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Nonlinear corrections to the single differential cross section for neutral
current e " p scattering in the NLO approximation
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We present the effects of nonlinear corrections to the single differential cross section do/dQ? and the
reduced cross section o, (x, Q%) for the neutral current e~ p scattering at the leading order and the next-to-
leading order (NLO) approximations in perturbative quantum chromodynamics. Technically, based on the
double Laplace transform method, we first derive the effects of the nonlinear corrections to the proton
structure functions F,(x, Q%) and F (x, Q%) and consequently obtain the corresponding single differential
and reduced cross sections. Our results clearly indicate the consistency of the nonlinear behavior of the
quark and gluon distributions at low x values. Our numerical results (obtained in a range of the virtuality
8.5 < 0% < 5000 GeV? and the Bjorken scale 107> < x < 1) show that the effects of these nonlinear
corrections to the proton structure functions are more noticeable at x < 0.001 and, to some extent, control
the incremental trend of these functions at low x values. Moreover, a comparison of our numerical results of
the single differential and reduced cross sections at the NLO approximations with those of HI1
Collaboration data shows that the nonlinear corrections increase the accuracy of calculations rather than

the linear calculations at low to moderate Q2 values for low x values.

DOI: 10.1103/PhysRevD.105.094037

I. INTRODUCTION

The measurements of inclusive deep inelastic scattering
are important and fundamental to understanding the sub-
structure of the proton. Within the framework of perturba-
tive quantum chromodynamics (pQCD), the parton
distribution functions (PDFs) describe the substructure of
the proton. These functions at a starting scale cannot be
predicted by this framework and must be determined by fits
to data using ad hoc parametrizations [1]. But, pQCD can
provide an opportunity to evolve the PDFs to other scales.
By convoluting the PDFs with the fundamental pointlike
scattering cross sections for partons, one can therefore
calculate cross sections for various processes.

In recent years, several groups such as MSTW/MMHT
[2-5], JR [6], CTEQ/CT [7,8], ABM [9-11], and NNPDF
[12,13] introduced the PDF sets by using the HERA data
and fixed-target and hadron-collider data. Moreover, in
Ref. [14], the PDFs have been presented by using a wide
variety of Large Hadron Collider (LHC) data and also the
combined HERA I + II deep inelastic scattering dataset. In
an investigation of ultra-high-energy processes, in
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Refs. [15,16], the authors have proposed new parametriza-
tions of the proton structure functions by considering the
Froissart predictions [17]. The most important benefits of
studying these processes are that they confirm HERA
investigations and also provide criteria for further inves-
tigations of QCD at the Large Hadron Electron Collider
(LHeC) in a high-energy limit. The kinematic extension of
the LHeC is such that it will allow us to check out the
nonlinear dynamics at low x.

HERA (from 1992 until 2015) combined the neutral
current (NC) and charged current (CC) interactions data
for 0.045 < Q% < 50000 GeV? and 6 x 1077 < x < 0.65
at values of the inelasticity 0.005 <y <0.95 [1]. It
operated with an electron beam energy of £, = 27.5 GeV.
For most of HERA operations, the proton beam energy
was E, =920 GeV and the highest center-of-mass
energy in deep inelastic scattering of electrons on
protons was +/s =320 GeV. In Ref. [18], HERA
combined the NC and CC differential cross sections,
do/dQ?, for e*p with predictions from HERAPDF2.0
next-to-leading order (NLO). Furthermore, HERA col-
lected e*p collision data through the H1 [19] detector,
which allowed a measurement of structure functions
at x values 6.5x107* <x<0.65 and at Q? values
35 < 0% <800 GeV2. The differential cross section in
terms of the structure function F,(x, Q%) and the longi-
tudinal structure function F (x, Q?) at low values of Q? is
defined as
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where y = Q?/(xs) is the inelasticity variable in which s
and Q? are the center-of-mass energy squared and the
photon virtuality, respectively, and Y, = 1+ (1 —y)2. In
the quark-parton model, F,(x, Q%) is proportional to the
sum of the quark and antiquark distributions. On the other
hand, the longitudinal structure function F (x, Q%) is
directly sensitive to the gluon density and is nonzero
and depends on the strong coupling constant «.

