momentum transfer k from a DM
particle with velocity ». The integral is over momentum
transfers k such that w; > 0 (we are neglecting the temper-
ature of the medium, so up-scattering does not occur).
We rederive this result using in-medium effective propa-
gators in Appendix A, reviewing the approximations made.
Even if the mediator does not couple to the EM current, as
long as the electrons dominate the material response,
Eq. (2) will be a good approximation (we discuss this
further in Sec. VII). The rate I" in Eq. (2) corresponds to the
scattering rate for a single DM particle passing through
the medium—in a volume V, the total scattering rate
will be given by I'y,, = I'n, V, where n,, is the DM number
density.

A. EM sum rules

To make Eq. (2) more precise, we need to define e; more
carefully. We will suppose that we have some periodic
structure, and will consider its response to a small longi-
tudinal free charge density perturbation (p; = pj e~ i(@r—kx)
with associated current perturbation J, = JOIAce"'(“’"k'”,
where kJ, = wp,).! The “displacement” field is defined as
D = lAcp ¢/ik, and the effective (inverse) permittivity is
defined as the (position-dependent) linear response func-
tion for the electric field, E; = ei‘le It Then, we define the
effective longitudinal dielectric function as e7!'(w, k) =

IAc,-lAc jei‘jl, where the overline denotes spatial averaging.
At high enough frequencies, faster than the response
times of system’s matter, €7 ! (w, k) — 1. Consequently, via

the Kramers-Kronig relations, we have

1= 00 = [T P 0h) ()

(e7! is real at @ = 0, since its imaginary part is an odd
function of w). There are also other sum rules [27], as
reviewed in Appendix C, but this one will be the most
useful for our purposes. For a physical system in its ground
state, we should have Im(—¢7!(w)) > 0 for all frequencies,
corresponding to the system always absorbing (rather than

'As usual, complex quantities of this kind are used as short-
hand for their real parts.
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emitting) energy in response to a perturbation.2 So, inte-
grating over any range of positive frequencies, we should
have

[P @) <3 1= 00). @

SRR

This lets us bound the integral over any range of @ in terms
of the (inverse) static dielectric function €7'(0, k) at the
appropriate k. Since €7 (0, k = 0) must be non-negative for
a stable system [44], it follows by continuity that —e; ! (0, k)
should be small for kK much less than relevant momentum
scales in the system. While it is possible for —e7!(0, k) to
be positive for nonzero k—indeed, this is probably the case
for some metals, such as aluminum [44]—it only becomes
large and positive for systems close to a point of instability,
corresponding to diverging response to a charge density
perturbation [44]. As a result, for most materials, the rhs of
Eq. (4) will be O(1).

B. Scattering rates

We can use the sum-rule bound from Eq. (4) to bound the
DM scattering rate in our target system. Starting from the
scattering rate in Eq. (2), we want to average over DM
velocities, to obtain the average scattering rate

I~

26242 / PR
> ) xR+ m?)?

« [ @opym(— 1), (s)
/ <€L (wk,m k))

where p(v) is the probability distribution for DM velocities.

Properly, we should consider mounting our target in a
particular lab-frame orientation, and then changing this
orientation relative to the Galactic frame according to
Earth’s rotation. Instead, to simplify our initial calculations,
we will average over all detector orientations relative to the
Galactic frame, which can equivalently be viewed as
specifying an appropriate isotropic p(v) in Eq. (5) (we
discuss anisotropic velocity distributions in Sec. VI). For
isotropic materials, this gives the correct rate directly; for
other materials, it still provides the expected rate for a
randomly chosen orientation. In general, if we are allowed
to tune the medium properties and the initial DM velocity,
we can obtain arbitrarily large scattering rates, via matching
the on-shell momentum transfers possible for the DM
particle to the dispersion of weakly damped excitations
in the medium (so that we obtain resonant scattering at all
momentum transfers). However, if we are interested in the
scattering rate averaged over different directions, such

*This condition will not necessarily apply to a system in a
metastable state, such as the “magnetic bubble chamber” proposal
of [43].

tuning is no longer possible, and as we will see, it is
possible to set general limits on the scattering rate.

For a given k, the frequency @y, = k- v —k*/(2m,)
only depends on |k| and k- v, so it only depends on the
component v, of the velocity in the k direction. Thus, if we
write p;(v;) as the probability distribution for the projec-
tion of the DM velocity onto a particular axis [this is
independent of the axis, since we are assuming that p(v) is
isotropic], then

20207 / Pk K
&2 (27)3 (K> + m?)?

00 -1
X dv v )m| ——— ). 6
/{/(Zm){) kpl( k) (eL(wk.vkvk)> ( )

Since dw, , = kdvy, this is equal to

P 2¢247 / &Pk k
2 (271.)3 (kZ + m2)2

< [ dopi(@)im(——). @)
A <€L(w»k)>

Now, we can use the sum-rule bound from Eq. (4), which
implies that

[ %op ownm( )

7 1
<3 (1- g men (@), ®

Consequently, if we write gy(k) =1 —€7'(0, k), then

I~

r<

[ (mas(p ((w)

9292 k3
_ Jxde
= I8 [ o kmax(opy (@) ©)
[where the gy(k) in the second line is angle averaged]. We
can use an explicit form for p, to evaluate this expression.
For an isotropic velocity distribution at a single speed v,,
i-e-, p(U) & 5(‘U| - 1}){), we have pl(vk) = ilh)k\Svl’

2
and so max,(wp;(v(@))) = % - 4rrlz;vz

for k< 2mZ1JI.

Consequently, if we have an upper bound g, for gy(k),
then for a massless mediator (m = 0),

e g;%g%g() /Zmlvl % E_ K _ 9;2(9590 Mo (10)
= 2rme* o k \2  4myv, dme? T

[if we have an explicit form for go(k), we can use this
instead]. In the opposite limit, for a heavy mediator,
m > Zml Uy,
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FIG. 1. Left panel: integrand I(w, k) = ¢ p1 (¢ + 5 ) in Eq. (14) for the DM scattering rate (with a massless mediator), taking p, for
the truncated Maxwell-Boltzmann velocity dlstnbutlon from Appendix B. Here, m, corresponds to the DM mass, and vy = 230 km s~
to the characteristic velocity dispersion in the DM halo. The solid red line shows the location of the integrand’s maximum for fixed &,
while the dashed red line corresponds to the @, such that the integral with w(k) = wy constant is largest. Right panel: as per left panel,
but with logarithmic w axis; the integral in Eq. (14) is with respect to © for the given integrand.

929290 /2’”1”1 k= k3 k k?

