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Next to soft corrections to Drell-Yan and Higgs boson productions
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We present a framework that resums threshold enhanced large logarithms to all orders in perturbation
theory for the production of a pair of leptons in the Drell-Yan process and of the Higgs boson in gluon
fusion as well as in bottom quark annihilation. We restrict ourselves to contributions from diagonal partonic
channels. These logarithms include the distributions ((1 — z)~'In’(1 — z)), resulting from soft plus virtual
(SV) and the logarithms In’(1 — z) from next-to-SV contributions. We use collinear factorization and
renormalization group invariance to achieve this. The former allows one to define a soft-collinear (SC)
function that encapsulates soft and collinear dynamics of the perturbative results to all orders in the strong
coupling constant. The logarithmic structure of these results is governed by universal infrared anomalous
dimensions and process-dependent functions of the Sudakov differential equation that the SC satisfies. The
solution to the differential equation is obtained by proposing an all-order ansatz in dimensional
regularization, owing to several state-of-the-art perturbative results available to third order. The z space
solutions thus obtained provide an integral representation to sum up large logarithms originating from both
soft and collinear configurations, conveniently in Mellin N space. We show that in N space, the tower of

logarithms a”/N®In*"=%(N), @ /N*In**~'=*(N) - .. for a = 0, 1 is summed to all orders in a;.
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I. INTRODUCTION

Precision studies in the context of the Large Hadron
Collider (LHC) play an important role to decipher the
experimental data to understand the physics at extremely
small length scales. The tests [1] of the Standard Model
(SM) of high energy physics at the LHC with unprec-
edented accuracy can provide indirect clues to unravel
physics beyond SM (BSM). Accurate measurements of SM
observables such as the productions of lepton pairs, vector
bosons such as photons, Zs and Ws, top quarks, and Higgs
bosons are underway. From the theory side, the predictions
for these observables are available, taking into account
various higher order quantum effects. Both in the electro-
weak sector of SM and in quantum chromodynamics
(QCD), the observables are computed in power series
expansion of their coupling constants, viz., e, ggw in SM
and g, in QCD. To name a few, the inclusive cross sections
for deep inelastic scattering (DIS) and Higgs boson
production in hadron colliders are known to third order
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in QCD, see [2,3] and [4-6] respectively and for invariant
mass distribution up to third order in QCD see [7-9], for
complete list see [8,10-28] for Higgs production in
gluon fusion and [7-9,19-21,25,29-37] for Drell-Yan
production.

The LHC is the hadronic machine, and even electroweak
induced processes get large quantum corrections resulting
from strong interaction. QCD is the theory of strong inter-
actions and provides a framework to compute these correc-
tions. The measurements and predictions from QCD have
reached the level that demands the inclusion of electroweak
effects (EW). The EW corrections to hadronic observables are
hard to compute at higher orders due to the presence of heavy
particles such as Ws, Zs, and tops in the loops. The results of
higher order quantum effects from QCD and EW theory
provide a theoretical laboratory to understand both ultraviolet
(UV) and infrared (IR) structures of the underlying quantum
field theory (QFT) and also to demonstrate the universal
structure. For IR, see [38-41] (see [42,43] for a QFT with
mixed gauge groups). This is due to certain factorization
properties of scattering amplitudes in UV and IR regions. The
consequence of the factorization is the renormalization group
(RG) invariance which demonstrates the structure of loga-
rithms of the renormalization scale pup from UV and of the
factorization scale up from IR to all orders in perturbation
theory. The renormalization scale separates the UV divergent
part from the finite part of Green’s function or on-shell
amplitudes, quantifying the arbitrariness in the finite part.
While the parameters of the renormalized version of the
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theory are functions of the renormalization scale, the physical
observables are expected to be independent of this scale. This
is the consequence of renormalization group invariance.
The anomalous dimensions of the RG equations govern
the structure of the logarithms of the renormalization scale in
the perturbation theory to all orders. As the UV sector, the
infrared sectors of both SM and QCD are also very rich.
Massless gauge fields such as photons in QED and gluons in
QCD and light matter particles at high energies give soft and
collinear divergences, collectively called IR divergences, in
scattering amplitudes. The IR divergences are shown to
factorize from on-shell amplitudes and from certain cross
sections, respectively, in a process independent way at an
arbitrary factorization scale. The resulting IR renormalization
group equations are governed by IR anomalous dimensions.
The IR renormalization group equations are peculiar in the
sense that the resulting evolution is controlled not only by
the factorization scale but also by the energy scale(s) in the
amplitude or in the scattering process. Unlike the UV
divergences that are removed by appropriate renormalization
constants, the IR divergences do not require any such
renormalization procedure as they add up to zero for infrared
safe observables thanks to the Kinoshita—I.ee—Nauenberg
(KLN) theorem [44,45]. The structure of the resulting IR
logarithms at every order in the perturbation theory is
governed by the IR anomalous dimensions. Hence, most
of the logarithms present at higher orders are due to UVand IR
divergences present at the intermediate stages of the compu-
tations. The logarithms of renormalization and factorization
scales present in the perturbative expansions often play an
important role to estimate the error that results due to the
truncation of the perturbative series. The less the dependence
is on these scales, the more the reliability of the truncated
results. Note that there are also logarithms that are functions of
physical scales or the corresponding scaling variables in the
observables. In certain kinematical regions, these logarithms
that are present at every order can be large enough to spoil the
reliability of the truncated perturbative series. Since the
structure of these logarithms at every order is controlled by
anomalous dimensions of IR renormalization group equa-
tions, they can be systematically summed up to all orders.
This procedure is called resummation. There are classic
examples in QCD. For example, the threshold logarithms

of the kind
D)= (=22). m

are present in the perturbative results of the inclusive cross
section in deep inelastic scattering and of the invariant mass
distribution of a pair of leptons in the Drell-Yan (DY)
process. Here the subscript + means that D;(z) is a plus
distribution. For DIS, the scaling variable is z = —¢*/2p.q
and z = M%ﬂ, /§ for DY. The momentum transfer from
lepton to parton with momentum p in DIS is denoted by ¢

and the invariants § and M 12+ - are the center of mass energy
of incoming partons and the invariant mass of final state
leptons in DY. The distributions D;(z) are often called
threshold logarithms as they dominate in the threshold
region, namely z approaches 1. In this limit, the entire
energy of the incoming particles in the scattering event
goes into producing a set of hard particles along with an
infinite number of soft gluons each carrying almost zero
momentum. In particular, the logarithms of the form
In‘(1 = z)/(1 — z) result from the processes involving real
radiations of soft gluons and collinear particles. While
these contributions are ill-defined in four spacetime
dimensions in the limit z — 1, the inclusion of pure virtual
contributions gives distributions D;(z) and (1 — z).
The terms that constitute these distributions and §(1 — z)
are called soft plus virtual (SV) contributions. The SV
results in QCD are available for numerous observables
in hadron colliders. For SV results up to third order, see
[19-21,36,37,46-49]. These logarithms in the perturbative
results when convoluted with appropriate parton distribu-
tion functions to obtain the hadronic cross section not only
can dominate over other contributions but also can give
large contributions at every order. The presence of these
large corrections at every order spoil the reliability of the
predictions from the truncated series. The seminal works
by Sterman [50] and Catani and Trentedue [51] provide
resolution to this problem through reorganization of the
perturbative series called threshold resummation, for its
applications to various inclusive processes (see [52—58] for
Higgs production in gluon fusion, see [59,60] for bottom
quark annihilation, and see [37,53,61-63] for DY). Since z
space results involve convolutions of these distributions,
the Mellin space approach using the conjugate variable N is
used for resummation. In the Mellin space, large loga-
rithms of the kind D;(z) become functions of In/*! N, j < i
with O(1/N) suppressed terms in the corresponding
N space threshold limit, namely N — oco. Threshold
resummation allows one to resum @ = 2a,(u%)f,In N
terms to all orders in @ and then to organize the resulting
perturbative resultin powers of coupling constant a, (u%) =
g2 (u%)/16x%, where g, is the strong coupling constant.
Here, 3, is the leading coefficient of the QCD beta function.
If Oy is an observable in Mellin N space, with N being the
conjugate variable to z of the observable O(z) in z space,
then the resummation of threshold logarithms gives

0

InOy = InNg{(@) + > ai(ud) g%, (@) + In g (as(4})),
i=0
(2)

where ¢§(a,(u%)) is N independent and is given by

96 (a (k) = D_ al(uk)gs- (3)

(69
i=0
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The inclusion of more and more terms in (2) predicts the
leading logarithms (LL), next to leading (NLL) logarithms,
etc., of O to all orders in a;. The functions ¢g¢(w) are
functions of process independent universal IR anomalous
dimensions while gg) depend on the hard process. For
inclusive reactions such as DIS, the invariant mass dis-
tribution of lepton pairs in DY, Higgs boson productions in
various channels, all the ingredients to perform the resum-
mation of threshold logarithms in N space up to third order
[next to next to next to leading logarithmic (N3LL)
accuracy] are available.

While the resummed results provide reliable predictions
that can be compared against the experimental data, it is
important to find out the role of subleading terms, namely
In(1-7z),i =0,1,.... We call them by next to SV (NSV)
contributions. In addition, to understand the role of NSV
terms, the question of whether these terms can also be
resummed systematically to all orders exactly as the
leading SV terms are resummed remains unanswered.
These questions have already been addressed in great
detail, and remarkable progress has been made in recent
times leading to a better understanding of NSV terms. For
example, applying diagrammatic techniques and using
factorization properties or through physical evolution
equations, several interesting results on both fixed order
and resummed predictions for NSV terms are available for
the production of a colorless state in hadron colliders. See
[3,23,64—74] for more details. In this paper, exploiting
mass factorization and renormalization group invariance
and using the Sudakov K + G equation we make an
attempt to provide an all order result both in z space
and in N space, which can predict NSV terms of diagonal
channels in DY and Higgs boson production to all orders in
perturbation theory.

II. NEXT TO SV IN z SPACE

In the following, we study the inclusive cross sections for
the production of a pair of leptons in DY and the production
of a single scalar Higgs boson in gluon fusion and in
bottom quark annihilation. Let us denote the corresponding
inclusive cross sections generically by (g, 7). In the QCD
improved parton model, & is written in terms of parton level
coefficient functions (CF) denoted by A,,(q2, u%, u%,2)
convoluted with appropriate parton distribution functions
(PDFs), f.(x;,u%), of incoming partons:

ola0) = o)y [y [ dxafoaoid) ooz
ab

X Aab(q27/’t12b/’t%?’ Z)’ (4)

where o\ is the born level cross section. The scaling
variable 7 is defined by 7 = ¢?/S, S is the hadronic center
of mass energy. For DY, ¢> = M7, _, the invariant mass of
the final state leptons, and ¢> = m? for the Higgs boson

productions, with my being the mass of the Higgs boson.
The subscripts a, b in A,;, and c¢ in f,. collectively denote
the type of parton (quark, antiquark, and gluon), their
flavor, etc. The scaling variable x; is the momentum
fraction of the incoming partons. In the CF, z = ¢?/5 is
the partonic scaling variable and § is the partonic center of
mass energy and is related to hadronic S by § = xx,S
which implies z = 7/(xx,). The scale u is factorization
scale which results from mass factorization, and the scale
ur is the renormalization scale which results from UV
renormalization of the theory. Both ¢ and A, depend on
the renormalization scale; however, their product is inde-
pendent of the scale if we include A,, to all orders in
perturbation theory.

The partonic cross section is computable order by order
in QCD perturbation theory. Beyond leading order, one
encounters UV, soft, and collinear divergences at the
intermediate stages of the computation. If we use dimen-
sional regularization to regulate all these divergences, the
partonic cross sections depend on the spacetime dimension
n =4 + € and the divergences show up as poles in €. The
UV divergences are removed by QCD renormalization
constants in a modified minimal subtraction (MS) scheme.
The soft divergences from the gluons and the collinear
divergence resulting from final state partons cancel inde-
pendently when we perform the sum over all the degenerate
states. Since the hadronic observables under study are
infrared safe, these partonic cross sections are factorizable
in terms of collinear singular Altarelli-Parisi (AP) [75]
kernels I';, and finite CFs at an arbitrary factorization scale
up. The factorized formula that relates the collinear finite
CFs A, and the parton level subprocesses is given by

Zraa < 'uF’

a'b’
® (Awp (q% g 172 2:€)) ® Ty (2. v €).

(5)

1
A 2
;Gab(q »Zs € —00

These kernels are then absorbed into the bare PDFs to define
collinear finite PDFs. Note that the singular AP kernels do
not depend on the type of partonic reaction but depend only
on the type of partons in addition to the scaling variable z
and scale up. The symbol ® refers to convolution, which is
defined for functions, f;(x;),i =1,2,...,n, as

e )6 =1 [auio)

i=1
X 8(z —x1X0 -+ X,). (6)

The partonic cross section in perturbation theory in QCD can
be expressed in powers of unrenormalized strong coupling
constant a,:
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NP ze),  (7)

(5]
6ar(q*.z,€) Z

i=0

where the value of a depends on the process under study.
Since the aim of this paper is to investigate the structure of
NSV terms in diagonal channels, we will restrict ourselves to
A, for DY, A, for Higgs boson production in bottom quark
annihilation, and A, for Higgs boson production in gluon
fusion, throughout the paper unless stated otherwise. We call
these CFs collectively by A.. with ¢ = ¢, bb, gg.