It is known that the pQCD evolution within the DGLAP
[20-26] formalism, at an extremely small x, predicts a strong
rise of the gluon density and causes a rather singular
behavior of the PDFs which strongly violates the unitary
bound (or the Froissart bound [17]). Consequently, this
strong rise increases the proton structure functions in the
pQCD. As is well known, the gluon density cannot grow
forever, due to this fact that the gluon density constitutes
only a limited share of the proton structure functions. Based
on this bound, the hadronic total cross section cannot grow
faster than o = ;- (In )%, where s is the square of the center

of mass energy and m,, is the scale of the strong force. It is
believed that, at high energies, gluon recombination occurs,
and it can be considered as the mechanism responsible for a
possible saturation of gluon densities at small x as well as
unitarization of the physical cross sections. By taking into
account the recombination processes at small x in a dense
system, the growth of the quark and gluon densities can be
tamed by screening effects. Accordingly, these effects lead
to the appearance of nonlinear terms in the DGLAP
evolution equations. Based on a detailed study at the small
x region, Gribov, Levin, Ryskin, Mueller, and Qiu (GLR-
MQ) [27-29] argued that the physical processes of inter-
action and recombination of partons are important in the
parton cascade at a large value of the parton density. This
study leads to the creation of new nonlinear evolution
equations, which are the so-called GLR-MQ equations:

axCI(x’ Q2) _ axCI<xv Qz) _ a%}/l 2712
0ln Q2 ~ 9ln Q2 DGLAP RZQ2 [xg(x, Q )] ' (2)
a'xg(‘x7 QZ)_a'xg(x7 QZ) _ a?yZ / [ ( Qz)] d_
Oln Q2 B 6an2 DGLAP RZQ2 X y
3

)

where R is the correlation radius between two interacting

gluons, y; = % and y, = % for N. =3, and )(::—;
[p(=0.01) being the boundary condition that the gluon

distribution joints smoothly onto the unshadowed region]. In
Oxq(x,0° Oxg(x.0%)

these equations, TQ2|DGLAP and =75 [pgLap are

obtained from the standard DGLAP evolution equations.
The correlation radius R determines the size of the nonlinear
terms. Its value depends on how the gluon ladders are
coupled to the nucleon or on how the gluons are distributed
within the nucleon. On this basis, the value of R is
approximately equal to 5 GeV~! if the gluons are populated
across the proton, and is equal to 2 GeV~! if the gluons have
a hotspotlike structure.

In Ref. [30], the nonlinear corrections to the distribution
functions at low values of x and Q? have been presented by
using the parametrizations of F,(x, Q%) and consequently
determined the longitudinal structure function F; (x, Q?).
Indeed, the authors have used a direct method to extract the
nonlinear corrections to the ratio of structure functions and
to the reduced cross section in the next-to-next-to-leading
order (NNLO) approximation. In Ref. [31], the results of
the analytical and numerical analysis of the nonlinear
Balitsky-Kovchegov equation have been discussed. One
of the important outcomes of this study is the existence of
the saturation scale Q,(x) which is a characteristic scale at
which the parton recombination effects become important.
By considering the nonlinear corrections and using Laplace
transform techniques, the authors, in Ref. [32], have
described the determination of the longitudinal structure
function F; (x, Q%) at the NLO and NNLO approximations,
based on the parametrization of F,(x, Q%) and its derivative
with respect to d In Q? at low x values. Note that, to perform
the calculations, they have used the approximate splitting
functions. In Refs. [33,34], the authors have investigated
the phenomenological implications of the parton distribu-
tion function sets, with a small x resummation, to obtain the
longitudinal structure function F;(x,Q?) at HERA.
Reference [35] has been devoted to investigate the solutions
of the nonlinear evolution equation at the small x region.
By using the Laplace transform technique, the authors, in
Ref. [36], have solved the QCD nonlinear Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (NLDGLAP) and GLR-
MQ evolution equations at small x and determined the
effects of the first nonlinear corrections to the gluon
distribution and then obtained the behavior of the gluon
distribution. Also, they have shown that the strong rise,
corresponding to the linear QCD evolution equations at the
small x region, can be tamed by screening effects.

