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We study the effects of identical leptons in the final state of the Bþ → lþl−lþν̄l decay. The amplitude
of the process is described by the same form factors as the amplitude of the B → lll0ν̄0l decay for
nonidentical leptons in the final state. However, the differential distributions are strongly different, as the
Bþ → lþl−lþν̄l amplitude contains both the direct (Ma) and exchange (Mb) diagrams. We calculate a
number of the differential distributions. In particular, we propose an interesting observable that can be
readily measured experimentally: the differential distribution over the invariant mass of the pair of leptons
of the same charge, lþlþ. The good news is that the interference betweenMa andMb, dBab is found to be
at the level of less than 1% in all considered differential distributions and therefore can be neglected in the
full kinematical region of this decay.
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I. INTRODUCTION

This paper extends our recent analysis [1] of the
B → lll0ν0 decay (l0 ≠ l) to the case of identical leptons
in the final state (l0 ¼ l). Such reactions are being studied
experimentally [2–5], thus requiring a proper theoretical
understanding. So far, there have been a few theoretical
papers [6–10] where B decays into two lepton pairs have
been studied.
The B → γ�l0ν0 amplitude (see Fig. 1) may be para-

metrized via Lorentz-invariant form factors as follows:

Tανðq;q0jpÞ

¼ i
Z

dxeiqxh0jTfje:m:
α ðxÞ; ūð0ÞOνbð0ÞÞgjB̄uðpÞi

¼
X
i

LðiÞ
ανðq;q0ÞFiðq02;q2Þþ…; p¼ qþq0; ð1:1Þ

where q0 is the momentum of the weak b → u current and q
is the momentum of the electromagnetic current. In
Eq. (1.1), Oν ¼ γν; γνγ5 and je:m:

α is the conserved electro-
magnetic current,

je:m:
α ð0Þ ¼ eQbb̄ð0Þγαbð0Þ þ eQuūð0Þγαuð0Þ: ð1:2Þ

The quantities LðiÞ
ανðq; q0Þ represent the transverse Lorentz

structures, qαLðiÞ
ανðq; q0Þ ¼ 0, and the dots stand for the

longitudinal part which is constrained by the conservation
of the electromagnetic current (∂αje:m:

α ¼ 0) and the equal-
time commutation relations.
The form factors Fiðq02; q2Þ are complicated functions of

the two variables q02 and q2; the general properties of these
objects in QCD have been studied recently in Ref. [11].
Notably, gauge invariance provides essential constraints on
some of the form factors describing the transition of the B
meson into a real photon, i.e., at q2 ¼ 0 [12–15].
In the past, theoretical analyses focused on a family of

similar reactions, namely, the B → γlþl− and B → γlν
decays (see, e.g., Refs. [16–26]); these processes are
described by the same form factors as four-lepton B decays,
but are evaluated at a zero value of one of the momenta
squared. The corresponding form factors depend on one
variable, q02, where q0 the momentum of the weak current;
for instance, for radiative leptonic decays B → γl0ν0, one
needs the form factors Fiðq02; q2 ¼ 0Þ.
The four-lepton decay of interest, B → lþl−l0ν0, requires

the form factors Fiðq02; q2Þ for 0 < q2; q02 < M2
B. The

dependence of the form factors on the variable q02 can
be predicted reasonably well: there are no hadron reso-
nances in the full decay region 0 < q02 < M2

B, and the q02

dependence of the form factors is determined to a large
extent by the influence of the beauty mesons with the
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appropriate quantum numbers; all of these mesons are
heavier than the B meson and therefore lie beyond the
physical decay region of the variable q02. The calculation of
the q2 dependence of the form factors is a much more
difficult task: light vector mesons V ¼ ρ0;ω;… lie in the
physical decay region and should be properly taken into
account. At q2 in the region of light vector-meson reso-
nances, the form factors cannot be obtained directly in
perturbative QCD (pQCD) [11]. Here considerations based
on the explicit account of these light vector resonances—
including their finite width effects—are mandatory; the
resonance contributions of interest may be unambiguously
expressed via the weak B → V form factors. Then, at
q2 ¼ 0, gauge invariance constrains the values of the form
factors. These features allow us to calculate the form factors
Fiðq02; q2Þ in the region 0 < q2 ≤ 1–2 GeV2 which domi-
nates the four-meson decay rates and obtain consistent
predictions for the latter.
A relatively simple case of different lepton flavors

l ≠ l0 was considered in our recent paper [1]. In that case,
one can easily calculate the differential distribution in q2