Before we proceed further with the diagonal channels, let
us study the structure of mass factorized results (5) for both
diagonal and off-diagonal channels in the threshold limit.
In particular, we would like to find out which are the terms
that survive if we want to retain only SV and/or NSV terms
when we perform threshold expansion. We begin with the
mass factorization formula for a diagonal channel. We will
show that to retain only SV and NSV terms in A ; using the
mass factorized result, it will be sufficient to keep only
those components of AP kernels I',;,’s and of 6,;,’s or A,;,’s
that upon convolution give SV and/or NSV terms. For
definiteness, let us look at the mass factorized Drell-Yan
result:

N

0y
a_FT ®Aqq®rqq+FT ®Aq¢1®rqq+FT ®Aqq®rqq

+FZ;9®A9‘I®F[I‘]+FT ®AQQ®F£/‘I+FT ®AQ4®FQQ
+FT ®Aqq®rqq+FT ®AQQ®F9‘]+FT ®Aq(1®rqq
(8)

Here, we either have convolutions with terms involving
only diagonal terms, such as FqTq ® Aq,27 ® Fq g» OF with
terms involving one diagonal and a pair of nondiagonal
terms, for example, ng ® A,y ® I'y;. The former gives SV
plus NSV terms upon convolutions while the latter will give
only beyond the NSV terms. And the diagonal I'..’s also
contain convolutions with only diagonal AP splitting
functions, P.., or one diagonal and a pair of nondiagonal
AP splitting functions P, a # b. We drop those terms in
diagonal I',.’s that contain a pair of nondiagonal P,;,’s, as
they contribute to beyond NSV accuracy. This results in

ASV+HNSV

T =Ty ® A ™ @ Ty ©)
ZGO

A similar argument will go through for 6,;, and 6, as well.
This allows us to write the mass factorized result given in
(5) in terms of only diagonal terms 6.z, Az, and AP kernels
I'.., and the sum over ab is dropped. Hence, dropping
beyond NSV terms and restricting to only diagonal terms

result (5) in taking the simple form

AYTV(G pg i 2 €) = 0y (1) ((FT)ZC' (z. py.€)

1
®_85v+nsv(q Z 6)
Z
© Mitzie). (10

In summary, since our main focus here is on SVand NSV
terms resulting from quark initiated processes for DY and
gluon or bottom quark initiated processes for Higgs boson
production, we can safely drop contributions from non-
diagonal partonic channels in the mass factorized result of
A ;. In addition, gluon-gluon initiated channels which start
contributing at NNLO onwards for DY and quark-antiquark
initiated channels for Higgs boson production are also
dropped as they do not contribute to NSV of A_..

Turning our attention to off-diagonal terms, for instance

Gyg» WE find

a9
;_FT ®Aqq®rqg+rr ®Aqg®rgg+FT ®A5®17

+FT ®A9q ®qu+FT ®qu®Fqg+F;g®qu ®Fqg
+F§é®Al}q ®Fq9+rgé®Afm ®ng+F£Q®AFM ®Ft’1y'
(11)

As in the case of diagonal channels, the mass factorization
for the off-diagonal ones also contains both diagonal and off-
diagonal terms from A,, and AP kernels, in different
combinations. As expected, in the above result, we find
no single term that can give a pure SV contribution. This is
because every term contains at least one off-diagonal term.
Recall, this is not the case for 6,5. Hence, the mass factorized
result for the off-diagonal channel starts with NSV and
beyond, where the former comes from terms containing at
least two diagonal terms either from A, orI',,. Since we are
interested only in NSV terms, we drop terms that contain
more than two off-diagonal terms in the mass factorization
formula to obtain

ASV+nsy
Oqg

20

— FT ® Asv+nsv ® T

qq+FT ®A§V+nw ®Fgg' (]2)

Note that the off-diagonal A, receives a contribution
from 6, as well as from A ; unlike the diagonal A ; which
receives only from a single 6,

This analysis using the mass factorization formula and
threshold expansion, which is valid to all orders in
perturbation theory, demonstrates a simple structure for
the diagonal A ;; namely it contains only one kind of term
that comprises diagonal kernels and 6,z. On the other hand,
in the off-diagonal channel, we have two kinds of terms
containing diagonal and off-diagonal A,,’s which mix
under factorization. As we will see in the following, due
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to the simple structure in the diagonal channels, we can
study the all-order structure of NSV logarithms using
certain homogeneous differential equations. However, the
off-diagonal ones pose challenges to such a study due to
inhomogeneous terms present in the corresponding differ-
ential equation. Hence, in the following, we will focus only
on diagonal partonic channels.

Beyond leading order, the partonic channels that con-
tribute to &EQ can be broadly classified into two classes,
namely those containing no partonic final state/no emission
and the ones with at least one partonic final state. The
former ones are called form factor (FF) contributions while
the latter ones are called real emission contributions. In
FFs, the entire partonic center of mass energy goes into
producing a pair of leptons in DY or a Higgs boson in Higgs
boson production, while in real emission processes, the
initial state energy is shared among all the final state
particles. Let us denote FF of DY by F’ 4 and FF of Higgs

boson productions by F b F 4» respectively.

Our next step is to factor out the square of the UV
renormalized FF (ZUV,CIATC) with ¢ = ¢, g, b, g from the
partonic channels 6.. Here the Zyy,. is an overall
renormalization constant that is required for Higgs boson

|

A (¢ Hg HF> 2) = AET™(GP, ks HE5 2)

production from gluon fusion and bottom quark annihila-
tion. We call the resulting one the soft-collinear function,
given by

Se(as. 42, ¢, z.€) = (o0 (uz)) " (Zyy (5. uj. 1. €))7
x |F(ay.p%, Q% €)[2 x 5(1 - 2)
® 63 ™V (¢%. 2. €), (13)

where &, is the bare strong coupling constant, Q> = —¢°.
Note that S, does not depend on %, and hence, S, is RG
invariant. The function S, is computable in perturbation
theory in powers of a,, and later in Sec. [T A 1 we discuss its
perturbative structure and also how several of its coeffi-
cients can be determined from the fixed order results. Since
we have restricted ourselves to SV + NSV contributions to
Az, that is, those resulting from the phase space region in
the limit z — 1, we keep only those terms that are propor-
tional to distributions §(1 — z), D;(z), and NSV terms of
the kind of In‘(1 — z) with i = 0, 1, ... and drop the rest of
the terms resulting from the convolutions. Substituting for
6.z from (13) in terms of &€, in (10) and keeping only the
diagonal terms in AP kernels, we find

= (Zyy. (g pa. 1?, €)) | F (G 1?, 0% €)P5(1 —2) ® (T7)71 (z, 3. €)
®SC(aK7/’t27 qzﬂ Z, 6) ®FZ_L1(Z’M%’€) (14)

The decomposition formula for ASL™™ given in (14), is
the first step toward obtaining the all order perturbative
structure, which we are going to unravel in the subsequent
section. It is to be noted that owing to the simplification in
the mass factorized formula, given in (10), we obtain the
above all order decomposition formula. It provides the
pathway to study the partonic CFs in terms of certain
building blocks, namely the form factor F,, overall
renormalization constants Zy,y ., the soft-collinear function
S., and the AP splitting kernels I'..., which conspire among
themselves in such a way to lead to a structure for A, in
terms of certain anomalous dimensions, as well as universal
and process dependent coefficients. In the next subsection,
using differential equations that each of these building
blocks satisfies, we obtain an all-order structure for ASL™"™.

A. Next to SV formalism

In this section we discuss the formalism which accounts
for both SV and NSV corrections to A. owing to the
decomposition formula given in (14). We study the under-
lying evolution equations corresponding to each of the
building blocks, namely {F., Zyy .. T, S, }, with respect
to the renormalization and factorization scales and also the

|

energy scale of the process under study. Following this, we
derive the perturbative structure of each of the components
and thereby present the analytic structure of the par-
tonic CF.

In the master formula, Eq. (14), the form factor for the
DY process is the matrix element of vector current ¥,y ,
between on-shell quark states, and for the Higgs boson
production in gluon fusion (bottom quark annihilation), it is
the matrix element of Gy, ,G"* (y,y;,) between on-shell
gluon (bottom quark) states. Here v, is the c-type quark
field operator and G, is the gluon field strength operator
with a being the SU(N..) gauge group index in the adjoint
representation. These FFs are known in QCD up to third
order in perturbation theory [76—88]. The evolution equa-
tion for the overall renormalization constant with respect to
the renormalization scale reads as

(5]

d )
ﬂﬁﬁlnzuv,c(as,uﬁ,uzﬂ = dl(up)ri,. (15
R i=1

where y¢ is the UV anomalous dimension. For the vector
current, the UV anomalous dimension is zero to all orders in
QCD while for the Higgs boson productions, y¢{’s are
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nonzero. For ¢ = b, see [89], and for ¢ = g, it is expressed
in terms of QCD beta function coefficients to all
orders [90].

Perturbative results of FF in renormalizable quantum
field theory demonstrate rich structure; in particular, one
finds that they satisfy certain differential equations. The
simplest one is the RG equation that FFs satisfy, namely

zde
/’thZC

resulting from the UV sector, i.e., the logarithms of the
form In*(u%),k=1,..., at every order in perturbation
theory. In addition, these FFs satisfy the Sudakov differ-
ential equation [46,91-97] which is used to study their IR
structure in terms of certain IR anomalous dimensions such
as cusp A€, collinear B¢, and soft f anomalous dimensions.
In dimensional regularization, the equation takes the
following form:

0, using which we can predict the logarithms

1 o - /41%
0? d—QzlnF (aS,QZ,/ﬂ,G)zz{K (as,ﬂ—2,€>

2,2
+GC<aS,Q—2,"—’§,eﬂ, (16)
Hr H

where Q2 = —¢g°. The above equation is called the K + G
equation. The unrenormalized FFs contain both UV and IR
divergences. The latter results from soft gluons and mass-
less partons which give soft and collinear divergences,
respectively. UV divergences go away after UV renorm-
alization. The IR divergences of the FFs can be shown to
factorize. The divergence of FFs are such that the factorized
IR divergent part is g> dependent. The consequence of
these facts is that the right-hand side of the differential
equation can be expressed in terms of two functions K¢ and
G° in such a way that K¢ accounts for all the poles in e,
whereas G¢ is a finite term in the limit ¢ — 0. The RG
invariance of FFs implies, in the limit ¢ — O,

d I ) d < 0% ux )
2 c| A R 2 cl A R
ur—~K (as,—,e =—up—~G| a;,—~,—,€
Ky u K du, w
= —A(a,(uz))- (17)

The solutions to (17) are given in [20,46]. Substituting these
solutions in (16) one can find the structure of FF in terms of
IR anomalous dimensions A€ (cusp), B¢ (collinear), and f*
(soft) as well as the process dependent quantities (g‘ b, A
more elaborate discussion on the structure of FF can be
found in [46]. The IR anomalous dimensions are known to
three loops in QCD (see [28,78,79,84,98-101]) and for
beyond three loops, see [87].

The fact that the initial state collinear divergences in
parton level cross sections factorizes in terms of AP kernels
[,,(z,u%,€) implies the RG evolution equation with
respect to the scale pp:

Zpaa <, 4y )uF)

a =4.9.9
QL (2. 4F-€),

d
ﬂFd zrab 2, s €)

a,b=q,q,9. (18)

Since we are interested only in diagonal Altarelli-Parisi
kernels for our analysis, the corresponding AP splitting
functions P,.(z,u%) are expanded around z = 1, and all
those terms that do not contribute to SV 4+ NSV are
dropped. The AP splitting functions near z = 1 take the
following form:

Pee(z a(u)) = 2B (ay(up))5(1 = 2) + Pec(z, as(u7)),
(19)
where
Pic(z.a,(up)) =2[A%(as(uy))Do(2) + C¢(ay(up)) In(1 - z2)
+D¢(a,(uf))] +O((1-2)). (20)

In the rest of the paper, we drop the terms in P,
proportional to O((1 —z)) for our study. The constants
C¢ and D¢ can be obtained from the splitting functions P...
which are known to three loops in QCD [100,101] (see
[3,100-108] for the lower order ones). Similar to the cusp
and the collinear anomalous dimensions, the constants
C¢ and D¢ are also expanded in powers of a,(u2) as

X° ={ce.D}, (21)

where C¢ and D{ to third order are available in [100,101].