In this paper, we intend to investigate the nonlinear
corrections to the proton structure functions F,(x, Q?) and
F; (x, Q%) and then to the single differential cross section
do/dQ? and the reduced cross section o,. Indeed, we solve
the linear DGLAP equations (at the LO and NLO approx-
imations) using the double Laplace transform techniques
and then insert the obtained distribution functions in
Egs. (2) and (3). By doing this, we determine the effects
of the nonlinear corrections to the distribution functions.
Then, by using Altarelli-Martinelli (AM) equations and
considering the nonlinear corrections, we obtain the proton
structure functions F,(x, Q%) and F,(x, Q%). Based on
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these solutions and Eq. (1), we gain the single differential
cross section do/dQ’ and the reduced cross section
o.(x, 0?) at the LO and NLO approximations.

The rest of the present paper is organized as follows: In
Sec. II, at the LO and NLO approximations, we present the
solutions to the linear DGLAP evolution equations by
applying the double Laplace transform method and
then obtain the PDFs. In this section, by considering the
GLR-MQ and AM equations, we obtain the nonlinear
corrections to the PDFs and the proton structure functions
F»(x, Q%) and F; (x, Q?). In Sec. III, our numerical results
of these corrections to the proton structure functions, the
single differential cross section do/dQ?, and the reduced
cross section o, (x, Q%) are presented in the interval of 8.5 <
Q? <5000 GeV? and the Bjorken scale 1075 <x <1,
and then are compared with the available H1 data
[1,18,19,37], CT18 [14], and the results of Refs. [30,38—
40]. In Sec. IV, we conclude our presentation. Appendix
includes the kernels and their transformations in the
Laplace s space and u space.

II. METHOD

The proton structure functions F,(x, 0%) and F, (x, Q?)
are directly related to the singlet and gluon distributions, and
their behavior can be predicted by AM equations [41]. A
formula for the proton structure functions as a convolution
integral over the singlet F,(x, Q%) and gluon G(x, Q?)
distribution functions takes the following form:

Fk(x’ Q2> = Ck,ns(xv Q2) ® F,”(X, Q2)

+(e?)[Cry(x,0*) ® F,(x,0?)
+Ck,g(x,Q2)®G(x,Q2)], k=2 and L, (4)

where Cy ;’s (j = ns, s, and g) are the coefficient functions

2\ 1 ny 2
> = n; 2ak=1Cq;-

The linear coupled DGLAP integral-differential equations
are as follows [15,16,21-25]:

(given explicitly in the Appendix) and (e

OF,(x,0%)  a,(0

e A L L
+2npPyy(x, 0%) ® G(x, 0)], (5)

9G(x,0%)  ay(Q

8§zQQ2 ) == ég : [Pyg(x, Q) ® F(x, Q%)

+ Pyy(x, 0%) ® G(x. 0%)]. (6)
OF,,(x, Q? (02

8‘11(‘1ng )¢ gf 'p nsqq(X, 0%) ® Foe(x, %), (7)

where a; is the running strong coupling constant, F,,(x, Q%)
is the nonsinglet distribution function, and P, (x, Q*)’s are
the Altarelli-Parisi splitting functions that have the follow-
ing form:

(0%

s P @)+ (®)

Pay(x, 0%) = P (x) +

Within the MS scheme, the standard representation of the
QCD running coupling constant a, in the LO and NLO
approximations have the forms

() =Gl ©)
4 Int

where fy = (11 —2/3n;), i = (102 - 38/3n), and 1 =
In(Q?/A?) in which A is the QCD cutoff parameter. Here, A
is considered 0.192 and 0.146 (for ny = 4 and ny = 5) and
als0 0.269 and 0.184 (for ny = 4 and ny = 5) at the LO and
NLO approximations, respectively.

In Egs. (4)-(7), the symbol ® represents the con-
volution integral, which is defined as f(x) ® h(x) =
JLF(y)h(x/y)dy/y. To solve these equations, we use here
the Laplace transform method. For this aim, we insert the

v), y =exp(-w), and 7(Q% 0f) =

g o asl (0/2)d (0" {10 the DGLAP equations (5)~(7)

as follows:

variables x = exp(—

o809 _2f

ot / i)qq(”_W’T)Fs(W,T)dw

/ 20V —=w. )G (w, ‘L')de|, (11)

U[ (v = w.D)F(w.7)dw
P,

(v =w,7)G(w, T)de (12)

OF (v,7) 2 [v .
s\ %0 2 [ p _
S = [ o

anr)

N :\l\)

w)F . (w,t)dw.  (13)

In the above equations (v, 7) = H(exp(—v),7) and n is an
integer.