(where q is the momentum of the lþl− pair) as well as
in q02 (where q0 is the momentum of the l0ν0 pair); the
angular variables do not enter the form factors and as a
result all angular integrations may be calculated explicitly,
yielding explicit forms for the differential distributions in
q2 and q02.
This paper focuses on the case of identical leptons in the

final state l ¼ l0. The amplitude is described by the same
form factors as in the case l ≠ l0, so we use the model for
these form factors constructed in Ref. [1]. However, a
specific feature of the case of identical leptons is the
appearance of exchange diagrams. For such diagrams, the
variables q2 and q02 that determine the form factors do not
coincide with the momenta of the lþl− and lþν pairs in the
final state, and thus the angular variables appear explicitly
in the form factors. As a result, the contribution of the
exchange diagrams cannot be obtained as an explicit
analytic expression and a numerical evaluation of the
phase-space integrals is necessary. Here we provide all
necessary details for the theoretical description of this
reaction and report numerical predictions for a number of
the differential distributions.
We propose an interesting kinematical variable: the

differential distribution in the momentum of a pair of

same-charge leptons (i.e., the lþlþ lepton in the case of the
Bþ → lþl−lþν decay and the μþeþ pair in the case of
the Bþ → μþμ−eþνe or Bþ → eþe−μþνμ decay). This
distribution can be measured experimentally in a straight-
forward way and we obtain predictions for this differential
distribution.

II. B− → l + l − l0 − ν̄0 FORM FACTORS

The amplitude of the B → lll0ν0 transition for l0 ≠ l may
be parametrized as (see also Ref. [27])

AðB → lll0ν0Þ ¼ ie2
GFffiffiffi
2

p Vub · l̄γαl · l̄0γνð1 − γ5Þν0

×
1

q2

�
ðgανq0q − q0αqνÞ

F1A

MB
þ q0αqν

F2A

MB

þ q0αq0ν
F0
2A

MB
þ iϵναq0q

FV

MB

�
; ð2:1Þ

where the form factors satisfy the constraints

F2Aðq02; q2 ¼ 0Þ ¼ 0; ð2:2Þ

F0
2Aðq02; q2 ¼ 0Þ ¼ 2QBfBMB

M2
B − q02

: ð2:3Þ

Explicit formulas for the differential distributions in the
case l0 ≠ l were derived in Ref. [1]; we do not repeat these
formulas here, but rather refer the reader to Ref. [1].
The same form factors parametrize the amplitude for

the case l0 ≠ l; however, one has to take into account the
contribution of the lepton exchange diagrams in which
the variables q2 and q02 have a complicated relationship
with the momenta of the final lepton pairs. The details are
given in the next section. We now recall the essential
features of our model of the form factors as developed
in Ref. [1].

(i) The contribution of the form factor F0
2Aðq2; q02Þ can

be neglected in the case l ¼ l0, so in what follows we
neglect its contribution.

(ii) For the form factors F1A;2A;Vðq02; q2Þ, we use single-
subtracted dispersion representations in q2. This
allows us to take into account all constraints coming
from gauge invariance and from the known behavior
in the large-energy limit of QCD [17].

(iii) We assume that the spectral densities are saturated
by light vector-meson resonances ρ0 and ω in the q2

channel. Since these resonances emerge in the
physical region of the B decay of interest, we take
into account the q2-dependent finite widths of
these resonances [28]. In the end, we come to the
following expressions for the form factors:

FIG. 1. Feynman diagrams describing the amplitude (1.1).
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F1Aðq02; q2Þ ¼ FAðq02Þ −
QBfBMB

q0q
− q2

X
V¼ρ0;ω

�
1

M2
V

2MBðMB þMVÞ
M2

B −M2
V − q02

MVfV
M2

V − q2 − iΓVðq2ÞMV
AB→V
1 ðq02Þ

�
; ð2:4Þ

F2Aðq02; q2Þ ¼ −q2MB

X
V¼ρ0;ω

1

M2
V

2MVfV
M2

V − q2 − iΓVðq2ÞMV

�
MB þMV

M2
B −M2

V − q02
AB→V
1 ðq02Þ − AB→V

2 ðq02Þ
ðMB þMVÞ

�

þQBfB

�
2MB

M2
B − q02

−
2MB

M2
B − q02 − q2

�
; ð2:5Þ

FVðq02; q2Þ ¼ FVðq02Þ − q2MB

X
V¼ρ0;ω

�
1

M2
V

MVfV
M2

V − q2 − iΓVðq2ÞMV

2VB→Vðq02Þ
MB þMV

�
: ð2:6Þ

(iv) The form factors FAðq02Þ and FVðq02Þ describe the
B → γl0ν0 transition; they emerge as subtraction terms
at q2 ¼ 0 in the q2-dispersion representations for the
form factors F1A;Vðq02; q2Þ. The form factors FAðq02Þ
and FVðq02Þ are equal to each other at the leading
order of the double 1=Eγ (2MBEγ ¼ M2

