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We study several aspects of the quantum structure of the minimal potentially realistic renormalizable
SO(10) Higgs model in which the 45 ⊕ 126 scalars spontaneously break the symmetry down to the
Standard Model (SM) group SUð3Þc × SUð2ÞL × Uð1ÞY . With complete information about the one-loop
corrections to the masses of all scalars in the theory and the one-loop beta functions governing the running
of all dimensionless scalar self-couplings, the domains of the parameter space where the model can be
treated perturbatively are established, along with improved bounds from the requirements of the SM
vacuum stability and gauge coupling unification. We demonstrate that the model is fully consistent and
potentially realistic only in very narrow regions of the parameter space corresponding to the breaking
chains with well-pronounced SUð4ÞC × SUð2ÞL × Uð1ÞR and SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−L
intermediate symmetries, with a clear preference for the former case. Barring accidental fine-tunings
in the scalar sector, this makes it possible to provide a very sharp prediction for the position of the
unification scale and the value of the associated gauge coupling, with clear implications for the
phenomenology of grand unified models based on this structure.
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I. INTRODUCTION

With the upcoming generation of large-volume experi-
ments aiming to test the potential instability of baryonic
matter (DUNE [1,2], Hyper-K [3,4]), one can expect at
least an order-of-magnitude improvement of their sensi-
tivity in most of the relevant nucleon decay channels
(p → π0eþ, p → πþν̄, p → Kþν̄, etc.) with respect to
the current limits. Unfortunately, on the theory side, these
efforts are notoriously difficult to meet with good enough
estimates that would, at least in principle, make it possible to
distinguish among different scenarios. To this end, even the
most popular models of baryon number (B) violation based
on the idea of grand unification, the so called grand unified

theories (GUT) [5], often come short when better than
several-orders-of-magnitude predictions are demanded.
This has to do with various types of obstacles plaguing
an accurate determination of some of the critical inputs to
such calculations, namely, (i) the proximity of the uni-
fication scale to the Planck scale which, in general, enhances
the effects of higher-dimensional operators inducing out-of-
control shifts in, e.g., the GUT-scale matching conditions
[6–8], (ii) the need to go beyond the leading-order approxi-
mation in the high-scale mediator masses in order to deal
with the associated theoretical uncertainties in the proton
lifetime estimates, (iii) the need to model the flavor structure
of the relevant baryon and lepton number violating (BLNV)
currents and, finally, (iv) the lack of accurate information
about the B ≠ 0 hadronic matrix elements.
While the last two issues may be alleviated to some

degree by, e.g., focusing on specific observables with less
sensitivity to flavor uncertainties such as branching ratios
and/or neutrino production channels (case (iii) and, per-
haps, investing more resources to accurate lattice QCD
modeling (case iv), the first two are difficult in principle. As
for point (ii), higher-order calculations in the GUT context
are, by definition, complicated by the typically large
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number of degrees of freedom in the loops, raising
questions about the stability of the results obtained at
any given order of the perturbative expansion. Concerning
(i), there is hardly anything one can do about this issue in
general.
Nevertheless, there are very particular model scenarios in

which both (i) and (ii) can be addressed in a relatively
satisfactory manner. Among these, a prominent role is
played by the minimal renormalizable nonsupersymmetric
SO(10) GUTwith the adjoint 45 triggering the first stage of
symmetry breaking (followed by a second stage where the
rank of the gauge group is reduced to that of the SM) [9,10].
Remarkably, the structure of the scalar sector of this theory
is such that the most troublesome Planck-scale-associated
effective operators are entirely absent [11] and, at the same
time, the underlying Higgs model is simple enough to
admit a comprehensive numerical analysis. Let us note that
both these features are not only vital for any sensible
physics scrutiny, but they also enable one to overcome [12]
a peculiar pathology that the classical version of the model
has been known to suffer from for decades [13–16],
namely, the instability of its SM-like vacua. For these
reasons, the minimal SO(10) GUT has attracted a lot of
attention in recent years with a number of interesting works
touching upon its specific aspects, often within the bigger
phenomenological picture; see, e.g., [17–22].
To this end, detailed studies of the minimal renormaliz-

able SO(10) Higgs model(s) play a central role as pre-
cursors to essentially all other activities. To date, these have
focused predominantly on the leading quantum corrections
to the masses of the SUð2ÞL-triplet (1,3,0) and SUð3Þc-octet
(8,1,0) pseudo-Goldstone bosons (PGBs) [12], which were
identified long ago as the main culprits behind the tree-level
vacuum instability issues [12,23–25]. It has recently been
noted [26] that a third potentially problematic singlet
pseudo-Goldstone mode worth detailed scrutiny pops up
along the potentially realistic symmetry-breaking chains
with the Uð1ÞB−L-breaking (seesaw) scale parametrically
smaller than the GUT scaleMGUT ∼ 1016 GeV. This further
complicates matters, since the field in question is a member
of a rich SM-singlet family of four scalars, and thus the
analysis requires a thorough inspection of a 4 × 4 mass
matrix along with the associated quantum corrections.
In this paper, we aim to provide the ultimate synthesis of

these (and several new) aspects into a decisive and self-
contained analysis of the one-loop quantum structure of the
minimal potentially realistic renormalizable SO(10) Higgs
model. Besides complementing the previous studies by a
refined account of the pseudo-Goldstone sector, including
issues related to the previously unnoticed instability also
plaguing one of the SM-singlet scalars (which, in certain
limits, behaves as a third pseudo-Goldstone boson in the
spectrum), we calculate the leading quantum corrections to
the masses of all other fields in the scalar sector along with
the one-loop beta functions of all the dimensionless

scalar-potential couplings. This not only makes it possible
to verify the convexity of the local extrema supporting the
potentially realistic SM-like vacua, but at the same time
opens the door to another important aspect ignored to a
large degree so far, namely, that of the perturbative stability
of all the results.
Remarkably enough, such perturbativity requirements

turn out to be extremely powerful in eliminating large
patches of the formerly allowed parameter space. As we
shall demonstrate, the model entertains a certain level of
perturbative stability only invery specific limits correspond-
ing to the breaking chains with well-pronounced SUð4ÞC×
SUð2ÞL×Uð1ÞR and SUð3Þc×SUð2ÞL×SUð2ÞR×Uð1ÞB−L
intermediate-level symmetries, with a clear preference for
the former. This has to do with an interesting interplay
between the three SM-compatible vacuum expectation
values (VEVs) available in the scalar sector, which ubiqui-
tously appear in the form of the universal structure

ωBLωRðωBL þ ωRÞ
jσj2 : ð1Þ

This structure may give large massive contributions when a
hierarchy between the GUT scale (represented by the larger
of ωR and ωBL) and the seesaw scale (denoted by σ) is
assumed.One possibleway to retain perturbativity would be
to suppress the structure’s dimensionless prefactors, as was
often done in previous accounts [24,25]. However, due to its
ubiquitous appearance also in higher-order loop corrections
with different dimensionless prefactors, we would be hard
pressed to suppress all the relevant coefficients simulta-
neously, not least due to the presence of the gauge coupling
g, whose value is dictated by unification constraints, and as
such cannot be suppressed. We thus conclude that the
structure of Eq. (1) itself needs to be kept under control.
The possibility of a small ðωBL þ ωRÞ turns out to be
unviable for phenomenological reasons [unification through
an intermediate flipped SU(5) is unattainable], so the smaller
of the two ω VEVs must therefore be hierarchically smaller
than the seesaw scale; i.e., it is merely an inducedVEV. This
implies one of the two mentioned intermediate symmetries
must be realized.
The work is organized as follows: In Sec. II, we

recapitulate the salient features of the model of interest,
specify its field content and scalar potential, as well as
recognize the possible breaking patterns. In Sec. III, we
discuss at a conceptual level various theoretical constraints
bounding the allowed parameter space—nontachyonicity
of the scalar spectrum, perturbativity, and one-loop gauge
coupling unification. Preliminary analysis of the parameter
space based on analytical considerations, the results of our
numerical scans, and the accompanying discussion are
presented in Sec. IV. In Sec. V, we summarize our main
conclusions and provide an outlook. All technical details
related to the one-loop spectrum computation (including
the resulting masses in both symmetry-breaking scenarios
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of interest), decomposition of the relevant SO(10) repre-
sentations under intermediate-scale effective symmetry
groups, detailed treatment of the parameter-space con-
straints, and running of gauge and scalar couplings (includ-
ing their one-loop beta functions) are relegated to a set of
Appendixes.

II. THE 45 ⊕ 126 HIGGS MODEL

The minimal potentially realistic renormalizable Higgs
model of our interest features a scalar sector transforming
as 45 ⊕ 126 of the SO(10). In what follows, we write the
45 as a set of real components ϕij, while the 126 is
parametrized in terms of complex components Σijklm, with
latin indices running from 1 to 10. Both tensors are
completely antisymmetric, and Σ is a self-dual tensor;
cf. [26] for more details. The decompositions of these
multiplets into their irreducible components with respect to
several subgroups of SO(10) relevant for our analysis
are given in Table VII in Appendix D 1. The complex-
conjugate representation of Σ is denoted by Σ�. The
gauge fields (including those of the SM, as well as the
extra components with leptoquark/diquark characteristics
relevant for proton decay) are accommodated in the
45-dimensional adjoint representation.
It is perhaps worth noting that a fully realistic symmetry-

breaking pattern supporting the observed SM fermion
spectrum at the renormalizable level requires at least one
more scalar multiplet [27], typically the 10 of SO(10). The
electroweak (EW) VEVs carried by this representation,
however, do not impact the high-scale symmetry breaking.
Moreover, the one-loop effective-mass contributions com-
ing from the 10 are subdominant due to the small
dimensionality of the representation. Hence, we mostly
ignore such an extra vector representation in the current
analysis, since its absence typically makes little difference
in the high-scale spectrum and the associated gauge
unification constraints. Any possible implications are dis-
cussed later as the need arises. Note that the Higgs-doublet
mass eigenstate of the SM in an extended scenario must live
partly in the 10 and partly in the 126, which must be
consistent with the doublet extended mass matrix, whose
new columns and rows contain new scalar-potential param-
eters introduced by the extension.

A. The classical-level setup

1. The Lagrangian

Conforming to the notation of [26], themost general form
of the Lagrangian in the unbroken phase can be written as
L ¼ Lkin − V0, where the kinetic part is defined as

Lkin ¼
1

4
ðFμνÞijðFμνÞij þ

1

4
ðDμϕijÞ�ðDμϕijÞ

þ 1

5!
ðDμΣijklmÞ�ðDμΣijklmÞ ð2Þ

for

ðFμνÞij ¼ ∂μAν
ij − ∂νAμ

ij − ig½Aμ; Aν�ij; ð3Þ

Dμϕij ¼ ∂μϕij − ig½Aμ;ϕ�ij; ð4Þ

DμΣijklm ¼ ∂μΣijklm − igðAμ
inΣnjk×lm þ Aμ

jnΣink×lm

þ Aμ
knΣijnlm þ Aμ

lnΣijknm þ Aμ
mnΣijklnÞ: ð5Þ

We use the definition Aμ ≔ Aa
μTa, where Ta denotes the

SO(10) generators in the representation 10. The fundamen-
tal (latin) indices refer to the real basis of the SO(10) vector
10, and they are always written in the lower position.
Summation over repeated indices is implicitly assumed.
The renormalizable tree-level scalar potential takes the

form

V0ðϕ;Σ;Σ�Þ¼V45ðϕÞþV126ðΣ;Σ�ÞþVmixðϕ;Σ;Σ�Þ; ð6Þ

with

V45¼−
μ2

4
ðϕϕÞ0þ

a0
4
ðϕϕÞ0ðϕϕÞ0þ

a2
4
ðϕϕÞ2ðϕϕÞ2; ð7Þ

V126 ¼ −
ν2

5!
ðΣΣ�Þ0 þ

λ0
ð5!Þ2 ðΣΣ

�Þ0ðΣΣ�Þ0

þ λ2
ð4!Þ2 ðΣΣ

�Þ2ðΣΣ�Þ2 þ
λ4

ð3!Þ2ð2!Þ2 ðΣΣ
�Þ4ðΣΣ�Þ4

þ λ04
ð3!Þ2 ðΣΣ

�Þ40 ðΣΣ�Þ40 þ
η2

ð4!Þ2 ðΣΣÞ2ðΣΣÞ2

þ η�2
ð4!Þ2 ðΣ

�Σ�Þ2ðΣ�Σ�Þ2; ð8Þ

Vmix ¼
iτ
4!
ðϕÞ2ðΣΣ�Þ2 þ

α

2 · 5!
ðϕϕÞ0ðΣΣ�Þ0

þ β4
4 · 3!

ðϕϕÞ4ðΣΣ�Þ4 þ
β04
3!

ðϕϕÞ40 ðΣΣ�Þ40

þ γ2
4!
ðϕϕÞ2ðΣΣÞ2 þ

γ�2
4!
ðϕϕÞ2ðΣ�Σ�Þ2: ð9Þ

As usual, the following abbreviations are used:
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ðϕϕÞ0 ¼ ϕijϕij;

ðϕϕÞ2 ¼ ðϕϕÞjk ¼ ϕijϕik;

ðΣΣ�Þ0 ¼ ΣijklmΣ�
ijklm;

ðΣΣ�Þ2 ¼ ðΣΣ�Þmn ¼ ΣijklmΣ�
ijkln;

ðΣΣ�Þ4 ¼ ðΣΣ�Þlmno ¼ ΣijklmΣ�
ijkno;

ðϕÞ2ðΣΣ�Þ2 ¼ ϕmnðΣΣ�Þmn;

ðϕϕÞ2ðΣΣÞ2 ¼ ðϕϕÞjkðΣΣÞjk;
ðϕϕÞ4ðΣΣ�Þ4 ¼ ϕlmϕnoðΣΣ�Þlmno;

ðϕϕÞ40 ðΣΣ�Þ40 ¼ ϕlmϕnoðΣΣ�Þlnmo;

ðΣΣ�Þ2ðΣΣ�Þ2 ¼ ðΣΣ�ÞmnðΣΣ�Þmn;

ðΣΣ�Þ4ðΣΣ�Þ4 ¼ ðΣΣ�ÞlmnoðΣΣ�Þlmno;

ðΣΣ�Þ40 ðΣΣ�Þ40 ¼ ðΣΣ�ÞlmnoðΣΣ�Þlnmo: ð10Þ
The tree-level scalar potential contains 11 dimensionless

parameters: nine real couplings fa0; a2; λ0; λ2; λ4; λ04;α; β4;
β04g and two complex couplings fγ2; η2g. Additionally,
there are three dimensionful parameters fμ; ν; τg with the
numerical coefficients in front of the corresponding terms
in V0 chosen such that the expressions −μ2 and −ν2
represent the mass squares of scalar fields in ϕ and Σ in
the unbroken phase, respectively.

2. Field content

For later convenience, we gather in Table I a list of all
scalar fields in our 45 ⊕ 126 Higgs model in terms of their
SM symmetry representations. Alongside the representa-
tion type, we provide the information on whether each
representation is real or complex (R=C), its multiplicity #
in the model, as well as the SO(10) origins of each instance.
Note that for each complex representation, we could

have equivalently chosen its complex conjugate as the
canonical label; our choices are purely conventional in this
regard. In this paper, we shall denote mass eigenstates by
the SM representation labels and add a numbered index
when the state has a multiplicity greater than 1. The value
of the index increases with the mass eigenvalue. This
labeling scheme will be convenient in our numerical
analysis, since the masses can be computed explicitly
and ranked for each parameter point.

3. Symmetry breaking and VEVs

The scalar spectrum contains three SM singlets: two real
singlets residing in ϕ and one complex in Σ, for a total of
four real SM-singlet degrees of freedom; cf. Table I. Their
vacuum expectation values are parametrized as

hð1; 1; 1; 0Þϕi≡
ffiffiffi
3

p
ωBL;

hð1; 1; 3; 0Þϕi≡
ffiffiffi
2

p
ωR;

hð1; 1; 3;þ2ÞΣi≡
ffiffiffi
2

p
σ: ð11Þ

For unambiguous identification of these states, we referred
to their SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−L transfor-
mation properties.
The values ωBL and ωR are real because ϕ is a real

representation, while σ is, in general, complex. Since the
overall phase of Σ can be redefined without loss of
generality, σ can be taken real and positive. Although this
freedom is utilized in our scans of the parameter space, we
retain a notation consistent with complex σ in all analytical
expressions.
Because of phenomenological requirements (gauge cou-

pling unification and a need for a seesaw scale), the GUT
symmetry is assumed to be broken spontaneously in two
stages. At the unification scale MGUT, the VEVs in ϕ (ωBL
and ωR) break SO(10) down to one of its subgroups of rank
five. The subsequent breaking to the SM, preferably well
below MGUT, is then accomplished by the rank-reducing
VEV of Σ (σ) which is identified with the seesaw scale.
Breaking patterns associated with various VEV directions
are summarized in Table II.

4. The classical vacuum structure and
pseudo-Goldstone modes

The three mass parameters fμ; ν; τg are connected
to the three VEVs fωR;ωBL; σg by the vacuum

TABLE I. Field content of the 45 ⊕ 126 Higgs model. Each
SM representation R has its reality/complexity, multiplicity #, and
SO(10) origins indicated. A dagger (†) indicates the presence of a
massless would-be Goldstone mode.

R ∼ G321 R=C # ⊆ SOð10Þ
(1,1,0) R 4† ϕ, ϕ, Σ, Σ�

ð1; 1;þ1Þ C 2† ϕ, Σ
ð1; 1;þ2Þ C 1 Σ
ð1; 2;þ 1

2
Þ C 2 Σ, Σ�

ð1; 3;−1Þ C 1 Σ
(1,3,0) R 1 ϕ

ð3; 2;− 5
6
Þ C 1† ϕ

ð3; 2;þ 1
6
Þ C 3† ϕ, Σ, Σ�

ð3; 2;þ 7
6
Þ C 2 Σ, Σ�

ð3; 3;− 1
3
Þ C 1 Σ

ð3̄; 1;− 2
3
Þ C 2† ϕ, Σ

ð3̄; 1;þ 1
3
Þ C 3 Σ, Σ, Σ�

ð3̄; 1;þ 4
3
Þ C 1 Σ

ð6; 3;þ 1
3
Þ C 1 Σ

ð6̄; 1;− 4
3
Þ C 1 Σ

ð6̄; 1;− 1
3
Þ C 1 Σ

ð6̄; 1;þ 2
3
Þ C 1 Σ

(8,1,0) R 1 ϕ

ð8; 2;þ 1
2
Þ C 2 Σ, Σ�
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stationarity conditions,1 which take the following form at
tree level:

μ2 ¼ ð12a0 þ 2a2Þω2
BL þ ð8a0 þ 2a2Þω2

R

þ 2a2ωBLωR þ 4ðαþ β4
0Þjσj2; ð12Þ

ν2 ¼ 3ðαþ 4β4
0Þω2

BL þ 2ðαþ 3β4
0Þω2

R

þ 12β4
0ωBLωR þ 4λ0jσj2

þ a2
ωBLωR

jσj2 ðωBL þ ωRÞð3ωBL þ 2ωRÞ; ð13Þ

τ ¼ 2β04ð3ωBL þ 2ωRÞ þ a2
ωBLωR

jσj2 ðωBL þ ωRÞ: ð14Þ

Notice the presence of the VEV structure of Eq. (1) in both
ν2 and τ. For later convenience, we define χ as the
dimensionless universal ratio of VEVs present in that
structure:

χ ≔
ωBLωR

jσj2 : ð15Þ

Given the relations of Eqs. (12)–(14), the VEVs and
dimensionless scalar couplings can be taken as independent
input parameters that fully determine the (tree-level) scalar
and gauge spectra. The key observation made in [14,15]
was that the tree-level masses of scalars transforming as
(1,3,0) and (8,1,0) under the SM group take the simple form

M2
Sð1; 3; 0Þ ¼ 2a2ðωR − ωBLÞðωBL þ 2ωRÞ; ð16Þ

M2
Sð8; 1; 0Þ ¼ 2a2ðωBL − ωRÞðωR þ 2ωBLÞ; ð17Þ

and can thus be simultaneously made nontachyonic if and
only if

a2 > 0 and − 2 <
ωBL

ωR
< −

1

2
; ð18Þ

i.e., in the vicinity of the intermediate flipped-SU(5)
configuration; cf. Table II. This, however, triggers the
usual issues with gauge unification and/or baryon number
violation—either one respects the proton lifetime limits and
breaks the residual flipped SU(5) immediately by lifting σ
to the vicinity of MGUT (which corresponds to the prob-
lematic one-stage symmetry-breaking pattern), or one
postpones the flipped-SU(5) symmetry breaking and faces
light ð3; 2;þ 1

6
Þ gauge leptoquarks in the spectrum with all

the implications for matter instability. In either case, the
phenomenological constraints are practically impossible to
meet. The model has thus been discarded as nonviable, and
it took almost 30 years to bring it back from oblivion by
invoking radiative effects [12]: for small a2, these may
remedy the tree-level tachyonicity of Eqs. (16) and/or (17)
along the potentially viable breaking chains well outside
the (near) flipped-SU(5) region of Eq. (18).
Remarkably enough, only recently, another tachyonic

instability was revealed in the tree-level mass matrix of the
SM singlets [26] assuming the seesaw-compatible regime
jσj ≪ max½jωBLj; jωRj�. In the σ → 0 limit,2 one of the
masses of the physical SM-singlet scalars takes the form

M2
Sð1; 1; 0ÞPGB ¼ 4a0ð3ω2

BL þ 2ω2
RÞ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
a2
a0

�
3ð3ω2

BL − 2ω2
RÞðω2

BL − ω2
RÞ

2ð3ω2
BL þ 2ω2

RÞ2
þ
�
a2
a0

�
2 9ðω2

BL − ω2
RÞ2

16ð3ω2
BL þ 2ω2

RÞ2

s �

þ a2ðωBL − ωRÞ2: ð19Þ

TABLE II. Residual gauge symmetries (in self-explanatory notation) for various VEV configurations. The 501Z0 refers to an
intermediate flipped-SU(5) stage [28,29], while in the last column, the SU(5) symmetry remains unbroken due to the SU(5)-singlet
nature of σ.

ωBL ≠ 0;ωR ≠ 0 ωBL ¼ 0;ωR ≠ 0 ωR ¼ 0;ωBL ≠ 0 ωBL ¼ −ωR ≠ 0 ωBL ¼ ωR ≠ 0

σ ¼ 0 3c2L1R1B−L 4C2L1R 3c2L2R1B−L 501Z0 51Z
σ ≠ 0 3c2L1Y 3c2L1Y 3c2L1Y 3c2L1Y 5

1Note that for special configurations of VEVs the number of
nontrivial relations can be reduced. For instance, only two
independent conditions exist in the ωBL ¼ ωR case. Thus, one
of the fμ; ν; τg parameters remains unspecified [meaning that
stable points of the scalar potential with SU(5) symmetry exist for
any possible value of this parameter].