The convolution theorem for Laplace transforms allows
us to rewrite the right-hand sides of Eqgs. (11)-(13) by
considering the fact that the Laplace transform of the
convolution factors is simply the ordinary product of the
Laplace transform of the factors. Using the Laplace trans-
form method, we can turn the convolution equations at the
LO and NLO approximations from » space and 7 space into
s space and u space, respectively, and then solve them

straightforwardly in s space and u space as
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FO(s.u) = K (s.u) £0(5.0) + k) (s.u)gD (5,0),  (14)

g (s.u) = K (s, 1) £ (5.0) + Ky (5,10) VgD (5,0), (15)

Fid(5,2) = KJ) g (5.) i (5.0),

where f(s,0), ¢(s,0), and f,(s,0) are, respectively,
the singlet, gluon, and nonsinglet distribution functions
at initial scale 7 = 0 (i.e., Q(z)). Note that, in Egs. (14)—(16),
(i) The kernels k;;(s, u) at the LO and NLO approximations
are given in the Appendix. (i) L[L[H(v,7),,5],7,u] =
h(s,u). (iii) To simplify calculations at the NLO approxi-
mation, we use an appropriate approximation for a, which
has been utilized in Refs. [42-44].

The main aim of this paper is to find a solution for the
nonlinear DGLAP evolution equations in the saturation region,
and this can be done by using Egs. (2) and (3). The latter
equations slow down the Q2 evolution of quarks and gluons
rather than the standard DGLAP behavior; therefore, by using
them, one can, respectively, write the singlet F(x, Q) and
gluon G(x, Q?) distribution functions as follows:

i=LOorNLO, (16)

OF ((x,0%)  OF(x,0%) B 2npaly .
Oln Q2 ~ 9ln Q2 DGLAP RZQ2 [G(x, Q >] '
(17)
aG(x’ Qz) _ aG(x’ QZ) 0‘%}’2 ! 2 2@
8lﬂQ2 B 8an2 DGLAP_R2Q2/)( [G(y,Q )] y
(18)

Now, by using the variable changes x = exp(—v) and
y =exp(—w) in Eq. (17), by using x = exp(—v + In(p))
and y = exp(—w) in Eq. (18), and by using again the relation

(0%, 03) = f a,(0?)d In (07 ) we rewrite, respec-
tively, Egs. (17) and (18) as the following forms;

OF (v,2)  OF(v,7)

Or 0z

— eGP (19)
DGLAP

OG(v —In(p),7) _ G (v —1n(p),7)
ot or

DGLAP

—a,e """ 16 W, T 2 dw.
o [N Gon P v, (20)

It should be stated that, in the above equations, we have used
2ngdnasy, T and %2 —
R2 Q2 - RZ Q2 -
a,exp~217 (the errors of these approximations are given in
Table I). Therefore, we can turn the above equations from v
space and 7 space into s space and u space, respectively. In the v
space, it has been defined L[l [G(w,z)]dw,v,s] =

LL[[G(v,7)]*, v, 5] to be less than 1 [G(s,7)]* [36]. On this

two suitable approximations =aexp™”

basis, we obtain the Laplace transform of Egs. (19) and (20) as
follows:

uf (5. u) = £,(5.0) = (ufy(s.1) = £,(5.0)) lpcrap
—ay[gls.u+ by)P (1)

ug(s. ) = 9(5.0) = (ug(s.u) = g(s.0))Iparar
= ot ut )P (22)

Now, by inserting Egs. (14) and (15) into Egs. (21) and (22),
we can write, respectively, the singlet and gluon distribution
functions at the LO and NLO approximations as follows:

s u) = K (s, ) £9 () + K5 (s, ) gy ()
=L g (s, u+ by)P, (23)
u

90 (s.u) = KU (s,0) £ (5) + ki (5. 1) gl (5)

D 140 (s.u+by)2.  i=LO or NLO.

sp~u
(24)

To obtain the distribution functions of the singlet and gluon in
Laplace space, we first solve Eq. (24) and then insert its
solution into Eq. (23). To do this, we use the fact that the value
of a, is smaller than one, so we can rewrite this equation in
terms of a power series of a,. It should be noted that, as much as
the value of n is chosen larger than one, the series converges
faster. Accordingly, one can rewrite the gluon distribution
function [Eq. (24)] as follows:

gt (s.u) = i (s) + 5 (s), (25)