B − q02) and
1=MB expansions in QCD [17] but differ at the
subleading orders [19,20,22]:

FAðq02Þ ¼ −
QufBMB

2EγλB
þQbfBMB

2Eγmb

þOðQufBMB=E2
γÞ; ð2:7Þ

FVðq02Þ ¼ −
QufBMB

2EγλB
−
QbfBMB

2Eγmb

þOðQufBMB=E2
γÞ: ð2:8Þ

The magnitude of the form factors FAðq02Þ and
FVðq02Þ is determined to a large extent by the
parameter λB, the inverse moment of the B-meson
light-cone distribution amplitudeϕB [17]. Taking into
account a large uncertainty in the present knowledge
of the parameter λB [18–21,26,29], we use the
monopole forms (2.7) and (2.8) in the full kinemat-
ically allowed region of q02 and allow the variation of
λB in the range λBð1 GeVÞ ¼ ð0.5� 0.15Þ GeV.

(v) The contributions of the light vector mesons V ¼
ρ0;ω to the form factors F1A;2A;Vðq02; q2Þ are unam-
biguous (cf. Ref. [9]) and are expressed via the form
factors AB→V

1 ðq02Þ, AB→V
2 ðq02Þ, and VB→Vðq02Þ de-

scribing the weak decay B → V. In spite of many
efforts to calculate these form factors in the broad
kinematical decay region 0 < q02 < M2

B, our knowl-
edge of these quantities is not very accurate; see,
e.g., Refs. [30–33]. For our calculations we use the
results from Ref. [30] and assign to them a 10%
uncertainty. The uncertainties in these form factors,
along with the uncertainty in the parameter λB, is the

second main source of the uncertainty in the theo-
retical predictions for B → lþl−l0ν0 decays.

The results presented in the next section are obtained for
our form factor model described in full detail in Sec. 5 of
Ref. [1] and for the parameter λB ¼ 0.65.

III. THE DECAY B+ → μ+ μ− μ+ ν̄μ

The case of two identical leptons is technically more
involved than the case of all different leptons, considered in
Ref. [1]. The reason is that an additional contribution from
the interchange of the two μþ leptons arises.
The first diagram in Fig. 2, Maðk1; k2; k3; k4Þ, is the

same as for the B decay into nonidentical leptons (e.g.,
Bþ → μþμ−eþνe). The second diagram is obtained from
the first one by permutation of two final identical leptons:
Mbðk1; k2; k3; k4Þ ¼ Maðk3; k2; k1; k4Þ. The total amplitude
for the case of two identical leptons in the final state reads

Mtot ¼
1ffiffiffi
2

p ðMa −MbÞ and

jMtotj2 ¼
1

2
ðjMaj2 þ jMbj2 − 2ReðMaM�

bÞÞ: ð3:1Þ

The factor 1=
ffiffiffi
2

p
in the amplitude corresponds to the factor

1=2 in the phase space for the case of two identical leptons.
Thus, we use the expression for the phase space without the
factor 1=2 corresponding to identical particles in the
final state.

FIG. 2. Two diagrams describing the B decay into μþμ−μþν̄μ.
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A. Differential distribution over the momentum
of the μ+ μ− pair

In a theoretical consideration, one can calculate the
branching fraction and one-dimensional differential distri-
bution for two kinematical variables q212 ¼ ðk1 þ k2Þ2
(momentum of one of the μþμ− pairs) and q234¼ðk3þk4Þ2
(momentum of the μþν pair). For diagramMa, q12 ¼ q and
q34 ¼ q0, so that the angular variables do not enter the form
factors; the angular integrals may be taken analytically. For
diagramMb, the photon momentum q and the weak-vertex
momentum q0 do not coincide with q12 and q34, so that the
angular variables appear in the arguments of the form
factors; all angular integrals should be taken numerically.
Obviously, the contributions to the branching fraction
coming from jMaj2 and jMbj2 are identically the same
due to the symmetry k1 ↔ k3 of the phase-space measure.
But verifying this property is a nontrivial check for numeri-
cal evaluation of the five-dimensional integrals. Figure 3
shows the q212-differential distributions. The differential
distributions over the variable q223 (where q23 is the
momentum of another μþμ− pair that may be isolated in
the amplitude) is the same because of the symmetry of the

amplitude: the replacement k1 → k3 leads to the replace-
ment Ma → Mb and vice versa.