2This limit needs to be taken carefully due to the appearance of
the χ structure in the trilinear scalar coupling τ of Eq. (14). One
assumes a2 or the smaller of the two ω scales to be taken to zero
alongside σ in such a way that τ is kept fixed and sub-Planckian,
i.e., under perturbative control; cf. Sec. II B.
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We refer to this state as the pseudo-Goldstone boson
singlet. A companion SM singlet to the PGB singlet has the
same mass expression as that of Eq. (19), except for
changing the sign in front of the square root, while
the remaining two SM singlets are true would-be
Goldstone boson (WGB) modes3 when σ → 0. In the
well-motivated ja2j ≪ ja0j limit,4 the PGB singlet mass
can be expanded as

M2
Sð1; 1; 0ÞPGB ≈ a2

�
−

45ω4
BL

3ω2
BL þ 2ω2

R
þ 13ω2

BL

− 2ωBLωR − 2ω2
R

�
þOða22=a20Þ: ð20Þ

In the same ja2j ≪ ja0j limit, the companion singlet has the
mass 8a0ð3ω2

BL þ 2ω2
RÞ þOða2Þ controlled by the a0

parameter, providing further justification of the limit
a posteriori. Incidentally, the opposite ja2j ≫ ja0j regime
leads to the masses of the two physical singlets [based on
Eq. (19)] equal to the PGB triplet and octet masses of
Eqs. (16) and (17), respectively.
The expression of Eq. (20) is positive only for ωBL ≃

−ωR assuming a2 > 0. Hence, one reveals again that the
tachyonic instabilities are absent from the tree-level mass
spectrum only in the vicinity of the phenomenologically
problematic flipped-SU(5)-breaking direction.

B. The quantum-level situation

As argued in Sec. II A, potentially viable scenarios
require dealing with three rather than the two previously
identified instabilities in the scalar spectrum. Since the SM-
singlet PGBmass is buried within a 4 × 4mass matrix, a far
more elaborate account of radiative corrections to the scalar
spectrum of the model is required than that available in the
existing literature [26]. Hence, for the purposes of this
study, we have developed a numerical code that calculates
the one-loop quantum corrections to all scalars of the
model, i.e., including the modes that should not suffer from
any issues inherent to the pseudo-Goldstone nature of the
three culprits of Eqs. (16), (17), and (19). Even though the
quantum effects should not significantly affect the heavy
nontachyonic part of the tree-level spectrum, this additional
information enables a comprehensive analysis of perturba-
tivity, a feature that is seldom addressed in the existing
GUT literature.
The first perturbativity issue to be addressed is the

potentially large terms with the universal ratio χ defined
in Eq. (15). Remarkably, this structure pops up not only in

the tree-level vacuum conditions of Eqs. (12)–(14) (and by
extension in the tree-level spectrum), but independently
also at the level of quantum corrections.
At tree level, its tendency to diverge in various limits can

be compensated by taking the accompanying a2 parameter
appropriately small (which in addition helps to keep the
tachyonic instabilities of PGB states under control). All
symmetry-breaking patterns identified in Table II can
therefore be, at least in principle, consistently attained.
The situation changes dramatically at the loop level

where the same χ structure appears in the (polynomial part
of the) one-loop stationarity conditions [26] but with
parameters other than a2 present in the prefactors. It is
difficult to keep all these contributions simultaneously
under control merely by suppressing the value of relevant
scalar parameters due to the presence of the (relatively
large) gauge coupling g among them. The only way to
retain control over such χ terms is by (i) sticking to small
fine-tuned patches of the parameter space where the scalar
couplings just cancel the effects of g and/or (ii) keeping the
universal ratio χ itself under control by pushing the VEVs
into several “prophylactic” corners of the parameter space.

1. Landau poles in scalar couplings

To this end, case (i) is generally difficult to achieve
because cancellations of the gauge coupling effects nec-
essarily invoke relatively large scalar couplings. This,
unfortunately, brings in another aspect of the overall
perturbativity issue, namely, the potential proximity of
the scalar-sector Landau pole(s) to MGUT. In order to
address this, we have derived one-loop beta functions
for all scalar couplings at play and used them to look
for and inspect the regions where the scalar couplings are
stable enough to support such a regime. Remarkably, these
constraints turn out to be extremely powerful in excluding
large patches of the parameter space that were formerly
thought to be viable; cf. Sec. III C.

2. Perturbative VEV configurations

Consequently, one can expect that at the quantum level
the omnipresent factor χ will have to be dealt with along the
lines of option (ii) above. Hence, in what follows, we shall
require

jωBLωRðωBL þ ωRÞj
jσj2 ≲max ½jωBLj; jωRj�; ð21Þ

which confines the viable VEV configurations to four
distinct classes corresponding to four different breaking
patterns in Table II:
(1) jσj ≈max½jωBLj; jωRj� corresponding to approxi-

mate single-stage spontaneous symmetry break-
ing SOð10Þ → SUð3Þc × SUð2ÞL × Uð1ÞY

(2) ωBL ≈ −ωR with a flipped-SU(5) intermediate-sym-
metry stage

3More precisely, one is a true WGB and one is a B − L
breaking Higgs field whose mass is proportional to jσj2 to all
orders in the perturbative expansion; see [30].

4The tree-level triplet and octet PGB masses are proportional
to a2, so taking a2 small enables loop corrections to overwhelm
them and cure their tree-level tachyonic instability.
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(3) jωBLj≪ jσj≪ jωRj with SUð4ÞC × SUð2ÞL × Uð1ÞR
intermediate-symmetry stage

(4) jωRj≪ jσj≪jωBLj with SUð3Þc×SUð2ÞL×SUð2ÞR×
Uð1ÞB−L intermediate-symmetry stage

As already mentioned, the first two options are
strongly phenomenologically disfavored either by gauge
unification constraints or by proton longevity. Hence, we
shall focus predominantly on the latter two scenarios and
present the results obtained in the corresponding ωBL → 0
and ωR → 0 limits. From them, it will become evident that
the ωR → 0 case is disfavored in several aspects. Therefore,
a clear quantum-level preference for the symmetry-
breaking chains passing through a well-pronounced inter-
mediate SUð4ÞC × SUð2ÞL × Uð1ÞR symmetry stage can be
identified.

III. ANALYSIS OF CONSTRAINTS

In this section, we provide a systematic account of the
different types of constraints that a consistent GUT theory
amenable to a perturbative expansion must satisfy. We
start with those for which rigorous criteria can be
implemented more easily (nontachyonicity of the scalar
spectrum and gauge coupling unification) and follow with
those requiring a subjective choice of the used criterion
(perturbativity).
The constraints of this section can be considered for any

given parameter point of the theory. The goal ultimately is
to identify the parameter-space region(s) which pass all
the viability criteria. This analysis is carried out later in
Sec. IV. To facilitate the readability of the paper and
streamline the main text to reach our numerical results
quicker, we discuss in this section the constraints used
later only at a conceptual level. The interested reader is
kindly referred to Appendixes A and B for technical
details of the implementation of the criteria presented in
this section.

A. Nontachyonicity of the scalar spectrum

A consistent broken-phase perturbative expansion is
developed around the true vacuum, i.e., around a (possibly
local) minimum of the scalar potential at which all physical
scalar masses are non-negative. Hence, a parameter point is
not considered viable if some of the masses are found to be
tachyonic.
To this end, we provide in Appendix A a detailed

description of the procedure used to calculate the one-
loop scalar spectrum of the model in any given parameter
point. Two conceptual considerations are important to
note here:
(1) The masses of the fields associated with the

Uð1ÞB−L-breaking scale are proportional to the jσj
VEV; i.e., they naturally live at the intermediate
(seesaw) scale rather than in the vicinity of the

GUT scale.5 Because of symmetry reasons, not only
their tree-level masses but even the corresponding
loop corrections are jσj proportional [30]. Since,
conceptually, these should be computed in the
effective field theory at the intermediate scale—
either in the SUð4ÞC × SUð2ÞL × Uð1ÞR model (for
ωBL → 0) or in the SUð3Þc × SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L theory (for ωR → 0), where both of these
setups contain a significantly smaller number of
degrees of freedom than the full SO(10) Higgs
model—the seesaw-scale fields are expected to
receive rather small loop corrections for any values
of couplings in the perturbative regime. We thus
simplify the analysis by taking only the tree-level
expressions for the jσj-proportional part of the
spectrum.

(2) In the minimal realistic scenario, the scalar SM
multiplets ð3̄; 1;þ 1

3
Þ and ð1; 2;þ 1

2
Þ are eventually

mixed with their counterparts from additional
scalar 10’s of SO(10). Although one can neglect
its impact in almost all aspects of our analysis,6 the
triplet and doublet mass matrices in the model
without the 10 should be treated only as subparts
of larger structures. Nevertheless, it is still possible
to formulate a necessary condition for the non-
tachyonicity of these states even with just partial
information of the complete mass matrices in this
sector.
According to Sylvester’s criterion [31], a Hermi-

tian matrix M2 is positive definite (it has positive
eigenvalues) if and only if all its leading principal
minors are positive, i.e., if the determinants of all
upper-left submatrices of M2 (its upper-left 1 ×
1; 2 × 2; 3 × 3;… blocks up to M2 itself) are
positive.7 Since the 10 introduces no new SM-singlet
VEV, the mass matrices of ð3̄; 1;þ 1

3
Þ and ð1; 2;þ 1

2
Þ

used here represent upper-left blocks of the

5Scalar fields with jσj-proportional masses belong to the same
SUð4ÞC × SUð2ÞL × Uð1ÞR (for ωBL → 0) or SUð3Þc ×
SUð2ÞL × SUð2ÞR × Uð1ÞB−L (for ωR → 0) representation as
the SM-singlet Higgs field which breaks the Uð1ÞB−L symmetry.

6Note that adding a 10 also introduces new terms in the scalar
potential, which generate further one-loop corrections to the
original 45 ⊕ 126 states. However, the number of additional
fields appearing in loops is small, and their loop contributions can
be neglected.

7An analog of Sylvester’s criterion for positive semidefinite
matrices requires all principal minors of M2 to be non-negative.
The ð1; 2;þ 1

2
Þmass matrix in the full theory could be regarded as

positive semidefinite, since the electroweak Higgs mass eigen-
value therein can be considered as effectively zero. This,
however, is the only vanishing eigenvalue, and it can be imposed
by performing a fine-tuning (outside the Higgs-model block) of
one of the new scalar couplings associated with the additional 10.
The here considered doublet block is thus strictly positive
definite, and hence, the same positive definiteness criterion is
used as for the triplet block.
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corresponding full mass matrices in the extended
models. The positivity of all their leading principal
minors (and thus of the eigenvalues presented in
Table IX) forms a necessary condition for the
nontachyonicity of the ð3̄; 1;þ 1

3
Þ and ð1; 2;þ 1

2
Þ

SM multiplets within.

B. Gauge unification constraints

Consistency of a GUT model demands that the SM
gauge couplings unify at some high scale, starting with
their measured EW-scale values. Since our SO(10) Higgs
model is envisioned to be employed as a subsector of such a
realistic GUT model, we include gauge unification as a
viability criterion for our points.
We perform the unification test top down, i.e., starting

with the value of the unified gauge coupling g. We use the
renormalization group evolution (RGE) to compute the
EW-scale values of the SM gauge couplings and accept
only points whose coupling values match the experimen-
tal ones.
Technically, the computation is done using standard

techniques; cf. Appendix B 1 b. Although a reasonable
account of the relevant BLNV phenomenology (such as
proton lifetime calculations) in potentially realistic models
requires a detailed two-loop gauge running analysis (such
as [25]), a one-loop approximation is sufficient for the
purposes of this Higgs-model study.
Despite considering a two-stage breaking SOð10Þ →

G → SUð3Þc × SUð2ÞL × Uð1ÞY , with the two scenarios of
interest having SUð4ÞC × SUð2ÞL × Uð1ÞR and SUð3Þc ×
SUð2ÞL × SUð2ÞR × Uð1ÞB−L intermediate symmetries for
G, the one-loop analysis can be performed in the SM
effective theory, provided we know the spectrum.
We therefore need to consider how best to mimic the

spectrum in a realistic model, e.g., an extension with an
extra 10 scalar representation. The only nontrivial issue
arises for SM representation types introduced by the
extension: the doublets ð1; 2;þ 1

2
Þ and triplets ð3̄; 1;þ 1

3
Þ.

Recall that in the current Higgs-model setting, we
have access only to incomplete doublet and triplet mass
matrices of the realistic theory. The relevant masses (as
inputs to the RGE analysis) thus cannot be fully deter-
mined, yet we can still make use of the (positive)
eigenvalues M2

Sð1; 2;þ 1
2
Þ1;2 and M2

Sð3̄; 1;þ 1
3
Þ1;2;3 as com-

puted in the Higgs model; cf. Table IX in the Appendix.
The best approximation to the realistic case involves the
following two considerations:
(1) As one of the doublets plays the role of the light SM

Higgs doublet, it should be removed from the heavy
RGE-contributing scalar spectrum. However, there
is no point in imposing the corresponding fine-
tuning on either of the M2

Sð1; 2;þ 1
2
Þ1;2 eigenvalues

of the incomplete doublet mass matrix. What we
instead do is to model their effect in the full setting
by taking into account only one copy of a doublet

(not two) and assign it a mass corresponding to the
geometric mean of the two M2

Sð1; 2;þ 1
2
Þ1;2. As

explained above, the other doublet is taken at the
EW scale.

(2) There exist some ambiguities related to the possible
admixture of additional doublet and triplet fields
from the extra 10’s into the physical mass eigenstates
in models with a fully realistic Yukawa sector. If
these additional multiplets came exactly degenerate
in mass at around MGUT [i.e., as complete SO(10)
multiplets], they would inflict no change at all to the
position of the unification scale and only a very
small (practically irrelevant) shift to the value of g. In
the realistic case, the new doublets and triplets from
the 10’s mix with the old ones; hence, they are not
exactly degenerate, and even a shift in the doublet
and triplet Higgs-model eigenvalues is induced.
However, the net effect on MGUT and g is still
expected to be small for at least two reasons. First,
the beta-function contributions of these new scalar
states (both of them in the vector representations of
their associate gauge factors) are minute, and thus
the corresponding changes to the renormalization
group (RG) running are generically subleading.
Second, as all the heavy doublets and triplets are
clustered around the GUT scale, the interval of
scales between which the running is nontrivial
(corresponding to the mass differences between
the heavy doublets and triplets) is very short. Hence,
in most cases the associated uncertainties in the RG
evolution are negligible, and we shall not consider
the effects of the extra 10’s here. To summarize, we
use the computed spectrum of the triplets from the
Higgs model, while the treatment of doublets was
described in the previous point.

C. Perturbativity aspects

Since all calculations in the model rely on perturbative
methods, some type of perturbativity test needs to be
performed to check for their self-consistency. The loss
of order-by-order robustness in a perturbative calculation
can manifest itself in different ways, so we consider a
number of different perturbativity constraints. Needless to
say, their definitions are typically subject to some arbitra-
riness, so we shall often test them at different levels of
strictness (producing different datasets).
We conceptually discuss the considered perturbativity

criteria one at a time in the numbered subsections below.
The technical details of their implementation are found in
Appendix B 1 c.

1. The global-mass-perturbativity test

The first obvious restriction that we impose concerns the
relative size of the one-loop shifts to the tree-level scalar
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masses. As simple as it sounds, it is not necessarily trivial in
practice for at least two reasons:

(i) There are accidentally light pseudo-Goldstone
modes in the tree-level scalar spectrum for which
a large one-loop shift is not only admissible but, in
most cases, even mandatory; cf. Sec. II A. Thus, we
should exclude the relative shifts to these fields’
masses from the assessment. In practice, the one-
loop scalar-mass correction largest in magnitude is
compared to the average of the heavy tree-level
masses.8

(ii) The relatively simple effective potential methods
that we use for the computation of the leading
quantum corrections to the scalar masses do not,
in fact, provide the fully physical one-loop masses
but rather their counterparts calculated in one of the
unphysical schemes such as MS. These, however,
suffer from several drawbacks such as sensitivity to
potentially large IR or UV logs and residual re-
normalization scale dependence. As for the former,
we work with the regularized one-loop effective-
mass spectrum [see Appendix A, Eq. (A64)] which,
in the current situation, is perhaps the closest
attainable approximation to the actual physical
spectrum. However, even in such a case there is a
residual renormalization scale dependence that
should be kept under control.

Considering the above, we define the quantity Δ̄, which
represents an overall measure of mass shifts:

Δ̄ ≔
maxi;j∈heavy fields½jM2

ij;one-loop −M2
ij;treej�

M2
heavy

: ð22Þ

This quantity effectively compares the largest one-loop
correction in the heavy fields’ masses to their average; see
Appendix B 1 c for further details. A necessary condition
for perturbativity can be imposed by only accepting
parameter points with Δ̄ below a chosen threshold.

2. Renormalization scale dependence and
stability under the RG running

Since the earlier “global-mass-perturbativity” test is not
entirely renormalization scale independent, we need to
ensure that the computed one-loop scalar masses are kept
under control under a change of renormalization scale.
Note that this issue can be rather severe in the busy
environment of grand unified models with typically many
degrees of freedom “flying around” the loops. Technically,
such pathologies exhibit themselves as Landau-pole insta-
bilities in the RG flows which, at the given level of

perturbative expansion, can be studied in terms of the
corresponding beta functions. To this end, the complete
system of the one-loop beta functions for dimensionless
scalar couplings has been derived (see Appendix C) and
used as a basis for the study of RGE stability of the scalar-
mass spectrum.
In this context, we label the initial renormalization scale

by μR, the upper and lower scales where the RGE system
blows up by μRþ and μR−, respectively, and define the
useful perturbativity measures

t� ≔ log10
μR�
μR

; ð23Þ

t̄ ≔
ffiffiffiffiffiffiffiffiffi
t−tþ

p
: ð24Þ

The quantity tþ (t−) tells us how many orders of magnitude
above (below) the initial scale μR the theory can be run in its
full form (i.e., with no degrees of freedom integrated out),
while t̄ as the geometric mean tells us the average amount
of allowed running up or down. Further details are given in
Appendix B 1 c.
Note that checking RG stability above the Planck scale is

physically not required, and a switch to an effective theory
should be performed below the scale where most of the
spectrum lies. Nevertheless, persistence of perturbativity
under RGE demonstrates numerical robustness of the
calculation. RG stability can be checked by imposing a
minimum threshold of t� or t̄ for viable points.

3. Vacuum position stability

Another aspect of perturbativity, though perhaps even
more arbitrary than the two discussed so far, concerns the
stability of the location of the broken-phase-theory vacuum
in the VEV space. On one hand, it deals with quantities
which do not have a clear physical interpretation unlike
masses or couplings9 but, on the other hand, it is still quite
intuitive and can be seen as a one-point complement
to the two- and four-point Green’s functions’ constraints
above. Since the vacuum position is used in the compu-
tation of one-loop scalar masses, a big shift in vacuum
typically causes also a large numerical shift in the masses.
Technically, the requirement that the position of the one-
loop vacuum in the VEV space should not be “too far”
from the tree-level one is also one of the easiest conditions
to test in practice (the vacuum position is determined by
one-loop stationarity condition expressions that represent
only a subset of those that enter the mass corrections) and,
as such, it can be used as a fast first perturbativity check.
The reader is referred to Appendix B 1 c for details of
implementation.

8The heavy (tree-level) masses are those scalar masses that are
not jσj proportional and do not belong among the would-be
Goldstone bosons or the pseudo-Goldstone bosons.

9Moreover, the criterion even depends on the rescaling of
unphysical parameters fμ; ν; τg, which have a “natural” normali-
zation chosen so that −μ2 and −ν2 are exactly the masses of the
scalar fields in the unbroken phase.
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4. Iterative pseudo-Goldstone masses

The last perturbativity constraint arises purely from the
technical aspects of the one-loop mass calculations (see
Appendix A), in particular, whether the regularized effec-
tive mass of Eq. (A64) in Appendix A 3 a is a good
approximation of the physical mass. Essentially, the main
concern arises from diagrams with pseudo-Goldstone
bosons in both the outer legs and the loop, which lead
to one-loop mass corrections of PGBs proportional to logs
of masses of those same PGBs. The regularized-effective-
mass approach breaks down for points overly sensitive to
these contributions; i.e., our method is unreliable at those
points, and hence, we do not accept them as valid. We
check for stability by iterative computation, initially feed-
ing the unreliable tree-level PGB masses into the logs: The
first and final converged iteration should not be “too far
separated” from each other.

IV. RESULTS

Having established the Higgs model in Sec. II and
presented the vital considerations required for its analysis
in Sec. III, we now turn to the results.
In Sec. IVA, we first discuss the results of a simplified

nontachyonicity analysis based on analytic considerations,
which help to build the initial intuitive picture. This
analysis includes one-loop contributions to PGB masses

in a simplified a2 → 0 regime, while allowing for jγ2j ≠ 0,
which was inaccessible in previous works [26]. This
already introduces an important novel result.
From Sec. IV B onward, we proceed with a discussion of

the full numerical analysis and its results, implementing all
viability criteria from Sec. III. In Secs. IV B–IV E, respec-
tively, the used datasets of points, the viable parts of
parameter space, the predictions for the masses, and the
analysis of gauge coupling unification are described.

A. Analytical aspects of nontachyonicity

Remarkably enough, in the σ ≪ MGUT regime of the two
relevant scenarios (ωBL → 0 and ωR → 0), one can get
good insight into the full numerical results of subsequent
sections by means of a semianalytic account of the non-
tachyonicity criterion.
Assuming perturbativity, the scalar masses of the

non-PGBs are expected to be approximated well by
their tree-level contributions; see Table IX. Some of these
states actually have jσj-proportional masses, namely, the
ð6̄; 1;− 4

3
Þ and (1,1,0) for ωBL → 0, and the ð1; 1;þ2Þ and

(1,1,0) for ωR → 0. These vanish identically with σ → 0.
We further assume a2 ≪ 1 in order to suppress the

potentially large tachyonic contributions to the tree-
level masses of the PGBs (8,1,0), (1,3,0), and/or (1,1,0).
These then become dominated by the one-loop effects

FIG. 1. Regions in the β4–β
0
4 plane where PGB masses (solid shapes) and non-PGB masses (areas enclosed by thin contours) are

nontachyonic in the a2 → 0, σ → 0, and ωBL → 0 approximation for different values of jγ2j (indicated by different colors). In the left
panel, the solid purple region depicts the β4–β04 domain where PGB masses are nontachyonic for γ2 ¼ 0, and one can notice no overlap
with the corresponding area supporting the nontachyonic non-PGB spectrum (stretching down and right from the thin purple line).
Retreating colored contours labeled by the corresponding jγ2j values display areas supporting nontachyonic non-PGBs. In the right
panel, the color code denotes the minimal jγ2j required for all PGB masses to be nontachyonic for each β4 and β04. The black contour in
both panels encloses the area in which a jγ2j value exists so that both PGBs and non-PGBs are nontachyonic. For comparison, we present
the results of the full numerical scans described in Secs. IV B–IV E (discrete color-coded points in the left panel). The white dots along
the β04 ¼ 1

4
β4 line in the solid purple region are numerical artifacts related to additional zero-mass scalars inflicting large logs.
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given in Table X. Note that in the full numerical
scans of Secs. IV B–IV E, this assumption on a2 is
discarded, but the obtained results nevertheless still
strongly prefer small values of a2. The a2 → 0 limit in
the semianalytic approximation is thus justified a poste-
riori. Furthermore, the gauge coupling at the GUT scale is
fixed to g ¼ 0.5, which is consistent with the numeric
results of Sec. IV E.
With all this in hand, there are only four relevant

parameters driving the shape of the entire scalar spectrum,
namely, a0, β4, β04 (all real), and γ2 (complex). Among
these, a0 appears solely in the mass of the heaviest singlet
[the SO(10)-breaking Higgs field], which can thus always
be made positive by a suitable choice of a0. The rest of the
scalar spectrum is then in this limit determined by only
three parameters: β4, β04, and jγ2j. We consider two γ2
regimes separately.

