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Lattice quantum chromodynamics (LQCD) has the promise of constraining low-energy constants
(LECs) of nuclear effective field theories (EFTs) from first-principles calculations that incorporate the
dynamics of quarks and gluons. Given the Euclidean and finite-volume nature of LQCD outputs, complex
mappings are developed in recent years to obtain the Minkowski and infinite-volume counterparts of
LQCD observables. In particular, as LQCD is moving toward computing a set of important few-nucleon
matrix elements at the physical values of the quark masses, it is important to investigate whether the
anticipated precision of LQCD spectra and matrix elements will be sufficient to guarantee tighter
constraints on the relevant LECs than those already obtained from phenomenology, considering the
nontrivial mappings involved. With a focus on the leading-order LECs of the pionless EFT, L1;A and gNN

ν ,
which parametrize, respectively, the strength of the isovector axial two-body current in a single-β decay
(and other related processes such pp fusion), and of the isotensor contact two-body operator in the
neutrinoless double-β decay within the light neutrino exchange scenario, the expected uncertainty on future
extractions of L1;A and gNN

ν are examined using synthetic data at the physical values of the quark masses. It
is observed that achieving small uncertainties in L1;A will be challenging, and (sub)percent-level precision
in the two-nucleon spectra and matrix elements is essential in reducing the uncertainty on this LEC
compared to the existing constraints. On the other hand, the short-distance coupling of the neutrinoless
double-β decay, gNN

ν , is shown to be less sensitive to uncertainties on both LQCD energies and the matrix
element, and can likely be constrained with percent-level precision in the upcoming LQCD calculations.

DOI: 10.1103/PhysRevD.105.094502

I. INTRODUCTION

Nuclear reactions mediated by weak interactions are
central to a variety of frontier problems in nuclear and
astrophysics as well as high-energy physics. Single-weak-
current processes like pp-fusion and (anti)neutrino-
deuteron scattering are two prominent examples. The
former is a critical process in understanding the energy
production mechanism in a range of stars [1], and the latter
is used to probe properties of neutrinos in several neutrino
experiments [2–4]. At the next order in weak currents,
double-β decay transitions are of major importance. Two
important modes of this transition are two-neutrino double-
β (2νββ) decay and neutrinoless double-β (0νββ) decay.
The former process conserves the total lepton number [5],

and is the rarest StandardModel (SM) process that has been
measured [6]. Besides providing insights into the SM weak
interactions and nuclear structure, 2νββ decay can also shed
light on potential beyond SM scenarios [7]. The 0νββmode
is forbidden in the SM as it changes the lepton number by
two units, and if observed, would indicate that neutrinos
are of Majorana type [8]. An extensive experimental
program continues to seek evidence for 0νββ decays
[9–15]. However, the new-physics implications of the
current and the future double-β decay measurements are
limited by the uncertainties in the theoretical predictions of
their decay rates.
A major source of uncertainty in calculating the decay

rate of weak processes is the matrix elements (MEs) of
weak currents between the initial and final nuclear states.
For energies well below the pion mass, mπ , that is often
relevant for single-weak processes in the few-nucleon
sector, pionless EFT [16–22] accurately describes the
dynamics, see Ref. [23] for a review. For the double-β
decays that naturally occur in large nuclear isotopes, the
corresponding nuclear-ME calculations suffer from uncer-
tainties that stem from both approximations in quantum
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many-body methods as well as uncertainties in (multi)
nucleon interactions and weak currents [24,25]. The latter
can be mitigated by improving the accuracy of MEs in the
two-nucleon (NN) sector using an effective Lagrangian
along with a power-counting scheme, and then using
them as an input in an ab initio framework to calculate
the many-body MEs for larger nuclei [24,26]. The NN
transitions between the two-neutron initial state, nn, and
the two-proton final state, pp, are not observed in free
space, but they occur as off-shell subprocesses in tran-
sitions of larger nuclei. The typical Fermi momentum of
nucleons in these nuclei is comparable to mπ , but at a first
approximation, the pionless EFT is expected to provide a
good description. Subsequently, the effect of pions can be
included systematically using pionfull EFT [16,17] or
chiral nuclear EFTs [27–29].
For SM processes involving more than two nucleons,

the nuclear MEs of isovector axial-vector currents corre-
sponding to Gamow-Teller transitions are not constrained
precisely in pionless EFT. This is in part due to a large
uncertainty on the renormalization-scale (μ) dependent
LEC L1;A that contributes at the next-to-leading order
(NLO) and determines the strength of the momentum-
independent isovector axial-vector two-body current
[30–32]. While constituting only a few percent of the total
amplitude, the contribution to the Gamow-Teller transitions
from the L1;A term remains the dominant source of
uncertainty in determining the decay rate of processes
such as pp fusion in the Sun and similar stars [1]. The value
of L1;A determined from experimental data has improved
over the years [32–36], with the most recent constraint
given by1 L1;A ¼ 4.9þ1.9

−1.5 fm3 [37], which has a significant
uncertainty. On the other hand, no experimental constraint
exists on the nuclear ME of 0νββ decay transition due to
lack of observation. Furthermore, recent analyses in the
light neutrino exchange scenario of the 0νββ decay
transition in the two-nucleon sector, i.e., nn → ppe−e−,
have shown that the corresponding nuclear ME is unknown
even at the leading order (LO) in pionless EFT [38–40]. In
fact, a new μ-dependent LEC, gNN

ν , is needed at LO for the
decay amplitude to be manifestly renormalizable. Recently,
an indirect estimate of gNN

ν was obtained in Refs. [41,42]:
g̃NN
ν ¼ 1.3� 0.6, where g̃NN

ν is a dimensionless parameter
related to gNN

ν . Subsequent analyses using this value
showed that the missing short-range contribution to the
nuclear ME of various candidate nuclei is comparable to the
rest of the contributions [43,44]. This indicates the impor-
tance of improving the constraint on gNN

ν , preferably using
a first-principles approach such as LQCD.
A direct way of constraining nuclear MEs is to solve

the underlying short-distance theory of quantum chromo-
dynamics (QCD) numerically using the technique of

LQCD [45–50]. LQCD was in fact used in Ref. [51] to
constrain L1;A from the relevant LQCD three-point corre-
lation functions albeit at unphysical quark masses corre-
sponding to mπ ≈ 806 MeV, see also Ref. [52]. The
obtained value of L1;A ¼ 3.9ð1.4Þ fm3 at the physical quark
masses required an uncertain quark-mass extrapolations but
found to be comparable to experimental constraints with
similar uncertainties. On the other hand, no LQCD deter-
mination of the gNN

ν coupling is yet reported although
progress in simpler 0νββ processes in the pion sector is
being made in recent years [53–56]. In LQCD, the QCD
action is defined on a finite spacetime grid with a Euclidean
time, and the n-point correlation functions are computed
using Monte Carlo methods. A formalism for obtaining
two-hadron scattering amplitudes from finite-volume (FV)
Euclidean correlation functions was introduced by Lüscher
[57,58] and extended to other systems in Refs. [59–83].
The formalism for obtaining transition amplitudes of
processes involving external currents was first developed
by Lellouch and Lüscher [84] and later generalized in
Refs. [65,85–94]. For the hadronic MEs involving
long-range processes, the generalization of the above
mappings resolves an additional complexity arising from
the relative time between the two hadronic currents
[53–55,95–102]. Recently, we applied this formalism to
single- and double-β decays in the NN sector to obtain the
needed matching relations that constrain the L1;A and gNN

ν

LECs from the LQCD output [99,100].
Given the complexity of the matching relations involved,

it is not immediately obvious what the precision require-
ment of the upcoming LQCD studies at the physical quark
masses should be to reach the precision goal of the LECs,
that is to be compatible or superior to phenomenological
constraints. In particular, it is important to ask if anticipated
uncertainties on the lowest-lying FV energies and on the
MEs, as well as achievable physical volumes in LQCD, will
guarantee precise determinations of LECs such as L1;A and
gNN
ν . As a result, in this paper we embark on an inves-
tigation based on synthetic data to determine the sensitivity
of the output of the matching relations (hence the LECs)
along with their uncertainties on the values and uncertain-
ties of the input to these relations, namely the LQCD
energies and MEs. This also allows determining the range
of volumes which leads to better constraints, hence guiding
future LQCD calculations on their resource planning.
This follows the spirit of Ref. [74] which demonstrated
that a precise determination of the small S-D mixing
parameter in the deuteron channel from LQCD is achiev-
able in future LQCD calculations of the lowest-lying
spectra of NN systems in boosted frames. This investiga-
tion, furthermore, aligns with recent valuable analyses of
the sensitivity of nuclear spectra and MEs to the uncer-
tainties in the input LECs of interactions and currents, when
those uncertainties are propagated through ab initio many-
body calculations [103].