& (su) = r3 £ (s) + rBat () + O () (s)

i i)2 i i)2
+ AT FIP () + g (o), (26)

and

9( V(s.u) = rgjfgo)( ) + Fé}gé))( )+ rg?fgf))(s)g((f)(s)
+ A1) + ()
+ O(fs50) + O(g0) + O(fs090) (27)

where indices 1,2, ..., j represent the number of expansion
terms and r;;’s are the coefficients in terms of s and u (given
until j =2 in the Appendix). Now, to obtain the singlet
distribution function [Eq. (23)], we insert above Eq. (27) into
Eq. (23) and then obtain the following forms:

sl (S u) = Q11>f(so)( )+ ’"21 90 (S) + r31 E())(S)gg)(s)

+ a9 (s) + a gl (s), (28)
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TABLE L.

The maximum percentage relative errors of exact and approximate values of

2ndmagy,

47ray _
nREQ% =daj exp 3

Ror = 4o eXp

—bl‘r

nd >

—bit

M2 <Q?<10GeV? 10 < Q* < M;GeV?

M3 < 0 < 100 GeV?

100 < 0% <500 GeV2 500 < 0% < 5000 GeV?

LO 5.6% 0.83% 4.4% 3.3% 6.5%
a, =78x10™ a;=14x1073 a, =28x1073 a; =9.6x1073 a, =5.7x1072
a, =3.0x1073 a, =54x1073 ay, =84 x1073 ay, =2.9x1072 ay =1.7x107"
b, = 47.69 b, = 57.74 b, = 65.37 b, =71.71 b, =91.83
NLO 5.6% 0.79% 3.8% 3.1% 6.1%
a; =73 x10™* a; =13 x1073 a; =23 x1073 a; =63 x 1073 a; = 3.6 x 1072
a, =2.7x 1073 a, = 4.9 x 1073 a, = 6.8 x 1073 a, =2.1x 1072 a, = 1.1 x 107!
b, = 55.37 b, = 66.66 b, = 74.58 b, = 87.73 by, = 102.7
£ (s u) = g1 (s) + g (5) + r 1 ()98 () + a3 r97(s) + gl () + ala £ (5) + P g (s)
+ i £0(8)g0 () + as3 gy (5) + gl 10 ()96 2 (9) + ain 6 (5) + a1 (9)gp (5)
+ainfio ()95 (5) + q\hay " (5). (29)
[
and £(5.7) = el (5. 0) fi (5.7) + (el (5,201 (5.7)
i i) A i (i) (i)
£ () = £ (5) + a4 gt () + a5 110 ()98 (5) ey (5. 7)g" (5. 7) (31)
)2
+ a1 () + 4595 (5)
+ O(fs0) + O(g90) + O(f5090)s (30) where the kernels ¢; ; are given in the Appendix. To solve

where g;;’s are the coefficients in terms of s and u (given
until j = 2 in the Appendix). Now by applying the variable
changes x = exp(—v) and y = exp(—w) in Eq. (4), we can
take the Laplace transform of this equation. So, this
equation in s space reads as follows:

|

(1) (1)

(i)

Eq. (31), we have to return Egs. (27) and (30) to the usual
space 7. For this purpose, we use the Laplace inverse
transform. By inserting the inverse of Egs. (27) and (30)
into Eq. (31) and using Eq. (16), one can obtain the
nonlinear corrections to the proton structure functions in s
space as follows:

(i)

i i i i)2
£ (s0t) = wi (5.0 f00 () + (5. 2) £ () + widi(s. 1) gy (5) + wiS; (5. ) £ ()98 (5) + will (5. 2) £ ()
+ Wl (5,095 (5) + O(f10) + Olgo) + O(fr090)]. i =LOorNLO and k=2,L, (32)
[
where the kernel w;;’s are in which lei}(s,r) = ﬁ_l[qgj} (s,u),u,7] and REZ}(S,T) =

(s,u), u,7]. Now, by applying the inverse Laplace
transform for Eq. (32), the proton structure functions
F»(x,0% and F;(x,Q%) in the usual x space can be