27re 0 2 4mxv){
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These results for a single-speed distribution can be
directly applied to scattering inside a deep gravitational
well, e.g., inside stars [45], where the DM velocity is close
to the escape velocity. Bounds for more complicated
velocity distributions can most simply be obtained by
averaging over the single-speed bounds. However, this is
not necessarily optimal; by using Eq. (9) with a specific p;
directly, we can generally obtain tighter bounds. For
example, using the truncated Maxwell-Boltzmann velocity
distribution from Appendix B gives

(11)

2.2
= = _ ngego
I'<Ty, =0.68 a2 0 (12)
for a massless mediator, where vy =~230 kms~! is the

characteristic halo velocity scale (the escape velocity vg. =~
600 kms~! affects the 0.68 coefficient, though only
weakly), and

2 4
= 9;(9%90 m)(UO
I'<9.1x 1rd m){110< -
for a heavy mediator.

We can gain some more insight into the expression in
Eq. (7) by separating it into integrals over momentum and
solid angle,

(13)

(14)

m((_wl k))'

Figure 1 plots the integrand term /(w, k) for a massless
mediator (m = 0), and p; corresponding to the truncated
Maxwell-Boltzmann distribution from Appendix B (this
will be our default p; going forward). For each k, the
integral is maximized by taking Im(—e;!) to be a delta
function at the @ which maximizes I(w, k); as expected,
this is w ~ kv, for k < m,,v,.

One important feature is that, even for a massless
mediator, obtaining I" of order the limit in Eq. (12) requires
that most of the contribution to Eq. (14) comes from
k~m,vy, @~m,v} [assuming that go(k) is order 1
throughout]. Conversely, if we scatter entirely into excita-
tions with energy below some threshold w,, where

o, < m,v}, then from Eq. (9), £ <

“’; .3 This illustrates
0

that, while schemes with very low energy detection
thresholds (such as [46,47]) are important for detecting

3This might naively seem surprising, since e.g., the Coulomb
scattering rate in a plasma in usually dominated by soft scatter-
ings. However, if we are in this regime, then we can increase the
scattering rate by increasing the electron density—this starts
having diminishing returns once the screening scale becomes
small enough, which corresponds to when soft scatterings stop
dominating the rate.
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low-velocity particles, they do not offer a volumetric
enhancement for detecting virialized DM.

Another feature to note is that, while attaining these
bounds requires that Im(—e;') is concentrated at an
optimum @ for each k, as illustrated in Fig. 1, taking it
to be concentrated at a k-independent value w, can
be O(1) optimal. Numerically, we maximize the rate
(for constant gg) by taking wg =~ O.SSva(z), which gives

f10.48xgiffi §°mlvo, compared to the bound in Eq. (12)

which allowed the @ value to change with k.

III. MATERIAL PROJECTIONS

A wide range of papers have investigated the
DM-electron scattering rates in different materials. By
comparing these to the bounds derived in the previous
section, we can sanity check such calculations, as
well as identify where significant improvements might be
possible.

Figure 2 compares a number of projections for different
materials, in the case of a light mediator coupling to EM
chzurge,4 to the bound on the per-volume scattering rate
from Eq. (12). As discussed in Sec. II B, for sensitivity to
DM masses ~m, a material with response function
concentrated around frequencies ~mv3 is almost as good
as one with an optimal response function. At frequencies
~10-100 meV, polar materials can support optical pho-
non excitations, which can have [42Im(—¢;') up to ~0.3
over the relevant frequency range [48] (at small k).
Approximate energy-loss-function-based calculations of
the DM scattering rate in such materials [49], as well as
density functional theory calculations [16,50], indicate
that they are promising candidates for DM detection
[16,50-52]. The SiO, curves in Fig. 2 illustrate that, at
DM masses in the ~0.1-1 MeV range, the scattering rate
into optical phonons can be within an order of magnitude
of the sum-rule bound.’

Other materials proposed for DM scattering experiments,
such as aluminum or semiconductors, have response
functions with most of their support at energies 210 eV
[24,25,49], for low k. This means that their scattering rates
are some way from the theoretical optimum, at all DM
masses. For DM masses <20 MeV, the response function
is concentrated at overly high frequencies, while for higher
DM masses, the associated momentum transfers are
210 keV, which is large enough that Ime;!(w,k) is

“This can be either a light dark photon mediator or simply the
SM photon itself (in the case of millicharged DM).

The SiO, projection in the current version (arXiv v2) of [16]
corresponds to rates higher than the sum-rule bound for
m,, ~ few x 1072 MeV, due to a bug in the density functional
theory calculation [53], illustrating the usefulness of the sum-rule
bounds as a sanity check. The projections in [50] and Fig. 2 [53]
have been updated to correct this.

105
1045
1000¢
= 100}

10¢ 3

F Si0, ]

1E E

0.01 0.10 1 10 100 100C
my/MeV

FIG. 2. Comparison of projections for DM scattering rates (via
a light dark photon mediator) to the theoretical bound from
Eq. (12) (taking g, = 1). The Al and Si curves correspond to the
projections for electronic excitations in aluminum and silicon
from [25] (see also [24]), using approximations to the energy loss
function (the Al curve corresponds to an energy threshold
®min = 10 meV, while the silicon curve corresponds to excita-
tions above the band gap). These illustrate that the scattering rates
are significantly below the theoretical optimum, especially for
DM masses < MeV or > MeV. The solid SiO, curve corre-
sponds to an updated [53] density functional theory projection
from [16] for phonons in quartz, and the dashed curve to an
energy-loss-function calculation from [49], illustrating that scat-
tering into optical phonons can approach the sum-rule limit more
closely at suitable DM masses.

significantly reduced. This is illustrated in Fig. 2, which
shows that the scattering rates in aluminum and silicon are
always at least 2 orders of magnitude smaller than the
volumetric optimum.6

The sum-rule rate in Fig. 2 was obtained by setting
go =1 in Eq. (12). This may not be precisely correct,
since as discussed below Eq. (4), go(k) =1—¢€7'(0,k)
may be > 1 for large enough k. However, while we
do not have full €;'(0, k) calculations or measurements
for these materials, it does not seem likely that €' (0, k)
becomes large and negative—for example, the values for
aluminum presented in [44] reach a minimum value of
€7'(0,k) =~ —0.2 at k around half of the reciprocal lattice
vector. Also, as mentioned above, €7'(0,k) should be
non-negative for small enough %, so for k smaller than
inverse lattice scales, gy ~ 1 should be a good approxi-
mation. Overall, given that we are using Eq. (12) as a

®Some earlier projections for superconducting materials, such
as those in [20], did not take into account “screening” effects—
effectively, the 1/]¢|? term in Im(—1/€) = —Im(e)/|e|*—result-
ing in rates exceeding the sum-rule bounds. What was not widely
appreciated until recently [54] is that this screening suppression
also applies for a scalar mediator, as well as vector mediators. An
advantage of the energy-loss-function formalism [24-26] is that it
makes this physics transparent.