1Throughout this work, values of μ-dependent LECs are given
at μ ¼ mπ .
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Explicitly, we consider the single-β decay (Sec. III) and
0νββ decay (Sec. IV) transitions in the two-nucleon
sector: nn → npe−ν̄e and nn → ppe−e−, respectively.
First using the Lüscher’s quantization condition (QC),
the low-energy spectra of NN systems in a range of
spatial cubic volumes with periodic boundary conditions
(PBCs) are calculated using the phase shifts reported in
the experimental NN scattering database [104]. These
spectra are expected to be the same as those calculated
from the two-point function with LQCD at the physical
quark masses, up to exponential corrections in mπ .
Second, the central values of L1;A and gNN

ν from
Ref. [37] and Refs. [41,42] are used to evaluate the
physical transition amplitudes for single- and (neutrino-
less) double-β decay processes with initial and final
energies set to the lowest energy eigenvalues obtained
in the first step. These scattering amplitudes are then used
in matching relations of Refs. [99,100], respectively, to
obtain a reasonable guess for the central values of the
corresponding FV three- and four-point functions. Next,
Gaussian fluctuations are introduced to the quantities that
are expected to be extracted from LQCD, namely the FV

energy eigenvalues and the three- and four-point func-
tions, to generate a set of synthetic data for performing
the sensitivity analysis. This introduces uncertainties in
the supposedly LQCD ingredients. Finally, matching
relations are used once again to obtain L1;A and gNN

ν

from the synthetic dataset, along with their uncertainties.
Figure 1 summarizes the procedure used for performing
the sensitivity analysis of this work.
A detailed account of our findings is provided in Sec. V.

To summarize, achieving small uncertainties in L1;A is
found to be more challenging than gNN

ν , and demands (sub)
percent-level precision in the two-nucleon spectra and the
ME to supersede the current phenomenological constraints.
On the other hand, the short-distance coupling of the
neutrinoless double-β decay, gNN

ν , turns out to be less
sensitive to uncertainties on both LQCD energies and the
ME, and promises competitive precision compared with the
current indirect estimates, even with few-percent uncer-
tainties on LQCD energies and MEs. The volume require-
ments are moderate and for ground-state to ground-state
transitions, smaller volumes are shown to lead to more
precise extractions.

FIG. 1. The procedure used to perform the sensitivity analysis of L1;A and gNN
ν . The sequence of steps followed is indicated by the

numbers enclosed in the circles. The LECs L1;A and gNN
ν are represented by a crossed circle and a solid diamond, respectively. The wavy

line denotes external leptons from a single weak-current insertion. A nucleon is denoted by the small solid circle in the diagrams for NN
processes in infinite volume. Dotted lines in the NN energy spectrum in a finite volume are the excited-state energies, and the ground
state energy, E0 (Ẽ0), in the spin-singlet (spin-triplet) channel is denoted by the solid line. The FV nuclear MEs for the decay transitions
are represented by large solid circles enclosed in dotted cubes with one and two weak-current insertions, respectively. The solid line
denotes the FV nucleon state. The simulation of LQCD uncertainties using Gaussian fluctuations and uncertainty analysis of LECs from
the synthetic data is discussed in Secs. III and IV.
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II. FORMALISM

In this section, we present a brief overview of the
pionless EFT [16–22] employed to evaluate the hadronic
scattering amplitudes of nn → npe−ν̄e and nn → ppe−e−

transitions. Furthermore, the FV ingredients required to
perform the sensitivity analyses of Secs. III and IV are
obtained via the application of Lüscher’s quantization
condition that relates the FV energy eigenvalues to the
physical two-hadron scattering amplitudes. Our notation
follows that used in Ref. [99].

A. Pionless EFT

In the pionless EFT, the hadronic Lagrangian is arranged
according to the number of nucleons. The relativistic
corrections and the isospin-breaking effects contribute at
higher orders than considered in this work. The single-
nucleon Lagrangian is given by

Lð1Þ ¼ N†
�
i∂t þ

∇2

2M

�
N þ � � � ; ð1Þ

where ellipsis denotes relativistic corrections. Here, ∂t is
the time derivative and ∇ is the spatial gradient operator.
N ¼ ðp; nÞT is an isospin doublet composed of the proton,
p, and the neutron, n, fields, each with mass M. The NN
contact interactions are governed by the Lagrangian,

Lð2Þ ¼ −C0ðNTPiNÞ†ðNTPiNÞ − C̃0ðNTP̃iNÞ†ðNTP̃iNÞ

þ C2

8
½ðNTPiNÞ†ðNTð∇⃖2Pi − 2∇⃖ · Pi∇⃗þ Pi∇⃗2ÞNÞ

þ H:c:� þ C̃2

8
½ðNTP̃iNÞ†ðNTð∇⃖2P̃i − 2∇⃖ · P̃i∇⃗

þ P̃i∇⃗2ÞNÞ þ H:c:� þ � � � ; ð2Þ

The overhead arrow indicates which nucleon field is acted
by the derivative operator, and ellipsis denotes higher-
derivative operators that will not contribute to the order
at which the analysis of this work is performed. Index
i ¼ 1, 2, 3 is summed over. Pi and P̃i are the spin-isospin
projection operators for the spin-singlet ð1S0Þ and spin-
triplet ð3S1Þ channels, respectively.2 Strong-interaction
LECs for these channels are distinguished by an overhead
tilde for the 3S1 channel.
For NN systems in the 1S0 channel at a low center-of-

mass (CM) energy, E, the scattering amplitude, M is
described by an S-wave scattering phase shift, δ,

M ¼ 4π

M
1

p cot δ − ip
; ð3Þ

where p ¼ ffiffiffiffiffiffiffiffi
ME

p
and higher partial-wave contributions

are ignored. Below the t-channel cut, the effective-range
function p cot δ can be expanded in p2 near p2 ¼ 0,
resulting in an effective-range expansion,

p cot δ ¼ −
1

a
þ 1

2
rp2 þ � � � ; ð4Þ

where a is the scattering length, r is the effective range, and
ellipsis denotes higher-order terms that will be neglected in
this analysis. In the pionless EFT with the Kaplan-Savage-
Wise power counting [16,17], the S-wave scattering ampli-
tude is expanded to LO and NLO amplitudes:

MðLOÞ ¼ −
4π

M
1

ð1=aþ ipÞ ; ð5Þ

MðNLOÞ ¼ −
2π

M
rp2

ð1=aþ ipÞ2 : ð6Þ

The LO amplitude, MðLOÞ, is given by the tree-level NN
contact interaction, C0, plus any number of C0 vertices
connected by the s-channel two-nucleon loops. The NLO
amplitude, MðNLOÞ, involves one insertion of the NN
derivative coupling, C2, dressed by the NN propagator
and the LO amplitude from both sides. The NN s-channel
loop is an ultraviolet (UV) divergent integral that is
regularized with the power-divergence subtraction scheme
introduced in Ref. [16]. By comparing these amplitudes
with Eqs. (5) and (6) for the 1S0 channel, the NN contact
interactions at a given renormalization scale, μ, can be
expressed in terms of the effective-range expansion param-
eters defined in Eq. (4):

C0ðμÞ ¼
4π

M
1

ð−μþ 1=aÞ ; ð7Þ

C2ðμÞ ¼
2π

M
r

ð−μþ 1=aÞ2 : ð8Þ

Equations (3)–(8) are valid for the 3S1 channel too upon
replacements, δ → δ̃,3 a → ã, r → r̃, MðLOÞ → M̃ðLOÞ,
MðNLOÞ → M̃ðNLOÞ, C0 → C̃0 and C2 → C̃2, where the
overhead tilde denotes the analogous quantity in the 3S1
channel.4

2The spin-triplet channel couples S and D partial waves. Since
partial-wave mixing both in infinite and finite volumes is
neglected in this work, the spin-triplet channel will be denoted
by 3S1 instead of 3S1 − 3D1.