B. Differential distribution over the momentum
of the μ+ νμ pair

In a theoretical consideration, we can also calculate the
differential distribution over q234 ¼ ðk3 þ k4Þ2 (momentum
of the μþν pair). These distributions are shown in Fig. 4.
Obviously, the mixed term may be neglected in the full
range of q234.

C. Differential distribution over the momentum
of the μ+ μ+ pair

An interesting observable that can be readily measured
experimentally is the differential distribution over the
momentum of the μþμþ pair. Unlike the μþμ− distributions,
one has only one pair of same-charge leptons in each event.
The process is described by the same two diagrams in Fig. 2
but one has to calculate the distribution over the variable
q213 ¼ ðk1 þ k3Þ2. The contributions dBaaðq213Þ and
dBbbðq213Þ are equal to each other and coincide with the

(a) (b) (c)

FIG. 3. Differential distributions in units of 10−9: (a) dBaaðq212Þ at 0 < q212ðGeV2Þ < 2; (b) dBabðq212Þ vs dBbbðq212Þ at
0 < q212ðGeV2Þ < 2; (c) dBbbðq212Þ in the full range 4m2

μ < q212 < ðMB −mμÞ2.
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FIG. 4. Differential distributions in the full range m2
μ < q234 < ðMB − 2mμÞ2 (in units of 10−9): (a) dBaaðq234Þ, (b) dBabðq234Þ, and

(c) dBbbðq234Þ.
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distribution dBbbðq212Þ discussed above. Obviously, the
mixed dBabðq213Þ term can be safely neglected similar to
the case of the distribution in the lþl− momentum q212
considered above: (i) the integral

R
dBbbðq213Þdq213 com-

prises only 1% of
R
dBaaðq213Þdq213 ¼

R
dBbbðq213Þdq213;

(ii) the distribution dBabðq213Þ contains no resonances and is
therefore smeared over the full kinematical q213 range as a
small addition to dBaaðq213Þ ¼ dBbbðq213Þ at the level of
1%. Figure 5 shows our predictions for dBðq213Þ.

D. Branching ratio of the B+ → μ+ μ− μ+ ν̄μ decay

Table I presents our numerical results for the total
branching ratio of the Bþ → μþμ−μþν̄μ decay and the
separate contributions coming from jMaj2, jMbj2 and the
interference term 2 × ReðMaM�

bÞ. We use the shorthand
notations

Baa ¼
τB
2MB

Z
dΦjMaj2; Bbb ¼

τB
2MB

Z
dΦjMbj2;

Bab ¼
τB
2MB

Z
dΦ2ReðMaM�

bÞ; ð3:2Þ

Btot ¼
1

2
ðBaa þ Bbb − BabÞ; ð3:3Þ

where the phase-space measure is given by Eqs. (A12) and
(A13). One can see that the contribution of the interference
term 2 × ReðMaM�

bÞ is negative and 2 orders of magnitude
less than the contributions of jMaj2 and jMbj2. Thus, the
interference term may be neglected. This is very good news
as the calculation of the interference term is the most time-
consuming part of the full calculation. We also provide the
Bexp: cut
tot which is calculated making use of the LHCb [5]

event selection criterion: in each event, one can form two
μþμ− pairs; the events are selected on the basis of the
criterion that the lowest of the two μþμ− mass combinations
should be less than 0.98 GeV. In our calculation this
corresponds to restricting the phase-space integration by
the condition

minfðk1 þ k2Þ2; ðk3 þ k2Þ2g ≤ 0.96 GeV2: ð3:4Þ

IV. DISCUSSION AND CONCLUSIONS

Making use of the model for the form factors of Ref. [1],
we performed a detailed analysis of the exchange diagrams
and interference effects that appear in the case with
identical leptons in the final state. We calculated the
differential distributions in various variables, namely, q212
(the square of the invariant mass of one of the μþμ− pairs;
Fig. 3), q234 (the square of the invariant mass of one of the
μþνμ pairs; Fig. 5), and q213 (the square of the invariant mass
of the μþμþ pair; Fig. 4). The latter differential distribution
may be readily measured experimentally.
Our findings may be summarized as follows:
(i) For the differential distribution in q212, dBaa has a

sharp resonance structure in the region of ρ and ω
resonances. The distribution of dBbb spreads over the
full range of q212 and exhibits no resonance structure.
Nevertheless, the integrated differential ratesBaa and
Bbb are equal to each other. The interference term
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(a) (b)

FIG. 5. Differential distribution (in units of 10−9) dBðq213Þ over the momentum of the same-charge lepton pair μþμþ (q13 ¼ k1 þ k3):
(a) the full range 4m2

μ < q213 < ðMB −mμÞ2; (b) the range 0 < q213 < 2 GeV2.