1. The soft-collinear function

Our next task is to study the soft-collinear function, S, in
detail. Equation (13) can be used to compute this function
order by order in QCD perturbation theory. The S, should
contain right IR divergences to cancel those resulting from
FF and AP kernels to give IR finite A.. The IR structure of
S, in the SV limit was studied in [20,46] using a differential
equation analogous to (16) supplemented with RG invari-
ance. It was found that this function demonstrates a rich
infrared structure in the SV approximation. Further, it
provides a suitable framework to obtain the SV contribution
order by order in perturbation theory. Since the function S,
obtained in [20,46] is an all order result in z space which
allows one to write the integral representation suitable for
studying resummation in Mellin N space. In the following,
we proceed along this direction to study NSV contributions
in z space to all orders in perturbation theory and to provide
an integral representation that can be used for performing
Mellin N space resummation. Using (14) and the K + G
equation of FFs, Eq. (16), one can set up an evolution
equation for the functions S,.. In other words, we can easily
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show that S, satisfies the K + G type of differential equation
of the form

s, (a5, q% 4%, €,2)

® S.(a, g pte.z),  (22)

d 25 (2. ¢* u* e.2) =

where

2 2
FSC - |:I_(C(Asvﬂ§v€ Z> +GC<&s7q_27/L§’€’Z>:|’ (23)
H Hr H

where I's_in the above equation is written as a sum of K
which accounts for all the divergent terms and G¢, the
finite function of (z,¢). The scale y; signifies the arbi-
trariness in separating the divergent part from the remain-
ing finite terms. In consequence to the above differential
equation (22), the soft-collinear function, S, admits an
exponential solution given by

iz
SC(&S’ C]2,/12»€:Z) _Cexp</q TFS (as’/l lu € Z))
0
= Cexp(20°(a,. ¢*. 4 €.2)),  (24)

where the initial condition S.(q%, ¢> = 0,4 €,z) =
5(1 — z) is used. The exponent @ gets only contribution
from cc initiated processes containing at least one real
radiation. The symbol “C” refers to convolution. For
instance, C acting on any exponential of a function has
the following expansion:

Ce/ =6(1-2)+4 f() !(f®f)(Z)+"'- (25)

In addition, &¢’s satisfy the renormalization group equa-

tion, namely 2 ZSZ = 0, which implies

d
d/l% Kc(as(/"s> ) -

( ( D(1-2).  (26)

where A¢ is analogous to the cusp anomalous dimension
that appears in the K + G equation of FFs. The perturba-
tive solution to (22) can be obtained by integrating the
differential equation after substituting the fixed order
solutions of RGs for K¢ and G¢. We propose an all order
ansatz for the solution ®° which takes the general form

(5] 1 _
q)c(&quaﬂz,z € Z ( ¢ ) Sl

x ( i )éﬁﬁf)(z,e), (27)

-z

where S, = exp (% [ve — ln(4fc)])

Mascheroni constant. The form of the solution given in
(27) is inspired by the result for the production of a pair of
leptons in the quark-antiquark channel or Higgs boson in
gluon fusion at next to leading order in a,. A separate
section (see Sec. III) is devoted to justify this form. The

with y; being the Euler

2012\ € .
term (‘f(ﬂlT”))z in the parentheses results from two body

phase space while ¢, (z,€)/(1 — z) comes from the square
of the matrix elements for corresponding amplitudes. In
general, the term ¢*(1 — z)?/z inside the parentheses is the
hard scale in the problem, and it controls the evolution of
®° at every order. The function (,?)Ef) (z,€) is regular as
z — 0 but contains poles in €. We have factored out
1/(1 — z) explicitly so that it generates all the distributions
D; and §(1 —z) and NSV terms In*(1-2),k=0,...,
—2)?)/? and
ie/2

when combined with the factor ((1

(fb(ci) (z,€) at each order in a,. Note that the term z~
inside the parentheses does not give distributions D; and
6(1 — z); however, they can contribute to NSV terms
In/(1-2),j=0,1,..., when we expand around z = 1.
In addition, the terms proportional to (1 —z) in (}50 near
z =1 also give NSV terms for ®°. Although the form of
solution for ®° is good enough to study NSV terms, we
rewrite this in a convenient form which separates
SV terms from the NSV in ®°. Hence, we decompose
@ as O = ®F + @ in such a way that @} contains
only SV terms and the remaining ®% contains next to
soft-virtual terms in the limit z — 1. The distribution ®¢
satisfies the K + G equation given in Eq. (35) of [46];
also see [20] for details. The solution for ®¢ in powers
of a, in dimensional regularization is given in [46]. It is
given by

@4 (a5, ¢* p*. €, 2) =

(= )ie. e

where

ael(i I - c(i ~cl(i

B (€)= KO + G (29)
The constants K<()(¢) and G5\ (e) are known to third
order in perturbation theory [20,21,25,36,46]. For the
reader’s convenience, we enlist the results of K¢()(¢) and
Gg(\? (¢) in Appendix B. After substituting these pertur-
bative constants one can get the perturbative structure of
the SV coefficients as
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V(O =50A0 +1G(). F(O) = 5 (~oAD) + 1<1 (0] 45350

€ €2
~ (3 1 1 4 . 4  _ 1/1-.
35000 = (5845 + 5 (=55 — g s - 31801(6) ) + 5 (G5 -38050) - 350 ) + (38560
Ac 1 1 = 1 1 3 4 _ _
4’5(\?)(6) =3 (=BoAT) + 4 <§ﬂoﬁ1Af + Eﬁ%AE - 28395 (€)> 3 <ﬁﬂ2A§ - Zﬁv‘\ﬁ - ZﬁoAg + gﬁoﬂgf (e) + 36595 (€)>
1 /1 1 - 1 - 3 1/1-.
+ &2 <§A2 - gﬁzgi (€) = Eﬂlgﬁ(e) - Eﬁogé (€)> +E (Zgi(e)) . (30)

The integral representation for ®¢ is given in [20] and is reproduced here for completeness:

O (a,. 4%, ¢7 2.€) = (L{/,,;Z(I_Z) %AC( s(ﬂz))+G§v(“s(q2<1—z)2)’€)})+

1-z

> ~j q2 i i qc(i) 1 . ~i /’[% g i gre(i)
+6(1-2)) al 7 Sy (e)+<1 >l P SEE0) (). (31)

=1 -2 5

Having all the information about the SV coefficients, let us now study in detail the structure of ®§ using Eq. (22).
Subtracting out the K + G equation for the SV part ®4 from (28), we find that @ satisfies

d o oo, @ i
7 ®(ead =3 i (.5 e ) ®)

where G5 = G¢ — G§y,

2
GZ(&S,ZZ,'“?H) Za (1-2)%)G; ;(z.€). (33)

The NSV part of the solution that satisfies (32) takes the following form:
D (4 2 2 _ . i C](l—Z) i ~ (i) 34
B(asvﬂ »q ’Zve)_zas Mz Se Pc ( ) ( )
i=1
where the perturbative expansion of the NSV coefficient @Ei) (z,€) reads as

1 1 ¢ ~(2 1
(c)(z,e):ggu(z,e), (pg)(z,e):—z

r 1 (4, 1
o (z €) =€—3<§ﬁ% L,l(z’€>) + 2<

€
1 1 /4
@54)(1’6) =5 (=2639; 1(z.€)) + 5 (‘ﬁoﬁlng(L €) + 36595 5 (2, €)>

€ ! €

. 1
(—ﬂogh (z.€)) + 2_€gz‘2(zv €),

4 1
ﬁlgu(z €)— 3/}092,2(2’60 +§gi.3(z,€),

UJI»—*

W

1 1 1 3 1
+ €_2 <—6ﬁ2 11 (Z’ €) _Eﬂlgz,z@ve) - Eﬁo 2,3(1’ 6)) + 4—€Q2,4(Z,€). (35)

The ¢ expansion of the renormalized NSV quantities G ;(z, €) can be further decomposed as
G5 (z.€) = LE(2) + 75.,(z) + ZGJQL, ), (36)

with

094035-8



NEXT TO SOFT CORRECTIONS TO DRELL-YAN AND HIGGS ...

PHYS. REV. D 105, 094035 (2022)

)_(i,i(z) =Xi

G- @) (37)

where y¢ is given in (B6). Unlike the SV renormalized
coefficients Gf'(j), the NSV coefficients Qz:(iﬂ (z) in the
above equations are parametrized in terms of

lnk(l —2),k=0,1,..., and all the terms that vanish as
z — 1 are dropped,

i+j—1

Gi'(z) = ZG’HJ ~2). (38)

The highest power of the In(1 — z) at every order depends
on the order of the perturbation, namely the power of a, and
also the power of € at each order in a;. We determine this
highest power by studying results for the bare partonic
cross sections 6,.; at higher orders in a,, expanded in
powers of € to high accuracy. Alternatively, we can use the
known mass factorized results for A ; to obtain this power.
In the former approach, we used the results for &z,
computed up to second order in ay, i.e., i = 1, 2 with €
expanded up to third power for i = 1 and first power for
i = 2. In the case of A_;, we used the known results up to
third order in a, to obtain the highest power of logarithms.
Extrapolating the findings from these two fixed order
results to all orders in &, and e, we obtain the highest
power for In(1 — z) to be i + j — 1. We devote a separate
subsection (see Sec. IIIB) to elaborate on this peculiar
structure of the logarithms.

Similar to the SV case, the NSV function ®§ can be
written in an integral form using (32) and the perturbative
structure given in (35) as

@5 (a5. 4%, 4% 2.€)
-di2
- [ .
+ 95 (a(g*(1-2)%).2.€)| =g + @5 c(a;(uf).z.€).  (39)

Here, the first line is completely finite as € — O while the
second line, ¢, ., is divergent. The fact that ®§ is RG

W=G, k=0

1 _. .
ol = (—QL‘S’“ +BoGs "") . k=0.1.2.

(Pik ( gL3lk+ ﬁng +3

1
2

invariant implies that ¢, . satisfies the renormalization
group equation:

d .
ﬂ%d—z(ﬂs,c(as(ﬂ%)’ 2) = L(a,(uz).2). (40
HE

Further the A, in (14) is finite at every order in a, in the
limit € — 0 allows us to determine the coefficients L¢ in
terms of the NSV coefficients C° and D¢ in splitting
kernels, given in (19). We find at each order in perturbative
expansion

Lo(a,4d).2) = S d(GdLi)  (41)
i=1

with L (z) = CS In(1 — z) + Df, where the coefficients C§
and Df are related to those of cusp A¢ and collinear B
anomalous dimensions in the following way up to third
order [101,109]:

Di=-Al,  D5=-A5+A{(B] - o),
D§ = —A5 — A{(=B5 + 1) = A3(=Bi + fo).
C{=0, C5=(A)%  C5=24545 (42)

Having fixed the divergent part of ®j completely, we turn
to the structure of the finite piece ¢ .. We first expand them
in powers of renormalized coupling ay,

@rc(as(g* (1 —2)%).2)

= ai(g?(1-2)? Z(p Inf(1-z), (43)

i=1

where the highest power of In(1 — z) is in accord with the
same in Eq. (38). We will discuss more on this structure in

Sec. III B. The coefficients (p<,k-) can be expressed in terms

C,l
of their unrenormalized counterpart QZ’,(i] Ks in (38) as

2
ﬁOgLZ + /j2gL]3k), k:0,1,2,3,

1 c (3, c,(4,
405_4:( Goli M+ ﬁszl +oAG T 4 ﬁogL3 94260816000 + 1G04 28360 ")>, k=0,1,2,3,4,  (44)
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where 92’7(12 ), gz’ﬁz 4, g;’fj"‘), QZ”(E 4 are all zero. The
structure of divergent and finite pieces of @} allows us to

determine the coefficients (]2"(,-’ *) and (pg‘i), and we postpone
the discussion on this to the next section.

So far, we have discussed the logarithmic structure of the
building blocks of mass factorized CFs within the frame-
work of perturbation theory. We used respective first order
differential equations satisfied by each of them as given in
(15), (16), (18), and (24). We found that each of them
admits the solution which is of the exponential form whose
exponents are controlled by process independent anoma-
lous dimensions as well as process dependent coefficients.
Substituting these solutions for the building blocks, we
obtain

AN (qP ugo i 2). = Cexp(W (%, ik uF- 2. €))| =0
(45)

where W is a finite function in the limit ¢ — 0 and is
given by

(G, Hgo M 2o €) = (In(Zyy (a5, 10 g €))?
+In|F (ag @2, 0% €)|})5(1 - 2)
+20(ay, 4?. ¢%. 7. €)
—2CInT . (a,, u2, 2, z,€).  (46)

This all order result is the master formula which can be
used for obtaining SV 4+ NSV contributions to A, order by
order in perturbation theory provided various functions that
appear in Eq. (46) are known to the desired accuracy. In
particular, it can predict certain SV and NSV terms to all
orders in a, in terms of lower order terms. We elaborate this
in more detail in Sec. I'V. In the above formula, we keep the
entire FF and overall renormalization constant as they are
proportional to only (1 — z). However, in the functions ®¢
and InT",., we keep only SV and NSV terms.

Before we conclude this subsection, we discuss the
general structure of the renormalization group equation
corresponding to S, resulting from infrared singularities
originating from soft and collinear emissions. IR singular-
ities in S, are found to be factorizable; i.e., we can write
Se(q?.2) = Zo(q*. 113, 2) ® Secrin(q’. 5. z) With pg being
the IR factorization scale. This is a consequence K¢ + G¢
decomposition, valid to all orders in perturbation theory.
Here, Z,. contains all the IR singularities of S, in terms of
poles in € and S 5, is IR finite in the limit € — 0. We can
relate Z. to K¢ and G¢ through K¢ = dlog Z,/dlog(q?)
and G¢ = dlog S, 4,/ dlog(q?), respectively. The complete
singular structure of Z,. can be obtained by solving the
renormalization group equation

/"s dﬂ?

dZ.(u2.q* z.€)
e T = ys (g 2 e) @ Z (13, g7 2).

(47)

where yg, takes the remarkable structure &,(u2,z)x
log(q®/u?) + & (u?, z) to all orders in perturbation theory.
This structure follows from the fact that Z,. has to contain
the right infrared poles to cancel against those from form
factor and AP kernels leaving A, finite. The latter gives

2 c(,,2
YSe = (A"(M%) log (%) i (2”S)

)6(1 ) Pluy).