095009-5



ROBERT LASENBY and ANIRUDH PRABHU

PHYS. REV. D 105, 095009 (2022)

parametric bound, we do not expect taking g, = 1 to be a
problem.’

From Fig. 1, we can see that, to have sensitivity to a wide
range of DM masses, a material’s response function should
be concentrated around @ =~ kv,. While this brings to mind
the linear dispersion relations that can realized in e.g., Dirac
materials (which have been proposed as targets for DM
scattering [13,19,21,56]), explicit models for the permit-
tivity in these materials, such as those given in [13,24], do
not have Im(—¢; (w, k)™!) concentrated in this way.®

Materials with good response function support in the
~eV range may be useful for probing ~MeV mass DM.
Possible examples include transparent conducting oxides
[57], or nonelemental superconductors [58]. We are not
aware of proper measurements of the frequency- and
momentum-dependent loss function for such materials,
so we cannot make reliable projections. However, low-
momentum measurements suggest that they may have good
scattering rates. Whether excitations deposited in such
materials can be reliably detected is, of course, a separate
but important question.

Bulk materials with good response function support at
very low frequencies, <50 meV, are hard to achieve.
However, heterostructures—structured combinations of
different materials—can have different behavior. Taking
an extreme case, conducting cavities at ~ meter scales
allow the low-k response function to be concentrated at
~GHz frequencies. For DM scattering, we are interested in
the response function for k ~ 10°w (as illustrated in Fig. 1),
so we need spatial structure at or below the scale k~!. As we
demonstrate below, straightforward combinations of con-
ductors and insulators could allow for tailored response
functions, concentrated at frequencies well below those for
the bulk materials themselves.

IV. CONDUCTING LAYERS

One of the simplest examples of a metal-dielectric
heterostructure is a alternating array of planar layers, as
illustrated in Fig. 3. In response to a charge density
perturbation with long wavelength (compared to the layer
separation), and wave vector parallel to the planes, the
effective carrier density should roughly be given by the
metal’s carrier density, multiplied by the volumetric filling
fraction of the metal layers. Consequently, the effective
plasma frequency should be decreased from its bulk value,
according to the (square root of the) filling factor. Thus,

’An interesting question is whether there are practical materi-
als for which €7!(0, k) is large and negative at relevant k, so that
go(k) > 1, and the DM scattering rate is enhanced. Refer-
ence [44] gives the example of molten salt, which is predicted
to have €7'(0, k) = —20 for ka ~ few, where a is the interatomic
distance [55] (though such high-temperature systems are unlikely
to be useful for DM detection).

¥The rate projections for the zero-gap model in [13] seem to be
unphysically high.

AN A7

€1

€2

L d

FIG. 3. Diagram of a layered heterostructure, consisting of
conductive layers of thickness d and permittivity €;, placed with
spacing L in a dielectric medium of permittivity €,.

even if the metal’s bulk plasma frequency is significantly
larger than the DM kinetic energy scale, it may be possible
to increase the scattering rate by choosing the layer
thicknesses and spacings appropriately.

To analyze the response quantitatively, we will assume
that we are interested in nonrelativistic scatterings with
k > w, so that magnetic fields are unimportant, and the
dynamics are effectively electrostatic. For simplicity, we
will take the dielectric function in each uniform medium to
be isotropic and k independent, so we want to solve
V2 = —p;/ei(w), where p; = poe™@~k¥) as in Sec. II
A, and ¢; is the dielectric function for the medium. At the
medium boundaries, we need ¢e;7i- V¢, = et - Vhy,
where 7 is the normal to the boundary, and ¢, , are the
solutions on each side.

Figure 3 illustrates the geometry of our setup. Taking
the layers to be normal to the x direction, we can,
without loss of generality, write k = k% + k,Z. Writing
$(x,z.1) = y(x)e (@=kxk3)  we want to solve for .
Once we have this, we can use it to compute the electric
field, from which we can derive the effective longitudinal
response function,

'Ezeeflf,kkizeLli' (15)

Pt

The general expression for e;!' is rather complicated.

However, in the d/L < 1 limit, where d is the width of
the €, layers and L — d the width of the €, layers, it has the
simple form

(1-Pei +{e
bt s (16)

-1
er (. k) ~
16+ (1=9) ¢ (e - €2)2%

(where €; and €, are in general functions of @ and k). For

k. = 0, this is simply the volume-weighted sum of e7! and

€ I, as we would expect. However, for k, # 0, the behavior

can be significantly different [if k, =0, we have
7' = @e + (1 -49)e;)™"]. In particular, the response

poles will be at different frequencies.
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If we take the limit d/L < 1, then the denominator of
Eq. (16) vanishes when €| ~ —¢, ’;—2%, or €; ~ —€, i—i’; For
example, if we take a simple Drude model, ¢; ~1 —wf, J@?,

then the latter equality occurs for ® =~ i]]z—;%w% This
corresponds to the expected result that the effective plasma
frequency (squared) is suppressed by the filling fraction of
the metal.

Consequently, compared to a bulk conductor, a hetero-
structure of conductor-dielectric layers will have its energy
loss function concentrated at lower frequencies, so it can
have better sensitivity to low-mass dark matter. In Fig. 4,
we illustrate this with a toy example, taking the bulk
conductor to have a Drude-model permittivity, e(w) =

€so(1 _w(%zy))’ where we take e, = 10, w, = 0.5 eV,
and y = 0.lw, (this is in rough analogy to the optical
response function for NbN [59]). Taking the DM to couple

through a massless (or sufficiently low-mass) dark photon

34l et T e i
107~ (3 cm)? film
E Drude model 1
L 107% freeze—in J
g
1040 e s l‘Jm—rule limit (2 mm)?
0.01 0.10 1 10 100

my/MeV

FIG. 4. Plot of DM-electron scattering cross-section sensitivity
versus DM mass, assuming the DM couples through a low-mass
dark photon mediator. The gray shaded area shows the existing
constraints [60—63], while the yellow band shows the parameters
for which early-Universe freeze-in [5] gives the correct DM
abundance, assuming no preexisting hidden sector population.
The red curves correspond to the background-free sensitivity
reach for a l-yr exposure with a (2 mm)? target volume (the
sensitivity reach is taken to be the cross section that would result
in three expected events during the exposure). The dotted red
curve corresponds to the theoretical section limit from Eq. (12).
The dark red curve corresponds to a bulk material target, with
Drude-model permittivity as described in Sec. IV. The lighter red
curve corresponds to a layered material, with d = 1 nm thick
layers of this material, alternating with L —d =4 nm thick
dielectric (¢ = 1) layers. As the plot shows, this has worse
sensitivity at larger DM masses, but better sensitivity at smaller
masses. The blue curve corresponds to the sensitivity reach (for a
background-free 1-yr exposure) from a 3 nm layer of material
with area (3 cm)?, for the same Drude-model permittivity (taking
an energy threshold w.;, =1 meV). The dashed blue curve
shows the sensitivity reach from an equivalent bulk volume of the
same material, showing how, at low DM masses, taking into
account the geometrical effects of the thin layer is very important.

mediator, the dark red curve shows the background-free
sensitivity reach for a (2 mm)? bulk volume of this material
with a 1-yr exposure. The lighter red curve shows the
sensitivity reach for the same volume of a conductor-
dielectric heterostructure, where we take the conductive
layer thicknesses to be d = 1 nm, and the dielectric (¢ = 1)
layer thicknesses to be L —d =4 nm. As expected, the
layered material has better sensitivity at small DM masses,
compared to an equivalent volume of the bulk conductor,
and worse sensitivity at larger DM masses.