3δ̃ is the α-wave phase shift in the Blatt-Biedenharn para-
metrization of the coupled 3S1 − 3D1 channel [105], but here it
will be referred to as an S-wave phase shift for simplicity.

4Overhead tilde is used throughout to denote two-nucleon
quantities in the 3S1 channel. The only exceptions to this rule
are L̃1;A and g̃NN

ν that denote renormalization-scale independent
LECs in Secs. III and IV. The convention for these LECs is
maintained to be consistent with the literature.
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The effective Lagrangian for the charged-current (CC)
weak interaction is given by

LCC ¼ −GFVudlμ−Jþμ þ H:c:; ð9Þ

where GF is the Fermi’s constant, and Vud is a Cabibbo-
Kobayashi-Maskawa (CKM) matrix element [106,107].
The leptonic current

lμ− ¼ ēγμð1 − γ5Þν ð10Þ

contains electron, e, and neutrino, ν, fields, and the
hadronic current can be written in terms of vector and
axial contributions as

Jþμ ¼ Vþ
μ − Aþ

μ ¼ V1
μ þ iV2

μffiffiffi
2

p −
A1
μ þ iA2

μffiffiffi
2

p : ð11Þ

The superscript (subscript) in the hadronic (leptonic) current
denotes isovector components while the subscript (super-
script) denotes the spacetime vector components. The vector
current mediates Fermi transitions, while the axial current
governs Gamow-Teller transitions, which correspond to
different isospin ðΔIÞ and spin ðΔSÞ selection rules.
For the single-β decay and 0νββ decay transitions in

Secs. III and IV, only low-energy processes are considered
such that pionless EFT is a proper description. The
kinematics for the transition nn → npe−ν̄e in Sec. III is
chosen such that the only relevant currents are the spatial
component of the axial-vector isovector currents, see
Ref. [99]. At LO in pionless EFT, the nonrelativistic
one-body operator with such quantum numbers is

Aþ
kð1Þ ¼

gA
2
N†τþσkN; ð12Þ

where τþ ¼ ðτ1 þ iτ2Þ=
ffiffiffi
2

p
, and τi ðσiÞ are the Pauli

matrices acting in isospin (spin) space. k ¼ 1, 2, 3 is the
spatial Lorentz index, and gA is the nucleon axial charge.
The momentum-independent two-body axial-vector/
isovector current that contributes at the NLO to the
nn → npe−ν̄e decay amplitude is given by

Aþ
kð2Þ ¼ L1;AðNTP̃kNÞ†ðNTPþNÞ; ð13Þ

where Pþ ¼ ðP1 þ iP2Þ=
ffiffiffi
2

p
, and L1;A is its corresponding

LEC.
The nn → ppe−e− transition considered in Sec. IV

receives contributions from the one-body axial-
vector isovector current operator in Eq. (12) and the
momentum-independent one-body vector isovector current
operator,

Vþ
0 ¼ 1

2
N†τþN; ð14Þ

at the LO in the pionless EFT. In the light neutrino
exchange model of the low-energy nn → ppe−e− decay,
there exists an undetermined LEC, gNN

ν , at this order, which
is introduced to absorb the UV scale dependence of the
amplitude through renormalization group [38–40]. The
Lagrangian density corresponding to this short-distance
contribution consists of a four-nucleon-two-electron con-
tact interaction:

LΔL¼2
N ¼

�
4VudGF

2
ffiffiffi
2

p
�

2

mββgNN
ν ½ēLCēTL�

× ½ðNTP−NÞ†ðNTPþNÞ� þ H:c: ð15Þ

Here, mββ is the effective Majorana mass, mββ¼
P

iU
2
eimi,

where Uei are the elements of the Pontecorvo-Mako-
Nakagawa-Sato (PMNS) matrix [108,109], with mi being
the mass of the neutrino-mass eigenstate i. C is the charge-
conjugation matrix, and eL is a left-handed electron field.
The NN scattering amplitudes and contact LECs intro-

duced in this section are needed to perform the sensitivity
analyses of LECs L1;A and gNN

ν using the matching
relations in Eqs. (22) and (33), respectively. These match-
ing relations are obtained by applying the Lüscher’s
method described in the next subsection.

B. Lüscher’s method

In LQCD, the n-point correlation functions are computed
on a finite Euclidean spacetime lattice. Assuming the con-
tinuum limit for a hypercubic lattice with periodic boundary
conditions, Lüscher’s quantization condition gives a direct
relation between the FV energy eigenvalues of two hadrons
obtained from LQCD and the corresponding scattering
amplitudes. The mapping is valid up to exponentially sup-
pressed corrections governed by the range of the interactions.
For the low-energyNNsystems, the interaction range is set by
the Compton wavelength of the pion. The quantization
conditions are then valid up to Oðe−mπLÞ corrections, where
L denotes the spatial extent of the volume.
The cubic volume does not respect the rotational

symmetry, and as a result, the FV quantization conditions
mix scattering amplitudes in all partial waves. However,
at low energies the scattering amplitude is expected to be
dominated by the S-wave interaction. Ignoring the con-
tribution from all higher-order partial waves, the FV
quantization condition relates the S-wave phase shifts to
a discrete set of FV energy eigenvalues, En. For NN
systems in the 1S0 channel, the quantization condition is
given by

pn cot δ ¼ 4πc00ðp2
n; LÞ: ð16Þ

Here, pn ¼
ffiffiffiffiffiffiffiffiffiffi
MEn

p
, and δ is the corresponding S-wave

scattering phase shift. The FV function c00ðp2
n; LÞ is

given by [57,58,61]
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c00ðp2
n; LÞ ¼

1

L
ffiffiffiffiffiffiffi
4π3

p Z00½1; ðpnL=2πÞ2�; with

Z00½s; x2� ¼
1ffiffiffiffiffiffi
4π

p
X
n∈Z3

1

ðjnj2 − x2Þs : ð17Þ

Here, n is a Cartesian vector with integer components. The
quantization condition in Eq. (16) is obtained by locating
the singularities of the two-point correlation function of
two nucleons, which is governed by the FV function F ,

F ðEÞ ¼ 1

F−1
0 ðEÞ þMðEÞ ; ð18Þ

where F0 is another FV function related to the c00 function
defined above,

F0ðEÞ ¼
M
4π

½−4πc00ðp2; LÞ þ ip�; ð19Þ

and M is the NN scattering amplitude defined in Eq. (3).
Another useful quantity, which appears in the matching
relations in Eqs. (22) and (33), is the generalized Lellouch-
Lüscher (LL) residue matrix,R, which is the residue of the
FV function F at FV energies En, and is given by

RðEnÞ ¼ lim
E→En

ðE − EnÞF ðEÞ ¼
�
dF−1

dE

����
E¼En

�
−1
: ð20Þ

In the limit where higher partial waves are ignored, Eq. (16)
is also valid for the 3S1 channel after replacing δ with δ̃.