(48)

N

Note that the anomalous dimensions A¢ and f¢ control
the renormalization group equation (RGE) of the SV parts,
namely 6(1 — z) and 1/(1 — z),, whereas the RGE of NSV
parts is governed through the collinear anomalous dimen-
sions C° and D°. This suggests that Z. can be further
decomposed into Z4 and ZZ. Here, Z2 contains the
singularities in the SV part arising from pure soft modes,
and Z8 accounts for those in the NSV part resulting from
soft and collinear modes. In other words, the soft-collinear
function S, can be factorized into two exponential func-
tions with exponents ®4 and @, and each is governed by
its own renormalization group equation in terms of an
independent set of anomalous dimensions. In conclusion,
we have presented a formula, given in (46), which gives the
analytical structure of the partonic CF in terms of the
anomalous dimensions and SV and NSV coefficients.

2. Results for NSV coefficients

In this subsection, we evaluate explicit expressions for
the NSV coefficients, introduced earlier, by comparing
against the state-of-the-art results of CFs and their building
blocks such as FF and AP kernels. At every order a!, the

coefficients gz,‘,.f*k) for various values of (j,k) can be
determined using (14) and (46) known to order a
expanded in a double series expansion of €/ In*(1 —z).
In order to do this we use the available information up to
two loop level to obtain QZ’,(ij k) for i = 1, 2 for all the

allowed values of (j, k).

We find that unlike the SV coefficients Gf’ [see (B7)],

the quark and gluon NSV coefficients g,ﬁﬁf * do not satisfy

the maximal non-Abelian relation beyond one loop. Recall
that GV satisty GV = (Cr/C,)G"Y, confirmed up to
third order in a, as shown in [20,46].

Third order contributions to A, for DY became available
very recently in [9], and for the Higgs boson productions in
gluon fusion as well as in bottom quark annihilation the

094035-10



NEXT TO SOFT CORRECTIONS TO DRELL-YAN AND HIGGS ...

PHYS. REV. D 105, 094035 (2022)

third order results were presented in [4—6]. The analytical
results for FFs, over all renormalization constants, the
functions @4 and I',; are all available up to third order in
the literature. Using these results we can in principle
extract the relevant coefficients g to third order. In the
absence of analytical results for second order corrections to

0 1
qogyi =4Cp, (pgi =0,

1402 112
Vi = CFCA( 57— 2803 - Tcz)

o) =10C,Cy —10C}, @) = —4C%,

29876
+ 19285 — i

( 32C2) + I’lfCF(

82868

0 727211
Vs = cpci( 59

5143 2180 11584

27 81

A, for positive powers of e, we cannot determine the

coefficients G} ; Uk) at the third order.

However, the combination of these coefficients, namely
®f.c» given in (44), can be extracted for ¢ = ¢ (DY) and for
¢ = b (bbH) and ¢ = g (ggH) up to third order using the
available results to third order. We find for the DY

328+§€
27 ' 3°2)

176

{H+ TCzCs =+ 1205%)

2 — — —
+CFCA< 27 9 27

26312

155902 1292
{3+

729+9

1309 496
TR

9 3
244
9y} = CrC3 (

9 24Cs—§é'2> + C3Cy (‘

64
+C3 <—?—64C3 —C2> —i—nfCFCA(

10
qoffg = C:C3 (34 - —(;2) +C2C, (—96 T ?gz) +

3 176 32
o) = CZFCA< 5 ) e (27>

and for the Higgs boson production

2536 32
Cz +- é'z

256 28 3952
————Cz> nfC2< —

2272 32 448
@) +C} (23 +480 -0 - 42)
368 ,

-

12656 160 704
) (250t 8,

729 27 27

+TC _4’2

18436 544 964 )

160
9 81 42)

16 10 40

(49)

o = 4c,,
g =o.
om0 ),
q”élz) =C3 (g) +n;Cy <— §>,
gy = —4C,
#3= G (567322931 s 3422792 s = HZ?OO & %4’243 AL Cz)
trsCrCa <_%§3 - %%3 * ?52 * 3;—247%) +15Ca (1752698 - 12_670‘:3 - %Cz),
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| 18988 448
‘/’éﬁ)_@*(_ g1 T3 9T

+ I’lfCFCA (4 ——Cz) + I’lfCA<

2 1432 40
o) :Ci( - t3 C)+nfcz<

3 176 32
o = C (—7 +n,Cil 55

While the NSV functions ®§ for quarks and gluons are
not related, they are found to be universal up to second
order in the sense that they do not depend on the hard
process. For example, to second order in a;, @} of DY is
found to be identical to that of Higgs boson production in
bottom quark annihilation [110]. In addition, we find that
they agree with that of graviton (G) production in quark
O

annihilation processes [111-116]. In terms of ¢,;

translates to

) _ o
D grg—It-+X q.!

btb—H+X
o
O g+g—G+X

i=1,2k=0,i. (51)

Similarly, to second order in a,, @ from Higgs boson
production in gluon fusion is found to be identical to that of
graviton production in the gluon fusion channel and
pseudoscalar Higgs boson production [18,117-121] in
gluon fusion. That is,

(k)

¢ ‘
9 | grgoriix grg—A+X

‘ = L2k=0.0 (52)
grg—G+

However, the umversahty breaks at third order; namely
we find that the goé% for k = 0, 1 differs from that of DY
production while for kK = 2, 3 they agree:

2Cy),

O3 = ¢} — 16CACp(Cy —
ol = ol +8CACR(Cy —2C5),
k k
Py =9l k=2.3. (53)

The origin of this violation for k =0, 1 at third order,
which has been evaluated using the state-of-the-art results
[4-6,9], needs to be understood within the framework of
factorization.

1280

) o (S22, )
56

o)

164 2

8
C
27 +3§)+"f A<27>

(50)

IIL. MORE ON THE SOFT-COLLINEAR
FUNCTION, &,

A. On the form of the solution

In this section, we discuss in detail the peculiar structure
of SV and NSV solutions given in (28) and (34), respec-
tively, that satisfy the K + G equation. Both of them
contain divergent as well as finite terms at every order.
For example, the SV part of the solution, @4, contains the
right soft and collinear divergences proportional to distri-
butions §(1 — z) and Dy(z) to cancel those from the FF
entirely and from the AP kernels partially and the z
dependent finite terms to correctly reproduce all the
distributions in the SV part of CFs A.. The NSV part,
@4, removes the remaining collinear divergences of the AP
kernels. The finite part of it when combined with the SV
counterpart of ®4 contributes to next to SV terms to CFs
A.. As we mentioned in the previous section, the z
dependence of the solution is inspired from the structure
of various contributions that constitute the next to leading
order contributions to a variety of inclusive reactions,
namely production of a pair of leptons in quark-antiquark
annihilation, a Higgs boson in gluon fusion or in bottom
quark annihilation at hadron colliders. In addition, the
renormalization group equation, Eq. (40), brings in an
additional z dependent logarithmic structure through the
anomalous dimensions C¢(a,) and D*(ay).

Note that the solution given in (27) is organized in such a
way that the term @9 contains only leading contributions,
namely the distributions such as 5(1 — z) and D;(z), the so-
called SV terms, and the term ®¢, the subleading terms,
i.e., the next to SV logarithms In*(1—z),k=0,1,....
Even though ®¢ does not contain next to SV terms, they
contribute to next to SV terms to A, when the exponential
is expanded in powers of a,. Not only do distributions
result from the convolutions of two or more distributions,
they also give next to SV logarithms. In addition, the
convolution of distributions with next to SV terms in turn
give pure NSV logarithms. Hence, the leading solution @4
plays an important role for generating next to SV terms for
the CFs A, at every order in perturbation theory.
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The solution @ [see (28)] at every order in & is found to

. . . 7 1 .
factorize into the z dependent piece, ((1 — z)™)*/? 1= With

m =2, and the z independent coefficients &gi}) (€). The
peculiarity of this solution is that we can retain the

independence of (:f)g(\i) (e) with respect to the variable z
at every order in a,, thanks to the presence of the factor
((1—z)myie/? (llfz) which not only ensures the finiteness of
the SV part of CFs A, but also gives the right distributions
at every order. The factor m takes the value m = 2 for DY
and Higgs productions as observed in (28) and the origin of
it can be traced to the number of external legs that require
mass factorization [20]. It was observed in [20,122] that the
parameter m takes the value m = 1 for the SV part of the
solutions to CFs of structure functions of DIS and of semi-
inclusive annihilation (SIA) of hadron production and the
reason is that only one of the external legs requires mass

factorization. The uniqueness of the structure of &5;(\?) may
be attributed to the fact that the entire z dependence of the

. . 7 2 1
solution factorizes at every order as ((1—z)")*/? L,

leaving ¢S\ (€) z independent.

As the SV part, the NSV part of the solution is also
determined by demanding that it should contain the right
divergences to cancel those present in AP kernels. The
structure of the finite part of the solution is determined by
(39), which when combined with the SV part of the
solution, reproduces the correct NSV terms for A.. The
perturbative structure of higher order results allows only
certain powers of logarithms at every order in perturbation
theory thanks to the inherent transcendentality structure of
Feynman integrals that appear at every order in a, and in €
in the dimensionally regularized theory. We find that the
coefficients gogl)(z, €) are consistent with this expectation.
In addition, the solution demonstrates an interesting struc-
ture that deserves a mention.

Recall that the first order differential equation for soft-
collinear function S, gives the solution Cexp(2d). We
applied the boundary condition S.(¢*> =0,z) = §(1 — z)
as we use dimensional regularization. Although it is an
evolution equation with respect to g, the solution captures
its dependence on both g as well as z at every order in a,.
This is because the differential equation is valid for all z
near threshold (SV + NSV). Given the boundary condition,
the exponential of the solution is unique and the explicit
dependence on ¢? and z is controlled by the kernels K¢ and
G°. The latter are extracted from the explicit perturbative
results on Ac, F,, and ', available in the literature. We
found that in the SV part of the exponent @, the complete
z dependence can be factored out through (1 — z) at every
order a,. However, this is not possible for the NSV part,
@4. The explicit results obtained through third order in a;
suggest the following all order structure for the ®% in terms
of a,, e, and log(1 — z):

o0 2\ i€
N i q 2 .
@5 (a,, 4%, g%, 2,€) :Zag (—2> St
=1 H
co i+j

X Z Z dA);’(i’j)ef logh(1—2z). (54)

j=—i k=0

Note that respective expansion coefficients dA)z’("’] ) can be
uniquely determined from the fixed order results. The upper
limit in the summation over k is the generalization based on
the extrapolation of fixed order results. The justification for
this extrapolation is discussed later in this section.

In the following we represent the above solution in two
different forms; both give the same expansion coefficients

Ao

<I>;’("] ) if we expand them in powers of . The first is the
generalization of the form given in (34), and the second one
is to demonstrate that these logarithms log(1 — z) in the
solution (54) originate from soft and collinear configura-
tions. We find that the K 4+ G equation allows us to
construct not just one solution but a form of solutions, a
minimal form, satisfying the right divergent structure as
well as the dependence on In*(1 —z),k=0,1,...:

1. Form I

We begin with a form parametrized in terms of a:

2. . 2(1 —7)"\5 . ;
@3, = Zals (fl(ﬂ—z)> Sipih(z.€).  (55)

i=1

For any arbitrary choice of a, expansion coefficients can be
determined by comparing against the (54) so that the
predictions from the solutions ®% , are unaffected.
The reason for the independence of the choice of @ on
the prediction is due to the explicit z-dependence of the
coefficients (pﬁ’}l(z, e) that we allow at every order in a, and
in €. Note that in the above expression, if we first insert

1=(1-z)%(1-z2)% and define

(1-2)%plu(z.€) = o) (26, (56)

1 C — c
then we obtain @y , = dy

for any a,«. Hence any
variation of a in the factor (1—z)* can always be
compensated by suitably adjusting the z independent
coefficients of In(1 — z) terms in go(c')a(z €) at every order
in a, and in e. The reason for this is the invariance of the
solution under certain “gaugelike” transformations on both
(1 —z)™ and ¢, s (2, €) at every order in a,. Note that the

logarithmic structure of (pE’L(z €) plays an important role.

Because of this invariance, these transformations affect
neither the divergent structure nor the finite parts of ®f ,.
We find that the invariance can be realized through the
renormalization group equation of the strong coupling
constant. To end, the solution given in Eq. (55) takes the
following integral form:
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(1-2)" dp?
q)g’,a = /12

Lo}

u

The finite part ¢ ., can be expanded as

Qof,c,a( (qz (1 - Z

with L* =
the solution corresponding to a = 2, through

’

_Lc(as()?)? Z) =+ ¢f,c,a(as(q2(1 - Z)a)’ <, €)|e:0 + ¢s,c(as(/‘%)’ <, 6)‘

(57)

9= di( (58)
i=1

i
k
a) Z ‘/’i,o)x,ile(
k=0

() (k)

In*(1 - 2). g, = ¢*(1 — 2)“ The fact that the predictions are insensitive to a relates the coefficient ¢, ; to ¢,

0 0
002 = o

1 e 0 1 2 l_ ¢ e I 2
Gews = ~0D5 = Pogc) + 02 Pan = —5@PoDf ~a(C5~ ori)) + 0.