Especially at high DM masses, our toy model calculation
will not be realistic. For m, 2 MeV, the characteristic
momentum scale is m, vy 2 770 eV = 1_6271’1 —, which is close
enough to atomic lattice scales that the dielectric function
will have non-negligible momentum dependence [25,49].
However, for m, <MeV, our calculations illustrate the
kind of behavior expected.

Layered structures represent only one possible kind
of heterostructure. Other examples include conductor-
dielectric mixtures with random structures [64] or granular
inclusions (such as granular aluminum [65], which is
superconducting for small enough grain separations). We
leave the investigation of such possibilities to future work.

V. THIN CONDUCTING FILMS

Volume-filling heterostructures, such as the layered
materials considered in the previous section, may be an
interesting option for DM scattering experiments. However,
whether such materials can be constructed and whether
excitations deposited in them can be detected are topics for
future research. Nevertheless, similar calculations apply to
a more concrete prospect—detection of DM scattering in
superconducting thin-film detectors themselves.

Detectors for low-energy-threshold excitations, such as
TESs, MKIDs, and SNSPDs, often take the form of thin
superconducting layers. In [20], DM scattering in SNSPDs
was considered, but their scattering rate was based on the
bulk scattering rate in the conductive material. Here, we
point out that, for momentum transfers smaller than the
inverse thickness scale of the film, the geometrical structure
of the substrate-film-air system needs to be taken into
account. Since typical film thickness are a few nm, these
effects are important for m, < MeV.’

For simplicity, we first analyze the case of a single
infinite layer with thickness d and permittivity ¢, sur-
rounded by a medium of unit permittivity. Since the
thickness is finite, instead of the per-volume scattering
rate being set by Im(—¢7!), the per-area scattering rate is set

’For absorption of light bosonic DM, as opposed to DM
scattering, the typical momentum transfer is ~mpyvy, Which is
much less than the energy transfer ~mpy;. Consequently, for
comparable energy depositions, geometrical effects will be more
important for DM absorption; for example, the bulk material—
based calculations in [20] will be modified, as mentioned in [42].
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FIG. 5. Left panel: the solid curves show the thin-layer response function R from Eq. (19), taking a Drude-model dielectric function

e=1

%%
o(0+0.liw,)

and k, = 0, for k,d values from 0.05 to 10. The black curve corresponds to the response function for an equivalent

volume of bulk material. The dashed curves correspond to the response for the rectangular wire geometry diagramed in Fig. 6, with
w = 6d and h = 10d. Right panel: as per left panel, but taking k,d = 0.1.

by Im(R), where R is the appropriate response function
with dimensions of length. The time-averaged power
absorbed from a longitudinal free charge perturbation J;
is (P) = ([ dVE - J;), where E is the electric field response,
and angle brackets denote time averaging. Assuming that the
response is effectively electrostatic, and writing E = —V¢ =
(—=y' + ikyp)3 + ikp?)e™@=F%) as above (taking the
layer to be normal to the x direction), we have

()= =5 [ avRelpi(ity + ey (1)

(18)

where A is the area we are considering. For comparison, in a
bulk material, we have P =1V & |p; | Im(—¢;").

The general expression for R is somewhat complicated,
but if we consider an excitation with k||Z, then

R _ 1 2—kdcoth(kd/2) + €(2¢ — 4 — kd) (19)
ke coth(kd/2) + € ’
The denominator vanishes when € = — coth(kd/2). For a
simple Drude model, ¢(w) = 1 — w?/w?, so for kd < 1,
this corresponds to a resonant frequency of w’ :kQ—da)%,.
Intuitively, the relevant filling fraction is the ratio of the
layer thickness to the scattering wavelength. There is also a
divergence at ¢ = 0, corresponding to the bulk material
resonance, but the contribution of this is suppressed for

kd < 1, since ZRecomid/2) — U4\ 1 O((kd)®). When

kd > 1, we have R~ —d/e, so Im(R) = dlm(—€7!), as
expected.

As well as moving the response to lower frequencies,
the kd <1 regime can also increase the frequency-
integrated response. For example, suppose that we work

in an approximation where € — e, > 1 as @ — c0."”

Then, for a bulk material, we have [92Im(—e;') <
Zew (1 —€7'(0,k)), so the frequency-averaged absorption
is suppressed by ez!. However, for the thin layer, we have

/ = R(0) ~ gk‘l (20)
0

w

for dk < 1. As well as being enhanced over the equivalent
volume of an ideal bulk material by 1/(dk), this is not
suppressed by ezl (intuitively, this occurs because the
response is spread across a full wavelength around the
layer, most of which is in vacuum).

These features are illustrated in the left panel of Fig. 5,
which plots ImR(w) for a simple Drude-model dielectric
function, at different k values. At large kd, the response is
almost the same as for a bulk material, while for small kd, it
is moved to lower frequencies and enhanced.

The above formulas applied to the k, = 0 case. If we
take the opposite limit, k||%, then we just have the usual
bulk material response, R = —d/e. For intermediate direc-
tions, we interpolate between these two extremes, as
illustrated in the right-hand panel of Fig. 5.

The geometric effects discussed above can have impor-
tant consequences for the scattering rate of low-mass DM.
As illustrated in Fig. 5, the shift of the ImR(w) distribution
to lower frequencies means that a thin layer can have a
larger total scattering rate for low-mass dark matter than a
thicker layer, even if the latter has a larger volume.