Similarly, the replacement M → M̃ in Eq. (18) defines
F → F̃ , which leads to the FV residue function R̃ for the
3S1 channel.
In the following sections, we investigate the sensitivity

of constraining LECs L1;A and gNN
ν to LQCD inputs from

future LQCD calculations of the corresponding three- and
four-point correlation functions at physical quark masses.
The lowest-lying FV energy eigenvalues in each of the NN
channels enter the necessary matching relations and these
energies will be evaluated ab initio from LQCD FV two-
point correlation functions. As no LQCD determination of
the FV spectrum at the physical quark masses exist to date,
one can estimate the expected energies for given volumes
by solving Lüscher’s quantization condition in Eq. (16)
using experimental input for scattering amplitudes, as
illustrated in Fig. 2. Here, the function p cot δ (p cot δ̃)
on the left-hand side of Eq. (16) is given by the effective-
range expansion defined in Eq. (4) (and its counterpart for
the 3S1 channel). The effective-range expansion parameters

a ¼ −23.5 ½fm�; r ¼ 2.75 ½fm�;
ã ¼ 5.42 ½fm�; r̃ ¼ 1.75 ½fm�; ð21Þ

are obtained using NN phase shifts for S-wave scattering
generated by the Nijmegen phenomenological NN potential
[110], that are the result of fits to NN scattering data in
Ref. [104]. The ground-state energies of the NN systems in
the 1S0 (3S1) channel with the CM energy E0 (Ẽ0) for the
volumes shown are negatively shifted compared with the
threshold as noted in Fig. 2, and asymptote polynomially

FIG. 2. The effective-range function (solid lines) and Lüscher’s function (dotted lines) in Eq. (16) are plotted independently against the
CM energy of NN systems. Equation (4) is used for the effective-range function with the effective-range expansion parameters given in
Eq. (21) for the two channels, 1S0 (cyan) and 3S1 (magenta). The function 4πc00ðp2; LÞ is plotted for three different volumes with
L ¼ 8 fm (red), L ¼ 12 fm (blue) and L ¼ 16 fm (green). The diamonds, circles, triangles, and stars denote, respectively, the location
of energy eigenvalues of the ground, first, second, and third excited states in each volume, and satisfy the quantization condition in
Eq. (16) (and its counterpart for the 3S1 channel). The numerical values associated with this figure are provided in Appendix.
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(exponentially) to zero (to −2.2245 MeV) in the infinite-
volume limit. Additionally, the absolute values of the LL
residue functions are plotted in Fig. 3 as a function of
energy for L ¼ 8, 12 and 16 fm. Note that only the absolute
values of these functions appear in the matching relations
for the matrix elements.
The small uncertainties on the scattering parameters

from experiment are ignored as the goal is to obtain central
values of FV energies. For the sensitivity analyses of the
upcoming sections, uncertainties need to be artificially
introduced on these energies in generating synthetic data to
mimic the expected LQCD uncertainties on energy extrac-
tions. This indicates that the scattering parameters asso-
ciated with these energies will become uncertain too.
Since the scattering parameters enter the LO and NLO
NN scattering amplitudes, and hence impact the matching
relations of the next sections, the subsequent uncertainty
on scattering parameters must be taken into account.
Uncertainties on the first two lowest-lying energies in each
channel (which is a minimal set in a single volume to
constrain the scattering length and effective range) can
be introduced through a randomly generated Gaussian
distribution of energies with central values equal to E0

and E1 (Ẽ0 and Ẽ1) and the width equal to ΔE0
× jE0j and

ΔE1
× jE1j (ΔẼ0

× jẼ0j and ΔẼ1
× jẼ1j) for the ground- and

first excited-state energies of the NN systems in the 1S0
(3S1) channels, respectively. The scattering length and
effective range corresponding to each channel for the
choices of ΔE ≡ ΔE0

¼ ΔE1
¼ 10%; 5%, and 1% and

ΔẼ ≡ ΔẼ0
¼ ΔẼ1

¼ 10%; 5%, and 1% are then obtained
by solving the quantization condition in Eq. (16), resulting
in uncertainties in the scattering parameters as shown in
Fig. 4. A similar analysis was performed in Ref. [74] in
the isosinglet channel to study the viability of the extraction
of the S-D mixing parameter from the upcoming LQCD
calculations.

Constraints on more than two energies, including in more
than one volume and with various different boost vectors,
will improve uncertainties on the extracted scattering param-
eters, possibilities that are not considered in this initial
analysis. Another approach is to attempt to input the
experimental determination of the scattering parameters
(and hence the energy eigenvalues derived using quantiza-
tion conditions) to avoid an uncertainty introduced in both
quantities in costly LQCD calculations. This can reduce the
uncertainty on the extracted LECs, as the only LQCD input
will be matrix elements that are unknown experimentally.
Nonetheless, the upcoming LQCD calculations will first
evaluate these matrix elements at the isospin-symmetric limit
where quantum electrodynamics (QED) effects and the
nonvanishing mass difference among the light quarks are
ignored. This means that for consistency, one needs to input
the scattering parameters associated with the 1S0 and 3S1
channels in such a limit. As obtaining the isospin-symmetric
parameters from experimental data involves model/EFT
uncertainties, such uncertainties must be accounted for in
the LEC extractions. On the other hand, one may prefer that
all inputs to the quantization and matching conditions are
evaluated from first-principles LQCD calculations consis-
tently to avoid further EFT/model uncertainties for isospin-
symmetric calculations. That is the strategy adopted in this
synthetic data analysis. While the experimental parameters
are used to obtain the central values of the FV energies, the
subsequent analysis assumes energies and hence the scatter-
ing parameters are obtained directly from LQCD and hence
involve likely sizable uncertainties in early calculations.5

FIG. 3. The absolute values of the LL residue function in the 1S0 (left) and 3S1 (right) channels is plotted against the CM energy for
three different volumes with L ¼ 8 fm (red), L ¼ 12 fm (blue), and L ¼ 16 fm (green). Dashed lines indicate energy eigenvalues in
the respective volumes. The numerical values of jRj and jR̃j evaluated at the FV ground- and first excited-state energies in the
corresponding volumes are provided in Appendix.

5The inaccuracy in the central values of the FV energies
compared to what is expected at the isospin symmetric limit will
have minimal impact in the conclusions reached in the upcoming
sections, as we have verified by slightly changing the central
values of the synthetic data in our analysis and observed no
significant sensitivity in achieved uncertainties on the LECs.
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III. SENSITIVITY ANALYSIS FOR L1;A

At the NLO in the pionless EFT, the two-body
axial-vector current in Eq. (13) contributes to single- and
double-weak processes, including pp fusion, neutrino
(antineutrino)-induced disintegration of the deuteron, and
muon capture on the deuteron [31,32,99], and its strength is
characterized by the LEC L1;A. Constraints on L1;A were
obtained using elastic and inelastic (anti)neutrino-deuteron
scattering data from nuclear reactors: L1;A ¼ 3.6� 5.5 fm3

[22], as well as from Sudbury Neutrino Observatory [111]
and Super-K [3,4] experiments: L1;A ¼ 4.0� 6.3 fm3 [34].
A more precise constraint was obtained in Ref. [37]
where improved low-energy chiral EFT results of inelastic
(anti)neutrino-deuteron scattering amplitude were matched
to those of pionless EFT, resulting in: L1;A ¼ 4.9þ1.9

−1.5 fm3.
It is expected that the uncertainty in L1;A will be reduced to
∼1.25 fm3 from the precise measurement of reaction rate of
muon capture on the deuteron that is underway in the
MuSun experiment [112].
Furthermore, a constraint on L1;A has been obtained from

a LQCD study of the pp-fusion process in Ref. [51] giving
the value L1;A ¼ 3.9ð0.2Þð1.4Þ fm3. Even though the stat-
istical uncertainty shown in the first parentheses is small,

the overall uncertainty is similar to the experimental
constraints due to the large systematic uncertainty indicated
in the second parentheses. The major source of uncertainty
is the extrapolation to the physical quark masses as
the correlation function for the pp-fusion process was
calculated at larger quark masses corresponding to
mπ ≈ 806 MeV. Thus, it is expected that this uncertainty
will improve in future LQCD calculations at lighter quark
masses. However, the extraction of this LEC at such a large
pion mass did not require the involved matching relation
that will be presented shortly, as the NN states appeared
deeply bound. Furthermore, achieving the quoted statistical
uncertainty with quark masses near the physical values will
be challenging. The question that will be addressed here is
whether these features will limit the precise extraction of
L1;A at the physical values of the quark masses.
In this section, we investigate the accuracy with which

L1;A can be obtained from future LQCD calculations
performed at the physical pion mass. In Sec. III A, the
matching relation provided in Ref. [99] will be reviewed,
relating the hadronic scattering amplitude for the nn →
npe−ν̄e decay (or alternatively the pp fusion process
pp → npeþνe) to the corresponding nuclear ME calcu-
lated using LQCD. The matching relation is then used to

FIG. 4. The inverse scattering length (left column) and the effective range (left column) for the 1S0 (top row) and 3S1 (bottom row)
channels obtained from synthetic data with ΔE;ΔẼ ¼ 10%, 5%, and 1%, from lighter to darker bands, respectively, are shown as a
function of L. The bands indicate mid-68% uncertainty on the parameters from synthetic data, whereas gray thin bands denote the
corresponding experimental values. Selected numerical values associated with this figure are provided in Appendix.
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perform a sensitivity analysis on L1;A in Sec. III B through
studying the effects of the LQCD inputs and their uncer-
tainty on the L1;A extraction.