TABLE I. Branching ratio of the Bþ → μþμ−μþν̄μ decay.
Separate contributions coming from jMaj2, jMbj2 and the
interference term 2 × ReðMaM�

bÞ are also given. The Bexp: cut
tot

is the result obtained by applying the LHCb event selection
criterion (3.4). The results correspond to λB ¼ 0.65.

Mode 1
2
ðBaaþBbbÞ 1

2
Bab Btot Bexp: cut

tot

μþμ−μþν̄μ 2.80×10−8 −2.26 × 10−10 2.82×10−8 2.73×10−8
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dBab contributes at less than the 1% level and may be
safely neglected. Notably, the distribution dBðq212Þ is
fully determined by the resonances in all regions of
q212: in the region 0 < q212 < 1 GeV2 via dBaa, and in
the region 1 GeV2 < q212 via dBbb. Consequently,
the perturbative tail of the form factors at q212 >
1–2 GeV2 does not show up in the differential
distributions for identical leptons in the final state
at all. Thismakes an essential differencewith the case
of nonidentical leptons, where the region q212 ≫
1 GeV2 is determined by the pQCD behavior of
the form factors.

(ii) The differential distribution over the momentum of
the μþνμ pair, q234, has an interesting shape, different
for dBaaðq234Þ and dBbbðq234Þ, and a numerically
negligible interference term dBabðq234Þ. This differ-
ential distribution is rather interesting theoretically
but is unlikely to be experimentally measurable.

(iii) The differential distribution in q213, the square of the
invariant mass of the μþμþ pair, has a relatively flat
nonresonant structure in the full range of q213. The
contributions of the Ma and Mb diagrams are equal
to each other, dBaaðq213Þ ¼ dBbbðq213Þ. The interfer-
ence term dBabðq213Þ is smeared over the full q213
region as a minor positive addition at the level of less
than 1% and may be safely neglected.

(iv) The good news is that the interference term between
the direct diagramMa and the exchangeddiagramMb
provides a positive contribution at the level of less
than 1% to the differential distribution in all regions
of the kinematical variables and thus can be safely
neglected. This greatly simplifies the calculation
procedure as the interference AB term represents
the most time-consuming part of the calculations.

(v) For BðB → μþμ−μþνμÞ, taking into account all
uncertainties, we confirm our result of Ref. [1]:

BrðBþ → μþμ−μþν̄μÞ
¼ ð3.02þ0.45

−0.25 jλb � 0.62jweak ffsÞ10−8: ð4:1Þ

Applying the kinematical selection rule for the μþμ−
pairs (3.4) (as done by the LHCb Collaboration [5])
leads to a small reduction at the level of 3% of our
theoretical result (4.1).

In summary, we reinforce our previous finding that our
theoretical estimate is only marginally compatible with
the upper limits obtained by the LHCb Collaboration
[5], BrðBþ → μþμ−μþν̄μÞ ≤ 1.6 × 10−8.
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APPENDIX: KINEMATICS OF THE B DECAY
WITH FOUR LEPTONS IN THE FINAL STATE

We consider the reaction

BþðpÞ → l0þðk3Þ þ ν̄l0 ðk4Þ þ lþðk1Þ þ l−ðk2Þ: ðA1Þ

The two planes of the final particles are shown in Fig. 6. The
decay amplitude is described by five kinematical variables:
(1) q234 ≡ ðk3 þ k4Þ2 is the l0þνl0 invariant mass.
(2) q212 ≡ ðk1 þ k2Þ2 is the dilepton invariant mass.
(3) θ� is the angle of the l0þ in the l0þν̄l0 c.m. system

with respect to the l0þν̄l0 flight direction.
(4) θ is the angle of the lþ in the dilepton c.m. system

with respect to the lþl− flight direction.
(5) χ is the azimuthal angle between the l0þνl0 and

dilepton planes.
All particles are on their mass shell:

p2 ¼ M2
B; k23 ¼ m2

3 ≡m2
l0 ;

k24 ¼ m2
4 ≡m2

νl0 ¼ 0; k21 ¼ k22 ≡m2
l: ðA2Þ

We also introduce the mass notations for the momenta
squared: m12 ≡

ffiffiffiffiffiffiffi
q212

p
and m34 ≡

ffiffiffiffiffiffiffi
q234

p
.