'"This will not be true in a strict physical sense, but can be a
good approximation if e.g., there are some effectively decoupled,
higher-frequency dynamics which contribute a background
permittivity e.,. For example, the optical energy loss function
for SiO, has features below ~200 meV, corresponding to phonon
dynamics, but then most of the [ %‘”Im(—ez‘) integral comes
from electronic excitations at w = 10 eV [48].
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In Fig. 4, the blue curve corresponds the sensitivity reach
for scattering from a 3 nm thick film with area (3 cm)?,
assuming a background-free exposure of 1 yr. We take the
Drude-model permittivity from the previous section, and
for extra realism, assume that the layer is mounted on a
dielectric substrate with permittivity € = 11 (corresponding
to that of silica). The dotted blue curve corresponds to the
sensitivity for the equivalent bulk volume of conductor. For
large DM masses, ZMeV, the geometric effects are only
O(1). However, for smaller masses, they can increase the
scattering rate by orders of magnitude.

It should be emphasized that the calculations presented
here apply to toy models. To calculate limits or sensitivity
projections for actual devices, more realistic models of the
materials’ dielectric functions would be required—ideally,
derived from actual measurements of such devices.'
Similarly, the detectability of excitations absorbed in this
way would need to be quantified. Ref. [42], which appeared
on arXiv simultaneously with this paper, uses techniques
from this paper, and data from the tungsten silicide SNSPD
used in the LAMPOST dark photon DM detection experi-
ment [67], to estimate limits on dark matter scattering with
electrons, as well as to make projections for future SNSPD
experiments. They find that the energy threshold for this
SNSPD is too high for geometrical effects to be important
in DM scattering, but that these should be significant for
future generations of SNSPDs (for dark photon absorption
within the SNSPD, which [42] also estimates, geometric
effects will be more important, as per footnote 9).

A. Lossy dielectrics

If a thin film is not surrounded by vacuum (e.g., it is
mounted on a substrate), then the surrounding dielectric
will have some imaginary part to its permittivity. If we
naively integrate over the entire spatial volume, this may
result in the absorbed power being dominated by the bulk
absorption in the dielectric.

Because of how thin-film detectors such as SNSPDs
operate, we are interested in the rate of scatterings which
deposit enough energy into the conductor, quickly enough,
to register as an excitation [68]. Depending on the transport
properties of energy deposited in the dielectric material,
this rate may actually be dominated by bulk absorption in
the dielectric. For example, this is the design principle
behind detectors based on exciting optical phonons in polar
crystals [69,70]—the idea is that such excitations decay
into nonthermal quasiparticles, which then propagate until
they are absorbed by a superconducting detector.

To be conservative, we can restrict ourselves to excita-
tions where the energy is directly deposited in the con-
ductor itself. To do so, we can calculate the electric

""This is especially important since, for such thin layers, one
might expect the response function to differ quite significantly
from that of a bulk material, due to surface effects [66].

potential response y, as per above, and calculate how
much energy is dissipated inside the conductor given this
response. If the dielectric within ~k~! of the conductor
is not very lossy, then this will be dominated by
the conductor, giving a result analogous to the lossless-
dielectric case considered above. These considerations will
also apply to the absorption of light bosonic DM mentioned
in footnote 6.

B. Nonuniform geometries

The calculations above assumed an infinite, uniform
conductive plane. This can be a good approximation when
the inverse momentum transfer is much smaller than
geometric features other than the thickness of the film.
However, some types of thin-film detectors have transverse
structure on small scales. For examples, SNSPDs
[39,71,72] use a wire meander with small width (10’s to
100’s of nm), as illustrated in Fig. 6, so for momentum
transfers <0.1 keV, we might expect this structure to have
some effects on scattering rates.

To estimate these effects, we can solve for the 2D
electrostatic response across the wire’s cross section (the
meander length is generally long enough that end effects
are unimportant). Similarly to the 1D case, we want to solve
the Poisson equation, V - (eVg) = —p, with ¢(x,y,z,t) =
w(x,y)e (®=k%) _Since doing this analytically is somewhat
difficult for general geometries, we can instead discretize it
on a 2D grid, and solve the resulting system of equations
numerically to obtain .

The simplest way to do this is to impose periodic
boundary conditions, which means that we are effectively
solving for the response of a series of equally spaced,
infinitely long wires. The corresponding two-dimensional
cross section is shown in the lower panel of Fig. 6, and
some examples of numerical solutions for w(x,y) are

FIG. 6. Top: schematic of a superconducting nanowire single-
photon detector (SNSPD) consisting of a superconducting wire
meander (red) deposited on an electrically insulating substrate
(blue). Bottom: two-dimensional cross section (fixed z) of
the SNSPD.
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FIG. 7. Numerical solution for the response function y(x, y), discussed in Sec. V B for a periodic array of rectangular cross-section

wires (depicted by red rectangles) and k,d = 1 (left panel), k. d =

10 (right panel), where d is the wire thickness. Orange corresponds to

higher magnitudes for y, and blue to smaller magnitudes (color bars are in arbitrary units).

shown in Fig. 7. The latter illustrate that, for k > d~!, the
response is dominantly contained within the conductor,
while for k < d~!, the response extends over a range ~1/k,
and approximates that from a uniform layer. The dashed
curves in Fig. 5 compare the numerical scattering rates
derived from these y solutions to the analytic rates for an
equivalent uniform film, illustrating that these match well at
k < d~', while being volumetrically suppressed at larger k.

VI. ANISOTROPIC VELOCITY DISTRIBUTIONS

In our calculations so far, we have adopted the approxi-
mation of an isotropic DM velocity distribution. However, it
is expected that, due to the velocity of Earth with respect to
the Galactic frame, the DM velocity distribution in the
laboratory will be significantly anisotropic (cf. Appendix B).

Since the direction of this anisotropy in the lab frame will
vary over each day as Earth rotates, a detector for which the
scattering rate depends on the direction of the incoming
DM will see a daily modulation in scattering rate. The
conductor-dielectric heterostructures we have been consid-
ering do have anisotropic structures, so even in the
approximation where the individual materials have iso-
tropic response functions, the overall scattering rate will
still depend on the DM direction.

For the truncated Maxwell-Boltzmann distribution
described in Appendix B, and considering a thin-film
detector with the parameters given in Sec. V, Fig. 8 shows
the ratio of the DM scattering rates for the extreme cases of
the velocity offset being parallel and perpendicular to the
film (other directions give intermediate rates). For a light
mediator, the effect on the overall scattering rate is <10%.
Roughly speaking, this is because the phase space volume
of mostly parallel momentum transfers (which maximize
collective effects) is larger for parallel DM velocities, but

sits at smaller k for perpendicular DM velocities. Since
small-k scatterings are enhanced for a light mediator, these
effects partially cancel out, reducing the difference between
perpendicular and parallel DM velocities. For heavy
mediators, the ratio can be >25%.