A. Matching relation

Consider the single-β decay transition nn → npe−ν̄e
with the kinematics chosen such that the total three-
momentum of the electron and anti-neutrino is zero, and
the NN systems are unboosted in the initial and final states.
The hadronic amplitude receives nonvanishing contribution
from the Gamow-Teller-type transitions mediated by one-
body (n ¼ 1) and two-body (n ¼ 2) axial-current operators
in Eqs. (12) and (13), respectively. In the spin-isospin
symmetric limit, the amplitude is independent of the
azimuthal spin quantum number of the final state. Thus,
one can consider the hadronic transition nn → np (k ¼ 3)
in the pionless EFT. The LO contribution is characterized
by the corresponding LO NN contact interactions in Eq. (2)
for each channel and the one-body axial-vector current
operator in Eq. (12). At the NLO, the hadronic amplitude
receives a contribution from the two-body axial-vector
current operator that is defined in Eq. (13).
The hadronic amplitude is related to the FV nuclear

ME of the weak current between the ground states of the
NN system with energies E0 and Ẽ0 corresponding to
the 1S0 and 3S1 channels, respectively, via the matching
relation [65,99]

L6j½hE0; LjJ ð0ÞjẼ0; Li�Lj2
¼ jR̃ðẼ0ÞjjMDF;V

nn→npðE0; Ẽ0Þj2jRðE0Þj; ð22Þ

where the equality is up to exponentially suppressed
corrections in L. Here, j · j denotes the absolute value,
and J ð0Þ denotes the hadronic part of the weak current
placed at the origin, see Ref. [99]. The FV S-wave states,
jE;Li, are labeled with the CM energy, E, and the spatial
extent of the cubic volume L, and the FV nature of the ME
is emphasized by the subscript L. The quantity,MDF;V

nn→np, is
related to infinite-volume amplitude via

iMDF;V
nn→npðE0;Ẽ0Þ

¼ iMDF
nn→npðE0;Ẽ0Þ− igAF1ðẼ0;E0Þ½MðLOÞðE0ÞM̃ðLOÞðẼ0Þ

þMðLOÞðE0ÞM̃ðNLOÞðẼ0ÞþMðNLOÞðE0ÞM̃ðLOÞðẼ0Þ�;
ð23Þ

where MDF
nn→np is the divergence-free infinite-volume

amplitude, which is obtained after removing from the full
amplitude the contributions from the Feynman diagrams
with the weak current on the external nucleon legs. The LO
and NLO NN scattering amplitudes in the 1S0 channel,
MðLOÞ and MðNLOÞ, are defined in Eqs. (5) and (6),
respectively. R is the LL residue function defined in

Eq. (20) for the 1S0 channel. The corresponding quantities
for the 3S1 channel are denoted with an overhead tilde. F1 is
a FV function originating from the s-channel loop diagram
with three nucleon propagators. It is related to the F0

function defined in Eq. (19),

F1ðẼ0; E0Þ ¼
1

E0 − Ẽ0

½F0ðẼ0Þ − F0ðE0Þ�: ð24Þ

Finally, the amplitude MDF
nn→np depends on the LEC L1;A,

iMDF
nn→np ¼ −iL̃1;AM̃

LOðẼ0ÞMLOðE0Þ
− igAI1ðẼ0; E0Þ½MðLOÞðE0ÞM̃ðLOÞðẼ0Þ
þMðLOÞðE0ÞM̃ðNLOÞðẼ0Þ
þMðNLOÞðE0ÞM̃ðLOÞðẼ0Þ�; ð25Þ

where L̃1;A is the renormalization-scale-independent com-
bination of L1;A and the LO and NLO NN LECs introduced
in Sec. II A:

L̃1;A ¼ L1;A

C0C̃0

−
gAM
2

ðC2 þ C̃2Þ
C0C̃0

; ð26Þ

and I1 in is defined as

I1ðẼ0; E0Þ ¼
iM3=2

4π

1ffiffiffiffiffiffi
Ẽ0

p
þ ffiffiffiffiffiffi

E0

p : ð27Þ

B. Sensitivity analysis

Future constraints on L1;A from LQCD calculations at
the physical quark masses will depend on LQCD deter-
minations of the low-lying FV energy eigenvalues of the
NN systems in the 1S0 and 3S1 channels, as well as the
nuclear MEs of the axial-vector current between these
states, as is clear from the ingredients of Eq. (22).
Furthermore, the matching relation depends upon the
LO and NLO NN scattering amplitudes in both the 1S0
and 3S1 channels, as well as the derivative of scattering
amplitudes with respect to energy that enters the LL
residue function in Eq. (20), requiring the values of the
scattering length and effective range in the two NN
channels. These are obtained from the knowledge of at
least two energy levels in the spectrum, i.e., the ground
and the first excited states, as outlined in Sec. II B. The
precision with which L1;A can be obtained depends on the
precision and correlation of these ingredients. In order to
quantify the uncertainty on L1;A extracted from a future
LQCD calculation performed in a given volume, one
can introduce percent precision with which the nuclear
ME of a single axial-vector current and the NN ground-
(and first excited-) state energies are expected to reach,
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to be denoted by Δβ and ΔEðẼÞ, respectively. A sample set
of these ingredients is then generated from a Gaussian
distribution with the mean represented by the value
obtained from (the central values of) the phenomenologi-
cal constraint for the quantity, and the precision level
multiplied by the mean for its standard deviation.
The mean values for the expected ground- and first

excited-state energies of the NN channels are obtained
using the quantization condition in Eq. (16) with the NN
phase shifts for the S-channel from Ref. [104], as was
already discussed in Sec. II B and demonstrated in Fig. 2.
The mean value of the expected FV ME is obtained by
using the matching relation in Eq. (22) with the FVenergies
being the mean values discussed above, the experimental
value of gA ≈ 1.27, and the central value of the L1;A (or and
its scale-independent counterpart) from a recent phenom-
enological determination [37]

L1;A ¼ 4.9þ1.9
−1.5 fm3 or L̃1;A ¼ −449.7þ19.5

−15.4 fm3: ð28Þ

The expected mean values are then used to generate
the Gaussian samples for the FV energies and FV ME.
With the samples generated, the matching relation in
Eq. (22) is used once again to solve for the L1;A values
associated with each set of energies and MEs, leading to a

distribution for the expected L1;A values. In the following,
the scale-dependent quantity L̃1;A is used but it can be
converted to L1;A values give the values of the NN LECs
evaluated at the corresponding values of the scattering
length and effective range. Note that since the scattering
parameters are obtained ab initio from LQCD, the
uncertainties in energies impact their precision, as dis-
cussed in Sec. II B.
The effect of Δβ and ΔE on determining L̃1;A is

illustrated in Fig. 5, where the volume dependence of
L1;A values obtained from the sample sets for various
combinations of ΔE and Δβ values is shown. In all cases,
the uncertainty on L1;A (determined from the mid-68%
of the sample) increases with increasing ΔE, ΔẼ, and Δβ.
Only the most precisely determined sample set and at
volumes with L ≈ 8 fm, constraints on L1;A become com-
parable in precision to that in Eq. (28). Thus, future LQCD
calculations at the physical quark masses need to determine
the NN ground and first excited-state energies and the
FV MEs with below percent-level precision to supersede
the current phenomenological constraints. The situation is
likely alleviated in the actual LQCD calculations where
energy and ME extractions are partially correlated, and
where the NN scattering amplitude can be determined more
precisely with a larger set of precise FV energies.