1. The γ2 → 0 regime

In this case, everything depends predominantly on β4
and β04, and complete analytical results are available not
only for the tree-level masses of non-PGBs (Table IX), but
also for the one-loop masses of PGBs (Table X).

(i) The (tree-level) non-PGB masses are all nonta-
chyonic in the β04 < 0 and β04 <

1
2
β4 area depicted

in the left panels of Figs. 1 and 2—the allowed
region stretches down and right from the thin purple
contour.

(ii) The PGB masses (which for a2 → 0 do not obtain
any tree-level contribution) are all nontachyonic in
the solid purple region in the first and third quadrants
in the same plots. In both scenarios (ωBL → 0 and
ωR → 0), the viable regions are typically bounded
from above by the nontachyonicity of the PGB

singlet and from below by the PGB triplet. Note also
that the tips of the purple triangular shapes do not
extend all the way to the origin of the β4–β04 plane.
The reason is that gauge loop contributions to the
triplet and octet PGB masses cannot be made
simultaneously non-negative, and for small β4 and
β04 cannot be overcome in the a2 → 0 limit.

The main lesson to be learned here is that the two
listed regions do not overlap at all, and there is thus no
way to make the entire scalar spectrum nontachyonic in the
γ2 → 0 limit.

2. The γ2 ≠ 0 regime

For jγ2j ≠ 0, analytic formulas for the tree-level non-
PGB masses retain their relatively simple form, in which
the complex phase of γ2 plays no role. The one-loop PGB
masses, however, have to be calculated numerically. The
situation then changes as follows:

(i) The nontachyonicity regions for the (tree-level) non-
PGB masses are given by the inequalities

ωBL→ 0∶β40 < 0; β4
0<

1

4
β4− jγ2j; a0> 0;�

β4
0−

1

2
β4

��
β4

0−
1

18
β4

�
>
4

9
jγ2j2; ð25Þ

ωR→ 0∶β40 < 0; β4
0 <

7

18
β4−

2

9
jγ2j; a0> 0;�

β4
0−

1

2
β4

��
β4

0−
1

50
β4

�
>

4

25
jγ2j2;�

β4
0−

1

4
β4

��
β4

0−
1

16
β4

�
>
1

4
jγ2j2: ð26Þ

FIG. 2. The same panels of the β4–β
0
4 plane as in Fig. 1, but for the case ωR → 0.
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They are derived by applying the a2 → 0, σ → 0
limit to the masses listed in Table IX. The above
conditions introduce the boundaries depicted by a
set of jγ2j-labeled colored contours in the left panels
of Figs. 1 and 2 (as before, the viable regions stretch
down and right of these contours). Interestingly, the
nontachyonic region recedes toward the lower-right
corner of the β4–β

0
4 plane with increasing jγ2j.

(ii) The rather complicated nontachyonic regions for
numerically calculated PGB masses are displayed in
the right panels of Figs. 1 and 2 for various jγ2j
values. It is perhaps worth noting that they retain
their ðβ4; β04Þ → ð−β4;−β04Þ symmetry because the
relevant radiative corrections are still quadratic in
both β couplings (i.e., there are no β4γ2 or β04γ2
mixed terms). In the right panels of Figs. 1 and 2, we
plot for a given β4 and β04 the value of minimal jγ2j
for which a nontachyonic PGB spectrum is attain-
able. It is particularly interesting that for jγ2j≳ 0.2,
one can find such points even in the fourth quadrant
of the β4–β04 plane into which also the nontachyonic
region for non-PGBs retreats.

(iii) The last observation provides a clear hint where to
look for a fully nontachyonic scalar spectrum. The
black contours depict the overlap of the regions
corresponding to the nontachyonic non-PGB spec-
trum (the receding polygons in the left panels of
Figs. 1 and 2) with these newly emerging β4–β

0
4

areas supporting nontachyonic PGB masses (the
colored shapes in the right panels). Note that in
doing so, we need to look for the overlap of the
corresponding viable regions for each value of jγ2j
separately; only then can these be superimposed and
projected onto the β4–β

0
4 plane. Remarkably, in the

ωBL → 0 case, a fully consistent region exists for
0.19≲ jγ2j≲ 0.47 within a relatively wide β4–β

0
4

range, while for ωR → 0, a valid region is obtained
for 0.14≲ jγ2j≲ 0.29 in only a very narrow sliver in
the β4–β

0
4 plane corresponding to small β04 and

relatively large β4. This indicates that the ωR → 0
scenario is far more restrictive, and it is correctly
anticipated that this remains so even in the full-
fledged numerical scans performed later.

To demonstrate the relevance of the simplified picture we
have just outlined, we add into the left panels of Figs. 1 and
2 the results of the full numerical scans of Secs. IV B–IV E
(where the entire spectrum has been treated numerically at
one loop). One can see that the viable points are essentially
where they are expected to be based on the black contours
(i.e., in the fourth quadrant of the β4–β04 plane with a clear
affinity toward the larger β4 and the smaller β04 values). The
slight discrepancy between the results of the simplified
semianalytic account given here and the data from scans
can be attributed to a nonzero a2 value admitted in the latter
case. It is interesting that for ωR → 0 a nonzero a2 is

actually enforced (cf. Sec. IV C 4), yet the overlap of the
results of the two methods is almost perfect.

B. Data from numerical scans

We now turn to the full numerical analysis and its results.
We explore the space of parameters defined by the
dimensionless couplings

a2; a0; λ0; λ2; λ4; λ04; α; β4; β
0
4; γ2; η2; g; ð27Þ

which are all assumed to be within the Oð1Þ domain, and
the dimensionful VEVs

ωBL;ωR; σ; ð28Þ

whose values are restricted by the perturbativity constraint
of Eq. (21) and unification.
We evaluate the suitability of a parameter point by

its viability with respect to nontachyonicity, gauge
coupling unification, and perturbativity, as discussed in
Sec. III (the technical procedure is described in all detail in
Appendix A 2). The suitability criteria are numerically
implemented as a penalization function, which gives zero
when all criteria are satisfied. Furthermore, the penalization
function rises monotonically with the quantitative size of
the violation of any suitability criterion. We use a stochastic
version10 of the differential evolution algorithm to find and
explore viable regions of the parameter space.
Since the threshold values in the perturbativity criteria

are to some degree arbitrary, we performed a number of
numerical scans with varying degrees of strictness. We
consider two main perturbativity measures:
(1) The persistence of perturbativity at different RG

scales, referred to as RG perturbativity, is encoded in
the quantity t̄; cf. Eq. (24). Intuitively, it tells us how
many orders of magnitude (in powers of 10) a point
can be run either up or down via RGEs before at least
one of the couplings blows up. A similar measure is
also tþ [cf. Eq. (23)], which considers only RG
running upward in scale.

(2) The ratio of the largest one-loop correction to the
average of the heavy masses is denoted by Δ̄;
cf. Eq. (22). This measures global mass (GM)
perturbativity.

With these definitions, a bigger t̄ (or tþ) and smaller Δ̄
imply a better perturbativity of the point. We impose tþ >
0.5 and Δ̄ < 1 in all our datasets, which are conveniently
listed in Table III. The main datasets Bþ and Rþ do not
have any additional constraints, while B1;2;3 and R1 have a
stricter RG-perturbativity criterion imposed in the form of
an acceptance threshold for t̄. There are no datasets R2 and
R3 because no points with t̄ > 2 were found in the ωR → 0

10In particular, we use version “DE/rand/1” with a random
choice F ∈ ð0.5; 2Þ for each candidate point; cf., e.g., [32].

JARKOVSKÁ, MALINSKÝ, MEDE, and SUSIČ PHYS. REV. D 105, 095003 (2022)

095003-12



case. Note that all datasets consist only of viable points, i.e.,
those passing all criteria from Sec. III.
For some datasets, we used an additional penalization of

how well a perturbativity criterion is satisfied, so as to push
the parameter scan to be biased with respect to this
quantity; i.e., new points are accepted only when they
are at least as good as the old ones with respect to that
criterion. In such cases, we refer to the scans as biased. The
biased datasets searching for the best values of t̄ and Δ̄ are
labeled as RG and GM, respectively; cf. Table III. For each
dataset in that table, we denote its label, the VEV regime
explored (either ωBL → 0 or ωR → 0), the RG range in
terms of tþ or t̄, the bias criterion used for optimization (if
any), and the number of points in the dataset.
All numerical results are based on the datasets from

Table III and are presented in the form of figures. A list of
figures, alongside the used datasets for each figure and a
brief description, are gathered in Table IV. For readability,
we separate the results into three sections: viable regions
for input parameters are identified in Sec. IV C, results for
the observables (masses) are collected in Sec. IV D, and
sample patterns of the unification of gauge couplings for
selected points are presented in Sec. IV E.

C. Viable regions of the parameter space

In this subsection, we present the viable regions of the
parameter space for both ωBL → 0 and ωR → 0 scenarios.
As we are limited to two-dimensional projections, the
information contained in the plots can never be complete.
In what follows, we thus provide two complementary
perspectives: planar correlation plots for chosen pairs of
parameters in Sec. IV C 1 and likelihood σ ranges for each
individual parameter in Sec. IV C 2.

1. Correlation plots for different
pairs of scalar parameters

Altogether, there are 11 real dimensionless scalar param-
eters of interest:

a0; a2; λ0; λ2; λ4; λ04; α; β4; β
0
4; jγ2j; jη2j: ð29Þ

We hence choose six correlation pairs (with β4—one of the
two main parameters of interest; cf. Sec. IVA—included
twice) in a way that best demonstrates the salient features
of our results. Since γ2 and η2 are complex, they also
carry phases δγ2 and δη2 . However, we omit these phases

TABLE III. The datasets obtained by full numerical scans that are analyzed in Secs. IV C–IV E; for a detailed description, the reader is
referred to the main text.

Dataset VEV regime RG range Bias Number of points Comment

Bþ ωBL → 0 tþ > 0.5 30000 Main dataset
B1 ωBL → 0 t̄ > 1.0 20000
B2 ωBL → 0 t̄ > 2.0 20000
B3 ωBL → 0 t̄ > 3.0 20000
B0þ ωBL → 0 tþ > 0.5 30000 No Sylvester’s criterion
BRG ωBL → 0 tþ > 0.5 t̄ 10000 RG perturbativity
BGM ωBL → 0 tþ > 0.5 Δ̄ 8000 Global mass perturbativity
Rþ ωR → 0 tþ > 0.5 30000 Main dataset
R1 ωR → 0 t̄ > 1.0 20000
R0þ ωR → 0 tþ > 0.5 30000 No Sylvester’s criterion
RRG ωR → 0 tþ > 0.5 t̄ 10000 RG perturbativity
RGM ωR → 0 tþ > 0.5 Δ̄ 8000 Global mass perturbativity

TABLE IV. Table of figures in Secs. IV C–IV E and the datasets used for each of them. Semicolons separate datasets of either
different figures or different panels of the same figure, while commas separate datasets whose information is presented separately in the
same figure.

Figure Datasets Brief description

3; 4 Bþ ∪ BRG;Rþ ∪ RRG Parameter correlation plots, t̄ hot spots
5; 6 Bþ ∪ BGM;Rþ ∪ RGM Parameter correlation plots, Δ̄ hot spots
7 Bþ; B1; B2; B3;Rþ; R1 Likelihood σ ranges for scalar parameters
8 Bþ; B1; B2; B3;Rþ; R1 Comparison of scales (dimensionful parameters)
9 B0þ; Bþ;R0þ; Rþ Effect of nontachyonicity of doublets and triplets
10 Bþ; B1; B2; B3;Rþ; R1 Likelihood σ ranges for PGB particles
11 Bþ; B1; B2; B3;Rþ; R1 Likelihood σ ranges for heavy particles
12 Bþ; B1; B2; B3;Rþ; R1 Likelihood σ ranges for intermediate-scale particles
13 Points in Table V Gauge coupling unification
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from the plots, as it turns out that the distributions of both
are practically uniform on the entire ½0; 2πÞ interval.
Interesting patterns correlating the two phases appear only
by employing stricter RG- or GM-perturbativity constraints
in the ωR → 0 limit, in which case the parameter space
strongly prefers a 2δγ2 ¼ δη2 relation that prevents both
phases from changing under one-loop RG running; see
Eqs. (C21)–(C22).
The correlation plots for the ωBL → 0 hierarchy are

given in Figs. 3 and 5 and those for the ωR → 0 case are
collected in Figs. 4 and 6. Two different color-coding
schemes are employed in these plots indicating various
levels of perturbativity with respect to two associated
measures discussed in Sec. IV B: the t̄ quantity correspond-
ing to the RG stability of individual points (Figs. 3 and 4;
higher t̄ is better) and Δ̄, which quantifies the relative size
of loop corrections to masses (Figs. 5 and 6; lower Δ̄ is
better). The plots are produced by merging the main
datasets denoted by þ, which consist of unbiasedly
sampled viable points, with the RG or GM biased datasets;
cf. Tables III and IV. When points are overlapping, those
considered better with respect to the relevant perturbativity
measure are drawn in front. This allows for identification of
hot spot regions, where the best points (those colored
toward red) were found.
We make the following observations for the correla-

tion plots:

(i) a0, λ0≳0: The positivity of a0 can be understood
by investigating the mass of the ð1; 1; 0Þ4 heavy
non-PGB SM singlet [i.e., the SO(10)-breaking
Higgs field]. In the ja2j≪ ja0j regime, its tree-level
mass-square value is approximately 8a0ð3ω2

BLþ
2ω2

RÞ; cf. Sec. II A 4. Hence, it is nontachyonic only
if a0 ≳ 0.

Note that a0 does not appear in any tree-level
mass apart from the ð1; 1; 0Þ4 and ð1; 1; 0Þ2, with the
latter being the Uð1ÞB−L-breaking SM-singlet Higgs
field. The mass of this field is jσj proportional, and
only its tree-level value is relevant; see Sec. III A. It
is effectively governed by the λ0 parameter:
For small a2 that is needed to change the tachyonic
character of PGBs by loop corrections, nontachyo-

nicity requires λ0 ≳ ðαþβ0
4
Þ2

4a0
in both scenarios;

cf. Table IX. Then, a0 > 0 implies λ0 > 0.
(ii) β4>0, β04≲0: The overall negativity of β04 is required

for nontachyonicity of the heavy tree-level spec-
trum. The domain β4 > 0, β04 ∼ 0 then corresponds
to the overlap region with nontachyonic PGBs; see
Sec. IVA.

(iii) ja2j≪1: As expected, a2 is small since it controls the
PGB tree-level masses (note the different scaling of
the associated axes in the relevant panels). While a2
can be of either sign in the ωBL → 0 case and can
even vanish, it turns out to be strictly negative in the

FIG. 3. Correlation plots showing viable points projected onto pairs of scalar parameters. Plots consider the ωBL → 0 scenario, and
points are color coded according to the RG-perturbativity measure t̄ defined in Appendix B 1 c.
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FIG. 5. Correlation plots showing viable points projected onto pairs of scalar parameters. Plots consider the ωBL → 0 scenario, and
points are color coded according to the mass perturbativity measure Δ̄ defined in Appendix B 1 c.

FIG. 4. Correlation plots showing viable points projected onto pairs of scalar parameters. Plots consider the ωR → 0 scenario, and
points are color coded according to the RG-perturbativity measure t̄ defined in Appendix B 1 c.
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ωR → 0 case. We explicitly confirmed this by an
unsuccessful dedicated search for viable points in
the a2 > 0 region of the ωR → 0 case. The main
obstruction turns out to be the nontachyonicity of the
doublets and triplets; cf. Sec. IV C 4. Incidentally,
the a2 ∈ ð−0.05;−0.01Þ in the ωR → 0 case implies
that the triplet PGB is always nontachyonic because
M2

Sð1; 3; 0Þ ≈ −2a2ω2
BL at tree level. Interestingly,

for ωBL → 0 the points with larger RG-perturbativ-
ity ranges prefer the a2 ≈ 0 region (cf. Fig. 3), while
global mass perturbativity prefers pushing a2 toward
0.05 (cf. Fig. 5), generating a slight tension if the
scans are biased simultaneously toward both these
criteria.

(iv) 0.1≲ jγ2j≲0.4: As discussed in Sec. IVA, a com-
pact range for jγ2j with a lower bound of around 0.1
is expected for a nontachyonic scalar spectrum.
While RG perturbativity strongly prefers smaller
values of jγ2j near this bound (see lower-left panels
in Figs. 3 and 4), the GM-perturbativity criterion is
optimized in the higher jγ2j region.

(v) λ4∼−λ2: This pair of quantities exhibits the strongest
visible linear correlation among all parameter com-
binations. Its appearance is mostly due to the shape
of the intermediate-scale (jσj-proportional) scalar
masses.

(vi) General remarks on scalar parameters’ domains:
Except for λ2, λ4, and β4, the allowed ranges of the

scalar parameters are typically much smaller than the
standard ½−1; 1� domain.11 On the other hand, the
region where all scalar couplings almost vanish is
not viable. The main reason is the need to compen-
sate for the large gauge coupling contributions in
their beta functions (cf. Appendix C) that would
otherwise lead to a rapid breakdown of their RG
perturbativity.12 Moreover, the tachyonicity issues
when β4 and β04 simultaneously vanish in the jγ2j→0
regime have been discussed in Sec. IVA. Never-
theless, smaller-coupling regions are still preferred
from the point of view of RG perturbativity, as
seen from higher t̄ values on the color scale in Figs. 3
and 4. Global mass perturbativity in Figs. 5 and 6, on
the other hand, prefers some parameters (e.g., jγ2j or
β04) to be on the larger side of their allowed ranges,
indicating a complicated interplay between the
tree-level and one-loop contributions to scalar
masses. This makes the numerical analysis presented

FIG. 6. Correlation plots showing viable points projected onto pairs of scalar parameters. Plots consider the ωR → 0 scenario, and
points are color coded according to the mass perturbativity measure Δ̄ defined in Appendix B 1 c.

11Note that this expectation depends on the actual definition of
the scalar parameters (cf. Sec. II). They were chosen in our case
so that all trivial combinatorial factors just cancel.

12To this end, it is perhaps worth noting that we observe a very
clear correlation between the locations of the (approximate) fixed
points of the scalar couplings’ RG flow and the regions of the
parameter space in Figs. 3 and 4 in which viable points cluster.
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here not only technically necessary but also highly
nontrivial.

Note that the lack of red points with high t̄ in Fig. 4
(compared with Fig. 3) makes the ωR → 0 case signifi-
cantly less favorable than the ωBL → 0 scenario from the
perturbativity point of view. Remarkably enough, this is
indeed consistent with the results of the highly simplified
semianalytic account of Sec. IVA.

2. Ranges for individual scalar parameters

An alternative way of presenting the viable regions for
the scalar parameters at hand is to show the individual
range each of them can take. We present these results in
Fig. 7 for both the ωBL → 0 (left panel) and ωR → 0 (right
panel) cases.
Let us note that the datasets Bþ and Rþ used therein (see

Table III) essentially correspond to uniform sampling of
points from the viable subregion of the parameter space
(due to the stochastic nature of the differential evolution
sampler). Projecting such a dataset to one parameter thus
represents an approximation of a marginal probability
distribution in the Bayesian interpretation, effectively
providing information about the volume of viable param-
eter space associated with a particular parameter attaining
values close to a certain point. Borrowing tools from
Bayesian statistics, we thus present the ranges of each
parameter in terms of their highest density intervals (HDIs):
The vertical extent of the bars of decreasing opacity and
same horizontal position represents the 1σ, 2σ, and 3σ
HDIs. Furthermore, the plots include the information
obtained from multiple datasets (cf. Table IV), which is
encoded by different colors. We make use of our main
datasets with tþ > 0.5 (in blue), as well as those where the
viability criterion with stricter threshold values for the RG-
perturbativity measure was imposed: t̄ > 1, t̄ > 2, and t̄>3
colored, respectively, by light blue, green, and orange.
Note that the best points in the ωR → 0 case have

t̄ ≈ 1.86, so there are no t̄ > 2 datasets R2;3; i.e., no points
can be run up and down by 2 orders of magnitude on

average in the renormalization scale without blowing up.
As expected, increasing the strictness with respect to the
RG-perturbativity measure shrinks the allowed parameter
ranges, as can be consistently seen in the narrowing of the
vertical bars in Fig. 7 for more constrained datasets. The
complex quantum-level interplay between different param-
eters generates severe constraints even for couplings of
seemingly little impact on the observables of our main
interest if highest-level RG perturbativity is required. For
instance, jη2j is pushed to 0 for t̄ > 3 (in both scenarios),
despite appearing only in one-loop corrections to the heavy
fields’ masses and the scalar-sector beta functions.
The final observation concerns the fact that the allowed

ranges of certain parameters within a stricter dataset may be
in an unlikely region from the point of view of less strict
datasets; i.e., the HDIs of a strict dataset may not overlap
with even the 3σ HDI of a less strict one. This implies that
enhancing RG perturbativity sometimes requires a push
toward a very particular corner of the allowed parameter
space. Note that this was already indicated by the positions
of the hot spots appearing at the very edges of the clouds of
viable points for some parameters in Figs. 3 and 4. A
prominent example of this effect is β4 in the ωBL → 0 case.