More complicated geometries, which modify the &
dependence of the structure’s response, can also enhance
the ratio between scattering rates for different DM direc-
tions. For example, in the “SNSPD” geometry considered
in Sec. V B, the wire width w provides an additional scale.
Numerical calculations, of the kind illustrated in Fig. 7,

1.30p

heavy mediator

ryro
S

light mediator

105}
1.00° : : : ‘
0.01 0.05 0.10 0.50 1
my/MeV
FIG. 8. Ratio of velocity-averaged scattering rates for a thin

film (with properties as in Fig. 4), given a truncated Maxwell-
Boltzmann DM velocity distribution (Appendix B), where I
corresponds to the average DM velocity being parallel to the film,
versus perpendicular to the film for I'; (we take an energy
threshold @,;;, = 1 meV). The blue curve assumes a light
mediator, with mass much smaller than relevant momentum
transfer scales, while the orange curve assumes a heavy mediator,
with mass much larger than relevant momentum transfer scales.
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indicate that this could significantly increase the directional
dependence (integrating over the full velocity distribution
to obtain the analog of Fig. 8 would be possible, but
computationally expensive—we leave detailed investiga-
tions to future work).

It should be emphasized that the specific calculations
described above assume that the conductor and dielectric
materials both have isotropic and k-independent ¢. For large
enough frequencies and momentum transfers, this will be a
poor approximation. In addition, for thin enough layers, edge
effects may become important, even for materials with fairly
isotropic bulk permittivities, complicating matters still fur-
ther. As a result, Fig. 8 should not be taken as a realistic
prediction of daily modulation amplitudes. However, it does
illustrate that the geometrical properties of heterostructures
can lead to significant directional dependence, even in
situations where the bulk material properties would not do
s0. This could help to distinguish a dark matter signal from
laboratory backgrounds.

As well as daily modulation due to the rotation of Earth,
there is also an annual effect caused by Earth’s changing
velocity around the Sun. This leads to Earth’s velocity
relative to the Galactic frame changing by ~60 kms~! over
the course of the year, with the rms DM speed varying by
~3%. For a light mediator, this generally leads to small
(percent-level) differences in the scattering rate, with larger
[O(10%)] differences for a heavy mediator.

VII. OTHER MEDIATORS

As mentioned above, the Im(—e¢!) prescription, and the
associated sum rules, applies in the case of a mediator that
couples to EM charge. For mediators with different SM
couplings, we need to consider the in-medium self-energy
of that mediator, rather than the SM photon, as outlined in
Appendix A.

In many circumstances, for light DM with a mediator
that is not nucleophilic, the material’s response is domi-
nated by the more mobile electrons, and the Im(—e;!)
formulas give approximately the right results. This is true
for most excitations at frequencies ZeV. However, for
excitations in which nuclei play a significant part, such as
phonons, this will no longer be the case. In particular,
scattering into such excitations can violate the sum-rule
bounds, and allow larger rates than those for a dark photon
mediator.

As an example, we can consider DM scattering via a
scalar mediator which couples to electrons, but not to
nucleons. For momentum transfers small enough compared
to the material’s inverse lattice scale, the mediator’s effect
will correspond to a coherent forcing, and we can excite
acoustic phonons, rather than just optical phonons. If the
material’s sound speed is large enough, then the enhance-
ment due to the coherent coupling to acoustic phonons can
be greater than the suppression due to the velocity mis-
match between acoustic phonons and typical DM

velocities. Consequently, acoustic phonons can dominate
the scattering rate.

This case was analyzed in [18,70]; in particular, Trickle
et al. [18] performed a density functional theory calculation
for the scattering rate in GaAs, plotted in Fig. 9. While this
calculation did not take into account screening, the scatter-
ing rate was dominated by acoustic phonons at small DM
masses, for which screening should not be an important
effect. As Fig. 9 shows, the scattering rate is orders of
magnitude below the sum-rule limit for a mediator coupling
to charge, illustrating how these limits do not apply for
other types of coupling. To obtain other examples, we can
translate the scattering rates for a nucleophilic scalar
mediator calculated in [16]; at small enough momentum
transfers, the coupling of a leptophilic mediator to acoustic
phonons can be related to that of a nucleophilic mediator by
comparing the nucleon density to the electron density.
Figure 9 shows this translation for the diamond calculation
from [16], illustrating how diamond’s faster sound speed
results in larger scattering rates for small DM masses.

Even for a scalar mediator with equal and opposite
couplings to electrons and protons, the different velocities
of electrons and protons in materials will mean that it has
some nonzero coupling to neutral bulk matter. Consequently,
it can couple coherently to acoustic phonons. Given that

10-9L
10-41F
10—43,
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< j0-45L
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10—51 P B P B PR RS
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my/MeV

FIG. 9. Plot of sensitivity estimates for a kg-yr background-free
exposure (i.e., the cross section corresponding to three expected
events), for different mediator couplings (taking an energy
threshold w,,;, = 1 meV). The red curve shows the calculation
for GaAs with a leptophilic scalar mediator from [18] (the higher-
DM-mass part of this curve is shown dashed, since neglected
effects such as screening should be least important at small DM
masses, where acoustic phonons dominate the rate). The blue
curve shows the estimated rate for scattering in diamond via a
leptophilic mediator, based on the nucleophilic mediator result
from [16]. The green curve shows an updated [53] density
functional theory projection from [16] for phonons in SiO,,
assuming a light mediator coupling to EM charge. The orange
dotted lines shows the optimum sensitivity for a mediator
coupling to charge (the upper line corresponds to the density
of GaAs, the middle line to the density of diamond, and the lower
line to the density of SiO,).
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unsuppressed couplings to acoustic phonons can result in
very large scattering rates (cf. Fig. 9), we might wonder
whether corrections suppressed by the SM fermion velocities
could dominate the scattering rate at low DM masses, even for
a scalar mediator coupling to charge. To estimate this, we can
note that fy° f ~ (1 + v%/2) ff for a nonrelativistic fermion.
Typical inner-shell electron velocities are ~Za, while proton
velocities in nuclei are O(0.1). As a result, we expect typical
deviations from bulk neutrality at the O(1072) level, with the
consequence that scattering into acoustic phonons may well
be important for low-mass DM. Of course, it is difficult for
DM models with a non-nucleophilic scalar mediator to
account for all of dark matter without running into other
constraints [23], and for a small enough dark matter sub-
component, even the scattering rates possible with a lepto-
philic mediator are somewhat hard to probe experimentally
[18], given existing bounds. Consequently, models where the
scattering rate is further suppressed, such as a scalar mediator
coupling to charge, would be even harder to see.

VIII. DISCUSSION

In this paper, we have discussed two main topics; how
electromagnetic sum rules place bounds on the DM-
electron scattering rate in materials, and how conductor-
dielectric heterostructures can increase the scattering rate of
low-mass DM, relative to bulk conductors.