© _ 0 ) — _a(ps

- ﬂl(ﬂg.)l)

- Zﬂo(pﬁ(,)z)) + (pﬁ?%,

/1 o
-’ <§ﬁ1D? + BoD5 = ﬁozfﬂi?f) —a(Ca~pro\) — 2800)) + o,

| _ _ o
4”?33 = B> <— §D3a3 + azqogf) + Boa(—Csa + 2(,0(3) + ¢§3§

(0) (0) (1)

_ ~ (0 _ (0 _ (0
(pc,a,4 = (pc.4’ ¢c,a,4 = —Dia + ﬁ2a(p£,f + Zﬂ]a(ﬂgg + 3,50(140(6’3) + 500,4’

(1)

2 N P I S A S ()
o), = —Csa— S PaDia? — iD5a — 2 foDsa + *ﬂoﬂlazél’gf

)

+ﬂ2a€0c1 + 3py°a* §0c2 + 2ﬁ1afﬂcz + 3ﬂ0a§0c 3T @4

3 _ _
(p<c,11.4 = ﬂ030‘3(ﬂc |+ po*d?

(=Dsa+3¢)) - —ﬂ1a<6csa +5p0a(D5a —3¢.)

c,l

~12¢") )——ﬁoa(CCa 201) + 1),

1 - ol
o= 00 (~ i 20l) 4 A i 3 + o+ o

where @ = @ — 2. The above relations are the transforma-
(ck()“ that are required to compensate the con-
tributions resulting from the change in the exponent of
(1 — z) from ie to iae. This invariance property with respect
to the parameter @ makes the solution a peculiar one
compared to the SV counterpart.

tions for ¢

2. Form II

We point out that the form of solutions parametrized by
is not the only one that satisfies the K + G equation. For
example, if we do not restrict z-dependence in (pgl) , We can
obtain a different form of solution. Then for such a solution,
we need to add more terms on the right-hand side of (55) in
such a way that all the requirements are fulfilled. In other

words, if we assume the following form for the solution:

(59)

(60)

o> (P il

with various qbgfz,(e)’s to contain right divergent as well as
finite terms which when we sum them up over a’s, we can
obtain A, that agrees with the known result. In the
following we explain this using an example that can
provide the justification for the proposed solution. We
use [123] for this purpose. In [123] inclusive production of
the Higgs boson was computed using the method of
threshold expansion up to third order in @, in dimensional
regularization. For the diagonal channel, 6, the results to
third order show remarkable structure in terms of z and e,
namely the factorization of terms of the form (1 — z)¢ and
functions that depend only on €. Generalizing this structure
to ith order in a,, one obtains the factorization of the form
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20 (1= z)%/2y%(€). The factor (1—z)*/2 originates
from soft and collinear configurations of partons. The
corresponding soft and collinear scales are given by
(¢*(1 = z))*/2, and hence one can conclude that the
threshold expansion beyond SV approximation contains
multiple scales parametrized by «. From the explicit
computations one finds that every collinear parton gives
(1 —z)¥/2 and the soft parton gives (1 —z)¢." Pure virtual
contributions to born amplitude give 5(1 — z), and the hard
part from the real emissions gives terms proportional to
(1 —z)",n > 0. For a given process, we can determine the
values of a by studying the number of soft and collinear
configurations. This way we can find out the allowed
values of a for every process at every order in a,. The
highest power of a at a given order is determined by the
number of allowed soft and collinear configurations in that
order. The values of a extracted from results known to third
order can be used to extrapolate the upper limit on « at ith
order in a, and it turns out to be 2i. The coefficients of the
scales y%(¢) can be expanded in powers of e. The
singularity structure in ¢ is completely determined by
the finiteness of the mass factorized result. Note that the
remarkable multiscale structure of the fixed order results
[123] for the cross sections confirms the structure of @g
given above.

The fact that the exponent ®§ (60) is identical to the
exponent in (34) if we expand them around ¢ = 0 implies

2i

=3 (1=2)%plale).  (61)

a=2

(1 =2)“di(z.€)

In the following we explain how the parameter o counts
the soft and collinear modes. Let us begin with one loop
(i = 1) where we have @ =2 and the corresponding soft
scaleis (¢*(1 — z)?)2. At two loops (i = 2), we have a = 2,
3, 4 and the corresponding scales are (¢*(1 —z)?),
(g*(1 = 2)%)%, and (g*(1 —2)*)?, respectively. Note that
the first scale results from two collinear modes each with
the scale ¢*(1 — z), and the second one arises from the
combination of soft and collinear modes each with the
scales ¢>(1 — z) and ¢*(1 — z)?, respectively. The last one
is from a combination of two soft modes with the scale
¢*(1 — z)* each. The explicit results on ®$ up to third order
suggest that the expansion coefficients vanish fora > i 4 j
for all i, j.

While these two forms of solutions may look different in
the structure, both of them give identical predictions to all
orders for CFs, and in addition, it is easy to relate the
coefficients of these solutions by finite transformations.
Hence, they are equivalent. In the present paper, we use the
form-I solution with the choice @ = 2 in (55) so that the
solution resembles the SV part. Thanks to the invariance

'We thank Claude Duhr for explaining this point to us.

property of the solution, the different choices for a neither
alter the qualitative behavior nor the quantitative predic-
tions for A, to all orders. For example, an alternate choice,
say a = 1, can only change the coefficients of In*(1 — z) in
the ¢y . without affecting the all order structure and the
predictions for A.. With our choice of a = 2, the all order
solution, equivalently integral representation resembles that
of the SV part. We will see later that this choice will allow
us to study N space resummation for both SV and NSV
terms with single order one term, namely @ = 2a,f,In N.

B. On the logarithmic structure

In the last section, we derived the z space result that can
correctly predict certain SV and NSV terms to all orders
from the knowledge of previous orders. This was possible
due to a peculiar logarithm structure of the solution to the
K + G equation at every order in a, and €; see (38). In this
subsection, we present an explicit result for ®°, ¢ = b to
second order in perturbation theory in order to explain the
structure of SV and NSV logarithms at a given order in a;
with an accuracy of €”. We have used the inclusive cross
section for the production of the Higgs boson in bottom
quark annihilation for this purpose. The conclusions remain
unchanged as long as color neutral production in diagonal
channels are considered. To order a2, the inclusive cross
section for the production of the Higgs boson in bottom
quark annihilation receives contributions from (a) pure real
emissions

b+b—H+g+yg.
b+b—H+q+43,

b—i—l;—»H—i—g,
b+b—H+b+b,

(b) pure virtual corrections through one and two loop
corrections to leading order b + b — H, and (c) interference
of pure real emission process b + b — H + g with the loop
corrected process b+ b — H + g. Here, g refers light
quarks leaving #- and b-quarks. We compute these parton
level subprocesses using the standard Feynman diagram
approach. Beyond the leading order in strong coupling, all
these subprocesses develop UV and IR divergences, and
they are regulated in dimensional regularization. As we
encounter a large number of Feynman diagrams, we use
QGRATF to generate them and an in-house FORM routine
to perform all the symbolic manipulations, e.g., for Dirac,
SU(N,) color, and Lorentz algebra. We use the integration-
by-parts (IBP) identities through a Mathematica based
package, LiteRed, to reduce Feynman integrals to a
minimum set of master integrals. In addition, for real
emission and real-virtual processes the method of reverse
unitarity is used along with IBP identities to reduce the
resulting phase-space integrals to a set of a few master
integrals. The master integrals for the virtual processes can
be found in [88,124] and for the real emission in [124] up to
the desired accuracy in €. While individual subprocesses
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contain UV, soft, and collinear divergences, after renorm-
alizing the strong coupling constant @, and the Yukawa
coupling A, the sum becomes UV finite. In addition, the soft
and final state collinear divergences cancel in real and
virtual subprocesses, leaving only initial state collinear
divergences in 6.

Since we are interested only in those terms that are
proportional to distributions and NSV logarithms
In*(1 — z), we expand * 6,5 around z = 1 and drop those
terms that vanish when z — 1. In order to extract ®¢ from
the latter, we follow (13), where the virtual contributions
are factored out from &z, giving rise to the function S,.
Owing to (22), S, has an exponential structure

4 1

&, =r{!
€

2 3 7 3

ng +§C2L§ - (54'3 +§Cz>

1
+e3<—§L§+

A2 88\ | 1176 664
<1><N§V,,_CFCA{ (3>+E<TLZ+8CZ—T>+<

352 2341 2750 356
+e <TL3 <16§2 - —>L§ + (— —56¢5 ——§2>

18 27

1
+ CZF{E (16L, + 12) + (28L2 + 14L, — 32¢,) + €(—

1 /-16 1/-32 112 5
‘I’CFI’lf —2 T +E TLZ+T + —L +
56 656 1030
BT S T

pe(T® e,
Ay
9 9

As can be seen from the above results, at order a, the
leading pole in € is of order one, it is two at a2, and the
increment of one unit for the leading poles is expected to
continue with the order of perturbation. However, the pole
structure for 6,7 shows an increment of two units. In addition,
atevery order in a,, for a given color factor, the combination
of € and the leading logarithm shows uniform transcenden-
tality weight. In other words, if we assign n,. weight for ™"
and n; forIn" (1 — z), then the highest weight at every order
in ¢ shows uniform transcendentality w = n, 4 n;. For
instance, at one loop, we find w = 1 at every order of ¢
and at two loops it is two (w = 2). This clearly explains that
the highest power of In(l1 —z) at every order in € is
constrained by the order of &, and the accuracy in e and
is found to be i + j for the term a%e/. This translates to i +

j— 1for Qé”l in (38) as the latter is the coefficient of e/~!. This
exercise provides an explanation for the logarithmic structure

*We thank Claude Duhr for helping us with the expansion of
Harmonic Polylogs [125].

1
l6L2 (1662

Sp(z.q%. €) = Cexp (20°(z. 4%, €)). (62)

where ® = ®4 + @Y. Expanding ®% in powers of & as

1_ 2 12 . i
( : ) sigl(z.e)

- °° (%) sidl e, (o3

i

D (ay, 47,47 2, €) Z

and using explicit results for &Zvl-f“sv, Zyvy, and F, we

obtain ‘i)g)sv , for i = 1,2 in powers of €. They are given by

4 7 3
(—8) + (—8L, +4) + e(—4L? + +4L, + 3&,) + € <—§L§ +2L% + 34,1, - (g 3+ 5@3))

(5 i6)) )

1238
o)

1402 178
9

7~ 2805 - —Cz
4021 982
é“s—— —C2—4Cz>}
3 L} +7L§ + (6 = 768,)L, — 8 + 484, —gz)}
224\ +28§ 328
9 )23 g7

Sa-ge)l (64)

74 13

9

|
given in (38), in particular the upper limit of the summation.
This logarithmic structure determines the structure of ¢

given in (43). In Appendix C, we present g i up to second
orderin a, with i = 1, 2. We add that the inclusive results for
Higgs production in gluon fusion as well as production of the
pair of leptons in quark-antiquark annihilation also show
exactly same logarithmic structure. Beyond second order,
explicit results for 6,, are not available in the literature.
However, results for A,, F,, and I'.; to third order have
become available in recent times, and they can be used to
determine ‘i)ﬁs)v,c for ¢ = g, b, g up to the accuracy °. We
find that the logarithmic structure at a given accuracy in € is
consistent with our expectation based on uniform
transcendentality.

Precisely because of the peculiar logarithmic structure of
the exponents, namely an increment by one unit, we get
logarithms in CFs with an increment of two units. It is easy
to understand this structure if we observe that when we
expand the exponents containing D; and In*(1 —z) to
obtain CFs, the resulting convolutions between various
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orders in a, will be of the form D; ® D, and/or D; ®
In’(1 — z) which will result in leading distributions Dj_, |
and leading NSV logarithms In**+1(1 — z).

IV. ALL ORDER PREDICTIONS FOR A,

In this section, we discuss the predictive power of the
master formula (14). In other words, given Zy ., F,,®¢ and
the I',.. up to a certain order in perturbation theory, we show
that the master formula can predict certain SVand NSV terms
to all orders in perturbation theory. The reason for the
predictions of certain SV and NSV logarithms in CFs to
all orders from the knowledge of data available from the first
few orders is that near threshold, the building blocks (form
factor F » renormalization constant Z,., soft collinear func-
tion S., and AP kernel I'..) that constitute CFs satisfy
respective first order (homogeneous) differential equations
whose solutions turn out to be exponential in form with the
unit boundary conditions in dimensional regularization.
Because of this exponential form for the CFs, the knowledge
of (or the data on) the exponent at lower orders in a,; will be
sufficient to predict certain SVand NSV logarithms of CFs to
all order upon expanding the exponential. The partonic
coefficient function A, can be expanded order by order in
perturbation theory in powers of a,(u%) as

AP g i2) = Y dh () A (4P i pih2). (65)
i=0

where the coefficient AE-i) can be obtained by first expanding
the exponential given in (46) in powers of a,(u%) and then

performing all the resulting convolutions in z space. Note that

AD = 8(1 — z). We have dropped all those terms that are of
order O((1 — z)*),a > 0. Finally, we write the following
decomposition:

1 SV.(i
A (@ i3 2) = AV (@ i i 2)

NSV.(i)(

+ Ac ¢ up-ug.z).  (66)

Here AEV'O) contains only SV terms, such as the distributions
D;(i=0,1,...) and 5(1 — z) and next to SV terms; i.e., the
logarithms In‘(1—z)(i =0,1,...) are embedded within
AIC\ISV’(Z). Now given the distribution function ®°, up to a
|

certain order in a,, there are several SV and NSV logarithms
that can be predicted to all orders in a,. For example, we
observe that if W¢ is known at leading order in a,, we can
predict all the leading distributions D; and leading NSV
terms In'(1 — z) to all orders in a,. In the following, we
elaborate on this by comparing our predictions with the
available N°LO results and also predict N*LO and some
higher order results for a few observables.