The boosted 4-momenta from the lþl− c.m. system to
the B-meson rest frame are written as

qμ12 ¼ ðE12; 0; 0; jkjÞ; ðA3Þ

kμ1 ¼
1

2
ðE12 þ vjkj cos θ;þvm12 sin θ cos χ;

þ vm12 sin θ sin χ; jkj þ vE12 cos θÞ; ðA4Þ

kμ2 ¼
1

2
ðE12 − vjkj cos θ;−vm12 sin θ cos χ;

− vm12 sin θ sin χ; jkj − vE12 cos θÞ: ðA5Þ

FIG. 6. Definition of the angles θ�, θ, and χ in the decay of
Bþ → l0þ þ ν̄l0 þ lþ þ l−.
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Here v¼λðq212;m2
l ;m

2
l Þ=q412¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4m2

l =q
2
12

q
[λða; b; cÞ≡

ða − b − cÞ2 − 4bc] and

jkj ¼ λ1=2ðM2
B; q

2
34; q

2
12Þ

2MB
; E12 ¼

M2
B − q223 þ q212

2MB
;

E23 ¼
M2

B þ q223 − q212
2MB

; E12 þ E23 ¼ MB: ðA6Þ

The boosted momenta from the l0νl0 c.m. system to the
B-meson rest frame read

qμ34 ¼ ðE34; 0; 0;−jkjÞ; ðA7Þ

kμ3 ¼
1

E34

ðE34E3 þ jkjjk3j cos θ�;þE34jk3j sin θ�; 0;

− E3jkj − E34jk3j cos θ�Þ; ðA8Þ

kμ4 ¼
1

E34

ðE34E4 − jkjjk3j cos θ�;−E34jk3j sin θ�; 0;

− E4jkj þ E34jk3j cos θ�Þ; ðA9Þ

where

jk3j ¼
λ1=2ðq234; m2

3; m
2
4Þ

2m34

; E3 ¼
q234 þm2

3 −m2
4

2m34

;

E4 ¼
q234 −m2

3 þm2
4

2m34

; E3 þ E4 ¼ m34: ðA10Þ

The differential decay rate is given by

dΓðB → l0νl0lþl−Þ ¼ 1

2m1

jMðk1;…; k4Þj2dΦ; ðA11Þ

dΦ¼ 1

ð2πÞ8 δ
ð4Þðp1−k3−k4−k1−k2Þ

d3k⃗3
2k03

d3k⃗4
2k04

d3k⃗1
2k01

d3k⃗2
2k02

;

ðA12Þ

where k0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ k⃗2i

q
for (i ¼ 1, 2) and k0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k⃗2i

q
for (i ¼ 3, 4).
The integration over the phase space may be reduced to

the integration over the two kinematical variables k2 and q2

and three angles θ�, θ, and χ. Then, the differential phase
volume in Eq. (A12) is given by

dΦ ¼ v
ð4πÞ6

jkj
MB

jk3j
E34

dq122dq234d cos θ
�d cos θdχ

0 ≤ θ�; θ ≤ π; 0 ≤ χ ≤ 2π: ðA13Þ

The kinematical constraints on the variables q212 and q234
come from the positivity of the λ functions λðq234; m2

l0 ; 0Þ,
λðq212; m2

l; m
2
lÞ, and λðM2

B; q
2
12; q

2
34Þ and are

4m2
l ≤ q212; m2

l0 ≤ q234;
ffiffiffiffiffiffiffi
q212

q
þ

ffiffiffiffiffiffiffi
q234

q
≤ M2

B: ðA14Þ

To calculate the single differential distribution in q212 or q
2
34,

we have the following integration limits:

dq234dq
2
12∶ m2

l0 ≤ q234 ≤ ðMB − 2mlÞ2;
4m2

l ≤ q212 ≤
	
MB −

ffiffiffiffiffiffiffi
q234

q 

2
; ðA15Þ

dq212dq
2
34∶ 4m2

l ≤ q212 ≤ ðMB −ml0 Þ2;
m2

l0 ≤ q234 ≤
	
MB −

ffiffiffiffiffiffiffi
q212

q 

2
: ðA16Þ
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