To detect DM, there must be a high enough DM-target
scattering rate, and we must be able to detect scatterings
that occur. In most of this paper, we have focused on the
first requirement, but the second is also crucial. The very
simplest way to ensure detection is for scatterings to
deposit energy in the detector material itself. We have
pointed out that, for thin-film superconducting detectors,
which are one of the most promising routes toward low
energy thresholds, geometric effects analogous to those for
periodic metal-dielectric heterostructures can have a sig-
nificant impact on the scattering rate for low-mass DM.

To achieve sensitivity to smaller DM couplings, volume-
filling targets will be required, and further work would be
needed to establish whether heterostructures could be
practically useful. In particular, whether suitable materials
could be manufactured, and whether excitations deposited
in such materials could be reliably detected, is not obvious.

As mentioned in footnote 7, an interesting question is
whether materials with large and negative (inverse) static
dielectric function €7!(0, k), which have larger frequency-
integrated energy loss functions, could be useful for DM
detection. The most obvious examples of such systems,
such as materials near the threshold of crystallization, are
high-temperature systems that are not suitable for detecting
small energy depositions. We leave the investigation of
possible alternatives to future work.

Beyond applications to DM detection experiments in the
laboratory, our sum-rule analyses may also point to other
areas in which DM-SM scattering rate calculations need

revision. For example, many papers have attempted to
calculate the scattering rate for DM passing through the
dense interiors of neutron stars or white dwarfs (see [73—
75] and references therein). However, while such calcu-
lations included Pauli blocking, they did not include
in-medium effects such as screening. For appropriate
mediators, and sufficiently light DM, these may signifi-
cantly affect the scattering rate. As an example, if we
consider a heavy dark photon mediator, then the appro-
priate sum-rule limit for the DM scattering rate is signifi-
cantly lower than both the electron and nucleon scattering
rates given in [75] for a white dwarf core, for dark matter
masses <MeV. These topics are explored in [45].
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APPENDIX A: DM SCATTERING
RATE FORMULAS

In this Appendix, we will give a condensed derivation of
the DM scattering rate formula in Eq. (2), explaining the
approximations being made.

1. Vector mediator

For concreteness, we will start by considering the case of
a DM fermion y, interacting with a vector mediator X, with
coupling g, X, 7r"x.

To evaluate the interaction rate of a DM fermion
traveling through a medium, we can compute the fermion’s
in-medium self-energy. At leading order in g,, this is given
by the imaginary part of the following diagram:

X X
X X

> >

P P-Q P

where the dashed circle represents the SM medium effects.
In the notation of [76], the cut self-energy is
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- [ 55wt - 0rDi@). (a1

where S5 is the cut propagator for y (in vacuum, since we
assume that y is weakly coupled and its density is low), and
D,, is the in-medium cut propagator for the mediator.

Using the S57 expression for a Dirac fermion, this is

¥ (P) = [ r2m(P = 0F - )

X O((P = Q)o)r"(P =0 +m,)y"Dp(Q). (A2)

Writing P = (E, p), the fermion’s interaction rate is given
by [76]
1
r= Etr[(P + m, )X~ (P)]. (A3)
Evaluating the Dirac trace, we have
tr[<P + m)()yﬂ(P - Q + m)()}/y]
=4(P- O™ + PH(P = Q)" + P (P = Q)'). (A4)

Assuming that the mediator couples weakly to the SM
medium, the dominant contribution to X~ comes from
having only SM states in the shaded circle. In this case, we
have (to leading order in the SM-mediator coupling) [76]

D;,(0) = D3 (0)
- )1+ flg0) L, (0)
(45)
where Q = (g9.q), D;;F(Q) is the free cut propagator,

f(E) = (e®/T —1)7" is the bosonic thermal occupation
number for the temperature 7 of the medium, and I1,,(Q) is
the mediator’s in-medium self-energy. The real part of I,
does not contribute, since the integral for £~ only receives
contributions from Q% < 0, where the mediator is always
off shell. Going forward, we will assume that the temper-
ature of our medium is negligible, so we can neglect the

f(qo) term.
Using the fact that Q,I1"(Q) = 0 (which holds if the

current we couple to is conserved), we can write

Y VYR
- E ) (27)2E(Q* - m})?
QZ
(-t ()G v 20p). (a6
where Q, = (qo.q) is such that P — Q is on shell. Here,

since we are assuming negligible medium temperature, we

integrate over ¢ such that g, > 0 (as up-scattering can-
not occur).

So far, our calculation has been fully relativistic. If the
incoming DM is nonrelativistic in the rest frame of the
medium, so P ~m, (1 + v2/2 v,), then the only part of

the 7;1”” -+ 2P#PY term in Eq. (A6) that is not suppressed
for v, < 1 is the 00 component, which is ~2m2. This picks
out the longitudinal part II; of IL,,

(note that our convention differs from that of [76],
which takes II; =Tly;). As we will show below (in
Appendix A 1a), considering only the ImlIly, term gives
the leading contribution for v, < 1, with

2
: — 4
since HOO = @HL

3
P2 [ e ). (47

since ¢y < q.
Specializing to a dark photon mediator with kinetic
mixing x, we have

ImIL,,,(Q) = ¥*Q*Im(=iD,,(Q)). (A8)

where D, is the in-medium propagator for the SM photon,
in Lorenz gauge (for more details, see Appendix D of [45]).
The longitudinal dielectric function is related to the
longitudinal part D;, (defined via D,, = —iD PL + -,
where PL, is the longitudinal projector) as e;'(Q) =
—Q?D; (Q) [77], so we can write the DM scattering rate as

d*q q° -1
'~2q2 2/ 1 , A9
I | @y (@ + ma ) m(eL<wq,q>> (49)

where @, puts the DM particle on shell, in agreement
with Eq. (2).

a. Subleading contributions

In the & 17"” + 2PHPY expression, terms other than the 00
component are suppressed by powers of v, < 1. However,
if ImIT,,(Q) could be much larger for these other compo-
nents, then they could still be important. For example, we
might worry that, since the exchange of a transverse photon
is unscreened for small g,, whereas longitudinal exchange
is screened [76], transverse contributions might become
important. However, for the case of a dark photon mediator,
D,, obeys additional sum rules which mean that the
velocity-averaged scattering rate is dominated by the
longitudinal-exchange expression in Eq. (A7) above, as
we show here.

IfJ, = J,(,O)eiQ'x is a charge density perturbation with
wave vector Q,, then the medium’s EM field response is
given by A, = —iDX (Q)J¥, where DY, is the retarded in-
medium propagator for the photon. Consequently, writing

R, szf,,, the time-averaged power extracted from
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the charge perturbation is set by iqyJ,A* +H.c. =
qo(J*)*J*ImR,,. If the medium is in its ground state,
then this power should be positive for any perturbing
current—that is, the medium should absorb energy from
the perturbation, rather than emitting energy. Current
conservation 9,J# = 0 implies that Q,J* = 0, so for any
vector €’ perpendlcular to Q,, we should have that
(¢")"e’ImR,, > 0.