3. The VEVs and the renormalization scale

We now turn our attention to dimensionful input param-
eters. The tree-level potential in Eq. (6) contains three
dimensionful parameters μ, ν, and τ, which we compute via
one-loop stationarity conditions from the three VEVs ωBL,
ωR, and σ of Eq. (11). Together with the renormalization
scale μR, one has four dimensionful parameters in total.

a. The VEVs.—
The complex VEV σ can be made positive and real by a

phase redefinition of the 126 tensor of SO(10), while the
bigger of the two real VEVs ωBL and ωR can be made
positive by a sign redefinition of the (real) adjoint 45. Since
we are interested only in the ωBL → 0 or ωR → 0 regimes
(see Sec. II B), the bigger of the ω’s sets the GUT scale, and

FIG. 7. Allowed 1-, 2- and 3σ ranges (with decreasing opacity) of scalar parameters in the ωBL → 0 and ωR → 0 case. Colors encode
different strictness of the RG-perturbativity measure defined in Appendix 1 c; see legend and Table III.
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σ plays the role of the intermediate Uð1ÞB−L-breaking
(seesaw) scale. The smaller of the ω’s must then be small
enough to keep the universal VEV ratio χ defined in
Eq. (15) under perturbative control, i.e., ensure that jχj≲ 1.
The subdominant ω thus plays the role of an induced VEV.
Since it is far smaller than the other two VEVs and it is not
associated with any distinct physical scale either, we shall
not pay much attention to it in what follows.
The allowed ranges for the relevant VEVs, i.e.,

maxðjωBLj; jωRjÞ and σ corresponding to the viable points
in both the ωBL → 0 (left panel) and ωR → 0 (right panel)
limits, are given in Fig. 8. As before, the data corresponding
to 1-, 2-, and 3σ HDIs are represented by decreasing
opacity, while the colors code different levels of strictness
imposed on the RG-perturbativity side; cf. Sec. IV C 2.
From the perturbativity and tachyonicity perspective, the

absolute sizes of max½jωBLj; jωRj� and σ play no role, as
nothing changes if these parameters were freely rescaled by
a common factor. Thus, the main constraint here comes
from the gauge coupling unification (cf. Sec. III) in which
the max½jωBLj; jωRj� plays the role of the GUT scale, while
σ sets the seesaw scale. To this end, one can expect that the
freedom of choosing these two scales together with the
value of the unified gauge coupling should, in principle,
always admit good fits to the low-energy data given in
Appendix B 2.
The results in Fig. 8 show that the two scenarios of

interest are rather different from this perspective. The
ωR → 0 case [corresponding to the SUð3Þc × SUð2ÞL ×
SUð2ÞR × Uð1ÞB−L intermediate symmetry] requires the
GUT scale to be almost as high as the Planck scale
and a very low (yet more constrained) seesaw scale.
Consequently, the GUT-to-seesaw-scale hierarchy ratio is
rather large. In the opposite case [i.e., for ωBL → 0 with
SUð4ÞC × SUð2ÞL × Uð1ÞR as the intermediate symmetry],
this hierarchy is generally milder, and the GUT scale of
∼1015 GeV is rather close to the lower bound implied by
proton lifetime limits [33–37]. These results agree very well

with previous estimates [9,10,38–40] based on the minimal
survival hypothesis13 [41,42]. Amore detailed account of the
unification constraints is provided in Sec. IV E.

b. The renormalization scale μR.—
For each point, the quantum-level scalar spectrum

computation is performed at a specific renormalization
scale μR which, in order to tame potentially large logs, we
choose to be the square root of the average of all heavy
scalar tree-level masses-squared (weighed by the numbers
of the corresponding real degrees of freedom; for technical
details of the procedure,14 see Appendix B 2). All cou-
plings then depend on the selection of such a μR for any
particular point.
Different parameter-space points can be directly com-

pared only when taken at the same μR which, in principle,
requires RG evolution from their specific renormalization
scale(s) to the universal one (using, among other things, the
beta functions given in Appendix C). This procedure would
be further complicated if some of the points began
diverging before they reached the common μR or ceased
satisfying some of the other viability criteria, some of
which are not RG invariant.
As it turns out, this is more of an academic interest rather

than a real hurdle to our analysis because the range of μR ’s
corresponding to fully viable points does not exceed half an
order of magnitude in either of the two limits; see Fig. 8.
Thus, different points can be compared right away as they
are calculated at nearly identical scales. Moreover, the
choice of our RG-perturbativity requirements ensures that

FIG. 8. 1-, 2-, and 3σ HDIs for the dominant ω VEV, the σ VEV, and the relevant renormalization scale μR in the cases ωBL → 0 (left)
and ωR → 0 (right). Colors encode different strictness of the RG-perturbativity measure defined in Appendix 1 c; see the legend and
Table III.

13It is the presence of lighter gauge bosons in the RGE that
crucially contributes to gauge coupling unification. The scalars
that are accidentally light then mostly just shift the seesaw and
GUT scales; see, e.g., [24,25].

14Note that μR is subject to iterative changes throughout the
procedure because the overall scale of all the heavy spectrum
must be readjusted to attain gauge unification, and as such, it
cannot be anticipated in advance.
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the viable parameter points could, if desired, all be run
safely to a common scale without blowing up.
Numerically, the resulting ranges of μR are close to those

of the largest VEV for both the ωBL → 0 and ωR → 0
limits.

4. Effects of nontachyonicity conditions applied to the
ð1;2;+ 1

2Þ and ð3̄;1;+ 1
3Þ multiplets

Finally, let us discuss the effect of imposing the non-
tachyonicity condition on the SM multiplets ð1; 2;þ 1

2
Þ and

ð3̄; 1;þ 1
3
Þ, which in realistic settings should mix with extra

components in order to allow for a phenomenologically
viable Yukawa sector. In the minimal version, such extra
degrees of freedom come from an additional 10 in the scalar
sector. Consequently, the doublet and triplet mass matrices
we have been working with in the 45 ⊕ 126 context are
incomplete. Nevertheless, as described in Sec. III A, even
in such a situation the nontachyonicity conditions can be
applied using Sylvester’s criterion, and the datasets that we
have been working with so far (e.g., Bþ and Rþ;
cf. Table III) were all derived with these constraints in play.
It is very interesting though to see what happens if these

constraints are not taken into account.15 For this purpose,
special datasets denoted by B0þ and R0þ have been pro-
duced. Technically, these satisfy the same requirements as
Bþ and Rþ, but without imposing nontachyonicity on the
doublet and triplet mass matrices. The effect of this change
is best seen in the a2–jγ2j correlation plot in Fig. 9, where
viable regions with and without Sylvester’s criterion are
compared.
One can see that the impact of Sylvester’s criterion is

much bigger in the ωR → 0 regime (the right panel in
Fig. 9) where it leads to a significant reduction of the viable

parameter space. In particular, positive a2 is no longer
available in this case (in fact, a2 ≲ −0.01). At the same
time, the lower bound on jγ2j (expected on the analytical
grounds in Sec. IVA) is pushed even higher, thus excluding
the interesting low-jγ2j regions corresponding to the most
favorable values of t̄ of the RG-perturbativity measure.
Note that this is not the case for ωBL → 0 (the left panel

in Fig. 9) where the doublet and triplet nontachyonicity
criterion does not affect the lower limit on jγ2j at all.
This can be understood analytically by noticing that in such
a limit the critical doublet and triplet fields become
members of larger representations16 of the intermediate
SUð4ÞC × SUð2ÞL × Uð1ÞR symmetry (cf. Appendix D and
Table VII). Their masses must thus be identical (up to
subdominant corrections from σ) to the companion fields
whose nontachyonicity is always checked. Hence, one can
conclude that the nontachyonicity constraints imposed on
the triplet and doublet scalars play a very important role in
determining the shape of the viable parameter space, and
they are at the core of the aforementioned preference of the
ωBL → 0 scenario with respect to the ωR → 0 one.

D. Results for the mass spectrum

Next, let us turn our attention to the bosonic (i.e., scalar
and vector) spectrum of the model. As we have already
seen in Sec. IV C, the criteria of nontachyonicity, gauge
coupling unification, and perturbativity (cf. Sec. III) shrink
the viable parameter space to rather small patches, and the
resulting mass ranges typically turn out to be quite narrow
as well. The results are given in a series of Figs. 10–12,
which correspond to three distinct classes of fields with
respect to their characteristic mass scales:

FIG. 9. Viable parameter-space points projected onto the a2–jγ2j plane in the cases with the nontachyonicity conditions on the
ð3̄; 1;þ 1

3
Þ and ð1; 2;þ 1

2
Þmass matrices either imposed (in black) or not imposed (in gray). The relevant datasets are detailed in Table III.

15The tachyonicity of the ð1; 2;þ 1
2
Þ and ð3̄; 1;þ 1

3
Þ multiplets

was not discussed in detail in previous attempts [24,25].

16For instance, the doublet becomes a member of the
ð15; 2;þ 1

2
Þ multiplet along with two other propagating fields

transforming as ð3; 2;þ 7
6
Þ and ð8; 2;þ 1

2
Þ.
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(1) The masses of the PGB scalars (see Sec. II A 4) and
those of the associated fields17 in the two limits of
our interest (ωBL → 0 and ωR → 0) are covered in
Fig. 10. This class of fields is especially prone to
tachyonic instabilities and thus the main motivation
behind the one-loop analysis carried out in
this study.

(2) The spectrum of the heavy GUT-scale fields (both
scalars and vectors), i.e., those associated with the
first stage18 of the unified symmetry breaking, are
shown in Fig. 11.

(3) The masses of the intermediate σ-scale fields asso-
ciated with the Uð1ÞB−L (i.e., second stage) sym-
metry breaking are displayed in Fig. 12.

In all these figures, MS or MG indicate the scalar or
vector (gauge) boson nature of the multiplet whose SM
transformation properties are given in the adjacent
bracket (in the case of degeneracy, the multiplicity sub-
script follows an ascending mass order). For complete-
ness, the masses of the ð1; 2;þ 1

2
Þ and ð3̄; 1;þ 1

3
Þ scalars

are also included here, despite the fact that these may be
subject to further changes in Yukawa-realistic scenarios
with an additional 10 in the scalar sector (cf. Secs. III A
and III B). Moreover, one doublet mass (the SM Higgs
doublet) must be fine-tuned to the EW scale. We simulate
this effect in our spectrum by replacing ad hoc the two
doublets of the model with the SM Higgs doublet and a
heavy companion, whose mass MS is computed as the

geometric mean of the two eigenvalues of the ð1; 2;þ 1
2
Þ

mass matrix.
There are several points and observations of the results

worth making here.
(1) In both cases of interest, i.e., in the ωBL → 0 and

ωR → 0 limits, the shapes of the bosonic spectra
confirm the expectations based on the structure of
the associated symmetry-breaking patterns:
(i) For a given limit scenario, the predicted ranges

of different SM states sometimes closely resem-
ble each other. These near degeneracies corre-
spond to sets of SM representations belonging
to the same intermediate symmetry representa-
tion, where only their jσj-proportional mass
contributions originating from the second stage
of symmetry breaking split degeneracy. These
patterns are consistent with the tree-level ex-
pressions in Appendixes D 2 and D 3. As an
example, compare the mass ranges of the heavy
ð1; 1;þ2Þ, ð3; 1;þ 4

3
Þ, and ð6̄; 1;þ 2

3
Þ scalars in

the ωBL → 0 case. They are similar due to
belonging to the same ð10; 1;þ1Þ representation
of the intermediate SUð4ÞC × SUð2ÞL × Uð1ÞR
symmetry; cf. Table VII in Appendix D 1.

(ii) A direct consequence of the existence of an
effective intermediate symmetry is that for either
of the two scenarios an additional state joins the
ranks of PGBs; cf. Fig. 10. In particular, a
complex ð3̄; 1;− 2

3
Þ groups together with the

singlet and octet PGBs in the (15,1,0) represen-
tation of the SUð4ÞC × SUð2ÞL × Uð1ÞR inter-
mediate symmetry attained in the ωBL → 0
scenario, while a complex ð1; 1;−1Þ scalar joins
the singlet in the (1,1,3,0) representation of
the intermediate SUð3Þc × SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L in theωR → 0 case, as indicated by the

FIG. 10. The allowed 1-, 2- and 3σ HDI ranges (corresponding to decreasing opacity) for the PGB masses in the ωBL → 0 (left) and
ωR → 0 cases (right). Colors (see, e.g., Fig. 7 for the legend) represent different datasets in Table III obtained for different levels of
strictness of the RG-perturbativity measure t̄ defined in Appendix 1 c. The dashed lines denote the sample points used in Fig. 13.

17Associated fields are those that in the two limits of interest
belong to the same multiplet as one of the “genuine” PGBs
discussed in Sec. II A 4.

18Let us use this simplified terminology here despite the fact
that we envision the breaking to occur in a single step, albeit with
a hierarchy of VEVs, rather than a true multistage breaking due to
a dynamical mechanism.
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decompositions of Table VII in Appendix D 1.
These features are illustrated in Fig. 10 by
grouping the additional states with the associ-
ated PGBs, where the vertical spacing between
them signifies the decomposition under the
intermediate symmetry.

(2) Interestingly, the GUT-scale bosonic spectrum of the
ωBL → 0 scenario is significantly lighter than that of
the ωR → 0 case (see Fig. 11), while the opposite
holds true for the σ-associated masses in Fig. 12.

This is in accordance with the VEV hierarchy given
in Fig. 8. The gap between the GUT and the seesaw
scale is thus much more pronounced in the latter
case, amounting to about 10 orders of magnitude,
than in the ωBL → 0 setting, where it is just about 4
orders of magnitude. Note that this behavior is in
accordance with the previous estimates based on the
minimal survival hypothesis; cf. [40]. From a model-
building perspective, the ωBL → 0 scenario is there-
fore again far more attractive, as one does not need

FIG. 11. The predicted 1-, 2- and 3σ ranges (corresponding to decreasing opacity) for the heavy gauge (MG) and scalar (MS) masses
governed by ωR (in the ωBL → 0 case, left panel) or by ωBL (in the ωR → 0 case, right panel). As before (cf. Fig. 7), the color code
represents different datasets of Table III corresponding to different levels of strictness of the RG-perturbativity measure t̄ defined in
Appendix 1 c. Left arrows point to masses which fall outside the displayed ranges (see Fig. 12), and PGB labels the pseudo-Goldstone
field whose mass is plotted in Fig. 10. The dashed lines denote the sample points used in Fig. 13.
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to resort to large fine-tunings to attain potentially
realistic flavor patterns (including realistic neutrino
masses). Moreover, the proximity of ωBL to the
Planck scale in the ωR → 0 case raises issues with
theoretical uncertainties due to enhanced contribu-
tions from D > 4 operators.

(3) Concerning the relative positions and widths of the
ranges corresponding to different datasets, one can
see several effects in Figs. 10–12:
(i) Enhancing RG perturbativity typically lowers

the allowed ranges of the scalar masses, espe-
cially those of the PGBs in Fig. 10. This

happens mostly due to the preference for
smaller scalar couplings as indicated, e.g., in
Figs. 3 and 4, where perturbativity generally
improves toward the origin.

(ii) The mass ranges for the heaviest fields are
relatively narrow; cf. Fig. 11. For the gauge
fields, this is due to gauge unification
constraining the values of the GUT-
scale VEV and SO(10) gauge coupling; see
Secs. IV C 3 and IV E. As for the heavy
scalars, the effect can be attributed to the
structure of their mass formulas, which are

FIG. 12. The mass ranges for the fields associated with the intermediate-symmetry breaking driven by the σ scale. The conventions are
the same as in Figs. 10 and 11.

FIG. 13. Sample gauge coupling unification patterns for two viable parameter-space points specified in Table V for the ωBL → 0 (left)
and ωR → 0 (right) cases of interest. The dashed vertical lines at different scales correspond to changes of the one-loop β coefficients due
to the presence of various fields’ contributions, while the solid purple lines denote positions of the involved VEVs [namely, the GUT-
scale VEV corresponding to max½jωBLj; jωRj�, the intermediate-scale jσj, and in the left panel also the induced VEV (ωBL in this case)].
The black, blue, and red dashed vertical lines indicate masses of SM nonsinglet scalars, SM-singlet scalars, and gauge bosons,
respectively (corresponding to vertical dashed lines in Figs. 10–12). Finally, the black dots denote the point of gauge coupling
unification. Their horizontal positions correspond to the masses of the heaviest SM nonsinglet thresholds (scalar or gauge) in each
scenario.
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often dominated by a coupling that is signifi-
cantly constrained by the perturbativity criteria
of Sec. IV C.

(iii) For the fields whose mass origin is less definite
(such as the PGBs, for which the tree-level
mass contributions often compete with
the loop effects), the main effect of increasing
the RG-perturbativity strictness often corre-
sponds to a shift rather than a compression
of their mass ranges (the orange or green
bars are just as wide as the blue or light blue
ones).

(4) Finally, we caution the eager reader against the
temptation of making ballpark predictions for
proton lifetime based on the presented gauge boson
masses, since this requires a far more elaborate two-
loop running analysis of gauge couplings in a
Yukawa-realistic scenario (as opposed to the one-
loop running analysis in a simplified Higgs model
given here) along with a dedicated analysis of all
other relevant theoretical uncertainties. These, al-
together, can potentially change the naive gauge-
boson-mass-based proton lifetime estimates by
orders of magnitude. The same applies to the (usually
subdominant) scalar-driven contributions—not
only are we missing the complete information about
one of the key mediators [the ð3̄; 1;þ 1

3
ÞS scalar

leptoquark S1], but also the mass ranges of other
potentially relevant SUð3Þc triplets like S̃1 ≡
ð3̄; 1;þ 4

3
ÞS and S3 ≡ ð3; 3;− 1

3
ÞS are relatively wide;

cf. Fig. 11. This, however, is beyond the scope of the
current study and will be elaborated on elsewhere.
Nonetheless, it is reassuring that in the obtained
spectra all potentially harmful states [including
the ð3; 2;− 5

6
ÞG and ð3; 2;þ 1

6
ÞG vector leptoquarks]

havemasses well above 1014 GeV, and thus, they do
not trivially violate any direct phenomenological
bounds.

E. Gauge coupling unification

Finally, let us present a couple of examples of how the
mass patterns described in previous sections satisfy the
gauge unification criterion. For this purpose, we select two

representative points from the BRG and RRG datasets of
Table III that correspond to the ωBL → 0 and ωR → 0
limits. The relevant parameter-space points are specified in
Table V, and the one-loop gauge running (and unification)
patterns are depicted in Fig. 13.
Several remarks are perhaps worth making here:
(i) There is a clear qualitative difference between the

ωBL → 0 and ωR → 0 scenarios in the positions of
the two characteristic scales (namely, the MGUT and
seesaw scale) and in the clustering of the relevant
states around these. This is in accord with the
discussion in Secs. IV C 3 and IV D. It should also
be pointed out that besides perturbativity, unification
represents another important argument in favor of
considering only the symmetry-breaking chains
along the two special “maximally hierarchical”
directions. Assuming only a single (non-SM) light
threshold admitted in the bulk that can aid the (one-
loop) unification, there are then just two viable
possibilities19: either having a ð3; 1;þ 2

3
Þ gauge

boson at ≈1012.5 GeV with couplings unifying at
MGUT ≈ 1015 GeV, or a ð1; 1;þ1Þ gauge boson of
mass ≈1010 GeV and unification achieved at
MGUT ≈ 1017 GeV. This agrees reasonably well
with the results in Fig. 12. If at the same time we
require that the proton-decay-mediating ð3; 2;þ 1

6
Þ

vector leptoquark remains heavy, that implies a very
strong preference for either the jωBLj; jσj ≪ jωRj- or
jωRj; jσj ≪ jωBLj-breaking pattern; cf. Table VIII
for gauge boson masses. The produced scales ωBL,
ωR, and σ are in very good agreement with the
results of [40].

(ii) Given the relatively shallow angle under which the
three gauge couplings eventually unify,20 one can
expect that the two-loop effects (including contri-
butions from the Yukawa couplings that we ignore

TABLE V. The input parameters for the two example points, where lgðxÞ ≔ log10ðx=GeVÞ. The signs of ωBL and ωR are positive.
Strictly speaking, the scale μR is not a free input and it is computed; cf. Appendix B.

Case 102a2 102a0 101λ0 101λ2 102λ4 102λ04 101α 101β4 102β04
ωBL → 0 0.189 4.81 0.647 −0.704 3.69 0.965 −0.616 3.41 −4.27
ωR → 0 −2.74 5.98 1.38 −1.58 2.51 4.56 −0.634 8.56 −1.80

Case 101jγ2j 102jη2j arg γ2 arg η2 g lg jωBLj lg jωRj lg jσj lg μR

ωBL → 0 0.917 0.696 3.38 6.22 0.526 7.056 14.96 11.01 14.75
ωR → 0 2.28 2.54 4.78 3.10 0.502 17.80 −2.200 7.938 17.76

19Note that the contribution of vector states was crucial for
unification even in scenarios with either the ð6; 3;þ 1

3
Þ scalar in

the desert [25] or the exceptionally light scalar ð8; 2;þ 1
2
Þ [24].

20Interestingly, the two non-Abelian couplings actually inter-
sect twice in the ωR → 0 scenario.
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here21) may cause significant shifts in both GUTand
seesaw scales. The figures given in this study should
thus be understood as a mere first approximation to
the fully physical picture.

V. CONCLUSIONS AND OUTLOOK

The minimal renormalizable SO(10) Higgs model with
45 ⊕ 126 has attracted much attention in the past decade
[24–26]. It is well known that at tree level, possible SM-like
vacua suffer from tachyonic instabilities either in the color-
octet or weak-triplet directions. We refer to these states as
PGBs, since their tree-level masses are proportional to only
a single scalar-potential coupling (a2). The tree-level
tachyonic instabilities thus force us to consider the model
at the quantum level, significantly complicating the
analysis.
While the previous state of the art was the derivation of

analytic PGB singlet, octet, and triplet one-loop mass
formulas in the a2 → 0; γ2 → 0, σ → 0 regime [26,43],
in this work we have developed a numerical procedure for
the computation of one-loop masses of all scalar fields
associated with the GUT scale. Another important result is
the analytic formulas for the one-loop beta functions of all
dimensionless parameters in the scalar potential.
The new computational tools have allowed us to perform

a comprehensive analysis of the Higgs model taking into
account the following considerations:
(1) Nontachyonicity. This criterion is a rigorous require-

ment for the consistency of the theory. Most prone to
develop a tachyonic instability are the PGB states:
the octet, the triplet, and the SM singlet.

(2) Perturbativity. In order for the perturbative calcu-
lation in a given parameter point to be valid, loop
corrections to masses, as well as the coupling values
under RG running, need to be under perturbative
control. The developed numerical tools have allowed
us to consider both issues by constructing appro-
priate perturbativity measures.

(3) Gauge coupling unification. This last criterion is
phenomenological and puts requirements on the
mass spectrum of the theory. We consider one-loop
unification only.

The results of our analysis are as follows:
(i) We have argued in Sec. II B that perturbativity

requires the structure (15) to be kept under control,
concluding that the model is perturbative only in a
regime where the VEV of the 45 is dominantly
aligned along the SUð4ÞC × SUð2ÞL × Uð1ÞR or
SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−L direction.
These two scenarios are referred to as ωBL → 0
and ωR → 0, respectively, indicating which of the

two VEVs in the adjoint gets merely an induced
value. The same two scenarios are preferred from the
point of view of unification and proton lifetime;
cf. Sec. IV E.

(ii) Although we have found viable parameter points in
both scenarios, there seems to be a preference for the
ωBL → 0 case. This holds true both from the
perturbativity point of view, since the more stable
points (especially with respect to RG perturbativity)
were found in that scenario, as well as phenomeno-
logically due to the better-suited seesaw and GUT
scales at 1011 and 1015 GeV compared to 108 and
1018 GeV in the ωR → 0 case.

(iii) The viable part of parameter space does not admit all
parameter values to vanish. In particular, a non-
tachyonic spectrum requires that γ2 is not close to
zero in either scenario (cf. Sec. IVA), contrary to
assumptions in previous studies [24–26]. This shows
that an implementation of the one-loop PGB mass
calculation crucially requires this parameter to be
present.