(x.7) ® G (s) + W}3(x,7) ® HY ()
i=12 and k=2L, (35)

i _ i)2
(5),5 0]yt e Ho (6) = LA ()80 0]y anr )

j i ; —17,.(0)
Wins(5:7) = o (5. Dk (5.7), L
wini(5.7) = () (el (5.0} (s.7) + e (s. DR} (5.7)), 2l
h:1,2,3,..., (34)
!
Fl(clj)(x’ 7) = Wi, (x.7) ® Fii(x) + [W,(fl)j(x,f) ® FU(x) + W§<i2>j
+ Wl(<2j<x’1> ® H(zl)(x) + W,Els)j(x, T)H(;)(x) + -],
where Wi (x,7) =L~ [ (5.7).5. 0] [y g HY (6) = L7 10 ()96
and Hgl)( ) L= [ (S) S, U”@ =In(1/x)"
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III. NUMERICAL RESULTS

In this section, we present our numerical results of the
nonlinear corrections to the proton structure functions
Fy(x,0% and Fy(x,Q%), the reduced cross section

4.0
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20 |

15+

FL(xQ ?)

1.0

===-LO (Linear) Q?=8.5GeV 2
35r££710 (Nonlinear)
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35

3.0 |

FL(x,QP)

Q@=300Ge\?

-1.0
1E-5

1E4 0.001 0.01 0.1 1
X

o.(x,0%), and the differential cross section do/dQ*
obtained by the DGLAP evolution, AM, and GLR-MQ
equations. In order to present more detailed discussions on
our findings, the numerical results for the proton structure

4.0
Q*=15GeV
30 F
25 |
20

15
3
10 7)’)

%p,
05 Al pg
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2.0 ;(
1.5 —%’
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X

FIG. 1. The nonlinear longitudinal structure function Fy (x, Qz) at the LO (blue dashed curves) and NLO (blue solid curves)
approximations in 0% = 8.5, 15, 35, 90, 300, and 800 GeV2. The results have been compared with the HI Collaboration data [19].
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FIG.2. The nonlinear longitudinal structure function F; (x, Q%)
at the LO and NLO approximations averaged over x at different
Q2. The nonlinear results at the LO (blue dashed curves) and
NLO (blue solid curves) approximations have been compared
with the H1 Collaboration data [19], the parametrization models
of PM (dot curves) [38,39], NNLO-BR [30] (red dashed curves),
and CT18 [14] (dashed dot curves) at the NNLO approximation.

functions F,(x, Q%) and F (x, Q) are compared with H1
Collaboration data [19], the parametrization model of PDFs
[38,39], the results of NNLO-BR [30], and the results of
CT18 [14] at the NNLO approximations (where the latter
have been obtained using a wide variety of high-precision
Large Hadron Collider data). Furthermore, the results of the
reduced cross section o,(x, Q%) and the differential cross
section do/dQ? are compared with the H1 data [1,18,37].
To extract numerical results, we use the published
MSTW2008 [4] initial starting functions Fy(x), Go(x),
and F,(x) at Q3 =1 GeV? and also consider n = 500
and R = 5 GeV~!. It should be noted that, in calculations,
the uncertainties are due to the PDFs at the initial scale and
the errors in Table I, which are shown as the error bars.
In Fig. 1, we present the x dependence of the longitudinal
structure function F; (x, Q%) at Q* = 8.5, 15, 35, 90, 300,
and 800 GeV? and compare it with HI Collaboration data
[19]. In this figure, blue solid and blue dashed curves are
the numerical results of the longitudinal structure function,
including the nonlinear corrections, at the NLO and LO
approximations, respectively, and black solid and black
dashed curves are the numerical results of the longitudinal
structure function, regardless of the nonlinear corrections,
at NLO and LO approximations, respectively. It is seen that
the effects of the nonlinear corrections are more noticeable
at x < 0.001. Figure 2 shows the nonlinear corrections to
the longitudinal structure function F; (x, Q%) based on the
double Laplace transform method at the LO and NLO
approximations. In this figure, the results of the nonlinear
corrections at 8.5 < Q* < 800 GeV? are compared with

the H1 Collaboration data [19], the parametrization models
of PM [38,39], NNLO-BR [30], and also CT18 [14] at the
NNLO approximation (the CTI18 results have been
obtained at a fixed value of the invariant mass W
as W =230 GeV).