Given V¢ at order a;, by expanding the master
formula (14) in powers of a strong coupling constant,
we obtain the leading SV terms (D53, D,),
(Ds,Dy), ..., (Dyi_1, Dyi») and the leading NSV terms
In*(1-2),In%(1 =z),....In%" (1 -2) at a?al,... d,
respectively, for all i. Since C{ is identically zero,
In*(1 - z) terms do not contribute for all i. Hence, we
predict

ANSY = g ANV 4 2[2128C2L3 + O(L?)]
+al[-512CL3 + O(LY)]

4096

(67)

Here we write In’(1 — z) = L! for brevity. Also C; = Cp
for ¢ = {q, b}, i.e., for DY and Higgs production through
bottom quark annihilation. And for Higgs production
through gluon fusion, ie., ¢ =g, we have C; = Cy.
Thus with the knowledge of one loop anomalous dimen-
sions {CY, D, A{, B{, f{} and one-loop go(ck1> , we predicted
the above NSV logarithms and the known NNLO and
N3LO results [4-6] for DY and Higgs boson productions
confirm this. Note that these predictions will be unaffected
if we include the second order result for W¢ simply because
the leading logarithm at &/ accuracy is 2 + j, and hence at
€Y order the highest logarithm is log?(1 — z) which will
only contribute to the subleading contribution at a?.
Similarly the prediction at third order will be unaffected
by the third order result for ¥¢ and so on.

Similarly from W¢ to order af, we can predict the tower
consisting of (D3, D,), (Ds, Dy), ..., (Dai_3, Dyi_4) and of
L3 LS, ... L¥ % atal, al, ..., al, respectively, for all i. For
the DY and Higgs production in bottom quark annihilation,
our prediction reads as

7040 1280
ANSY — a AN 1 2 AN 4 a3 {—5120}@ + (T ChCa =~ n,Ch + 1728C%> L+ (’)(L?)}
4096 39424 19712 , 7168
vt -2 (B2 ae,+ R0 - TR e+ 0w + o) (68)

and for the Higgs production in gluon fusion
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ANSV —a A;\ISV( ) ZANSV( )
g s

af{—512le€+ <cﬁ -

7168

22592 1280

5 5 4ﬂ>L4+O@%]

096 98560
+a§[_Tc4L7 ( Wy -

Our predictions for Lé, i=5,4 agree with those
obtained by explicit computation [6,123]. For the com-
parison purpose we have presented the logarithms only up
to order a*; however, the master formula can predict such
logarithms to all orders in a,. Note that even though the L?
term is absent at the second order in ¥¢ at the accuracy &,
we can predict this term simply because of convolutions
between D, and L from first and second order terms in €.
|

NSV
Al]

4096
g, ANV 2 ANSVE) | 3 ANSVE) g H .

123904 , (805376
27 FA 27

139520
27

{51200
+

4096
I’lfC?’

8192
3 3
81920 194560 L 901120 ,
~ g Gt g Cin g1 CrCany -

65536 167936
+wé[{——T§—C6}LE—%{ s % -

3

180224
27

5054464

9

c4}
—30ng)cya+w%m8+mmaxﬁci

8192
e o] o)

2478080

Ff 27

WC®L§+O@@}+OMQ. (69)

|

Thanks to [6,9,123], the third order results are now
available for all these processes allowing us to determine
@5 for ¢ =g, b, g till third order. Using this, we can
predict a tower of (D3, D,),(Ds,Dy), ..., (Dri_s, Dajg)
and of L3, ...,L¥ 3 at af, a3, ..., al, respectively, for all i.
In the following for the illustrative purpose, we have
presented the NSV terms L, till seventh order in ay. For
DY, we find

19712
A+
9 Aty

45056
27

39424 7168
+{ Ch =Ty Ch L
nfCZCA

3

3 9 3

45056 72704 229376 1120256 32768
C“CA}L8 + {(— Cz) < - Cz) CHCy

i C%Ci}LZ +o(y)

991232 145408
+ == c%;}Lw+{< 3 +1%amg>¢

3604480

81 FMTTr 81

327680 <28997632 81920

Cz) CirCa+
1703936

9912320
CLCam, — 7C‘}C§}L2

81 81

9371648

% }

1163264 5767168 7
+ G &H)C

917504 . , 10092544
B TR Ly

+—C)L8] {2392064

55 115776

405

27754496
81

C;‘ Anf -

for the Higgs production in bottom quark annihilation,

NSV(1)

AII;ISV = q,A} &2 ANSV( ) ANSV( ) +al] AI;ISV

+aS[AYSVO) 32m&ﬁL9+Oaﬁﬂ+a[A“W)

and for the Higgs production in gluon fusion,

31 5080704 262144
C?:I’lf <

c;cg}Ly + O(L%O)} +O(a):

135 Pt

e c%cA}Lzz

205 Cz) CyCa

(70)

—6144C4LS + O(LY)] + aS[A)SY®) — 16384C5 LT + O(LY)]
262144
L+ o) + ot )
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NSV(1 NSV(2
AESV:aSAg (1) 2AD )

3

4096
+ a3 ANSVO) 4 g H——C“

98560 7168
—C4 n,C3 L"
} { 9 ICI }

298240 174208 4096 8192
+{<— . +z3552¢2>cg+ e L }CZ}L§+(’)(L§)}+a§H : cS}
96256 8192 12283904 262144 2569216 81920
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Our predictions for L7, LS, and L] terms at fourth order
for A, agree with those of [3,23, 28 ,71] predicted using
physical evolution equations. As can be seen from (70)—
(72), given the third order results, our master formula can
predict three highest logarithms for fifth order onwards in
a,. For instance, at a3, we can predict L], L8, L]. Again,
these predictions are from the lower order results.
Generalizing this, if we know W up to nth order, we
can predict (Ds;_o,4 1> Daisy) and L?~" at every order in
al for all i. Table I is devoted to summarizing the
predictions from the master formula for any given order
of a;. We also present the explicit structure of A, till four
loop in Appendix E as well as in the Supplementary
Material [126].

The predictive power of the master formula to all orders
in a, in terms of distributions and In(1 — z) terms in A, is
due to the all order structure of the exponent W¢, and this
can be further exploited to resum them. We devote a
separate section for this. So far, we have compared our
higher predictions for SV and NSV logarithms obtained
using the lower order results against those available in the

180224 671744 . 4261888
- c}W}L?+-{< I Sl )cﬁ
262144 3309568 , 1703936
[{_ 45 cg}z;3+-{ 7 ST s Cg"f}léz
917504
Chns— Slnﬂjpy+ouyﬂ+omﬂ (72)

literature and found that our all order master formula
correctly predicts these logarithms. For example, from
the knowledge of the second order result for ¥¢, we can
correctly predict In3(1 — z) and In*(1 — z) terms at third
order. Even though this second order information is not
sufficient to predict the lower order NSV logarithms,
namely In*(1 — z) for k = 3, 2, 1, 0 at a? level, we observe
that our predictions for these logarithms agree with the
known results for several color factors.

In Table I we compare our predictions for In(1 — z)
terms at the third order, which are obtained using W¢
considered till a2, against the known results for the DY
production, Higgs productions in bottom quark annihila-
tion, and gluon fusion. As can be seen from the table, the
master formula correctly predicts the results for many color
factors. For instance, for DY, the predictions for color
factors C}., Cpnj, C4Cpny, and C3Cp are matching with
the exact results. However, for the other color factors,
certain third order information is required, which is
represented as y; which when taken into account will
reproduce the exact In*(1 — z) terms at third order.

TABLE I.  Towers of distributions (D;) and NSV logarithms [In(1 — z)] that can be predicted for A, using (14).
Here ‘PE.I) and Ag’) denote ¥, and A, at order a, respectively. Also the symbol L’. denotes lni(l - 2).
Given Predictions
Tgl) lI,Ez) ‘P?) ‘PE") A(CZ) A£3) Agi)
Dy, Dy, 6 Ds, D, Ds, D, Di-1ys Diia)
Ll LY L} L} L2
D07 Dla 1 D3s DZ D(2l—3)9 D(2i—4)
L2, L, LY L ngi—z)
Dy, Dy, 6 Di-5)> Dozi-s)
L3, ... LY L&)
DO’ Dl’ o D(Zi—(Zn—l))’ D(Zi—Zn)
L, ..., LY L)
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TABLE II.  Comparison of In*(1 — z) coefficients at the third order against exact results. The left column stands for the exact results,
and the right column gives the respective contributions when W¢ is taken till two loop.

Color factors g9 —> H Color factors Drell-Yan (DY) bb— H

c3 =L0008 1 35847,  =L0SS6 4 35844, + 4, Cy 2272 +3072¢, 2272 +3072¢, 736 + 30724, 736 + 30724,
Ciny 0 et Ciny e RERFE e s
Cany =0 2% C,C} =0 5120, S 5120, 4y AERM 45120, M L5120, 44y

V. RESUMMATION OF NEXT TO SV IN N SPACE

To study all order behavior of A, in Mellin space, it is
convenient to use the integral representations of both ®¢
and @4 givenin (31) and (39), respectively. Substituting the
solutions for ', and renormalization constant Z uv.. and the
InT".. along with the integral representations for @4 and @5
in (14), we find

A% pio w3 2) = Ci(q* g 17)Cexp(2¥% (g 7. 2)).

73)
where
2
Wit =y [ Pl ().
+Qa(¢*(1 - 2)*).2). (74)
with
O (o (1-27).9) = (T Onala’ 1= 2) )

+ogelaq*(1-2)%).2).  (75)

The coefficient Cf is the z independent coefficient and is
expanded in powers of a,(u%) as

Cs(q> uh 1) = Za

%) C6i (% pxo 1), (76)

where the coefficients Cf; are presented in the ancillary
files along with the arXiv submission. Also one can find Cj
for DY and Higgs production in [37]. Equation (73) is our z
space resummed result for A, in integral representation that
can be used to predict SV and NSV terms to all orders in
perturbation theory in terms of universal anomalous

dimensions, A¢, B°, C°, D¢, f¢, SV coefficients G""/,
NSV coefficients g;‘f ’k), and process dependent Cf,. We

have few comments in order. The next to SV corrections to
various inclusive processes were studied in a series of

papers [64-67,73,74,127], and a lot of progress has been
made that leads to better understanding of the underlying
physics. Our result has a close resemblance with the one
which was conjectured in [64], and indeed there are few
terms which are common in both the results. Our result,
Eq. (74), differs from Eq. (31) in [64], in the upper limit of
the integral, the presence of extra term ¢y ., and the
dependence on the variable z. These differences do not
alter the SV predictions but will give NSV terms different
from those obtained using Eq. (31) of [64].

The Mellin moment of A_. is now straightforward to
compute using the integral representation given in (74).
Note that Eq. (74) is suitable for obtaining only SV
and NSV terms while the predictions using this formula
beyond NSV terms such as those proportional to
O((1=2)"In/(1=2));n,j >0 in z space and terms of
O(1/N?) in N space will not be correct. Hence, we
compute the Mellin moment of (73) in the appropriate
limit of N such that the resulting expression in N space
correctly predicts all the SV and NSV terms. The limit
z — 1 translates to N — oo, and if one is interested in
including NSV terms, we need to keep O(1/N) corrections
in the large N limit. The Mellin moment of A, is given by

Ao (G g uf) = Colq? g uz) exp (Y5 (q*. uz)). (77)

where

1
W (g2 p2) =2 / Az 3 z). (78)

The computation of the Mellin moment in the large N limit
which retains SV and NSV terms involves two major steps:
1. following [64] we replace [dz(zV~'—1)/(1—z2) and
[ dzzV~" by a theta function (1 — z — 1/N) and apply the

operators FA(N 4y) and FB(

tively; 2. we perform the integrals over 4> after expressing
a,(2%) in terms of a,(u%) obtained using the resummed
solution to the RG equation of a, in (AS5). Step 1 makes

) on the integrals, respec-
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sure that we retain only In/(N) and (1/N)In/(N) terms,
and step 2 guarantees the resummation of 2fa,(u%)In N
terms to all orders and also the organization of the result in
powers of a,(u%). The details of the computation are
described in Appendix A. The Mellin moment of the
exponent takes the following form:

lIIICV = lI,gV.N + lPrclsV.N (79)
where we have split P{; in such a way that all those terms
that are functions of In/(N), j = 0,1, ..., are kept in Y v
and the remaining terms that are proportional to
(1/N)In/(N),j = 0,1,..., are contained in ¥¢,, ». Hence,

W<, v = In(gi(as(u%))) + g5 (@) InN

Y ()t @), (80)
=0

=l

where ¢¢(w) are identical to those in [51,53,60] obtained
from the resummed formula for SV terms. It is to be noted
that ¢{(w) vanishes in the limit @ — 0. The coefficients
g6 (a,) are expanded in powers of a; as (see [53])

[Se]

In(g(a, (%)) = > al(uk)gs, (81)

i=1

We also provide g§(a,(u%)) in the ancillary files along with
the arXiv submission. The N independent coefficients Cj
and g are related to the coefficients g given in the paper
[60,63] using the following relation:

9(4° 1 my) = Ci(a* - u7) 96 (as(uk)).  (82)
which can be expanded in terms of a,(u%) as
dolas(uk) = > ak(u)as, (83)
i=0

The function ¥¢_, , is given by

nsv,

g 1 . i =C c
‘P;sv,N = N Z ag (ﬂ]ze)(giJrl (a)) =+ hi (60, N))v (84)
i=0

with

i

B (@, N) =Y (@) In“(N). (85)

k=0

where §¢ (@) and kS, (o) are presented in Appendices G and
F, respectively. We also provide these coefficients till four
loop in the Supplementary Material [126]. We can see that
in each coefficient, say gf(w), ¢ (@), hS,(w) from the SV as

well as the NSV, we are resumming in Mellin space the
“order one” term w to all orders in perturbation theory. This
is the consequence of the argument in the coupling constant
a,(g*(1 — z)?) resulting from the integral over 1 and the
function Q°. The peculiarity of the series is that the SV
g{(w) comes with In N, and hence it starts with a double
logarithm. This extra In N arises from the Mellin moment
of the factor 1/(1 —z), appearing in the exponent.
Similarly for Wi y we note that it is proportional to
1/N at every order as expected. Explicit In N that appear
with £, (o) results from the explicit In(1 — x) appearing in
the exponent. The sum containing g5,7 = 1,2, ..., results
entirely from A° coefficients of P, and from the function
GSy of (75). We find that none of the coefficients
9 (w) contain explicit In N. The second sum comes from
C¢, D¢ coefficients of P, and from ¢ . and each term in
this expansion contains explicit In*(N),k =0, ...,i. We
find that the coefficient of hf, is proportional to C{ which
is identically zero. Hence, at order a?, there is no
(I/N)InN term.