This work represents significant progress in the efforts
to elucidate the viability and consequences of the SO(10)
Higgs model containing 45 ⊕ 126. Having identified the
viable parameter regions, the obvious next step would be
to implement the full model with a realistic Yukawa sector
by adding a scalar representation 10 and upgrade its
unification analysis to two-loop order. The additional
states would also allow us to treat properly the EW
symmetry breaking. Because of the small number of
added fields and numerous new parameters in the scalar
potential, the Higgs-model results presented here are
expected to be a good approximation for the fully realistic
case. However, the addition of fermions allows for the
implementation of further phenomenological constraints,
e.g., a proton decay rate prediction and computation of
neutrino masses (with both type-I and type-II seesaw
contributions present in general).
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APPENDIX A: TECHNICAL DETAILS OF THE
ONE-LOOP MASS COMPUTATION

Many of the results throughout this paper require the
computation of quantum corrections to either the vacuum
of the theory or the masses of the particles. This Appendix
section provides the reader a detailed description and
commentary of the procedure we use for their calculations.

1. The general procedure

The one-loop contribution to the effective potential à la
Coleman and Weinberg in the zero-momentum scheme has
the following compact form (cf. [44]):

V1ðΦÞ¼ 1

64π2
Tr

�
M4

SðΦÞ
�
log

�
M2

SðΦÞ
μ2R

�
−
3

2

��

þ 3

64π2
Tr

�
M4

GðΦÞ
�
log

�
M2

GðΦÞ
μ2R

�
−
5

6

��

≡V
�
M2

SðΦÞ;−3

2
;1

�
þV

�
M2

GðΦÞ;−5

2
;3

�
; ðA1Þ

where the expression V was defined for later convenience
via

VðÂ; c1; c2Þ ≔
1

64π2
ðc1TrðÂ2Þ þ c2TrðÂ2 log½Â=μ2R�ÞÞ

ðA2Þ

for a matrix Â and numeric coefficients c1 and c2 with the
hat on A used to denote its field dependence. The bold
font is adopted for all matrix quantities. We use Φ as a
generic label for the vector of all scalar fields in the theory,
μR is the renormalization scale, and M2

SðΦÞ and M2
GðΦÞ

are the tree-level field-dependent mass matrices of scalars
and gauge bosons, respectively. The explicit expressions
for their entries are given by

½M2
SðΦÞ�ij ¼

∂2V0

∂Φi∂Φ�
j
; ðA3Þ

½M2
GðΦÞ�ab ¼ g2½ðT̂aΦÞ†ðT̂bΦÞ�ða↔bÞ; ðA4Þ

where the indices i and j run over all the fields in the scalar
sector, T̂aΦ represents the action of the ath SO(10)
generator Ta on the (reducible) scalar representation
Φ, and (a ↔ b) symbolizes the symmetric part of the
expression with respect to the indices a and b, i.e.,
½Xab�ða↔bÞ ≔ 1

2
ðXab þ XbaÞ. Before any further discussion

of our procedure, some important technical considerations
for the explicit computation of these expressions are
given below.

(i) We reiterate that the matrices M2
S;GðΦÞ are field

dependent, which means that they have not been

evaluated in vacuum; i.e., no expectation values of
the fields have been inserted.

(ii) The usual way to write the scalar-mass-square
matrix M2

SðΦÞ is in the basis of all real scalar
degrees of freedom, so we need to consider the real
and imaginary components of complex fields sep-
arately. In the above expression, we have instead
written the scalar-mass matrix in a more convenient
holomorphic and antiholomorphic basis. This im-
plies that Φi in the derivative first runs over all
holomorphic fields and then over all antiholomor-
phic fields. Conversely, Φ�

j are conjugates of all the
fields in Φj; thus, they first run over the antiholo-
morphic fields and then over holomorphic ones. The
used expression is valid also for the special case of
real scalar fields: They need to be counted only once,
and since Φj ¼ Φ�

j , factors of 1=2 for real mass
matrices are correctly taken into account. In our
particular model, the fields consist of

Φ ¼ ðϕ;Σ;Σ�Þ and Φ� ¼ ðϕ;Σ�;ΣÞ: ðA5Þ

The number of (real) degrees of freedom over which
the indices i and j run is 45þ 2 × 126 ¼ 297.

(iii) If Φ is a reducible representation, as is the case in
this paper, the expression in Eq. (A4) involves a sum
over irreducible representations:

½M2
GðΦÞ�ab
¼ g2

�
1

2
ðT̂aϕÞTðT̂bϕÞþðT̂aΣÞ†ðT̂bΣÞ

�
ða↔bÞ

:

ðA6Þ

In contrast to the scalar-mass case, the complex
degrees of freedom are taken into account only once,
and a factor 1=2 is inserted for the real representation
ϕ. The symmetrization in Eq. (A4) also assumes that
the basis of the generators is real, i.e., that all
matrices Ta are Hermitian matrices.22 Lastly, we
use the standard GUT normalization of generators,
in which the Dynkin index of the representation 10
of SO(10) equals 1. We do not write further technical
details on the tensor methods or conventions in this
Appendix, but invite the interested reader to check
the Appendixes of [26], to which we adhere in this
paper. Also, the Appendixes of [45] elaborate on
different bases one can use for the representation 10
of SO(10).

(iv) The field-dependent mass-square matrices are man-
ifestly Hermitian, as is obvious from the expression
in Eqs. (A3) and (A4). Furthermore, the Hermitian

22Crucially, the raising/lowering operators do not provide a
suitable real basis for the Lie algebra.
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expression for M2
GðΦÞ is symmetric with respect

to a and b, thus resulting in a real matrix. The
situation in our SO(10) Higgs model for any value
of Φ is thus the following: M2

SðΦÞ is a 297 × 297

Hermitian matrix and M2
GðΦÞ is a 45 × 45 real

symmetric matrix.
Our initial procedure for loop corrections follows [26]:

Expanding in powers of ℏ, the one-loop expansion of the
potential and the fields’ VEVs read V ¼ V0 þ V1 and
v ¼ v0 þ v1, respectively, where we used units with ℏ ¼ 1.
The stationarity condition at tree level is

∂xV0jv0 ¼ 0; ðA7Þ

and the one-loop stationarity condition ∂xVjv ¼ 0 is
simplified into

∂xV0jv þ ∂xV1jv0 ¼ 0; ðA8Þ

where we ignored the Oðℏ2Þ terms, which formally
contribute to two-loop order in the ℏ expansion. We used
an abbreviated notation where ∂x denotes ∂=∂Φx, and jv
represents the insertion of the VEV v for the fields, i.e.,
taking Φ ¼ v in the result. Furthermore, the one-loop
corrected scalar-mass matrix is determined by the second
derivative. Expanding up to Oðℏ1Þ yields

½M2
S;one-loop�xy ¼ ∂x∂�

yV0jv þ ∂x∂�
yV1jv0 : ðA9Þ

An alternative route of applying vacuum conditions is to
fix the VEVs as input parameters and solve the conditions
for Lagrangian parameters. In our Higgs model, we choose
that stationarity conditions solve for the parameters μ2, ν2,
and τ, while we take the VEVs ωBL, ωR, and σ as inputs.
This same approach was implicitly used in Sec. II A 4, as
well as in previous work on the model [26]. In this context,
the ℏ expansion is applied to the fμ2; ν2; τg parameters
instead of the VEVs.
The step-by-step procedure to compute the one-loop

mass matrices for all scalar particles is thus the following:
(1) Solve the vacuum conditions in Eq. (A7) for tree-

level fμ2; ν2; τg; cf. Eqs. (12)–(14).
(2) Insert the tree-level solution of fμ2; ν2; τg into the

second term of Eq. (A8), and solve for one-loop
values of fμ2; ν2; τg that are present as a linear
combination in the first term.

(3) Insert the tree-level and one-loop vacuum into
Eq. (A9) to obtain the one-loop mass matrix (entry
by entry).

The challenging parts of this procedure are the last two steps.
Assuming one has the full potential V0 implemented in
terms of all fields Φ, it is straightforward to obtain the tree-
level field-dependent mass matrices from Eqs. (A3) and
(A4) and insert them into the Coleman-Weinberg expression
for V1 in Eq. (A1). The difficult task is evaluating the

derivatives ∂xV1 and ∂x∂�
yV1 due to the matrix logarithm in

the Coleman-Weinberg expression. Therefore, we ulti-
mately seek a method to efficiently evaluate the derivatives
∂xV and ∂x∂�

yV. One possible route to dealing with the
matrix logarithm in V is to expand it into a power series of
matrices around the identity and then apply derivatives to the
series. This leads to an infinite series of nested commutators
for the mass matrix. This approach was used in [26] and can
provide partial analytic insights, e.g., when the series of
commutators terminates. However, it is not suitable for an
efficient numeric calculation in the general regime.
Notice that the evaluation of the expression V is greatly

simplified assuming that the Φ-dependent matrix Â can be
smoothly diagonalized via

Â ¼ R̂ Λ̂ R̂−1; ðA10Þ

where ðΛ̂Þij ¼ λ̂iδij (no sum over i) is the field-dependent

diagonal matrix, and R̂ is the field-dependent transition
matrix. We again remind the reader that throughout this
Appendix a hat on top of any quantity indicates its field
dependence. The expression V and its derivatives then yield

VðÂ; c1; c2Þ ¼
1

64π2
X
i

ðc1λ̂2i þ c2λ̂
2
i log½λ̂i=μ2R�Þ; ðA11Þ

∂xVðÂ;c1;c2Þ¼
1

64π2
X
i

ð2c1þc2þ2c2 log½λ̂i=μ2R�Þλ̂iλ̂i;x;

ðA12Þ
∂x∂yVðÂ; c1; c2Þ

¼ 1

64π2
X
i

½ð2c1 þ c2 þ 2c2 log½λ̂i=μ2R�Þλ̂iλ̂i;xy

þ ð2c1 þ 3c2 þ 2c2 log½λ̂i=μ2R�Þλ̂i;xλ̂i;y�: ðA13Þ

Note that we write ∂y instead of ∂�
y for simplicity; the reader

should perform this trivial replacement in all formulas
involving the index y as well, so as to obtain ∂x∂�

yV instead
of ∂x∂yV.
Luckily, the procedure in Eqs. (A8) and (A9) requires

merelyV, ∂xV and ∂x∂�
yV evaluated in the tree-level vacuum

Φ ¼ v0, so we only need to know the eigenvalues and its
derivatives in vacuum; i.e., we require just λi ¼ λ̂iðv0Þ,
λi;x ¼ λ̂i;xðv0Þ, and λi;xy ¼ λ̂i;xyðv0Þ, assuming that the
diagonalization of Eq. (A10) is smooth in a neighborhood
ofΦ ¼ v0. Notice that we use a notationwhere all nonhatted
symbols denote quantities evaluated in vacuum, i.e.,
numeric quantities. We specify a numeric algorithm for
calculating λi, λi;x, and λi;xy in Appendix A 2.
Once the numeric values for λi, λi;x, and λi;xy are available,

their use in vacuum-evaluated Eqs. (A11)–(A13) still
involves certain subtleties. Since the field-dependent matri-
ces M2

S;GðΦÞ are Hermitian, the eigenvalues λi are always
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real. This is expected, as they correspond to mass squares
of particles. However, the eigenvalues come as arguments
into logs, so questions arise on how to properly deal with
cases when they vanish or are negative. There is an issue
even when they are positive and very small compared
to μ2R, since log contributions are then “unphysically”
enhanced. We address how to deal with these log cases in
Appendix A 3.
Having established the calculational procedure, we

now reflect on how to optimize the calculation. Notice
that the expression V defined in Eq. (A2) and its
derivatives are invariant under a basis change of Â,
and if Â is block diagonal, they can be evaluated on
each diagonal block of Â separately. The matrix Â stands
for either M2

SðΦÞ or M2
GðΦÞ. Vacuum can already be

inserted for all fields except for the Φx and Φ�
y states due

to derivatives, so we need a list of matrices M2
S;GðΦx;Φ�

yÞ
for all relevant pairs of indices x, y compatible with gauge
symmetry. We permute a basis of each M2

S;GðΦx;Φ�
yÞ in

such a way that it is block diagonal. Then, we traverse the
entire list of blocks for all x, y and collect only those
which are formally different (treating field labels Φx and
Φ�

y as dummy variables). Hence, the evaluation of V on
each formal block needs to be computed only once,
provided we keep track of their multiplicities for each
fixed x and y.
To recapitulate, our calculation of one-loop masses for a

particular parameter point thus involves the computation of
∂xVðv0Þ and ∂x∂�

yVðv0Þ for a few thousand formally
different blocks of various sizes. If the diagonalization
of Eq. (A10) for that block is smooth at Φ ¼ v0, we
compute λi, λi;x, and λi;xy with the algorithm described in
Appendix A 2. They are then inserted into Eqs. (A11)–
(A13) evaluated at v0, with proper logarithm treatment
described in Appendix A 3.
Only a few small blocks were found not to be smoothly

diagonalizable at v0, all of them located in the gauge mass
matrix M2

GðΦx;Φ�
yÞ. Fortunately, it was possible to com-

pute the expression V for these blocks analytically.23

2. Details of the numerical procedure

a. Preliminaries and notation

As discussed in Appendix A 1, we are interested
in finding a procedure where the starting point is a
Φ-dependent matrix Â, and the desired result are
the eigenvalues and their first- and second-order deriva-
tives evaluated in the tree-level vacuum v0: λi, λi;x,
and λi;xy. Equivalently, expanding the diagonal field-

dependent matrix Λ̂ in Eq. (A10) into a Taylor series
around vacuum via

Λ̂¼ΛþΛ;xðΦ−v0Þxþ
1

2!
Λ;xyðΦ−v0ÞxðΦ−v0Þyþ…;

ðA14Þ

we seek the diagonal-matrix coefficients Λ, Λ;x, and Λ;xy.
Note that Φx goes over all real degrees of freedom when
the indices x, y, etc., are summed over.
Obtaining the eigenvalues λi is not difficult, since the

tree-level vacuum can simply be inserted into Â and then
the numeric matrix Âðv0Þ can easily be diagonalized.
Finding the eigenvalue derivatives, however, is complicated
in the most general case by possible degeneracies. In
particular, suppose we have an eigenspace of Λ that
corresponds to a particular eigenvalue. While any basis
of this eigenspace can be used for diagonalizing Λ,
derivatives such as Λ;x may impose a particular preferred
basis in this eigenspace; in other words, the transition
matrix R̂ is field dependent and higher-order coefficients in
its Φ expansion matter. The proper (Φ-dependent) eigen-
basis therefore gets progressively resolved only when
higher derivatives of degenerate eigenvalues are taken into
account. For a more detailed discussion, we refer the
interested reader to the literature [46–48]. We mimic the
procedure from [48], in particular to derive the algorithm
for the numeric evaluation of the expansion coefficients in
Eq. (A14) up to second order.
Before describing the algorithm and providing a quick

derivation, we set up our compact but convenient notation
and definitions. As part of the algorithm, we shall obtain a
sequence of progressive basis transformations Pn. We
denote the cumulative transformation up to the nth level
by Rn:

Rn ≔ P1…Pn: ðA15Þ

For any matrix X from the set

X ∈ fA;A;x;A;y;A;xyg; ðA16Þ

we define its form in a different basis by

X0 ≔ X̂ðv0Þ; ðA17Þ

Xn ≔ R−1
n X0Rn ¼ P−1

n Xn−1Pn: ðA18Þ

We combine the basis and derivative labels in the subscript
via, e.g., An;x, and refer to such a matrix as being in the
n-basis. The matrix Pn transitions from the n-basis to the
(n − 1)-basis.
It turns out each matrix Pn is obtained in the algorithm

by diagonalizing some particular numeric matrix;
cf. Eqs. (A25) and (A27)–(A29). We write this diagonal-
ization generically as

23There exists an analytically computable smooth Jordan
decomposition for them.
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An−1 ¼ PnDnP−1
n ; ðA19Þ

where bookkeeping subscripts under A and D correspond
also to the underlying basis of the matrix, but the trans-
formations among them analogous to Eq. (A18) do not
apply. The diagonal matrices Dn are the matrix coefficients
of interest in the expansion of Λ̂. Explicitly, for fixed x and
y we have

D1 ¼Λ; D2 ¼Λ;x; D3 ¼Λ;y; D4 ¼Λ;xy: ðA20Þ

Crucially, at each step n there is an associated structure
that An−1 possesses.

(i) There exists a partition of the (n − 1)-basis already
from the previous step. It is referred to as the (n − 1)-
partition, and the associated block structure is
composed of (n − 1)-blocks. Edge case: The initial
0-basis has the trivial partition corresponding to a
single block.

(ii) The matrix An−1 turns out to be (n − 1)-block
diagonal. Consequently, the transition matrix Pn
that diagonalizes it can also be taken as (n − 1)-
block diagonal.

(iii) The transition matrix Pn defines the n-basis. Since
Pn is (n − 1)-block diagonal, the (n − 1)-partition
also applies to the n-basis. We order the n-basis so
that within each (n − 1)-block the eigenvectors
belonging to the same eigenspace ofDn are grouped
together. This subdivision of the n-basis defines the
n-partition, which is clearly a refinement of the
(n − 1)-partition of the same basis. The transition
matrix Pn is arbitrary only up to basis changes
within n-blocks, within which Pm for m > n can
make changes to the basis in later steps.

(iv) Incidentally, knowledge of Pn suffices to obtain the
full transition matrixRn ¼ Rn−1Pn transforming the
n-basis to the initial 0-basis, where for n ¼ 1 we
have R1 ¼ P1. Intuitively, Rn simultaneously diag-
onalizes Ak for all k ¼ 0;…; ðn − 1Þ if the A
matrices are rewritten in the 0-basis. Note that Rn
is in general not block diagonal.

The above underlying structure therefore yields a
progressive series of basis partitions, where the n-partition
acts on the n-basis. The n-partition is obtained in the
diagonalization procedure ofAn−1 and is subordinate to the
m-partition for any m < n. Consequently, Pn is m-block
diagonal for m < n. The inductively defined structure is
self-perpetuating from step to step as long as An is indeed
n-block diagonal, which is true by construction.
For any matrix Xn in the n-basis, we denote the block-

diagonal and block-off-diagonal parts of the n-partition in
the matrix by [n] and (n) in the superscript, respectively,

ðX½n�
n Þij ≔

� ðXnÞij if i ∈ I; j ∈ J; I ¼ J;

0 if i ∈ I; j ∈ J; I ≠ J;
ðA21Þ

XðnÞ
n ≔ Xn −X½n�

n ; ðA22Þ

where capital indices I and J are n-block labels. Form > n
we further define the notation

X½n�
m ≔ ðR−1

n RmÞ−1X½n�
n ðR−1

n RmÞ; ðA23Þ

XðnÞ
m ≔ ðR−1

n RmÞ−1XðnÞ
n ðR−1

n RmÞ; ðA24Þ

which represents taking the n-block- (off)-diagonal part
of Xn and further transforming it from the n-basis into the

m-basis. Equivalently, we can obtain X½n�
m or XðnÞ

m by first
fully rotating X to the m-basis, and taking the (off)-
diagonal part of the n-partition only in the end. This works
due to the hierarchy in block structure; i.e., the n-partition
can be applied to any m-basis for m > n.

b. The algorithm

Starting with a field-dependent matrix Â≡AðΦÞ, we
want to obtain λi, λi;x, λi;y, and λi;xy for fixed x and y.
Following the notation introduced in Appendix A 2 a,
perform the following steps:
(1) Given the matrix Â, compute (in the tree-level

vacuum) the numeric matrices A0, A0;x, A0;y, A0;xy.
(2) Diagonalize A0 to obtain ðΛ;P1Þ:

A0 ¼ P1ΛP−1
1 : ðA25Þ

This gives us λi and the 1-partition, as well
as R1 ¼ P1.

(3) Compute an auxiliary matrix Ω from Λ:

ðΩÞij ¼
� ðλj − λiÞ−1 if λi ≠ λj;

0 if λi ¼ λj:
ðA26Þ

Clearly, Ω ¼ Ωð1Þ.
(4) Compute A1;x ¼ R−1

1 A0;xR1 and diagonalize its
diagonal 1-blocks to obtain ðΛ;x;P2Þ:

A½1�
1;x ¼ P2Λ;xP−1

2 : ðA27Þ

This gives us λi;x and the 2-partition.
(5) Compute A2;y ¼ R−1

2 A0;yR2, where R2 ¼ P1P2.
Take its diagonal 2-blocks and diagonalize to get
ðΛ;y;P3Þ:

A½2�
2;y ¼ P3Λ;yP−1

3 : ðA28Þ

This also gives the 3-partition.
(6) Obtain Λ;xy by diagonalizing the matrix on the left

side of the expression
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ðA3;xy − ðΩ ·A3;xÞAð1Þ
3;y − ðΩ ·A3;yÞAð1Þ

3;xÞ½3�

¼ P4Λ;xyP−1
4 : ðA29Þ

The dot ð·Þ denotes entrywise multiplication. This
gives us the sought-after λi;xy, as well as the
incidental transition matrix P4 and the correspond-
ing 4-partition.

c. Derivation of the algorithm

To derive the algorithm we have specified in
Appendix A 2 b, we start by considering the field-
dependent diagonalization in Eq. (A10), which we rear-
range into

ÂR̂ ¼ R̂Λ̂: ðA30Þ
The matrix Â is provided, while both R̂ and Λ̂ are not
known explicitly, but their full form is not necessary to
compute the desired Λ, Λ;x, Λ;y, Λ;xy for fixed x and y. We
remind the reader that all hatted quantities imply field
dependence, while the nonhatted quantities are evaluated in
the tree-level vacuum and are numeric for given input
parameters. We assume all notation defined so far in
Appendix A 2 a, in particular, Eqs. (A14)–(A24). For later
convenience, we further amend the definitions with

Γ̂n ≔ PnPnþ1…PN−1P̂N; ðA31Þ

Ŝ;X ≔ R̂−1R̂;X; ðA32Þ

Ŝn;X ≔ Γ̂nþ1Ŝ;XΓ̂−1
nþ1; ðA33Þ

Sn;X ≔ Ŝn;Xðv0Þ ¼ Γ̂nþ1ðv0ÞŜ;Xðv0ÞΓ̂−1
nþ1ðv0Þ; ðA34Þ

where X denotes any combination of derivative variables
X ∈ fx; y; xyg. It turns out we need N ¼ 5 progressive
transformations in total, with all field dependence then
pushed to P̂5, while the prior P transformations are used in
the process of determining Λ, Λ;x, Λ;y, Λxy. The above
definitions imply

R̂ ¼ RnΓ̂nþ1 ðA35Þ
for any n ¼ 1, 2, 3, 4, along with the trivial edge case
Γ̂1 ¼ R̂. Intuitively, Rn is the rotation from the initial into
the n-basis, while the remaining part of the full R̂
diagonalization is represented by Γ̂nþ1. The useful quan-
tities Ŝn;X represent the X derivative of R̂ unrotated by R̂
from the left, with the result taken in the n-basis, while the
unhatted Sn;X is the same quantity evaluated in the tree-
level vacuum. Lastly, we define P5 ¼ P̂5ðv0Þ.
To perform algebraic manipulations in the subsequent

derivation, the following set of commutators will likely
prove useful to the reader:

0 ¼ ½Λ; Γ̂n≥2ðv0Þ� ¼ ½Λ;Pn≥2�; ðA36Þ

0 ¼ ½Λ;x; Γ̂n≥3ðv0Þ� ¼ ½Λ;x;Pn≥3�; ðA37Þ

0 ¼ ½Λ;y; Γ̂n≥4ðv0Þ� ¼ ½Λ;y;Pn≥4�; ðA38Þ

0 ¼ ½Λ;xy; Γ̂n≥5ðv0Þ� ¼ ½Λ;xy;Pn≥5�: ðA39Þ

The commutators’ identities with the Pn matrices follow
directly from the block structure of Pn and the hierarchies
among n-partitions described in Appendix A 2 a. The Pm is
n-block diagonal for m > n, while the matrices Dn iden-
tified in Eq. (A20) are diagonal with the same eigenvalues
in a given n-block, leading to vanishing P-commutators in
Eqs. (A36)–(A39) in particular.
As for commutators with Γn, the argument needs to be a

bit more subtle, since they are used in deriving the An
matrix at a step where Pm for m > n has not yet been
defined. Consider the lowest nontrivial Γ, which is Γ2.
Since A0 ¼ A0, we have both R ¼ R̂ðv0Þ and R1 ¼ P1

diagonalizing it according to Eq. (A30) evaluated in the
vacuum and the definition of P1 in Eq. (A19), respectively.
Thus,

A0 ¼ RD1R−1 ¼ R1D1R−1
1 ; ðA40Þ

with the two rotation matrices related viaR ¼ R1Γ2 due to
Eq. (A35). The matrix Γ2 thus represents the arbitrariness
in the transition matrix, which must commute with
the matrix being diagonalized (cf. [48]): ½Λ;Γ2� ¼ 0.
The matrices Γm for m > 2 are related to Γ2 recursively
via Γn ¼ PnΓnþ1, so their commutators with Λ can be
derived from the Γ2- and P-commutators. Analogous
arguments can be used to derive Γ-commutators with
derivatives of Λ, since Γn represents the arbitrariness in
the simultaneous diagonalization of the matrices Am for all
m between 0 and n − 2.
We now perform a sequence of steps.
(1) Evaluating Eq. (A30) in vacuum and taking the first

transformation matrix as P1 ¼ R̂ðv0Þ yields
A0 ¼ P1ΛP−1

1 . Numeric diagonalization of A0 thus
gives P1 and Λ. Formally, this also implies the
expression Γ̂2 ¼ R̂ðv0Þ−1R̂.