(a) (b) (c)

(d) (e) (f)

FIG. 5. The value of L̃1;A as a function of L for the 1S0 → 3S1 transition obtained from synthetic data with various combinations of
ΔE ¼ ΔẼ and Δβ values. The gray horizontal band denotes the experimental value, whereas the colored bands indicate mid-68%
uncertainty on extracted L1;A for the ground-state to ground-state (purple) and first excited-state to first excited-state (green) transitions.
Note the smaller range of the L̃1;A-axes in the most-left plots compared to the rest. Selected numerical values associated with this figure
are provided in Appendix.
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Since LQCD can, in principle, obtain FV MEs for
transitions involving excited states, one may wonder if
constraining L1;A through the first excited-state to the first
excited-state transition will be more beneficial and relaxes
the precision requirements on the FV energies and ME
above. The green bands in Fig. 5 denote the L̃1;A values and
uncertainties obtained from the first excited-state to the first
excited-state transition. It is clear that the ground-state to
ground-state transition leads to better constraints at smaller
volumes—volumes that are more readily accessibly to
upcoming LQCD calculations at the physical pion mass,
but for larger volumes with L≳ 14 fm, the constraints from
the first excited-state to the first excited-state transition
become comparable or more precise. The reverse trend in
uncertainties as a function of volume between the two cases
is a consequence of different behavior of the LL residue
functions near negative and positive CM energies, as
illustrated in Fig. 3. One cautionary note is the loss of
accuracy in using the effective-range expansion and the
associated LO and NLO NN scattering amplitudes in the
pionless EFT near the first excited-state energies. However,
at large volume where the L̃1;A constraints from excited-state
transition become more precise, the FVenergies tend to their
asymptotic value of zero and are therefore near or within the
t-channel cut. On the other hand, at such large volumes, the
density of states in the spectrum increases, and the identi-
fication of excited states with current methods may present a
challenge. Variational techniques such as those developed in
Refs. [113–115] will likely constrain the lowest-lying levels
with comparable precision to the ground state.

IV. SENSITIVITY ANALYSIS FOR gNNν

At the LO in the pionless EFT, the full transition
amplitude of the 0νββ process in the light neutrino
exchange scenario has a long-distance contribution given
by a neutrino that propagates between the two weak
currents and a short-distance contribution that comes from
the contact interaction in Eq. (15). The hadronic part of the
weak currents in the long-distance contribution is given by
the one-body vector isovector and the one-body axial-
vector isovector current operators in Eqs. (14) and (12),
respectively. As shown in Refs. [41,42], a constraint on the
gNN
ν value can be obtained by expressing the nn → ppe−e−

decay amplitude as a product of momentum integral of
the Majorana neutrino propagator and the generalized
forward Compton scattering amplitude, in analogy to the
Cottingham formula [116,117] for the electromagnetic
contribution to hadron masses. A model-independent
representation of the integrand using the chiral EFT and
operator product expansion can then be obtained. The
missing parts of the full amplitude can be filled by
interpolating between the known regions using nucleon
form factors for the weak current and information on NN
scattering. The constraint on gNN

ν via this method is

g̃NN
ν ¼ 1.3� 0.6; ð29Þ

where g̃NN
ν is a dimensionless parameter related to gNN

ν and
the momentum-independent NN LEC in Eq. (2):

g̃NN
ν ¼

�
4π

MC0

�
2

gNN
ν : ð30Þ

The value in Eq. (29) has a large uncertainty, and a more
precise and direct constraint on gNN

ν using LQCD will be
desired. As shown in Ref. [100], a prescription exists for
obtaining the gNN

ν (or equivalently the g̃NN
ν ) value from a

Euclidean four-point correlation function calculated using
LQCD. With LQCD calculations of these correlation
functions underway, it would be useful to know the
precision with which one can constrain the g̃NN

ν value
for a given LQCD setup. In this section, we perform the
sensitivity analysis of constraining g̃NN

ν by estimating the
uncertainty on g̃NN

ν from a synthetic data representing a
future LQCD calculation of the four-point correlation
function at the physical quark masses.

A. Matching relation

Consider the transition nn → ppe−e− in the spin-isospin
symmetric limit with simple kinematics, where the currents
carry zero energy and momentum such that the initial CM
energy, Ei ≡ ECM, remains unchanged. The Euclidean
four-point function for this process, which is accessible
via LQCD methods, can be analytically continued to
Minkowski spacetime to obtain

T ðMÞ
L ≡

Z
dz0

×
Z
L
d3z½hE0; LjT½J ðz0; zÞSνðz0; zÞJ ð0Þ�jE0; Li�L;

ð31Þ

using the procedure described in Ref. [100]. In Eq. (31), T
denotes time ordering, the superscript (M) denotes a
Minkowski time signature, the subscript L on the spatial
integral indicates that the integral is performed over a finite
cubic volume (with PBCs), and z0 is the Minkowski time
coordinate. Sν is the Minkowski propagator of a Majorana
neutrino in a finite volume that is given by

Sνðz0;zÞ¼
1

L3

X
k∈2π

LZ
3≠0

Z
dk0
2π

eik·z−ik0z0
−imββ

k20− jkj2þ iϵ
; ð32Þ

where the neutrino four-momentum is given by ðk0; kÞ with
quantized spatial momenta k. Contributions from the small
nonzero neutrino mass in the denominator of the neutrino
propagator can be ignored at the LO in the EFT power
counting, and the infrared divergence is regulated by
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removing the zero-momentum mode of the neutrino. The
remaining notation in Eq. (31) is the same as in Eq. (22). It
is important to note that for a ground-state to ground-state
transitions at low energies corresponding to the FV energy
eigenvalues in the range of volumes studied, no intermedi-
ate single-neutrino-two-nucleon state can go on shell and
the analytic continuation from the Euclidean correlation
function of LQCD to the Minkowski counterpart in
Eq. (31) is straightforward. With on-shell intermediate
states, the complete formalism of Ref. [100] needs to be

implemented but this will not be necessary in the upcoming
LQCD calculations given realistic volumes and energies.

T ðMÞ
L is related to the physical decay amplitude through

the following matching relation:

L6jT ðMÞ
L ðEi; EfÞj2 ¼ jRðEiÞjjM0ν;V

nn→ppðEi; EfÞj2jRðEfÞj;
ð33Þ

where

M0ν;V
nn→ppðEi; EfÞ ¼ MðIntÞ

nn→ppðEi; EfÞ −mββð1þ 3g2AÞMðLOÞðEiÞδJVðEi; EfÞMðLOÞðEfÞ: ð34Þ

The right-hand side of Eq. (33) contains the LL residue
matrix, R, defined in Eq. (20), and the FV quantity
M0ν;V

nn→pp which is related to the physical scattering ampli-
tude of the 0νββ decay with the initial (final) CM energy
Ei ðEfÞ, as defined in Eq. (34). Here,MðLOÞ is the LO NN
scattering amplitude defined in Eq. (5), MðIntÞ is the
infinite-volume decay amplitude evaluated in the pionless
EFT after removing the contributions from the diagrams in

which the neutrino propagates between two external
nucleons. The full scattering amplitude is evaluated assum-
ing that the amplitude is approximated by the s-wave
interactions of the nucleons and only receives contributions
from a static neutrino potential. Moreover, contributions
to the full infinite-volume amplitude from radiative neu-
trinos are ignored. With these assumptions, MðInt:Þ is
given by [38–40]

MðIntÞ
nn→ppðEi; EfÞ ¼ mββMðLOÞðEiÞ

�
−ð1þ 3g2AÞJ∞ðEi; Ef; μÞ þ

2gNN
ν

C2
0

�
MðLOÞðEfÞ: ð35Þ

The first term denotes contributions from the diagrams in which the neutrino propagates between two nucleons dressed by
strong interactions on both sides. J∞ is a known function given by

J∞ðEi; Ef; μÞ ¼
M2

32π2

�
−γE þ lnð4πÞ þ ln

�
μ2=M

−ð ffiffiffiffiffi
Ei

p þ ffiffiffiffiffiffi
Ef

p Þ2 − iϵ

�
þ 1

�
; ð36Þ

with γE being Euler’s constant. This arises from evaluating the s-channel two-loop diagram with an exchanged Majorana
neutrino. The UV divergence is regularized in the dimensional-regularization scheme, introducing the scale μ. The second
term in square brackets Eq. (35) denotes contributions from diagrams with the NN short-range operator in Eq. (15) dressed
by the NN propagator and the LO NN amplitude on both sides. Finally, δJVðEi; EfÞ in Eq. (33) is a FV function
corresponding to the FV two-loop diagram with the exchanged neutrino propagator, that is defined by

δJVðEi; EfÞ ¼
�
1

L6

X
k1 ;k2∈

2π
LZ3

k1≠k2

−
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

�
1

Ei −
jk2

1
j

M þ iϵ

1

Ef −
jk2

2
j

M þ iϵ

1

jk1 − k2j2
: ð37Þ

This sum-integral difference is calculated numerically
using the technique presented in the supplemental material
of Ref. [100]. The real and imaginary parts of J∞ and δJV

are depicted in Fig. 6 for a range of negative and positive
Ei ¼ Ef ≡ E values.
The absolute value of the FV amplitude M0ν;V

nn→pp for the
kinematics Ei ¼ Ef ≡ E is plotted against the CM energy

in the left panel of Fig. 7 along with jMðIntÞ
nn→ppj, using the

value of gNN
ν obtained from the central value of the

constraint in Eq. (29). The dependence of the jT ðMÞ
L j on

the CM energy of the NN system in different volumes is
shown in the right panel of Fig. 7(b) using the matching
relation in Eq. (33).