At high enough frequencies, corresponding to timescales
much faster than the response times of the system’s matter,
the response function should be almost equal to that in
vacuum. If we fix the spatial vector ¢, then for the spatial
directions transverse to ¢, the response function at large ¢
will be R =~ ‘Z_g

relations give

Consequently, the Kramers-Kronig

d
z](o LI) / 1o ImRt](‘IO LI> (AIO)
7T.Jo 4o

This equation is not immediately useful as a sum rule, since
the integrand may not always be non-negative. However, if
we take g = (0,0,¢q) (without loss of generality), then
ImR;; and ImR,, correspond to (e)*¢“ImR,, for a spatial
vector €, which is perpendicular to Q, for all g, so they are
always positive. Consequently, we have

2 [edg
—/ —01le1(40,4)7
0 4o

Ry1(0,q) = 7

(A11)

where the integrand is always positive, and similarly for
R, giving us sum rules for the transverse components of
the propagator.

If we are interested in the v, -averaged scattering rate, for
an isotropic v, distribution, then the appropriate integrand
arising from Eq. (A6) is

Q2
<— “ImR,,, + 2PImRy
- 4P0P3ImR03 + 2P§ImR33

+2PImR,; + 2P§ImR22>, (A12)

where the angle brackets denote averaging over v,. The
contributions from the ImR, ImR,, terms can be bounded
using the sum rule from Eq. (All). The ImR3, ImR33
terms can be related to €7 !, so they can be bounded using
the sum rule from Eq. (4). Doing so, we find that all of the
other terms have v, -suppressed contributions compared to
2P3ImR,y, which gives rise to Eq. (A9).

If we are interested in the v, -averaged scattering rate, for
an isotropic v, distribution, then the appropriate integrand
arising from Eq. (A6) is

QZ
<— 7 ImD,, + 2P3 TmDyy
- 4P0P3 ImD03 + ZP% ImD33

+2PImD; + 2P3 ImD22>, (A13)

where the angle brackets denote averaging over v, (the use
of the retarded propagator does not make a difference here).
The contributions from the ImD;;,ImD,, terms can be
bounded using the sum rule from Eq. (All). The
ImD3, ImD3; terms can be related to €7!, so they can
be bounded using the sum rule from Eq. (4). Doing so, we
find that all of the other terms have v,-suppressed con-
tributions compared to 2P3ImDy, which gives rise
to Eq. (A9).

2. Scalar mediator

For a scalar mediator ¢, we have

2 (0) = [ S -0P-m) (a1
<0((P = Q)))(P— 0 +m)D"(0)  (AI5)
and
p*(0) = D**(0)
—@?éay%mmu+ﬂ%»mm@,
(A16)

where TI(Q) is the mediator’s in-medium self-energy.
Evaluating the Dirac trace for the scattering rate,

tr[(P +m,) (P -0+ m,)] = 4(2m§ —-P-0Q). (Al7)
For a nonrelativistic P, this is the same, to leading order, as
the leading 4 = v = 0 component of the vector mediator’s
trace, so we have

d*q 1
'~ -2g>
%/@@%f+m;

If ¢ couples with opposite strength to electrons and
protons, then to leading order in the velocities of the
electrons and protons, Imll is the same as the ImlII;
expression for a vector mediator.

We would obtain similar expressions if we considered
scalar DM. Compared to the nonrelativistic calculations in
[24,25], which were spin agnostic by construction, our
calculations illustrate how to incorporate relativistic cor-
rections, as well as mediators with different couplings.

7 ImI1(gy, q). (A18)
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FIG. 10. Direction-averaged velocity distribution at Earth for the truncated Maxwell-Boltzmann DM velocity distribution from
Appendix B. The blue curve shows the distribution for v, = 600 kms~!, and the orange curve for v, — co. The difference between
this curves is visible not in the linear-scale plot in the left panel, but only in the log-scale plot in the right panel.

APPENDIX B: DM VELOCITY DISTRIBUTION

The DM scattering rate in an experiment will depend on
the DM velocity distribution at Earth. While we do not have
precise measurements of this distribution, a common model
assumed in the direct detection literature is the truncated
Maxwell-Boltzmann distribution [78,79]. Writing v as the
velocity relative to Earth, the DM velocity distribution is
taken to be

Standard values taken for these parameters are wvg =~
230 kms™!, v, 2240 kms™!, v, ~600 kms~! [16].

In the v, — oo limit (corresponding to a simple
Maxwell-Boltzmann distribution in the Galactic frame,
which can be useful for seeing the basic form of expres-
sions), we have N, = z*/2v}. From Sec. II B, a useful
quantity for computing DM scattering rates is

pil) = [dvan, e ()

1 27,2
— _— ,=(vFv.)*/v ® _ + B1
v e O(v v+ v,), o o
F(v) Ny (Vese = | ). (B For a Maxwell-Boltzmann distribution, this is
where 1 Ve — Vg ve + v,
= erf erf[ —— | |. B4
P(v:) 4Ue< < Vo )+ < Vo >> (B4)
2
Ny = 73?0} [voerf <@> _ e Xp <#>] (B2) For the truncated Maxwell-Boltzmann distribution,
Yo z U we have
|
3/2,3 P 0. 22 e
o (erf (05 erf(P)) — b1/ e < Ve = Ve,
— JT3/2 )3 v v 1}2 —v. g
pi(vs) = 4%1;2 (erf (") + erf(%-=)) — ;—N‘:)—U“ﬂ;:" Vo Vel Uy, < Vg 4 Vs (BS)
0 Uy > Vese + Ve
Figure 10 plots p,(v,) for the standard parameter values, 0 deo wlm -1 B zwz (1)
illustrating that the difference between the truncated and 0 er(w, k) — 7%

nontruncated Maxwell-Boltzmann distributions is only
important at high velocities, and correspondingly small
p1 values.

APPENDIX C: OTHER EM SUM RULES

As well as the [92Im(—1/e;(w)) sum rule, there are
also other constraints that the longitudinal dielectric func-
tion should satisfy [27,28]. For example, suppose that
¢(w) ~ 1 —w?}/w* for large enough |w|. Then, from the
Kramers-Kronig relations,

The dw/w sum rule [Eq. (1)] can be viewed as correspond-
ing to energy absorption from a delta-function pulse in
time. In contrast, the dww sum rule from Eq. (Cl)
corresponds to energy absorption from a second-
derivative-of-delta-function pulse (a rapid down-up-down
sequence). This emphasizes absorption at higher frequen-
cies. Physically, since we are interested in low-mass DM
absorption, and correspondingly, in smaller energy trans-
fers, the dw/w sum rule will be more useful for our
purposes.
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