(2) Take the derivative ∂x of Eq. (A30):

Â;xR̂þ ÂR̂;x ¼ R̂;xΛ̂þ R̂Λ̂;x: ðA41Þ

Multiply from the left with R̂−1, rearrange and insert
suitable definitions for Ŝ to obtain

R̂−1Â;xR̂ − Λ̂;x ¼ Ŝ;xΛ̂ − Λ̂Ŝ;x: ðA42Þ

We now formally multiply Eq. (A42) with Γ̂3 from
the left and Γ̂−1

3 from the right, thus undoing the
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field-dependent rotation R̂ up to the as-yet-unknown
R2 ¼ R1P2. We then evaluate that expression in
vacuum and multiply it with P2 from the left to
obtain

A1;xP2 − P2Λ;x ¼ P2S2;xΛ − P2ΛS2;x: ðA43Þ

We consider this matrix equation in terms of
1-blocks, using labels K1 and L1 for 1-block rows
and 1-block columns on each side, respectively.
Since P2 is 1-block diagonal, we can write
ðP2ÞK1L1

¼ ðP2ÞK1K1
δK1L1

. Similarly, ðΛÞK1L1
¼

λK1
δK1L1

; i.e., each diagonal 1-block in Λ is propor-
tional to the identity matrix, while the off-diagonal
blocks are zero.
We first examine the 1-block-diagonal part of

Eq. (A43). For K1 ¼ L1, the right-hand side van-
ishes, since Λ acts as an identity block multiplied
with the same proportionality factor in both terms,
i.e., λK1

¼ λL1
. Hence,

ðA1;xP2ÞK1K1
¼ ðP2Λ;xÞK1K1

: ðA44Þ

Since P2 and Λ;x are already block diagonal with
respect to the 1-partition, the equation can be written
in full-matrix form as

A½1�
1;xP2 ¼ P2Λ;x: ðA45Þ

Diagonalizing A½1�
1;x yields P2 (and thus R2) and the

first derivatives Λ;x.
We now return to the 1-block-off-diagonal parts in

Eq. (A43), i.e., K1 ≠ L1. Since P2, Λ, and Λ;x are all
1-block diagonal, the second term on the left-hand
side vanishes, and we get

ðA1;xÞK1L1
ðP2ÞL1L1

¼ðλL1
−λK1

ÞðP2ÞK1K1
ðS2;xÞK1L1

:

ðA46Þ

Solving for ðS2;xÞK1L1
gives

ðS2;xÞK1L1
¼ 1

ðλL1
−λK1

ÞðP
−1
2 ÞK1K1

ðA1;xÞK1L1
ðP2ÞL1L1

¼ðΩ ·A2;xÞK1L1
; ðA47Þ

where the dot ð·Þ denotes entrywise multiplica-
tion and the auxiliary matrix Ω is defined in
Eq. (A26). This can be written as a full-matrix
equation via

Sð1Þ
2;x ¼ Ω ·A2;x: ðA48Þ

Note that the knowledge of the 1-block-off-diagonal
parts of S2;x is sufficient for all further steps in our
derivation of the quantities of interest.

(3) Perform the following sequence of operations:
Take the derivative ∂y of Eq. (A30), multiply with
R̂−1 from the left, then formally multiply with Γ̂4

from the left and Γ̂−1
4 from the right, and finally

evaluate in vacuum. These steps give the analog of
Eq. (A43):

A2;yP3 − P3Λ;y ¼ P3S3;yΛ − P3ΛS3;y: ðA49Þ

Similar to the case of ∂x, we consider this equation
in terms of 2-blocks. For diagonal blocks, we get

ðA2;yP3ÞK2K2
¼ ðP3Λ;yÞK2K2

ðA50Þ

yielding the full-matrix equation

A½2�
2;yP3 ¼ P3Λ;y ðA51Þ

indicating that diagonalization of A½2�
2;y produces the

transition matrix P3 and the eigenvalue derivatives
Λ;y. The block-off-diagonal part of Eq. (A49) analo-
gous to the ∂x case gives

ðA2;yÞK1L1
ðP3ÞL1L1

¼ ðλL1
− λK1

ÞðP3ÞK1K1
ðS3;yÞK1L1

ðA52Þ

in terms of the coarser 1-blocks with K1 ≠ L1,
resulting in

ðS3;yÞK1L1
¼ ðΩ ·A3;yÞK1L1

: ðA53Þ

In full-matrix notation, this can be written as

Sð1Þ
3;y ¼ Ω ·A3;y: ðA54Þ

(4) We now turn to the second derivative and take ∂x∂y
of Eq. (A30):

Â;xyR̂þ Â;xR̂;y þ Â;yR̂;x þ ÂR̂;xy

¼ R̂;xyΛ̂þ R̂;xΛ̂;y þ R̂;yΛ̂;x þ R̂Λ̂;xy: ðA55Þ

Multiplying it by R̂−1 on the left and inserting the
Ŝ-definitions gives

R̂−1Â;xyR̂þ R̂−1Â;xR̂Ŝ;y þ R̂−1Â;yR̂Ŝ;x þ Λ̂Ŝ;xy

¼ Ŝ;xyΛ̂þ Ŝ;xΛ̂;y þ Ŝ;yΛ̂;x þ Λ̂;xy: ðA56Þ

Multiplying this equation from the left with Γ̂5, from
the right with Γ̂−1

5 , evaluating it in vacuum, making
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use of the commutators in Eq. (A39) and expressing
Λ;xy yields

Λ;xy¼P−1
4 A3;xyP4þP−1

4 A3;xP4S4;yþP−1
4 A3;yP4S4;x

−S4;xΛ;y−S4;yΛ;xþ½Λ;S4;xy�: ðA57Þ

Since Λ;xy is diagonal (due to Λ̂ being diagonal by
definition), knowledge of diagonal 3-blocks in
Eq. (A57) suffices:

ðΛ;xyÞK3K3
¼ ðP−1

4 A3;xyP4 þ ðP−1
4 A3;xP4 − Λ;xÞS4;y

þ ðP−1
4 A3;yP4 − Λ;yÞS4;xÞK3K3

¼ ðP−1
4 A3;xyP4 þ P−1

4 ½S3;x;Λ�S3;yP4

þ P−1
4 ½S3;x;Λ�S3;xP4ÞK3K3

: ðA58Þ

To derive the first line, we used the fact that
the diagonal matrices Λ, Λ;x, and Λy respect the
3-partition; i.e., each of their diagonal blocks is
proportional to an identity matrix block, and thus
they commute with any matrix on the 3-block-
diagonal part. The second line was derived by taking
Eqs. (A43) and (A49) into account, properly trans-
formed to the 3-basis.
Equation (A58) gives the diagonal 3-blocks of

Λ;xy in terms of an expression that is sandwiched
between P−1

4 and P4. Since P4 is 3-block diagonal,
and ðΛÞK3L3

¼ λK3
δK3L3

, we can write the result
more explicitly as

ðΛ;xyÞK3K3
¼ ðP−1

4 ÞK3K3
ððA3;xyÞK3K3

þ ðλL3
− λK3

ÞððS3;xÞK3L3
ðS3;yÞL3K3

þ ðS3;yÞK3L3
ðS3;xÞL3K3

ÞÞðP4ÞK3K3
;

ðA59Þ

with an implied sum over L3 on the right-hand side.
For K3 and L3 belonging to the same 1-block, i.e.,
K3; L3 ∈ K1, the factor λL3

− λK3
becomes zero,

since the eigenvalues in 1-blocks are identical.
Hence, only the 1-block-off-diagonal entries of
S3;x and S3;y need to be considered. These are
available from Eqs. (A47) and (A54) transformed
to the 3-basis if necessary (which is subordinate to
the 1-partition of Ω). This finally gives

ðΛ;xyÞK3K3
¼ðP−1

4 ÞK3K3
ððA3;xyÞK3K3

þðλL3
−λK3

Þ
× ððΩ ·A3;xÞK3L3

ðΩ ·A3;yÞL3K3

þðΩ ·A3;yÞK3L3
ðΩ ·A3;xÞL3K3

ÞÞðP4ÞK3K3
:

ðA60Þ

The λL3
− λK3

factor removes one entrywise Ω
multiplication while preserving only the 1-block-
off-diagonal parts. The entire equation for diagonal
3-blocks of Λ;xy can then be extended to a full-
matrix equation by using the block-diagonal extrac-
tion operator ½3� on both sides. By taking into
account that Λ;xy and P4 are 3-block diagonal
already, we get

Λ;xy ¼ P−1
4 ðA3;xy − ðΩ ·A3;xÞAð1Þ

3;y

− ðΩ ·A3;yÞAð1Þ
3;xÞ½3�P4: ðA61Þ

We have thus derived the final result of Eq. (A29).
Note that this expression is manifestly symmetric
with respect to x and y.

3. Detailed handling of logs

The procedure of Appendix A 1 computes one-loop
corrections only to the mass parameters in the scalar
potential, so the resulting quantity is the one-loop effective
mass rather than the physical mass (also referred to as the
pole mass). The latter requires also knowledge of momen-
tum-dependent contributions coming from self-energy
diagrams, which we do not consider. It is possible,
however, to improve upon the effective-mass calculation
by carefully considering its logarithmic contributions. This
improved version is referred to as the regularized effec-
tive mass.
One-loop effective scalar masses in Eq. (A9) inevitably

contain contributions of the form

log

�
m2

l

μ2R

�
; ðA62Þ

where ml is the tree-level mass of a scalar or gauge field in
the loop part of a Feynman diagram. The following
situations require further attention:
(1) The particles in the loop are much lighter than the

rest of the spectrum, e.g., when their masses are near
the intermediate scale. In such a case, the regime
m2

l ≪ μ2R causes logarithmic contributions to be
unphysically large. This effect is canceled in physi-
cal masses by self-energy contributions, which we
do not have access to.

(2) For WGBs, m2
l ¼ 0, so the logs contain an IR

divergence unless their prefactor expressions vanish
as well.24

(3) At least one of the PGBs has a tree-level tachyonic
instability, i.e., m2

l < 0, which causes the argument
of the log to be negative.

24Some of the diverging logarithms of Eq. (A62) are tamed by
a m2

l -proportional prefactor.
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We prepare the ground for solving these issues in
Appendixes A 3 a and A 3 b and then present a compre-
hensive list of how to practically treat all the cases in
Appendix A 3 c.

a. The regularized effective mass

We define a quantity called the regularized one-loop
effective scalar mass M2

S;reg: We take the expression for the
one-loop effective scalar massM2

S but solve the problem of
IR divergences by emulating the shift from the effective to
the physical mass. In particular, we take inspiration from
the Abelian Higgs model [49], which suggests using the
replacement

log

�
m2

l

μ2R

�
↦

Z
1

0

dx log

�jm2
l −m2

Sxð1 − xÞj
μ2R

�

¼ log

�
m2

S

μ2R

�
þ log½c� þ IðcÞ; ðA63Þ

where mS is the tree-level mass of the particle on the outer
legs (i.e., the particle whose one-loop mass we are

computing) and c ≔ m2
l

m2
S
. The term IðcÞ includes integration

and is rather time consuming to be evaluated in all one-loop
corrections. The effect of the integral IðcÞ is shown
in Fig. 14.
We simplify the approximation in the replacement rule of

Eq. (A63) by following the normal log (blue curve) at high
c until Iðc0Þ ¼ 0 for c0 ≈ 0.0763 (the intersection of the
blue and orange curves), then take a constant value for c
smaller than c0. The regularized one-loop effective scalar
mass is thus defined as the one-loop effective mass with all
logarithmic terms of Eq. (A62) substituted by

M2
S;reg∶ log

�
m2

l

μ2R

�
↦

8>>><
>>>:

log

�
m2

l
μ2R

�
;
m2

l
m2

S
> c0;

log

�
c0

m2
S

μ2R

�
;
m2

l
m2

S
≤ c0:

ðA64Þ

We refer to this procedure as taming the logs.

b. Physical vs regularized effective mass

The regularized one-loop effective mass is the best
possible approximation to the actual physical mass without
knowledge of self-energy contributions. A crucial obser-
vation for inferring the nontachyonicity of the physical
spectrum is that in the perturbative regime, the nontachyo-
nicity of the regularized effective mass implies that the
physical mass is also nontachyonic. We schematically
argue this point below.
Let us consider the continuous Fourier-transformed

two-point one-particle irreducible (OPI) Green’s function

Γð2Þ
MS

ðp2Þ evaluated in the MS renormalization scheme,

where p2 is square of the outer leg particle’s four-
momentum. In what follows, we suppress the matrix
structure in mass expressions for simplicity. In the effective
potential approach, we obtain the effective mass of a field,
which is simply the zero-momentum value of the Green’s
function:

M2
S ¼ −Γð2Þ

MS
ðp2 ¼ 0Þ: ðA65Þ

Subsequently,

M2
S;reg ¼ M2

S − IR divergences ðA66Þ

schematically holds for the regularized effective mass. The
physical mass though is defined as a solution to the
equation

Γð2Þ
MS

ðp2 ¼ M2
physÞ ¼ 0: ðA67Þ

In addition, the behavior of the two-point Green’s function
is constrained in such a way that

dZΓð2Þ
MS

dp2

����
p2¼M2

phys

¼ 1; ðA68Þ

where Z is the field-strength renormalization. We require
that there exists only one solution to Eq. (A67), and we stay
in the perturbative regime, where higher-loop corrections
are subdominant with respect to the tree-level values. The
latter tree-level case corresponds to

M2
S;reg ¼ M2

phys; Z ¼ 1: ðA69Þ

Schematically, there are four different qualitative sol-
utions that can occur; see Fig. 15. The solid lines show what

FIG. 14. Logarithmic contributions to the one-loop effective
scalar masses with taming of the IR divergences [logðcÞ þ IðcÞ]
and without it [logðcÞ]. The parameter c ¼ m2

l

m2
S
, where ml and mS

are tree-level masses of fields in the loop and on the outer legs,
respectively.
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must qualitatively happen in perturbative scenarios, while
the black dashed lines illustrate what might occur in
nonperturbative situations significantly deviating from
the tree-level case. The red color labels the case with a
perturbative nontachyonicM2

S mass, while the blue color is
used for the tachyonic M2

S mass scenario. The nonpertur-
bative cases are not of interest here since they prevent us

from using perturbative expansions of OPI Green’s func-
tions. Hence, one can conclude that in the perturbative
regime

M2
phys is nontachyonic ⇔ M2

S;reg is nontachyonic:

For valid parameter points, which pass the perturbativity
and nontachyonicity check, the situation for all mass
eigenstates thus corresponds to the red-line scenario.

c. Practical aspects of the one-loop scalar-mass
calculations

All potential issues related to the presence of vastly
different scales in the one-loop mass calculation (due to
lighter fields in the loop), as well as methods of their
resolution are identified in Table VI. This resolves cases 1
and 2 in Appendix A 3.
The arguments of the logs are always taken in

absolute values, so that the issues with a negative
log argument are avoided (case 3 of Appendix A 3).
Since we check the nontachyonicity of the spectrum
for every point at the one-loop level, and our perturba-
tivity requirements demand the loop contributions to
GUT-scale particles to be smaller than the tree-level
values, the absolute value is relevant only for PGB fields

TABLE VI. Summary of potential issues related to vastly different scales (associated with GUT-scale and intermediate-scale sectors at
play) appearing in the one-loop mass calculations, and their practical treatment.

Light field type

A: Potential issues related
to the calculation of loop

contributions to their masses

B: Potential issues related
to their presence in other

fields’ loop mass corrections
Practical treatment
of A and/or B

WGBs None. WGBs are massless at all
loops if calculated exactly.

WGBs produce IR-diverging

logarithms, such as log½m2
WGB

μ2R
�

with mWGB ¼ 0, that get
canceled in physical masses.

A: The WGBs’ zero masses will be
recovered no matter the order of
the perturbation series.

B: The shift from the effective to
physical masses is modeled by
substitution (A64).

Fields associated
with intermediate-
symmetry
breaking

Loop corrections to the light fields
should be calculated using
intermediate-symmetry
effective-field theory, not the full
SO(10).

If the light mass is way lighter than
m2

S (denoting the tree-level mass
the loop correction is calculated
to) potentially large logs may
emerge.

A: The tree-level mass will be used
for all practical purposes.

B: Large logs will get replaced (as
for WGBs) via substitution
(A64).

PGBs such as those
discussed in
Sec. II A 4

Light fields in the loops may
produce large logs as they are
not properly tamed by using
substitution (A64) with tree-
level PGB mass inserted in.

The same as above for the light
fields associated with
intermediate-symmetry
breaking.

A: An iterative approach is
employed,a with the PGB tree-
level masses in (A64) substituted
by one-loop PGB masses
calculated in the previous
iteration; cf. Appendix 1 c.

B: Via Eq. (A64).
aSome potentially large logs vanish in the two limits of interest due to the Ti and Oi prefactors of Ref. [26], Appendix B.

FIG. 15. Four different schematic depictions of two-point OPI
Green’s function Γð2Þ

MS
behavior demonstrating four combinations

of tachyonic or nontachyonic physical M2
phys or regularized

effective M2
S masses.
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in the loop. Furthermore, since the PGB contribution is
tamed in the computation of masses for heavy fields, we
only need to worry about this problem when computing
corrections to PGBs coming from PGBs in the loop. In
such a case, the tree-level PGB approximation is con-
sidered bad anyway, and we perform a further iterative
procedurewith an associated perturbativity check; cf. item
4 in Appendix B 1 c.

APPENDIX B: DETAILS OF THE
NUMERICAL ANALYSIS

In this Appendix, we address the technical details of the
viability criteria formulated in Sec. III. In particular, we
outline the implementation of various parameters describ-
ing the quality of fits presented in Sec. IV B along with the
penalties associated with the potential violation of the
tachyonicity and perturbativity criteria in the step-by-step
numerical procedure.