B. Sensitivity analysis

Equation (33) indicates that the precision with which
gNN
ν , and thus g̃NN

ν , can be obtained from LQCD depends on
the precision with which the FV ground-state energy in a
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given volume, E0, and the FV ME are obtained from the
LQCD calculations of the corresponding two- and four-
point functions, respectively. Furthermore, the matching
relation depends upon the LO NN scattering amplitude in
the 1S0 channel as well as the derivative of the NLOþ LO
scattering amplitude with respect to energy that enters the
LL residue function in Eq. (20), requiring the values of the
scattering length and effective range in the 1S0 channel.
These depend on the central value and the uncertainty of
at least two energy levels in the spectrum, e.g., the ground
and the first excited states, as outlined in Sec. II B. In this
section, we investigate the uncertainty on g̃NN

ν from the

precision levels with which these LQCD inputs are
obtained in future LQCD calculations at the physical
quark masses.
The expected value of E0 for a given volume is

calculated using Lüscher’s quantization condition in
Eq. (16) and NN phase shifts in the 1S0 channel obtained
from Ref. [104]. This expected value of E0 and the
central value of the constraint on g̃NN

ν given in Eq. (29)
are then used to obtain an estimate on the expected value

of T ðMÞ
L with the use of Eqs. (33) and (35). Note that even

though the expected value of T ðMÞ
L from Eqs. (31)–(35) is

FIG. 7. jM0ν;VðInt:Þ
nn→pp j (left) and jT ðMÞ

L j (right) functions defined in Eqs. (35)–(33), with L ¼ 8 fm (red), L ¼ 12 fm (blue), and
L ¼ 16 fm (green) are plotted against the CM energy of the NN state, considering the kinematics Ei ¼ Ef ≡ E. The effective neutrino
mass mββ is set to 1 MeV. The dashed lines in both panels denote the ground-state energy eigenvalues in the corresponding volumes
obtained from the quantization condition in Eq. (16) (as plotted in Fig. 2). Selected numerical values for the functions shown are
provided in Appendix.

FIG. 6. The real (solid cyan) and imaginary (dotted dashed cyan) parts of J∞ðEi; Ef; μ ¼ mπÞ defined in Eq. (36), as well as real (solid
magenta) and imaginary (dotted dashed magenta) parts of δJVðEi; EfÞ defined in Eq. (37), both evaluated at Ei ¼ Ef ≡ E. The red,
blue, and green dashed lines denote the FV ground-state energy eigenvalues with L ¼ 8, 12, and 16 fm, respectively, obtained from the
quantization condition in Eq. (16) (as plotted in Fig. 2). These are the values at which the LQCD four-point function will be evaluated in
the future studies at the physical quark masses. Selected numerical values for the functions shown are provided in Appendix.
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dependent on mββ, the mean value and the uncertainty
on g̃NN

ν obtained from synthetic data using Eq. (33) is
independent of mββ.
The percent precision on E0 (and E1) is denoted by ΔE,

whereas the percent precision on T ðMÞ
L is denoted by Δββ.

Similar to Sec. III B, the uncertainty on g̃NN
ν is taken as the

mid-68% of the ensemble of g̃NN
ν values obtained from

synthetic data that incorporates uncertainties on E0ð1Þ and

T ðMÞ
L as Gaussian fluctuations. The precision levels,ΔE and

Δββ, are incorporated in this synthetic data by making the
standard deviation of the fluctuations equal to the expected
values of the quantities multiplied by the corresponding
percent precision. The scattering length and effective range
in the 1S0 channel are obtained by solving Lüscher’s
quantization condition in Eq. (16) for the generated
ensembles of the ground- and the first excited-state ener-
gies, as outlined in Sec. II B.
The g̃NN

ν values obtained for various combinations of
Δββ and ΔE are plotted against L in Fig. 8. The LQCD
constraints on g̃NN

ν are almost always more precise than the
constraint of Ref. [41] for input uncertainties below ∼10%
level, which indicates that future LQCD calculations can
confidently improve the current constraint, especially for
smaller volumes, provided that Δββ and ΔE are a few

percents. This situation is more promising than the case of
L1;A, where (sub)percent-level uncertainties appear to be
the requirement. As the LQCD input for energies and the
ME will be partially correlated, the constraint on g̃NN

ν will
likely be further improved.

V. CONCLUSIONS

This paper presents an analysis of the effect of uncer-
tainties in the future lattice quantum chromodynamics
calculations at the physical quark masses on the accuracy
with which the hadronic amplitudes of β decays can be
constrained in the two-nucleon sector. The nuclear matrix
elements of the single-β decay and the neutrinoless double-
β decay within the light neutrino exchange scenario are
studied for this purpose, and the precision with which the
low-energy constants L1;A and g̃NN

ν , corresponding to the
respective two-body isovector and isotensor operators, can
be obtained from future calculations was deduced from a
synthetic data analysis.
For processes that are studied here, matching relations

exist that relate the three- and four-point functions of LQCD
evaluated in a finite Euclidean spacetime to their respective
physical scattering amplitudes [65,89,93,99,100]. The
LQCD inputs that go into these matching relations involve

(a) (b) (c)

(d) (e) (f)

FIG. 8. The value of g̃NN
ν obtained from the synthetic data is plotted against L for different combinations ofΔββ andΔE. The gray band

denotes the uncertainty in the value of g̃NN
ν from Eq. (29) from the indirect determination of Ref. [41]. The corresponding central value

is used to obtain the expected values of T ðMÞ
L , which enables this sensitivity analysis. The purple band is the mid-68% uncertainty

band corresponding to the sample sets with uncorrelated fluctuations. Selected numerical values associated with this figure are provided
in Appendix.
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the lowest-lying two-nucleon energy spectra for a given
volume, the matrix elements of a single axial-vector weak
current (for the single-β decay), and of two axial-vector
weak currents along with a Majorana neutrino propagator
(for the 0νββ decay) between appropriate two-nucleon
states. Using these matching relations, constraints were
obtained on L1;A and g̃NN

ν from the synthetic data of the
relevant LQCD ingredients. In order to synthesize this
data to represent the underlying LQCD uncertainties,
Gaussian fluctuations were introduced on the supposedly
LQCD ingredients that go into these matching relations.
Nonetheless, by repeating the analysis with various
(mildly) skewed distributions for both the FV energies
and the MEs, we have verified that the constraints on the
LECs remain in qualitative agreement with those from
Gaussian distributions.
The precision with which L1;A and g̃NN

ν can be obtained
from the synthetic data was obtained for a range of input
uncertainties at or below ∼10% level. The uncertainty on
the LECs grows with volume in both cases assuming
ground-state to ground-state transitions, and so smaller
volumes that are more feasible computationally appear
to be more advantageous. The constraints from LQCD
studies on L1;A will likely be worse than the current
experimental constraints for the range of volumes and
plausible input uncertainties considered here, and may
require (sub)percent-level precision on the finite-volume
energies and matrix element. The situation may be alle-
viated in actual LQCD calculations where the uncertainties
in the inputs to the matching relations are (partially)
correlated. Furthermore, one may imagine inputting the
precise experimental parameters and associated FV

energies in those analyses, rather than obtaining them
directly from LQCD calculations, to decrease the uncer-
tainty in the extraction of the unknown LECs. Nonetheless,
such an approach will not be ab initio, particularly since the
early calculations will take place at the isospin-symmetric
limit and excluding QED, and for consistency and model
independency, scattering parameters need to be evaluated
directly from LQCD.
Finally, for precision levels on the LQCD energies and

the ME below 10%, the constraint on g̃NN
ν will likely

improve the existing constraint, and will therefore provide a
direct precise determination arising from first-principles
calculations rooted in QCD. As a result, the present study
further motivates future studies of the nn → ppee process
within the light Majorana exchange scenario from LQCD at
or near the physical values of the quark masses.
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APPENDIX: NUMERICAL VALUES
ASSOCIATED WITH THE FIGURES

Tables I–V below contain many representative numerical
values associated with the plots throughout the main text.