In Fig. 3, the nonlinear corrections to the proton structure
function F,(x, Q?) at the LO and NLO approximations are
presented at Q% = 8.5, 15, 35, 90, 300, and 800 GeV?2. In
this figure, our numerical results are compared with the H1
Collaboration data [19] and the linear results. Furthermore,
in Fig. 4, the proton structure function F,(x, Q?) obtained
by using the double Laplace transforms method are
compared with the results of Ref. [40] and with the H1
Collaboration data [19] at interval 8.5 < Q% < 800 GeV?
for different values of x. As can be seen in this figure, the
effects of nonlinear corrections are noticeable at low x
values, and also the results are comparable with the
experimental data.

Based on Egs. (1) and (35), we show our numerical
results of the NC reduced cross section ¢, at the NLO
approximation in 0? = 8.5, 15, 35, 90, 300, 800, 3000, and
5000 GeV? in Fig. 5. By comparing our results at the NLO
approximation with the H1 data, one can conclude that the
nonlinear corrections improve the results of the reduced
cross section at low to moderate Q2 values for low x values
and have almost no effect on the results of the reduced cross
section at high x values. We note again that the GLR-MQ
equations have been obtained from the interaction and
recombination of the partons at low x values, as shown in
Fig. 5. In Fig. 6, a comparison between our numerical
results and the combined HERA I+ II NC reduced cross
sections ¢,(x, Q%) [18] (with center of mass energy /s =
319 GeV and for e~ p at high Q% and low Q? data) is shown
for various fixed x as a function of Q? values.

Figure 7 shows the Q? dependence of the single differ-
ential cross section do/dQ? from the combined HERA I +
II NC e p data [18]. The steep decrease of the differential
cross section with increasing Q2 is due to the dominating
photon exchange cross section which is proportional to
1/Q*. In this figure, we present the effects of the nonlinear
corrections to the differential cross section do/dQ>.
Also in this figure, the ratio of the H1 Collaboration data
[18] to our numerical results is shown in the interval
200 < Q2 <5000 GeV?. At the bottom of this figure, we
show the ratio of the nonlinear to linear results of the
differential cross section. As can be deduced, the effects of
the nonlinear corrections to this differential cross section at
low Q? are at least 10%, which can be a very important
result of the nonlinear corrections.

IV. SUMMARY AND CONCLUSION

We have presented the effects of the nonlinear correc-
tions to the proton structure functions F(x, Q%),
F.(x,Q?), the single differential cross section do/dQ?,
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FIG. 3. The nonlinear structure function F,(x, QZ) at the LO (blue dashed curves) and NLO (blue solid curves) approximations at
0% = 8.5, 15, 35, 90, 300, and 800 GeV?2. These results have been compared with the H1 Collaboration data [19] and the linear results.

and the NC reduced cross section o,(x, Q%) by using
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equa-
tions, Altarelli-Martinelli equation, and Gribov-Levin-
Ryskin-Mueller equations at the LO and NLO

approximations. Indeed, there are various methods to solve
the GLR-MQ and AM equations, but in this paper, we have
shown that adopting the double Laplace transform method
is a suitable and alternative scheme to solve those
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FIG. 4. The scale evolution of the proton structure function
F,(x, Q%) with the nonlinear corrections for fixed values of x
(with constants added to separate the curves). The dashed and
solid curves, respectively, show our numerical results at the LO
and NLO approximations and the dashed dot curves are the
results of EHKIJS [40]. The data are from H1 [19] and the error
bars are statistical.

equations. The obtained equations are general and require
only a knowledge of the parton distribution functions
F(x), G(x), and F,(x) at the starting value Q3. Our
numerical results have showed that the transition of the
proton structure functions from the linear to the nonlinear
behavior is considerable and can control the incremental
trend of them at low x values. The numerical results of the
proton structure functions have been compared with the H1

(M2
cn 0 = e
(D2
o =Pl
(12
o ' (Q
ol 0% = * &)

and at the NLO approximation are as follows:

(2) /2 22
P, (x.0%) =MCM2 + (as (2 )>2x {%XX In(1 -

4 9

T

Collaboration data, the results from the CTI18 and the
NNLO-BR parametrization models at the NLO and NNLO
approximations, and the results of EHKJS. Then we have
studied the effects of adding the nonlinear corrections to the
reduced cross section at the LO and NLO approximations at
various Q? values. By comparing the results obtained for
the reduced cross section with the HERA combined data, it
can be concluded that these corrections improve the results
at low to moderate Q2 values for low x values. Furthermore,
the numerical results of the single differential cross section
have been compared with the H1 Collaboration data in a
wide range of Q? values. This comparison has showed that
the nonlinear corrections have a significant effect on the
differential cross section and enhance it at low and
moderate Q? values, and it also demonstrated that these
corrections have almost no effect on the differential cross
section at high Q2. All of the figures clearly show that the
extraction procedure provides correct behaviors of the
extracted proton structure functions at the LO and NLO
approximations. Finally, it should be noted that although
the NLO corrections are very small, they often allow one to
reduce the uncertainties of the predicted cross sections, as
one can see by comparing the bands in almost all of the
plots presented in the figures.
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APPENDIX: THE COEFFICIENT FUNCTIONS

The coefficients C; ; (i = 2, L and j = s, g) and Cyy,, in
Eq. (4) at the LO approximation are as follows [45]:

S (2. 0%) = 8(1 = x)x,
c\(x, 0?) = 8(1 — x)x
2,5 \7 ’

(A1)

x)2 —46.50x In(1 — x) — 84.094 In(x) In(1 — x) — 37.338

128
+89.53x 433824 + 1 In(x)(32.90 + 18.41 In(x)) — —=In(x) ~ 0.0125(x,)

16
—|—ﬁnf(6xln(l —x) —12x In(x) — 25x + 6)} .
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2)
CP(x,0%) =CP) (x, 0% + (“5 4(”Qz)> 2xnf[(15.94 —5212x)(1 = x)?In(1 = x) + (0.421 + 1.520x) In(x)?
+28.09(1 — x) In(x) — (2.370x~" = 19.27)(1 — x)3]. (A3)
)/ 2 ()2
P (x) =2 er ) 2n,22(1—x) + <“ <ﬂQ ))zxnf[(94.74 —49.20x)(1 — x) In(1 — x) + 864.8(1 — x) In(1 — x)
+ 1161x1n(1 — x) In(x) + 60.06(1 — x) In(x)? + 39.66(1 — x) In(x) — 5.333(x~! = 1)], (A4)

€4, (5,5(0%. ) = 8(1 = 2)x +xCr - (4D = 3D = (94 422)3(1 =) = 2(1 + )In(1 ~x) ~ In(x)
—4(1 = x)"'n(x) 4 6 + 4x), (AS)

P (x.7) = C (x,7), (A6)
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P (x.7) = nfxé ((2 = 4x(1 = x))(In(1 = x) = In(x)) — 2 + 16x(1 — x)), (A7)

where 7, denotes the number of active massless flavors, Cr =%, D; = [(1 —x)~'In(1 —x)],, and Dy = [(1 —x)7"]...
The coefficients k; ;(s, u) (i,j = f, g) in Egs. (14)-(16) at the LO approximation are as follows:

(1)
An(nu — @
Ky (5.0 = () nggu - 0, o2 1 (A8)
n*(=(T? = 4u?)) 4+ 20, (' — 2nu) — 4n®; 'u 4 @, 4 @,
40!
k(l)(s, u) =— ! > (A9)
I9 M
n<T2 _ (—2nu+<l;f2 +@, ))
4n(nu — CD(I))
1) f
k. /(s,u)= , (A10)
9t n*(—(T? = 4u?)) + 2@}”(<1>§” —2nu) — 4n®u + CID(I)2 + CIDS)2
40\
ko) (s, u) = — L (A11)
5 2nu+®@ . +® )
T i
)
(30
kj‘lf)ns(S, T) = exp <—nnsf>, (A12)
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where 7 =1 \/((I)}l) —o{)2 4 4@;1)(9(91), w(s) is defined by w(s) = 4 I'(s), H(y is the sth harmonic number, Cr =3,

and y is the Euler-Lagrange constant. In the above equations, the coefficients @ and ® are obtained in Refs. [46,47]. The
coefficients r(s, u) and g(s, u) in Eqs. (25)—(30) are

A= ks, A = ks, (A18)
i i i i 2ay(kyf (s, by + u))(kgg (s, by + u))
B =k, A=l ,
i)
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g = -4 gg(su’+ r (A20)
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where B = sp™*
The coefficients ¢;; (k =2,L and i = ns, s, g), which we used in Eq. (31), are
=1, V=1 M=o (A22)
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