1. The viability criteria of Sec. III

a. Nontachyonicity of the scalar spectrum

Nontachyonicity of the mass spectrum is an essential
consistency criterion. To this end, we use the regularized
one-loop effective mass defined in Appendix A 3 for all the
scalars, except for those fields which are parametrically
lighter due to their association with the intermediate
symmetry scale σ. Since none of these states is a
pseudo-Goldstone boson, we can afford using the tree-
level formulas for their masses instead; see Table VI.
The contribution to the penalty of a parameter-space point

from the possible scalar spectrum tachyonicity is defined as

p1 ¼ A1 arctan

2
664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

1 − signðM2
jÞ

2

jM2
j j2
sj

vuut
3
775; ðB1Þ

where A1 ∈ Rþ is a weight parameter, j runs over all the
scalar fields, and sj stands for the expected scale ofM2

j , i.e.,
sj ¼ ω2

max (ωmax ≔ max ½jωBLj; jωRj�) for the heavy fields

associated with the GUT scale, sj ¼ ω2
max
10

for PGBs, and sj ¼
σ2 for the fields which should be naturally around the
intermediate scale. The only exceptions are the SM multip-
lets ð3; 1;− 1

3
Þ and ð1; 2;− 1

2
Þ, for which the mass and sign

factors jM2
j j and signðM2

jÞ are replaced by the leading
principal minors of the relevant mass matrices and their
signatures, respectively25; see Sec. III A. Note that the first
factor in the sum above ensures that there is no penalty for
nontachyonic masses.

b. Unification of gauge couplings

In this study, the SM gauge couplings are expected to be
unified at the one-loop level; cf. Sec. III B. The evolution of
the usual α-factors

αi ¼
g2i
4π

ðB2Þ

with the EW-scale boundary conditions is then driven by
the equations

d
dt

α−1i ¼ −ai: ðB3Þ

The dimensionless running parameter t is defined as

t ¼ 1

2π
log

μR
MZ

; ðB4Þ

with μR denoting the running renormalization scale, and

ai ¼ −
11

3

X
G

TðGiÞDðGiÞ þ
4

3

X
F

κFTðFiÞDðFiÞ

þ 1

3

X
S

ηSTðSiÞDðSiÞ; i ¼ 1; 2; 3 ðB5Þ

correspond to the beta functions of the “reduced” one-loop
SM gauge couplings. The three sums above run over the
gauge, fermion, and scalar fields, respectively, TðRiÞ are
the Dynkin indices of representations Ri with respect to the
group factor Gi ∈ fSUð3Þc; SUð2ÞL;Uð1ÞYg, and DðRiÞ
denote the relevant multiplicities of Ri. We take κF ¼ 1

2
or 1

for Weyl or Dirac fermions, respectively; likewise ηS ¼ 1
2
or

1 for real or complex scalar fields.
The solution of Eq. (B3) is trivial:

α−1i ðtÞ ¼ α−1i −
�
aðSMÞ
i tþ

X
tk<t

ΔaðkÞi ðt − tkÞ
�
; ðB6Þ

where we used the abbreviation α−1i ð0Þ ¼ α−1i and
tk ¼ 1

2π log
Mk
MZ
. In the expression above, the Standard

Model contributions to Eq. (B5) have been collected in

aðSMÞ
i with values ðaðSMÞ

3 ;aðSMÞ
2 ;aðSMÞ

1 Þ¼ð−7;−19
6
;41
10
Þ, while

the ΔaðkÞi terms listed in Tables VIII and IX encompass the
effects of gradual addition of the beyond-SM fields at
scales t exceeding their individual masses tk.
The gauge coupling unification constraint thus reads

α−1i ðtGUTÞ ¼ α−1ðtGUTÞ, i ¼ 1, 2, 3, where tGUT is any scale
at or above the heaviest threshold nontrivially influencing
the gauge coupling evolution. Thus, relation (B6) can be
rewritten as

25For these fields, the typical scale factor sj is defined as
ω2k
max where k stands for the dimensionality of the corresponding

minor.
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α−1i ¼ α−1ðtGUTÞ þ aðSMÞ
i tGUT

þ
X

k∈ all fieldsnSM
ΔaðkÞi ðtGUT − tkÞ

−
1

4π
log

α−1ðtμRÞ
α−1ðtGUTÞ

X
j∈ gauge bosonsnSM

ΔaðjÞi ; ðB7Þ

where the last subleading term takes care of the fact that the
gauge boson masses are calculated with the SO(10) gauge
coupling evaluated at the renormalization scale μR, which is
optimally chosen for each point separately (to be specified
in Appendix B 2).
In addition to all details of the bosonic spectrum, a good

unification pattern is characterized by three main param-

eters, namely, tGUT, tσ ¼ 1
2π log

jσj
MZ
, and α−1. These three

quantities correspond to three basic degrees of freedom
which can be manipulated by (i) scaling all dimensionful
quantities fωBL;ωR; σ; μRg by a common factor, (ii) shifting
the intermediate-scale VEV σ, and (iii) modifying the initial
condition for the SO(10) gauge coupling. Parametrizing the
associated shifts by

fΔtGUT;Δtσ;Δα−1g; ðB8Þ

Eqs. (B7) become the following set of three independent
conditions for these parameters26:

α−1i ¼ α−1ðtGUTÞ þ Δα−1 þ aðSMÞ
i ðtGUT þ ΔtGUTÞ

−
X

k∈all fieldsnSM
ΔaðkÞi ðtk − tGUTÞ

−
X

l∈intermediate fields

ΔaðlÞi Δtσ

−
1

4π
log

α−1ðtμRÞ
α−1ðtGUTÞ þ Δα−1

X
j∈gauge bosonsnSM

ΔaðjÞi :

ðB9Þ

These are rather easy to solve for most of the initial choices
of tGUT, tσ , and α−1, which together with the resulting shifts
yield the desired gauge unification pattern.

c. Perturbativity constraints

As far as the perturbativity constraints of Sec. III C are
concerned, we implement four simple tests that quantify the

level of our satisfaction27 with the overall perturbativity.
The associated considerations in the order of Sec. III C are
as follows:
(1) Global-mass-perturbativity test. The penalty p2

associated with the Global-mass-perturbativity test
is defined as

p2 ¼
2

π
A2 · arctan ½HðΔ̄ − 1Þ�; ðB10Þ

where A2 ∈ Rþ is a weight factor, HðxÞ ≔ xθðxÞ,
θðxÞ is the Heaviside step function, Δ̄ is defined in a
repeat of Eq. (22) by

Δ̄≔
maxi;j∈heavyfields½jM2

ij;one-loop−M2
ij;treej�

M2
heavy

; ðB11Þ

with M2
ij;one-loop and M2

ij;tree denoting one-loop and
tree-level scalar-mass-matrix elements, respectively.

The symbol M2
heavy denotes the average (over real

degrees of freedom) of the heavy tree-level scalar
masses. In physical terms, a penalty is awarded if the
maximal one-loop correction of the mass square is
larger than the average tree-level mass square.

(2) Perturbativity of the RG evolution. For a given
individual point in the parameter space, all calcu-
lations are done at a certain “optimal” renormaliza-
tion scale μR. For measurable quantities (such as
pole masses), the specific choice of μR should not
matter. However, due to our use of the effective
potential approach and proxy quantities such as
regularized effective masses, the μR dependence is
technically not eliminated [50,51].
The residual μR dependence needs to be kept

under control to ensure that the perturbativity con-
straints will not get out of hand once the renorm-
alization scale is changed. For that purpose, we
perform one-loop RG running of dimensionless
parameters and check for the stability of the vacuum
position under loop corrections (cf. next point) at a
renormalization scale other than μR as well (specifics
are given later in Appendix B 2).
For further convenience, we introduce some

auxiliary quantities, repeating here the definitions
of Eqs. (23) and (24) for completeness:

t� ¼ log10
μR�
μR

; ðB12Þ

where μR is the starting optimal renormalization
scale specific to every point in the parameter space,
and μRþ (μR−) denotes the renormalization scale for26Here we assume that the SO(10) fields (except the SM

field content) can be divided into two categories according to
mass scale: (i) the heavy fields and PGBs, and (ii) the inter-
mediate-scale fields. Their masses are governed by ωmax and σ,
respectively.

27Recall that perturbativity constraints are the kind of criteria
which, practically by definition, require human (and hence,
biased) input; cf. Sec. III C.
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which the couplings hit a Landau pole when running
upward (downward). The geometric average

t̄ ¼ ffiffiffiffiffiffiffiffiffi
t−tþ

p ðB13Þ

encodes, roughly speaking, how many orders of
magnitude the scalar couplings can run up and down
before encountering a Landau-pole-type singularity.
Finally we define an optional penalty p5 in order to
test levels of robustness with respect to the RG
running:

p5 ¼
2

π
A5 · arctan

�
H

�
1

t̄
−

1

t̄thr

��
; ðB14Þ

where A5 ∈ Rþ is a weight factor, HðxÞ is defined
below Eq. (B10), and t̄thr is an acceptance threshold
for t̄.

(3) Stability of the vacuum position. We start by
defining a vector of dimensionful scalar parameters
w⃗ ¼ fμ2; ν2; τ2g. It is connected to the VEVs via
one-loop stationarity conditions, which can be writ-
ten in the form

w⃗ ¼ w⃗0 þ fðw⃗Þ; ðB15Þ

where w⃗0 denotes the tree-level part from
Eqs. (12)–(14), and the function fðw⃗Þ represents
one-loop corrections. Equation (B15) is solved
iteratively via

w⃗ðkþ1Þ ¼ w⃗0 þ fðw⃗ðkÞÞ; k ≥ 1; ðB16Þ

taking w⃗ð0Þ ¼ w⃗0. The iterative procedure is stopped,
and w⃗ is deemed to not have converged if

max
i∈f1;2;3g

ffiffiffiffiffiffiffiffiffiffiffiffi����w
ðkÞ
i

w0i

����
s

> 1þ ζ; ðB17Þ

where we set ζ ¼ 0.3, and the result of the iterative
procedure is labeled as w⃗iter. The maximal number of
iterations is chosen to be 30.
The penalization p3 that assesses vacuum stability

is the following:

if

ffiffiffiffiffiffiffiffiffi
kλ⃗k2
12

s
> 10∶ p3 ¼

1

3
ðAð1Þ

3 þ Að2Þ
3 Þ þ 2

3π
Að3Þ
3 arctan

� ffiffiffiffiffiffiffiffiffi
kλ⃗k2
12

s
− 10

�
;

else if w⃗iter does not converge∶ p3 ¼
1

3
Að1Þ
3 þ 2

3π
Að2Þ
3 arctan

�
H

�kw⃗iter − w⃗0k
kw⃗0k

− 1

�
þ ð30 − #iterationsÞ

�
;

else w⃗iter converges∶ p3 ¼
2

3π
Að1Þ
3 arctan

�
H

�kw⃗iter − w⃗0k
kw⃗0k

− 1

�
þH

�kw⃗iter − w⃗ð1Þk
kw⃗ð1Þk − 1

��
; ðB18Þ

where AðiÞ
3 ∈ Rþ are weight factors, HðxÞ is

defined below Eq. (B10), and the vector of scalar
couplings is

λ⃗ ≔ fa2; a0; λ0; λ2; λ4; λ04; α; β4; β04; γ2; η2g: ðB19Þ

The penalization in Eq. (B18) is constructed
so that each parameter point falls under exactly
one of three conditions. The first condition and the

associated Að3Þ
3 weight penalize points which fall

well outside the Oð1Þ circle. The second condition

and Að2Þ
3 penalize points for which the vector of

couplings λ⃗ is sufficiently small, but w⃗iter does not
converge under the criterion in Eq. (B17); i.e., the
iterative procedure is stopped prematurely. Analo-

gously, the third condition and weight Að1Þ
3 penalize

points if a converged w⃗iter differs too much from the
tree-level w⃗0 and the initial approximation of the
one-loop result w⃗ð1Þ. Note that the expressions are

such that the penalization is smaller if a later
condition applies, effectively ranking the criteria
in descending order of importance.

(4) Iterative pseudo-Goldstone masses. It turns out the
computation of regularized one-loop effective
masses for PGBs involves certain subtleties. As laid
out in Table VI, the presence of particles with masses
much below the GUT scale in the loop is handled by
the replacement in Eq. (A64) in order to tame
unphysical large-log contributions [52]. When com-
puting mass corrections to PGBs, Eq. (A64) implies
replacing log arguments involving the mass of
lighter (e.g., intermediate-scale) particles with the
PGB mass, leading to an equation of the form

M2
PGB ¼ C1 þ C2 logðM2

PGB=μ
2
RÞ; ðB20Þ

where C1 and C2 are numeric coefficients indepen-
dent of the expression M2

PGB. The tree-level masses
of the PGBs are accidentally small and not very
close to the chosen renormalization scale. This
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implies that the log contribution is additionally
enhanced, and the C1 term, usually dominated by
the tree-level mass, is reduced. The relative impor-
tance of the C2 term is thus increased, and the
solution of Eq. (B20) can be far away from C1. This
is problematic conceptually, since the C2 term itself
is merely an approximation arising from taming the
logs. Note that the computation of heavy masses
does not suffer from the same problem, despite an
analogous equation, since their tree-level masses are
large and the C1 term there dominates.
In practice, we solve Eq. (B20) iteratively via

M2
PGB;ðiþ1Þ ¼ C1 þ C2 logðjM2

PGB;ðiÞj=μ2RÞ ðB21Þ

starting with the valueM2
PGB;ð0Þ as the tree-level mass

and requiring that all iterations after i ≥ 1 are
nontachyonic. Note the absolute value in the argu-
ment of the log placed there to deal with the possible
initial tachyonic instability. We perform a maximum
of 30 iterations. We deem that convergence has been
achieved and stop the process if the relative size of
the shift between M2

PGB;ðiþ1Þ and M2
PGB;ðiÞ of two

consecutive steps is smaller than 10−3, a size
corresponding to corrections at two-loop level. We
denote the result of the iterative process asM2

PGB;iter,
while M2

PGB;ð1Þ is what we refer to in Appendix A 3
as the regularized one-loop effective mass.
Because of the issues discussed above, a point is

considered valid not only if convergence in Eq. (B21)
is achieved, but also that the C2-proportional log
contribution is sufficiently small, ensuring the log-
taming approximation works as intended and the
computed regularized effective mass is close to the
physical mass. Hence, we demand that the relative
difference between the regularized one-loop effec-
tive PGB mass M2

PGB;ð1Þ and the iterative solution

M2
PGB;iter is less than

28 10%. We define the penalty
p4 associated with these considerations, applied now
to multiple PGBs, by

if M2
PGB;iter does not converge∶

p4 ¼
1

2
Að1Þ
4 þ 1

π
Að2Þ
4 arctan½HðΔM2 − 10−1Þ

þHðδM2
iter − 10−3Þ�;

elseM2
PGB;iter converges∶

p4 ¼
1

π
Að1Þ
4 arctan½HðΔM2 − 10−1Þ�; ðB22Þ

where AðiÞ
4 ∈ Rþ are weight factors, HðxÞ is defined

below Eq. (B10), and

ΔM2 ≔ max
x∈PGBs

���� ðM
2
PGB;ð1ÞÞx − ðM2

PGB;iterÞx
ðM2

PGB;ð1ÞÞx

����; ðB23Þ

δM2
iter ≔ max

x∈PGBs

���� ðM
2
PGB;ðimaxÞÞx − ðM2

PGB;ðimax−1ÞÞx
ðM2

PGB;ðimaxÞÞx

����;
ðB24Þ

with imax ¼ 30.

2. Implementation of the numerical analysis:
Step-by-step procedure

Eventually, the criteria discussed above are used to find
viable points, i.e., those which pass all the consistency
checks and hence have zero penalization. Conceptually, the
numerical procedure for assessing a single parameter point
consists of two steps:
(a) First, a point in the parameter space is selected. The

VEVs and unified gauge coupling g are adjusted so
that the resulting one-loop scalar spectrum is consis-
tent with gauge unification requirements.

(b) Second, the penalization of the adjusted point is
calculated. It is used for determining its viability.

The procedure of choosing new candidate points in the
parameter space for assessment, i.e., a scan of the parameter
space, follows the differential evolution algorithm [32] as
the minimization algorithm of choice. We use a stochastic
implementation with a mutation factor F randomly
sampled from the interval [0.5, 2]. The scanning process
first discovers viable points by minimizing the penalization
function until it reaches zero, and then it explores the zero
penalty region. In this way, datasets of viable points from
Table III are produced.
Returning to part (a), the detailed steps are the following:
(1) The input parameters for a point consist of

λ⃗; g; ωBL; ωR; σ; ðB25Þ

where λ⃗ is defined in Eq. (B19) and g is the unified
gauge coupling. These parameters are deemed to be
the running values at the yet to be determined
optimal renormalization scale μR. For later conven-
ience, we label the SO(10)-breaking VEV as ωmax
(ωR or ωBL in the regime ωBL → 0 or ωR → 0,
respectively), and the subdominant induced VEV as
ωmin (ωBL or ωR in the ωBL → 0 or ωR → 0 limit,
respectively).

(2) We initially fix g ¼ 0.5 and ωmax ¼ 1016 GeV. The
λ⃗, σ, and ωmin inputs are provided by the selection of
the parameter point, for which we demand that they
conform to Eq. (21).

28Smaller differences are at the level of two-loop mass
corrections. Moreover, this choice assures that the replacement
of M2

PGB;ð1Þ with M2
PGB;iter in gauge coupling unification causes

changes comparable to two-loop running effects.
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(3) With all the initial input parameters now set, the tree-
level gauge and scalar spectra are calculated.

(4) The optimal renormalization-scale square μ2R is
determined as the arithmetic mean (over real degrees
of freedom) of the heavy tree-level scalar-mass
squares.

(5) With μR in hand, the one-loop scalar-mass spectrum
for heavy and PGB fields is computed using the
method described in Appendix A, replacing their
tree-level values. The corrections to gauge fields and
the intermediate-scale scalars are not calculated. We
refer to this collection of our best available results
for all gauge and scalar masses as the initial
spectrum.

(6) The initial spectrum is used for thresholds in the
one-loop gauge evolution analysis.29 The complete
SM gauge coupling unification with the EW-scale
boundary conditions [53]

α−1EMðMZÞ ¼ 127.952� 0.009; ðB26Þ

sin2θWðMZÞ ¼ 0.23121� 0.00004; ðB27Þ

α3ðMZÞ ¼ 0.1179� 0.0010 ðB28Þ

is achieved as described in Appendix B 1 b. Tech-
nically, this is accomplished by three simultaneous
actions: (i) rescaling of all dimensionful quantities
fωBL;ωR; σ; μRg by a common factor, (ii) further
adjustment30 of σ and ωmin, and (iii) optimizing the
value of g. This procedure provides new values for g,
μR, and the three VEVs—defining the adjusted
parameter point.

(7) For the adjusted parameter point, the tree-level
spectrum for gauge and scalar fields is computed.
Furthermore, the heavy and PGB masses are im-
proved with the one-loop correction. This collection
of the best available mass values is referred to as the
updated spectrum.

In part (b), the remaining consistency criteria of
Appendixes B 1 a and B 1 c (tachyonicity and perturbativ-
ity) are imposed on the adjusted parameter point and the
relevant penalizations are calculated. The detailed steps for
part (b) are as follows:
(1) The stability of the vacuum position is investigated;

the penalization pð1Þ
3 is computed. For a viable point,

the one-loop corrections should not shift the position
of the tree-level vacuum by more than 100%.

(2) All the dimensionless parameters are RG run half an
order of magnitude upward using one-loop beta
functions (cf. Appendix C). Note that this running
distance in scale turns out to be consistent with the
spread of μR values for viable points (see Sec. IV),
implying that all viable points could be adjusted to a
common scale for comparison if desired.

(3) RG-run couplings are used to recheck the stability of
the vacuum position;- the penalization pð2Þ

3 is ac-
quired. All viable points satisfy tþ > 0.5, and their
shift of the tree-level vacuum position due to the
one-loop corrections is still, even after running, not
more than 100%.

(4) The tachyonicity of the updated spectrum is in-
spected; the penalization p1 is obtained.

(5) Global mass perturbativity is examined; the penali-
zation p2 is computed. For viability, the maximal
one-loop scalar-mass correction is required to be
smaller than the average of heavy tree-level scalar
masses, i.e., Δ ≤ 1.

(6) The iterative pseudo-Goldstone masses are inves-
tigated; the penalization p4 is determined. For a
viable point, the relative difference between the
initial and final values in the iterative procedure
for the PGB one-loop mass is constrained to less
than 10%, i.e., ΔM2 < 0.1.

(7) (Optional) Stricter RG-perturbativity criterion is im-
posed; the penalization p5 is added. All viable points
satisfy t̄ > t̄thr, where t̄thr is an acceptance threshold of
a given search (see Table III in Sec. IV B).

(8) The overall penalization of a point is the following:

p ¼ p1 þ p2 þ pð1Þ
3 þ pð2Þ

3 þ p4 þ p5: ðB29Þ

The relative significance of a particular criterion in the
minimization algorithm, such as tachyonicity or perturba-
tivity, can be tuned by changing the value of the Ai weight
factors present in penalizations pi. We chose the configu-
ration Ai ¼ 1, which leads to pi ∈ ½0; 1� for all i ¼ 1, 2, 3,
4, 5. If the point has zero penalization, it satisfies all the
imposed criteria and belongs to the set of viable points
obtained in the parameter-space scan. Note that the shape of
the viable part of the parameter space is independent of the
values Ai.

APPENDIX C: BETA FUNCTIONS FOR
SCALAR PARAMETERS

The one-loop beta functions for scalar-potential param-
eters can be extracted from the field-dependent effective
potential (A1) following the procedure outlined in [44].

29For tachyonic masses, we take their absolute values. Such
points are later penalized due to tachyonicity anyway. Note that
the tachyonic property is generally preserved even after adjust-
ment described in this step.

30The VEVs σ and ωmin are adjusted in such a way that the
ratio χ of Eq. (15) stays constant.
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1. General principles

Suppose that at tree level a scalar coupling λ can be
written as a derivative of the scalar potential via

λ ¼ ∂4V0ðΦÞQ
4
i¼1 ∂Φi

ðC1Þ

for a suitable choice of scalar fields Φi. The complete one-
loop effective potential (A1) has to satisfy the Callan-
Symanzik renormalization group equation� ∂

∂ log μR þ βλ
∂
∂λþ

X
j

γΦj
Φj

∂
∂Φj

�
VðΦÞ ¼ 0; ðC2Þ

where μR is the running renormalization scale, and the j
index runs over all scalar fields. Consequently,

� ∂
∂ logμRþβλ

∂
∂λþ

X
j

γΦj

∂
∂Φj

þ
X4
i¼1

γΦi

�∂4VðΦ;μRÞQ
4
i¼1∂Φi

¼ 0:

ðC3Þ

Equations (C1), (C3), and (A1) then imply

βλ ¼ −
∂4Q

4
i¼1 ∂Φi

∂V1ðΦ; μRÞ
∂ log μR −

X4
i¼1

γΦi

∂4V0ðΦÞQ
4
i¼1 ∂Φi

¼ 1

32π2
∂4Q

4
i¼1 ∂Φi

ðTr½M4
SðΦÞ� þ 3Tr½M4

GðΦÞ�Þ þ βλ;FS;

ðC4Þ

where M4
SðΦÞ and M4

GðΦÞ are defined in Eqs. (A3) and
(A4), βλ denotes the desired one-loop quartic scalar beta
function satisfying

βλ ¼
dλ

d log μR
; ðC5Þ

and

βλ;FS ¼ −λ
X4
i¼1

γΦi
ðC6Þ

is the field-strength-dependent part.