TABLE I. Numerical values of the FV ground- and first excited-state energies in the 1S0 and 3S1 channels for a range of L values along
with the absolute values of the corresponding LL residue functions evaluated at those energies.

L E0 jRðE0Þj E1 jRðE1Þj Ẽ0 jR̃ðẼ0Þj Ẽ1 jR̃ðẼ1Þj
[fm] [MeV] ½MeV3� [MeV] ½MeV3� [MeV] ½MeV3� [MeV] ½MeV3�
8 −2.728 5.04 × 103 19.043 9.73 × 104 −5.579 1.88 × 103 13.688 1.01 × 105

10 −1.618 2.62 × 103 11.606 4.87 × 104 −4.004 6.90 × 102 7.364 4.94 × 104

12 −1.067 1.55 × 103 7.772 2.75 × 104 −3.218 2.65 × 102 4.299 2.70 × 104

14 −0.752 9.93 × 102 5.560 1.69 × 104 −2.788 1.02 × 102 2.655 1.59 × 104

16 −0.556 6.78 × 102 4.176 1.11 × 104 −2.544 3.77 × 101 1.712 9.85 × 103

TABLE II. Numerical values associated with Fig. 4.

L [fm]

ΔEðẼÞ 8 10 12 14 16

a−1 ½fm−1� 1% −0.043þ0.004
−0.004 −0.043þ0.004

−0.003 −0.043þ0.003
−0.003 −0.043þ0.003

−0.003 −0.043þ0.002
−0.002

5% −0.044þ0.022
−0.023 −0.044þ0.018

−0.017 −0.043þ0.014
−0.015 −0.043þ0.012

−0.014 −0.044þ0.011
−0.011

10% −0.049þ0.044
−0.052 −0.047þ0.035

−0.039 −0.046þ0.029
−0.032 −0.045þ0.024

−0.030 −0.045þ0.021
−0.024

(Table continued)
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TABLE II. (Continued)

L [fm]

ΔEðẼÞ 8 10 12 14 16

r0 [fm] 1% 2.751þ0.097
−0.097 2.751þ0.105

−0.103 2.745þ0.119
−0.112 2.753þ0.125

−0.130 2.743þ0.136
−0.136

5% 2.753þ0.533
−0.455 2.751þ0.562

−0.488 2.721þ0.620
−0.545 2.762þ0.666

−0.626 2.715þ0.696
−0.668

10% 2.751þ1.228
−0.839 2.744þ1.222

−0.934 2.689þ1.362
−1.057 2.771þ1.407

−1.254 2.670þ1.477
−1.346

ã−1 ½fm−1� 1% 0.184þ0.002
−0.002 0.184þ0.002

−0.002 0.184þ0.001
−0.001 0.184þ0.001

−0.001 0.184þ0.001
−0.001

5% 0.184þ0.012
−0.011 0.184þ0.008

−0.009 0.184þ0.007
−0.007 0.184þ0.006

−0.006 0.184þ0.005
−0.005

10% 0.182þ0.023
−0.024 0.183þ0.017

−0.018 0.184þ0.014
−0.014 0.183þ0.012

−0.011 0.184þ0.012
−0.010

r̃0 [fm] 1% 1.750þ0.028
−0.030 1.749þ0.031

−0.030 1.748þ0.033
−0.033 1.751þ0.034

−0.037 1.747þ0.038
−0.037

5% 1.751þ0.145
−0.150 1.746þ0.150

−0.154 1.740þ0.160
−0.171 1.752þ0.161

−0.189 1.732þ0.187
−0.192

10% 1.747þ0.296
−0.303 1.739þ0.299

−0.318 1.722þ0.318
−0.364 1.745þ0.313

−0.403 1.710þ0.355
−0.418

TABLE IV. Numerical values of the finite- and infinite-volume quantities in the matching relation for the 0νββ process in Eq. (33).
These quantities are evaluated at the ground-state FV energy eigenvalues in the corresponding volumes.

L J∞ðE0; E0;mπÞ δJVðE0; E0Þ jMðIntÞ
nn→ppj jM0ν;V

nn→ppj jT ðMÞ
L j

[fm] ½MeV2� ½MeV2� ½MeV−1� ½MeV−1� ½MeV5�
8 9.84 × 103 −8.9 × 102 2.2 × 10−3 1.95 × 10−3 1.5 × 105

10 1.13 × 104 −7.5 × 102 4.1 × 10−3 3.77 × 10−3 7.6 × 104

12 1.25 × 104 −6.3 × 102 6.5 × 10−3 6.11 × 10−3 4.2 × 104

14 1.34 × 104 −5.3 × 102 9.4 × 10−3 8.93 × 10−3 2.5 × 104

16 1.43 × 104 −4.4 × 102 1.3 × 10−2 1.22 × 10−2 1.5 × 104

TABLE III. Numerical values associated with Fig. 5. The top (bottom) value in each cell corresponds to the ground-state to ground-
state (first excited-state to first excited-state) transition.

L [fm]

Δβ ΔEðẼÞ 8 10 12 14 16

L̃1;A [MeV] 1% 1% −449.4þ47.9
−47.0 −449.3þ70.1

−59.5 −447.7þ90.5
−82.8 −452.4þ122.3

−112.6 −446.6þ134.0
−153.7

−432.3þ208.0
−274.0 −451.8þ133.8

−136.0 −445.1þ88.2
−107.1 −446.4þ71.6

−84.2 −450.6þ69.3
−68.9

1% 5% −451.3þ143.0
−135.0 −448.0þ178.1

−175.6 −433.9þ205.8
−207.3 −441.7þ257.3

−257.3 −434.5þ242.6
−263.4

−455.4þ366.4
−413.1 −445.4þ223.7

−273.1 −444.2þ195.2
−206.7 −444.5þ173.9

−182.8 −440.9þ153.7
−170.8

1% 10% −454.9þ273.4
−262.6 −456.9þ354.6

−324.7 −429.9þ404.6
−385.6 −435.5þ465.0

−457.6 −415.1þ437.5
−470.1

−444.0þ579.0
−802.8 −455.1þ407.5

−462.3 −447.2þ350.8
−376.1 −438.4þ323.5

−335.8 −428.8þ286.1
−323.0

5% 1% −439.4þ196.8
−195.4 −441.5þ300.0

−274.8 −458.7þ447.7
−359.3 −466.8þ562.6

−541.2 −474.5þ703.8
−720.3

−403.0þ764.7
−1952.7 −473.3þ532.3

−966.3 −434.4þ358.1
−630.7 −440.1þ292.6

−527.2 −457.3þ259.7
−389.6

5% 5% −449.2þ241.0
−231.1 −456.3þ363.6

−283.3 −450.3þ477.0
−397.9 −473.6þ634.4

−538.8 −444.0þ681.4
−750.4

−387.0þ774.5
−1963.6 −470.1þ561.2

−1039.2 −430.1þ390.7
−666.8 −435.1þ316.5

−517.4 −467.0þ320.6
−397.2

10% 10% −466.5þ505.0
−433.3 −471.0þ773.6

−538.4 −469.7þ991.4
−770.4 −522.2þ1300.8

−1043.3 −474.3þ1407.7
−1423.8

−345.5þ1207.2
−2191.0 −477.2þ916.3

−1981.7 −417.7þ690.5
−2036.4 −423.6þ568.6

−1705.4 −487.1þ573.3
−1167.7
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