Summarizing, we find that in Mellin N space one obtains
a compact expression for the exponent in terms of quan-
tities that are functions of @ = 2a,(u%)ByIn N as we use
resummed a,; to perform the integral. In addition, the
resummed a, allows us to organize the N space perturbative
expansion in such a way that w is treated as order one at
every order in a,(u%). Both integral representation in z
space and Mellin moment of the integral in N space contain
exactly the same information and hence predict SV and
NSV logarithms to all orders in perturbation theory. The all
order structure is more transparent in NV space compared to
the z space result, and it is technically easy to use the
resummed result in N space for any phenomenological
studies.

Let us first consider W, , given in (80). If we keep only
Jo.0 and g, terms in (80) and expand the exponent in powers
of a, = a,(u%), we can predict leading a’ In* (N) terms for
all i > 1. This happens because of the all order structure of
@4 in z space. For example, if we know ®§ to order a,, we
can predict the rest of the other terms of the form
aiDy;_1(z) in @4 for all i > 1. If we further include g
and ¢, terms, then we can predict next to leading
alIn*=1(N) terms for all i > 2. Again this is due to the
fact that in z space, knowing ®¢ to second order one can
predict aiD,;_»(z) terms for all i > 3. In general, the
resummed result with terms gg ., .., 95—, and g7, ..., gy
can predict a In*="*'(N) or a.D,;_,(z) terms for i > n.

The inclusion of subleading terms through exp (¥, v)
gives additional (1/N)In/(N) terms in N space or
In/(1 —z) terms in z space. In perturbative QCD,
C{ =0, where ¢ = g, g, and we use this in the rest of
our analysis. As the W \ exponent, W[  also organizes

the perturbation theory by keeping 2a,(u%)p, In N terms as
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TABLE III. The all order predictions for 1/N coefficients of
A,y for a given set of resummation coefficients
{96 9 (0). 3¢ (@), hé (w) } at a given order. Here L = 3 In‘(N).
Given Predictions
Logarithmic Accuracy Resummed Exponents A?]z, Afgl)v AE’L
NSV-LL G0 95, 951§ Ly Ly Ly
NSV-NLL Go.1> 950 G20 S Ly Ly
NSV-N2LL G620 95,95, hS Ly~
NSV-N"LL o> G 15 Inr» L’2Vi—("+1)

order one at every order in a,. However, these terms are
suppressed by the 1/N factor at every order in a;.

We find that if we keep {5 o, 97 } in 5, y and {g{, A§} in
e, v and drop the rest, one can predict (a/N) In*~!(N)
terms for CFs for all i > 1. We call this tower of logarithms
NSV-leading logarithm (NSV-LL). Similarly, knowing,
along with the previous ones, {gG,, g5} in W,y and
{g5. hS} in W, v, one can predict (ai/N)In*~2(N) for
CFs for all i > 2. This belongs to NSV-next-to-leading
logarithm (NSV-NLL). In general, the resummed result
with g{,...,g,,, and hg,....,h; in W , along with
960590, and gf,....g5, in W, can predict
(ai/N)In>=(+1)(N) for all i > n in Mellin space N,
and it is NSV-N"LL. We summarize our findings in
Table III.

We find that unlike SV resummed terms, which result
from only D, and a,(¢*(1 — z)?), the resummation of NSV
terms is controlled in addition by In(1 — z) at each order in
a, as can be seen from (74). This logarithmic dependence in
@ at each order along with resummed a,(q*(1 —z)?)
allows one to reorganize order one terms differently from
the SV case. Hence, the resulting NSV resummed result has
a different logarithmic structure in terms of order one w
compared to that of SV.

A few remarks on the resummed result are in order in
light of the previous section. Note that we considered a
particular solution ®% that corresponds to the case a = 2
and summed up order one terms @ in Mellin N space using
the resummed solution to RGE of a,. While the SV part is
insensitive to a, the NSV terms, namely the resummation
exponents 4 (), depend on a (@ = 2) through o resulting
from a,(q*/N®) and the coefficients (p(k) We had already

c.ait
seen how (p%l transforms with respect to a. The resummed

result in the N space for arbitrary a will be a function of
a,(q*/N%). This will lead to the resummation of order one
w, = afyay(ux)InN to all orders in a,. Hence, the
summation of order one w, terms with o dependent
coefficients ¢, ,; leads to a variety of resummed predic-
tions each depending on the choice of a. However, the fixed
order predictions for the CFs A, will be unaffected, thanks

to the invariance in the NSV solution. This invariance has
allowed us to choose a = 2 to resum order one @ terms
analogous to the SV counterpart.

There have been several attempts [69,70,72—74] in the
past to understand the structure of NSV logarithms of
inclusive cross sections and its all order structure, and in
this context, we compare our prediction at the LL level for
CF of DY, AL* against that of [72]. Note that [72] contains
NSV terms only to LL accuracy. In [72], within the
framework of soft-collinear effective theory (SCET), the
authors have obtained leading logarithmic terms at NSV for
the quark-antiquark production channel of the DY process
to all orders in a,. This was achieved by extending the
factorization properties of the cross section to the NSV
level and using renormalization group equations of NSV
operators and soft functions. Using our N space result in the
LL approximation, that is for DY

’

LL
(86)

. 1 _
A5 =g exp Nt ) + 3, 71 (0) + 0. )|

we obtain
InN
AIE,Lfv = exXp [SCpaS (1112N + I;V>:| , (87)

where we have expanded the exponents in powers of a, and
kept only terms of O(1/N). The above N space result can
be Mellin transformed to z space, and it reads as

ALY = A, —16Cra, exp[8Cra In*(1 — z)] In(1 — 2).
(88)

The above result agrees exactly with Eq. (4.2) of [72] for
u = Q. Our result given in (79) contains terms that can in
principle resum N"LL, n >0 provided the universal
anomalous dimensions and process dependent coefficients
are available to the desired accuracy in a,. Hence, given
three loop results, which are available for several observ-
ables, we can perform N’LL resummation taking into
account NSV logarithms.

VI. PHYSICAL EVOLUTION KERNEL

In the past, in [128], the scheme invariant approach
through the physical evolution equation was explored to
understand the structure of NSV terms for the coefficient
functions of the DIS cross section. The physical evolution
kernel that controls the evolution of the physical observ-
ables with respect to external scale g is invariant under
scheme transformations with respect to renormalization and
factorization. This property can be exploited to understand
certain universal structures of perturbative predictions. By
suitably modifying the physical evolution kernel (PEK)
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[128] with the help of scales in the strong coupling constant
and using the renormalization group invariance, predictions
at second and third orders for the CFs of DIS structure
functions were made, given the known lower order results
for CFs. Even though the predictions did not agree for some
of the color factors, it was found that they were very close
to the known results. Using the second order results for
DIS, semi-inclusive e e~ annihilation, and DY, a striking
observation was made by Moch and Vogt in [71] (and
[23,28]) on the PEK, namely the enhancement of single
logarithms at large z to all order in 1 — z. It was found that
if one conjectures that it will hold true at every order in a,
the structure of corresponding leading In(1 — z) terms in
the kernel can be constrained. This allowed them to predict
certain next to SV logarithms at higher orders in a; which
are in agreement with the known results up to third order.

Motivated by this approach, we use our formulation that
describes next to SV logarithms in both z and N spaces to
study the structure of the physical evolution equation and
present our findings on the structure of leading logarithms
in the PEK. For convenience we work in Mellin space. The
Mellin moment of hadronic cross section o(g?,7) is
given by

on(q®) = /glawrN-lo<q2,r>. (89)

K§ = A§ + 2D,

K§ = 2446, — 2C5 + 4B D5 + 2p00.",

The hadronic observable o(g? 7) is renormalization
scheme (RS) independent, namely it does not depend on
the scheme in which CFs A, and the structure functions f
are defined. The fact that f. is independent of ¢, the first
derivative of ¢ with respect to g will not depend on f..
Restricting ourselves to SV and NSV terms, we can define
physical evolution kernel K¢ by

(a.(u2 :2in0N(512)
olaslen) N) = 4 a1 (Go(qz))

SV-+nsv
d
=g d—qz In AC.N(q2)’ (90)

which is independent of any renormalization scheme. The
kernel K¢(a,(u%), N) can be computed order by order in
perturbation theory using In Ay,

Ke(a (). M) = SR, (V). (1)

As in [71], the leading (1/N)Ini(N) terms at every order
defined by K¢,

,_ng = IC? ’(1/1\/) In(N)> (92)

can be obtained. Using (77), we find that these terms can be
obtained directly from ¥¢, , alone and are given by

nsv,

Tl c c c 1 2

RS = 4AS2 — 86, C5 + 8D + 830" ) — 4600,

s c c c 3 2 3

K5 = 8ASB3 — 24p2C5 + 165305 + 24630 — 24830 7) + 65005,

C c c c 1 2 3 4

K5 = 164555 — 6453C5 + 3254D5 + 64830 — 96530 7) + 4853017 — 8oL, (93)

We find that the structure of K¢ resembles very much that
of [71]. Interestingly, the leading logarithms at every order
depend only on the universal anomalous dimensions A{, D,
and C%, and the diagonal coefficients (PIZ, « Withk < i, where i
is the order of the perturbation. In addition, if we substitute
the known values for these quantities in Eq. (93), we obtain

K5 = —8p,C; —32C2,

K5 = =1645C; = 1125,C3.

_ 896
’Cg = _32ﬂgci - T,B(Z)Cl?,

_ 2176
KS = —6484C; — TﬁSC? - 8,504052’ (94)

where C; = Cp forc = ¢, b and C; = C, for c = g.

The reason for the agreement of our predictions for PEK
to third order with those of [71] is simply because of the
K + G equation that ®¢ satisfies. In fact, the K+ G
equation is a partonic version of the physical evolution
equation and the partonic PEK given by K¢+ G¢. The
logarithm structure of PEK is controlled by the upper limit i
in the summation over the index k in (43). In N space, the
highest power of corresponding In N in the 1/N coefficient
of K¢ is in turn controlled by the upper limit on the
summation in (38). Our predictions based on the inherent
transcendentality structure of perturbative results are in
complete agreement with the logarithmic structure of CFs
or PEKs obtained from explicit results. Note that the
structure of PEK (93) expressed in terms of A{, C5, D,
(i)

and ¢, is straightforward to understand from K + G
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equations and renormalization group invariance. However,
as was already noted in [71], the coefficient of the leading
logarithms contains a peculiar structure containing only /3
and g at every order in @!. In addition, if the structure
continues to be true at every order, the coefficients qu'Z
to be proportional to 52 for every i, which can be tested
when results beyond third order become available.

have

VII. CONCLUSIONS

Understanding the structure of threshold logarithms in
inclusive reactions such as the production of a pair of
leptons in the Drell-Yan process and of the Higgs boson in
gluon annihilation as well as bottom quark annihilation is
important because they not only dominate but also become
large in certain kinematical regions spoiling the reliability
of the perturbative predictions. The soft plus virtual
contributions that dominate in the threshold region are
well understood in terms of certain IR anomalous dimen-
sions and process independent soft distributions. A sys-
tematic way of resumming SV logarithms to all orders
exists in Mellin N space. While SV contributions dominate,
the next to SV contributions are as important as SV for any
precision studies and hence cannot be ignored. Next to SV
terms also can give large contributions at every order,
thereby spoiling the reliability of the perturbation series.
The canonical resolution through resummation for the next
to SV terms is unfortunately hard to achieve. In this article,
we have studied the structure of next to SV logarithms in
both z and N spaces for the diagonal partonic channels.
Using IR factorization and UV renormalization group
invariance, we show that both SV and next to SV con-
tributions satisfy the Sudakov differential equation whose
solution provides an all order perturbative result in the
strong coupling constant. We show that like SV contribu-
tions, next to SV contributions also demonstrate IR
structure in terms of certain infrared anomalous dimen-
sions. However, NSV terms depend, in addition, on certain
process dependent functions. The underlying universal IR
structure of NSV terms can be further unraveled when
results for a variety of inclusive reactions become available.
In z space, we show that the next to SV contributions do
exponentiate, allowing us to predict the corresponding next

to SV logarithms to all orders. We find that the NSV part of
the solution is invariant under gaugelike transformations,
allowing us to construct a form of solutions, all giving
identical fixed order predictions for NSV terms of CFs A..
We show that the exponent in the z space has an integral
representation which can be used to study these threshold
logarithms in Mellin N space. We also show that the NSV
logarithms in N space organize themselves exactly as the
SV ones in such a way so as to keep 2a,(u%)f,In N as an
order one term to all orders in a,(u%). Unlike the SV part of
the resummed result, the resummation coefficients for NSV
terms are found to be controlled not only by process
independent anomalous dimensions but also by process
dependent qogkl) .