2. Field-strength-dependent part

The βλ;FS part of Eq. (C4) is closely connected to the
Φ-field anomalous dimension defined as

γΦ ¼ 1

2

1

ZΦ

∂ZΦ

∂ log μR ; ðC7Þ

where

ZΦ ¼ 1þ ∂ΣMS
Φ ðp2Þ
∂p2

����
p2¼m2

Φ

ðC8Þ

is the field-strength-renormalization factor of Φ in the MS

renormalization scheme, and ΣMS
Φ ðp2Þ is the corresponding

self-energy. The momentum-squared proportional part of

ΣMS
Φ ðp2Þ originates from the diagram

which yields

ΣMS
Φ ðp2Þ ¼ C2ðRÞ · p2 ·

3g2

16π2
log μ2R þ…; ðC9Þ

where C2ðRÞ is the quadratic Casimir of the irreducible
representation R that Φ belongs to. Hence,

γΦ ¼ C2ðRÞ
3g2

16π2
: ðC10Þ

Combining Eqs. (C6) and (C10), the βλ;FS term in Eq. (C4)
becomes

βλ;FS ¼ −λ
3g2

16π2
X4
i¼1

C2ðRΦi
Þ: ðC11Þ

3. Resulting expressions

With all this in hand, the one-loop beta functions
for the dimensionless scalar-potential couplings are readily
obtained:

16π2ββ0
4
¼ 16αβ04 þ 16a0β04 þ 2a2β4 − 4a2β04 − β24 − 28β4β

0
4 þ 2β4λ2 þ 6β4λ4 þ 80β4λ

0
4 − 124β024 þ 4β04λ0

− 12β04λ2 þ 20β04λ4 − 144β04λ
0
4 þ 16jγ2j2 − 3g4 − 123β04g

2; ðC12Þ

16π2βα ¼ 8α2 þ 508αλ0 þ 1220αλ2 þ 1340αλ4 þ 2480αλ04 þ 376αa0 þ 80a0β4 þ 160a0β04 þ 76αa2 þ 16a2β4

þ 32a2β04 þ 4β24 þ 16β4β
0
4 þ 112β4λ0 þ 272β4λ2 þ 288β4λ4 þ 512β4λ

0
4 þ 144β024 þ 224β04λ0 þ 544β04λ2

þ 576β04λ4 þ 1024β04λ
0
4 þ 64jγ2j2 þ 12g4 − 123αg2; ðC13Þ
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16π2βλ0 ¼ 90α2 þ 40αβ4 þ 80αβ04 þ 10β24 þ 80β024 þ 520λ20 þ 2440λ0λ2 þ 2680λ0λ4 þ 4960λ0λ
0
4 þ 3460λ22

þ 7880λ2λ4 þ 12320λ2λ
0
4 þ 4660λ24 þ 13280λ4λ

0
4 þ 16960λ024 þ 135g4

2
− 150g2λ0; ðC14Þ

16π2βa0 ¼ 126α2 þ 56αβ4 þ 112αβ04 þ 424a20 þ 152a0a2 þ 12a22 þ
33β24
2

þ 26β4β
0
4 þ 106β024 − 56jγ2j2

þ 9g4

2
− 96a0g2; ðC15Þ

16π2βa2 ¼ 96a0a2 þ 76a22 − 5β24 þ 60β4β
0
4 − 100β024 þ 560jγ2j2 þ 3g4 − 96a2g2; ðC16Þ

16π2βλ2 ¼ −4β24 − 32β024 þ 24λ0λ2 − 180λ22 − 584λ2λ4 − 160λ2λ
0
4 − 656λ24 − 800λ4λ

0
4 − 2560λ024

− 1264jη2j2 − 24g4 − 150g2λ2; ðC17Þ

16π2βλ4 ¼ 2β24 þ 16β024 þ 24λ0λ4 þ 16λ22 þ 112λ2λ4 þ 128λ2λ
0
4 þ 268λ24 þ 640λ4λ

0
4 þ 1408λ024

þ 1328jη2j2 þ 12g4 − 150g2λ4; ðC18Þ

16π2βλ0
4
¼ 4β4β

0
4 − 4β024 þ 24λ0λ

0
4 − 4λ22 − 8λ2λ4 − 16λ2λ

0
4 þ 4λ24 þ 112λ4λ

0
4 − 240λ024 þ 32jη2j2

− 3g4 − 150g2λ04; ðC19Þ

16π2ββ4 ¼ 16αβ4 þ 16a0β4 þ 16a2β04 þ 48β24 þ 80β4β
0
4 þ 4β4λ0 − 8β4λ2 þ 32β4λ4 þ 16β4λ

0
4 þ 16β024

þ 16β04λ2 þ 48β04λ4 þ 640β04λ
0
4 þ 64jγ2j2 þ 12g4 − 123β4g2; ðC20Þ

16π2βγ2 ¼ 8αγ2 þ 14β4γ2 þ 28β04γ2 þ 440η2γ
�
2 − 123γ2g2; ðC21Þ

16π2βη2 ¼
32γ22
3

þ 24η2λ0 þ 160η2λ2 þ 600η2λ4 þ 640η2λ
0
4 − 150η2g2: ðC22Þ

It is perhaps worth noting that several parts of these
results, in particular, those corresponding to Green’s
functions with four adjoint scalar outer legs [such as the
a20-, a0a2-, and a22-proportional terms in Eqs. (C15) and
(C16)], have been independently cross-checked by direct
diagrammatic methods.

APPENDIX D: MASSES IN LIMITS

In this Appendix, the analytical expressions for the tree-
level spectrum (Appendixes D 2 and D 3) and the one-loop
masses of pseudo-Goldstone bosons (Appendix D 4) are
collected for both symmetry-breaking patterns of interest
(jωRj ≫ jσj ≫ jωBLj and jωBLj ≫ jσj ≫ jωRj). The pre-
sented formulas are merely approximate, since they contain
only the leading tree-level contributions, while the radiative
corrections are computed exclusively in the analytical
a2 → 0, γ2 → 0, σ → 0 limit. It should be stressed that
in the actual scans all the masses have been computed
numerically at the one-loop level for an arbitrary choice of
couplings and VEVs, i.e., not only in the aforementioned
limit. Nonetheless, the expressions introduced below can be

quite useful in providing some qualitative insight into the
structure of nontachyonicity regions in Figs. 1 and 2.

1. Representation decompositions

The decompositions of all the representations
that constitute the scalar and gauge sectors of the
model can be found in Table VII. They correspond to
the two-stage breaking scenarios in which either the value
ωR or ωBL spontaneously breaks SO(10) GUT symmetry to
the SUð4ÞC × SUð2ÞL × Uð1ÞR or SUð3Þc × SUð2ÞL ×
SUð2ÞR × Uð1ÞB−L intermediate symmetry, respectively,
while jσj ≪ MGUT breaks it further to the Standard
Model gauge group.

2. Gauge boson masses

Here the tree-level masses of gauge bosons are gathered.
Their leading contributions for both scenarios of interest are
also shown explicitly. In addition to 33 nonzero states listed
in Table VIII, there exist 12 massless would-be Goldstone
modes corresponding to the 12 generators of the Standard
Model gauge group.
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3. Scalar masses

The tree-level scalar masses are presented in the
ωBL → 0 and ωR → 0 limits, which should be properly
understood as jωRj ≫ jσj ≥ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijωRjjωBLj

p
≫ jωBLj and

jωBLj ≫ jσj ≥ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijωBLjjωRj
p

≫ jωRj, respectively, satisfy-
ing the perturbativity condition (21). For the corresponding
mass matrices in the general breaking scenario, the inter-
ested reader is referred to [26].
The mass squares are, in general, linearly proportional to

the τ parameter, whose value is determined by the vacuum
stationarity condition (14)

τ ¼ 2β04ð3ωBL þ 2ωRÞ þ a2χðωBL þ ωRÞ ðD1Þ

implying an implicit dependence of the spectrum on the χ
parameter defined in Eq. (15). Its contribution should not
be neglected despite the jχj ≤ 1 constraint from perturba-
tivity (and thus, jτj ≲MGUT) and a small a2 coefficient in
front of it (with values ja2j ≲ 0.05 produced in scans; see
Fig. 9). It turns out that the value of the β04 coupling is also
rather small for valid points (see Fig. 7), which makes both
terms in τ comparable. Furthermore, τ is always found to be
negative, but its relative size (compared to the GUT scale),
and thus its impact on the masses, is typically larger in the
ωBL → 0 case due to larger jβ04j.
Because of the relation in Eq. (15), the effect of the

smallest VEV—either ωBL or ωR—on tachyonicity of
the scalar spectrum should not be immediately dismissed.

TABLE VII. Decomposition of the (a) 45-dimensional
adjoint and (b) 126-dimensional self-dual representations of
SO(10) into multiplets of SUð4ÞC × SUð2ÞL × Uð1ÞR (the
ωBL → 0, σ → 0 limit) in the left columns andSUð3Þc × SUð2ÞL ×
SUð2ÞR × Uð1ÞB−L (theωR → 0, σ → 0 limit) in the right columns
and their subsequent breaking into StandardModel representations
after engaging nonzero σ; cf. Table II. The typography [font style]
indicates whether a representation is real (boldface), complex
(plain), or a complex conjugate (italics) of some other multiplet
within the same SO(10) representation. Since the 126 is a complex
representation, all the multiplets that belong to it are also complex,
while the 45 is real and thus consists of realmultiplets and complex-
conjugate pairs. The multiple copies of the same SM multiplets in
the 126, e.g., the ð1; 2;þ 1

2
Þ and ð1; 2;− 1

2
Þweak doublets, therefore

represent independent degrees of freedomandnot just the complex-
conjugate counterparts of each other.

(a) 45 of SO(10)
4C2L1R → 3c2L1Y 3c2L2R1BL → 3c2L1Y

ð1; 3; 0Þ ð1; 3; 0Þ ð1; 3; 1; 0Þ ð1; 3; 0Þ

ð15; 1; 0Þ ð8; 1; 0Þ ð8; 1; 1; 0Þ ð8; 1; 0Þ
ð3̄; 1;− 2

3
Þ

ð3; 1;þ 2
3Þ ð3; 2; 2;− 2

3
Þ ð3; 2;− 5

6
Þ

ð1; 1; 0Þ ð3; 2;þ 1
6
Þ

ð6; 2;− 1
2
Þ ð3; 2;− 5

6
Þ ð3̄; 2; 2;þ 2

3Þ ð3̄; 2;þ 5
6Þ

ð3̄; 2;− 1
6Þ ð3̄; 2;− 1

6Þ

ð6; 2;þ 1
2Þ ð3̄; 2;þ 5

6Þ ð1; 1; 3; 0Þ ð1; 1;þ1Þ
ð3; 2;þ 1

6
Þ ð1; 1;−1Þ

ð1; 1; 0Þ
ð1; 1;þ1Þ ð1; 1;þ1Þ

ð3̄; 1; 1;− 4
3
Þ ð3̄; 1;− 2

3
Þ

ð1; 1;−1Þ ð1; 1;−1Þ
ð3; 1; 1;þ 4

3Þ ð3; 1;þ 2
3Þ

ð1; 1; 0Þ ð1; 1; 0Þ
ð1; 1; 1; 0Þ ð1; 1; 0Þ

(b) 126 of SO(10)
4C2L1R → 3c2L1Y 3c2L2R1BL → 3c2L1Y

ð1̄0; 1;þ1Þ ð1; 1;þ2Þ ð1; 1; 3;þ2Þ ð1; 1;þ2Þ
ð3̄; 1;þ 4

3
Þ ð1; 1;þ1Þ

ð6̄; 1;þ 2
3
Þ (1, 1, 0)

(10, 3, 0) ð1; 3;−1Þ ð1; 3; 1;−2Þ ð1; 3;−1Þ
ð3; 3;− 1

3
Þ

ð6; 3;þ 1
3
Þ ð3̄; 1; 3;þ 2

3
Þ ð3̄; 1;þ 4

3
Þ

ð3̄; 1;þ 1
3
Þ

ð1̄0; 1;−1Þ ð6̄; 1;− 4
3
Þ ð3̄; 1;− 2

3
Þ

ð3̄; 1;− 2
3
Þ

(1, 1, 0) ð3; 3; 1;− 2
3
Þ ð3; 3;− 1

3
Þ

ð1̄0; 1; 0Þ ð6̄; 1;− 1
3
Þ ð6; 3; 1;þ 2

3
Þ ð6; 3;þ 1

3
Þ

ð3̄; 1;þ 1
3
Þ

(Table continued)

TABLE VII. (Continued)

(b) 126 of SO(10)
4C2L1R → 3c2L1Y 3c2L2R1BL → 3c2L1Y

ð1; 1;þ1Þ ð6̄; 1; 3;− 2
3
Þ ð6̄; 1;− 4

3
Þ

ð6̄; 1;− 1
3
Þ

ð15; 2;þ 1
2
Þ ð1; 2;þ 1

2
Þ ð6̄; 1;þ 2

3
Þ

ð3; 2;þ 7
6
Þ

ð8; 2;þ 1
2
Þ (1, 2, 2, 0) ð1; 2;þ 1

2
Þ

ð3̄; 2;− 1
6
Þ ð1; 2;− 1

2
Þ

ð15; 2;− 1
2
Þ ð1; 2;− 1

2
Þ ð3; 2; 2;þ 4

3
Þ ð3; 2;þ 7

6
Þ

ð3̄; 2;− 7
6
Þ ð3; 2;þ 1

6
Þ

ð8; 2;− 1
2
Þ

ð3; 2;þ 1
6
Þ ð3̄; 2; 2;− 4

3
Þ ð3̄; 2;− 7

6
Þ

ð3̄; 2;− 1
6
Þ

(6, 1, 0) ð3̄; 1;þ 1
3
Þ

ð3; 1;− 1
3
Þ (8,2,2,0) ð8; 2;þ 1

2
Þ

ð8; 2;− 1
2
Þ

ð3̄; 1; 1;þ 2
3
Þ ð3̄; 1;þ 1

3
Þ

ð3; 1; 1;− 2
3
Þ ð3; 1;− 1

3
Þ
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The distribution of χ presented in Fig. 16 shows a slight
inclination for negative values in the ωBL → 0 case, while
favoring positive values for ωR → 0. In other words, the
first scenario prefers ωBL and ωR of different sign, while in
the other limit, both VEVs are more often of the same sign.
The eigenvalues of tree-level mass matrices for scalars

are presented in both limits in Table IX. We show only
their leading-order terms, which are proportional either
to the SO(10)-breaking VEV (jωRj or jωBLj) or the
intermediate symmetry-breaking scale jσj. When the
dominant contributions to masses are M2

GUT proportional,
the corresponding states belong to approximate SUð4ÞC×
SUð2ÞL×Uð1ÞR or SUð3Þc×SUð2ÞL×SUð2ÞR×Uð1ÞB−L
intermediate symmetry multiplets listed in Table VII.

Their subleading jσj2-proportional tree-level terms can
be safely neglected due to the large hierarchy between
the scales (jσj is either of order 10−4MGUT or even
10−10MGUT; see Fig. 8). These jσj2 terms cannot compete
even with the leading one-loop contributions of the order
∼M2

GUT=ð16π2Þ, which become dominant when the tree-
level M2

GUT-proportional terms are accidentally small (e.g.,
for PGBs in the a2 → 0 regime). The only exception are
those states whose leading-order mass contributions as well
as their loop corrections are proportional to jσj2. One can
thus distinguish several types of states (cf. also Sec. IV D):

(i) Thewould-beGoldstone scalars ð3;2;−5
6
Þ, ð1;1;þ1Þ1,

ð3̄; 1;− 2
3
Þ1, ð3; 2;þ 1

6
Þ1, and ð1; 1; 0Þ1 are massless.

They get absorbed into the longitudinal components
of their massive gauge boson companions listed in
Table VIII through the Higgs mechanism.

(ii) Themasses of generic (heavy) states can be accurately
estimated by their dominant M2

GUT-proportional tree-
level contributions. These are ω2

R or ω2
BL proportional

in the ωBL → 0 and ωR → 0 limits, respectively.
(iii) A separate category from the generic states are the

pseudo-Goldstone bosons, whose tree-level masses
are accidentally small, since their leading contribu-
tions are proportional to the suppressed value of a2.
Therefore, their one-loop corrections can be of
comparable size or even dominate. As in the generic
case, the subleading jσj2-proportional terms can still
be safely neglected, and they are in fact not present
at all at tree level for the triplet and octet. The states
in this category consist of (8, 1, 0), (1, 3, 0), and
ð1; 1; 0Þ3, as well as ð3̄; 1;− 2

3
Þ2 for ωBL → 0 and

ð1; 1;þ1Þ2 for ωR → 0.
(iv) The intermediate-scale states (including the inter-

mediate-symmetry-breaking Higgs field) have
masses that are jσj2 proportional to all orders in a
perturbative expansion, since they are protected by
symmetry. Therefore, their tree-level terms suffice.
These states are the ð1; 1; 0Þ2 and either ð6̄; 1;− 4

3
Þ

for ωBL → 0 or ð1; 1;þ2Þ for ωR → 0.
As an interesting aside, note that the actual mass

eigenvalues are not necessary to check for either non-
tachyonicity of the spectrum or gauge coupling unification;

FIG. 16. Distribution of values of χ parameter for all the points
in the main unbiased datasets Bþ (ωBL → 0) and Rþ (ωR → 0);
see Table III.

TABLE VIII. Tree-level spectrum of massive gauge bosons produced in SOð10Þ → SUð3Þc × SUð2ÞL × Uð1ÞY breaking is listed for
the most general case and for both perturbative limits of interest. In the last column, the changes of the corresponding one-loop β
coefficients Δai for gauge-coupling running are gathered; cf. Eq. (B5). Note that massive gauge contributions implicitly include also
those of their longitudinal components treated as adding the WGB scalar counterparts at the same scale.

Mass General case ωBL → 0 ωR → 0 ðΔa3;Δa2;Δa1Þ
M2

Gð3; 2;− 5
6
Þ 1

2
g2ðωR − ωBLÞ2 1

2
g2ω2

R
1
2
g2ω2

BL ð−7;− 21
2
;− 35

2
Þ

M2
Gð3; 2;þ 1

6
Þ 1

2
g2ðωR þ ωBLÞ2 þ 2g2jσj2 1

2
g2ω2

R
1
2
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BL ð−7;− 21
2
;− 7

10
Þ

M2
Gð3; 1;þ 2

3
Þ 2g2ω2

BL þ 2g2jσj2 2g2jσj2 2g2ω2
BL ð− 7

2
; 0;− 28

5
Þ

M2
Gð1; 1;þ1Þ 2g2ω2

R þ 2g2jσj2 2g2ω2
R 2g2jσj2 ð0; 0;− 21

5
Þ

M2
Gð1; 1; 0Þ 10g2jσj2 10g2jσj2 10g2jσj2 (0, 0, 0)
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in both cases, the quantities of interest can be directly
extracted from mass matrices by computing their character-
istic polynomial or from knowledge of their principal
minors. Positive (semi)-definiteness can be examined by
applying Sylvester’s criterion on the matrices; cf. Sec. III A.
This, for example, leads to conditions in Eqs. (25) and (26)
for the a2 → 0 limit. Alternatively, alternating signs of
coefficients in the characteristic polynomial also imply
positive definiteness of the spectrum. For positive semi-
definite matrices with n zero eigenvalues, the n lowest-
order coefficients in the characteristic polynomial vanish.
Unification constraints at one loop, on the other hand,
require only knowledge of the product of nonzero eigen-
values

QnR
k¼1m

2
Rk

for every SM representation R with
multiplicity nR. This number can be extracted as the
absolute value of the lowest degree coefficient in the
characteristic polynomial that does not vanish. The reason
that this product suffices is that all nR eigenvalues of
multiplets in the representation R contribute with the same

β coefficient ΔaðRÞi to Eq. (B7).

4. One-loop pseudo-Goldstone masses

An accurate assessment of the PGB masses in the small
a2 regime requires also the computation of their one-loop
corrections. In addition to the recurring octet, triplet, and
singlet pseudo-Goldstone fields, the two limits ωBL → 0
and ωR → 0 provide another PGB in the form of the
ð3̄; 1;− 2

3
Þ2 or ð1; 1;þ1Þ2 state, respectively.

In the ωBL → 0 scenario with SUð4ÞC × SUð2ÞL ×
Uð1ÞR intermediate stage, the new PGB state ð3̄; 1;− 2

3
Þ2

belongs to the (15, 1, 0) multiplet of that symmetry,
together with the octet and singlet PGBs; see Table VII a.
This confirms its PGB character, since its mass must be
degenerate with the octet and singlet up to subdominant
corrections of the intermediate-symmetry-breaking VEV σ.
Similarly, in the ωR → 0 scenario with the SUð3Þc ×
SUð2ÞL × SUð2ÞR × Uð1ÞB−L intermediate stage, the new
PGB state ð1; 1;þ1Þ2 is embedded together with the SM
singlet into a (1, 1, 3, 0) representation.
An interesting observation is that the weak-triplet and

SM-singlet PGBs receive the same one-loop gauge con-
tributions to their masses in the ωR → 0 limit. Note that the
two mentioned states belong to different representations of
the intermediate left-right symmetry, namely, to (1, 3, 1, 0)
and (1, 1, 3, 0), respectively. However, these intermediate-
stage representations are connected by D-parity (LR
exchange), which corresponds to a transformation ωBL →
−ωBL at the VEV level. In the ωR → 0 case, the dominant
one-loop gauge contributions to masses must be propor-
tional to g4ω2

BL and are hence the same for pairs of states
that exchange under D-parity. The one-loop contributions
from scalars, on the other hand, are not parity invariant due
to the implicit presence of massive scalar-potential param-
eters μ, ν, and τ obtained by solving stationarity conditions,
where a change of sign in ωBL does have an effect.

The one-loop contributions to masses of PGB states in
the a2 → 0, γ2 → 0 limit31 are presented in Table X.
Although this limit is apparently unphysical since the
numerical scans show that jγ2j ≳ 0.1 for valid points
(cf. Fig. 9), it is well suited for obtaining analytical
expressions. For both the ωBL → 0 and ωR → 0 scenario,
we show only the dominant, SO(10)-breaking terms pro-
portional to the largest VEV, while neglecting those with σ.
The qualitative features of PGBs discussed in the beginning
of this section are confirmed by the explicit formulas in
Table X, at least in the given limit. For more general
formulas with an arbitrary ωBL and ωR hierarchy, but still in
the a2 → 0, γ2 → 0, σ → 0 limit, the interested reader is
referred to [26,43].
The one-loop expressions in Table X are organized as

follows: The polynomial contributions from gauge bosons
and scalars are followed by gauge and scalar logarithmic
terms. The arguments of the logarithms in the ωBL → 0
scenario correspond to the mass squares of the SUð4ÞC ×
SUð2ÞL × Uð1ÞR multiplets ordered as

M2
G

�
6;2;−

1

2

�
; M2

Gð1;1;þ1Þ; M2
Sð10;1;0Þ;

M2
S

�
15;2;þ1

2

�
1

; M2
S

�
15;2;þ1

2

�
2

; M2
Sð10;1;þ1Þ;

M2
Sð10;3;0Þ; M2

Sð6;1;0Þ;

and for ωR → 0 to mass squares of the SUð3Þc × SUð2ÞL ×
SUð2ÞR × Uð1ÞB−L multiplets arranged as

M2
G

�
3;2;2;−

2

3

�
; M2

G

�
3;1;1;þ4

3

�
; M2

Sð1;3;1;−2Þ;
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�
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3

�
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; M2
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�
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3

�
2

; M2
S

�
6̄;1;3;−

2

3

�
;

M2
S

�
6;3;1;þ2

3

�
; M2

S

�
3;1;1;−

2

3

�
1

; M2
S

�
3;1;1;−

2

3

�
2

;

M2
S

�
3;3;1;−

2

3

�
; M2

S

�
3̄;1;3;þ2

3

�
; M2

Sð1;2;2;0Þ;

M2
Sð8;2;2;0Þ:

The tree-level masses in the log arguments are taken in
the a2 → 0, γ2 → 0 limit, as confirmed by cross-refer-
encing Tables VII–IX. Note that for all terms where the
logarithm diverges, e.g., when the argument of the log
contains the mass of a PGB in the a2 → 0 limit or a
would-be Goldstone boson, the coefficient in front of
the log vanishes, so these terms do not contribute and
are omitted.

31Note that in this limit, the tree-level PGB masses exactly
vanish (see Table IX), so the one-loop corrections actually
represent their entire masses at the one-loop level.
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TABLE X. The dominant one-loop contributions to masses of PGB scalars in the a2 → 0, γ2 → 0 limit for both perturbative scenarios
and containing polynomial as well as logarithmic terms with gauge bosons and scalar fields running in the loop.

Mass ωBL → 0 ωR → 0

M2
Sð1; 3; 0Þ ω2

R
16π2

ð16g4 þ 40ðβ24 þ 36β024 Þ ω2
BL

16π2
ð19g4 þ ð31β24 þ 60β4β

0
4 þ 2900β024 Þ

þ18g4 log½g2ω2
R

2μ2R
� − 12g4 log½2g2ω2
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μ2R

� þ21g4 log½g2ω2
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2μ2R
� − 24g4 log½2g2ω2
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�
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4Þ log½2ðβ4−2β
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4
Þω2
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μ2R
� −72ðβ4β04 þ 6β024 Þ log ½− 36β0
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�
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(Table continued)
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