The all order master formula that we obtain in z space
demonstrates a perturbative structure which can predict
certain SV and NSV logarithms to all orders in strong
coupling constant a;, given the lower order results. From
the available results at a, and at a> for the CFs, our
predictions for third order NSV logarithms are in complete
agreement with the known results available for a variety of
inclusive reactions, namely DY production and Higgs
productions in bottom quark annihilation and gluon fusion.
Using the corresponding CFs that are known to third order,
our formalism allows us to predict three leading NSV
logarithms to all orders starting from fourth order, of which
we reported here the results to order a;. We have studied the
logarithmic structure of the physical evolution kernel, in
particular the leading logarithms, and found that they are
controlled only by process independent anomalous dimen-
sions fy, A{, C5, D{ and diagonal coefficients qoilz at every
order ai. We conclude by noting that the structure of NSV
logarithms demonstrates a rich perturbative structure that
needs to be explored further.
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APPENDIX A: DETAILS OF THE MELLIN MOMENT OF ¥,

In this section, we evaluate the Mellin moment of W, in the following way. At first, following Eq. (78) we decompose V5,

into X, v and X So, we begin with

nsv,N*

1 N -2 d)? _
m= [ (S ) ([T A + 265 a1 - ) ).
Hr
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We follow the method described in [64] to perform the Mellin moment. In the large N, keeping % corrections, we replace

/Oldz(zN—l—l)»rA<N%> Aldﬁ(l—z—%), (A2)

where [, (N %) is given in Appendix D. We expand I' in powers of Nd/dN and apply on the integral. We then make the
appropriate change of variables and interchange of integrals to obtain

Pdr 2 _
== [ S { (=2t () + Gl + 2 s i)}
di?
= Fila() =20 +10m) [T 0)) (A3)
Hr
where
0 i
Fila) = <2108y ) + 43 s (201002 3 ) { (a2
0 _
+wwwawfwumﬁ (A%)
Here f(a (1)) is defined as f(a (1)) = ®, Biait2(22) (also see [129-131] for QCD). Replacing a,(4%) by
a,(12) = (“5(72)> {1— (7 );—;1 1+( (7%)>2@—§(m21—m1+1—1)-%(1-1))
+< ) (ﬁ (2 Hini+3 02l — I — & +l——l2> b (1—lz)—i—%(lenl—?olnl—l(l—l)))],
2 7 5
(A3)

where | =1 — pya,(u%)In(u%/4*) and performing the integrals over A> we obtain the result. The entire result is
decomposed into two parts. The ones proportional to % are expressed in terms of g¢ (@) given in Eq. (84). And the remaining

part is embedded in Eq. (80).
Similarly we define

L N1 (1= d)? 2 2 2
Z;st 2 0 dzz 5 22 LC( s(’1 ), Z) +(pf,c(as(q (1 _Z) )7Z) . (A6)
H

F

Following [64], in the large N and keeping % corrections, we replace

1 d 1 dz 1
dzzV! g N— —O(1-z——, A7
%) “o T B< dN> 0o -z ( : N> (A7)

where ' (N ﬁ) is given in Appendix D and we replace Nd/dN by

d 0 0
Noro = N = 26(a, (%))

(A8)

to deal with N appearing in the argument of a,(q>/N?) and also the explicit ones present in ¢ ¢~ After a little algebra, we
obtain
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¢ 2
nst N/ @ {gc(a (/12) )+/12W~7:B(asu«2> )} +%]—'§(as(q2),N)

¢ di
+N . —r & (a().N), (49)

HE

where the functions & are defined as

Z.fc(as»N> = _2(_7/?(Dc(as) - Cc(as) In N) + yzBCC(as)) (AIO)
and
d -
F3(a(2)-N) = 20020 N) =48 (2 37010 + E 0P ))
80847 (2 1 { P 00N + E @D | 56 @) (A1)
where

&(a, N) = (D*(ay) = C*(a,) InN),

o i y [sS) d i—-3
o)) = Y S a7 =S (v)” (A12)
i=4

i=1 k=0
Using Eq. (AS5), we perform A% integrations to obtain the result in terms of hfj(a)) given in Eq. (84).

APPENDIX B: PERTURBATIVE CONSTANT OF @9

In this section, we present the SV coefficients K()(¢) to fourth order:

_ 1 A
RO (e) =~ {245},

_ 1 1
K@ (e) = 5 {=2p0AT} +_{As},

_ 1 (8 1 8 1(2
K®(e) = 6—3{5%1‘\?} { AT ﬂoAC} +E{§A§}’
rc(4) 1 3AC 1 2 AcC 1 c 1 1 c
RO(€) = = (450} + 5 { S AubiAq + 60345 b+ 5 L =gt = piag - 3p0as b+ - agh )
where A¢ are the ith order cusp anomalous dimensions:
=D _ai(up)As. (B2)

The finite quantity Gg(\i)(e) is related to its renormalized counterparts G¢(¢) in the following way:

fj ( 1‘1))S'G“<>=ia§<q2<1—z>2>65<e>, (B3)

and we find
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Gv (€) = Gi(e).
G53(6) = L (24007 (¢)) + B5(c),
G5 (€) = =5 (4FRGE(€)) + - (P15t () ~ 4oT5(€)) + (o).
63 (€)= 5 (=801 0) + 3 (s popiBi(e) + 127050
+1 (<5800 - 2850 - 6050 ) + GiCo (B4

Through explicit determination of the quantity Gl[ (e), it was found that it is dependent only on the initial partons and can be
further decomposed as

Gile) = ~f; + 7+ )_ /G, (BS)
j=1
where
Z =0,
75 = =260,
75 = =287 = 280G + 25,87,
Xy = —2ﬂzgf’<1) —2p (G;’(l) + 4ﬁog?(2)) - Zﬂo(gg'( + 2ﬂogz + 4,6091 ) (B6)

The SV coefficients Gfk in Eq. (B5) are found to exhibit the Casimir scaling principle up to three loop. Hence, these
coefficients for the Drell-Yan and Higgs production from gluon and bottom quark annihilation channels can be expressed
together in the following way:

Hc e 7
G =Cr(=30). G =G (gcg),

oy 3 7 31
gl,(%) — Cp <__§%>’ gl,(4) = Cg <__§2C3 +%Cs>,

- 2428 469 176 328 70 32
gz() CRCA( 31 ——Cz 462__§3>+CRnf<_8_1+ECZ+?C3)a

Qz() CRnf<zzlg_%§2_iC% EQ) + CrCa <_%+%C2+%§%+¥53 —Z;EQQ +43C5>,

G = cocy? <E ot @ - 11000 e 76581627 Cz+¥g32_5926748 63—1230 5+7183754988]>
+CRCA”f<_g52 —%% ot S+ e T b ceony (L2 e - sty
oG S = ) (G —19?642—2;?) e ) (87)

Here, Cr = C4 for ¢ = gand Cg = Cy forc = g, b, with Cy = N.and Cp = 21\/ ! the Casimirs of adjoint and fundamental
representations. Also, Gy (a,(g*(1 — z)?), €) are related to the threshold exponent D¢(a,(¢>(1 — z)?)) via Eq. (46) of [20].
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APPENDIX C: PERTURBATIVE CONSTANT OF @5

In this appendix, we present the relations between the expansion coefficients ¢

coefficients g;‘/ k).

G" +ﬁogz',(f'k)>, k=012

2
o “‘+ ﬁ,ng +3

1 1
ﬂszl + =

(1,k)
Q +2 :

=
N
Il
N N N

where Gy

QL ,24 QLzz 4 QL 134 are all zero. We also present the explicit results for gL

(k)

c,i

appearing in Eq. (43) and the

ﬂOng + ﬂogL1 >, k=0,1,2,3,

G S + ﬂoQL3 +2ﬂoﬂ1g“3"+ﬁ0gL§"+2ﬁ0gLf”‘>, k=0,1,2,3.4,

(C1)

) for bottom quark

annihilation Wthh is found to be the same as Drell-Yan till second order in a;:

7
gzli’,(f’O) = 4Cp, nglz,o) =3Cr{,, gzli’,(ﬁ 0) _ _CF< Co 4= 3 gz)
2804 290 656 44
QIZ',(zl'()) — CACF< 7 "3 — 56§3> + Can< —t+ Cz> 64C2¢,,
Qﬁ',(zl’” =20Cp(Cy — Cp), gﬁzl’z) = —SC%, (C2)
and for Higgs boson production in gluon fusion:
0.10) _ 0.20) _ 9.3.0) _ 3, .7
Gy =4Cy, L1 =3Cx0s, gri 7 =-Cy 5§2+§C3 ,
0.(10) 2612 482 392 44
s C2<27— 3 627360 | + Canp| =+ 58 ).
4
Gy =S Ca(Camny). G5Y =803, (c3)
|
and the remaining coefficients up to second order are
identically zero. La(x) = Z —rixk, (D1)
k=0
APPENDIX D: EXPANSION COEFFICIENTS where coefficients y;: are given by [64]
OF I'y (x) AND I'g(x)
In this appendix, we present the expansion coefficients of yh = I (N) (=1)k-1 (D2)
I'y(x) and T'p(x) used in Egs. (A2) and (A7) of k k! ’

Appendix A. As in [64], the operators 'y (x) and I'z(x)
are expanded in powers of x as

See Eq. (25) of [64] for the definition of I';(N). We find
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-1 —
yé s yl YE 2N9
L1 1
vs =5 e+ &) =55 (L +7e),
1 1 1
vh = 8735 + 3 (re$a) + ng AN — (g +2r5+ &),
1 1 9 1 1
vh = ﬂ}’% + 2 (r£a) + Eé’z + = (reds) — TN (i +37F + 382 + 3yla + 283).
1 1 1 1 1
v5 = @75 7 — (r6s) + 0 (9YEC2) (7?;53) e (6l) + ol — 50y (20y% + 5rE + 307S, + 2783
+ 4085 4 20y £(38, + 23)).
i L] 9 1 1,
6 = 3507E 48 —(v£62) + 30 (r£83) + 56O€2 (754'3) (755253) + Eé} +§YECS
~ 240N —— (5v% + 73 + 107380 + 2785 + 208,85 + 10¥2(38, + 253) + 7£(2783 +4083) + 2445),
1 1 3 61 1 3
A 7 2 B
Y7 = 5040 YEt+ 55 240 (YECZ) 80 (J’EQ) 560 (YEQ) 72 (VE§3) (7E52§3) + 40 (Cng)
1 1
"‘ (?’EC@) (J’ECS) (szs) + ;57 ~ 10080N (423 + 7}’% + 1057585 + 54983 + 840¢,¢3
+ 140yE<3§2 + 263) + 2%(274% +4083) + 56(5¢3 + 18¢s) + 42y(2783 + 208543 + 24¢s)), (D3)
and similarly T'z(x) is given by [64]
Tpx) =) bk, (D4)
=1
where y7, | are given by [64]
Y
yf—'rl - k' (_1)k (DS)
Explicitly we find
B B p_ 1., p_ 15 1 1 p_ 1 L,
=L r=re 7 =§(VE+Cz), 7i=grE +5(7ECz)+§Cs, s = 2471; Z(yE62)+ &+ (VEC%)
1 1 1 1 1 1
ve = m}’SE +E(73552) 4—(9}’1552) —(r#43) +—(CzC3) +§Cs,
R P T I 1 1,
77 :m}’E“‘@(J’ECz) %(7552) 56052 (VEC3) (755253)+EC3 +_7EC57
1 1 3 61 1
J’g :%h 240 <7EC2) + (}/Eé:z) 560 (VECz) ) (7ECS) (7?;52@3) (52§3) (715?3)
1
+E(V%Cs) +E(CzCs) +7C7- (D6)

APPENDIX E: ANALYTICAL STRUCTURE OF NSV COEFFICIENTS OF A, TILL FOUR LOOP

The partonic coefficient function given in Eq. (65) can be written as

1 SV.(i NSV
A (@22 2. 2) = AV D (P2, )2, ) + AD
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where AEV’(D(qz,ﬂ%,ﬂ%,Z) can be found in [20,21,25,36,46]. Here we present A?SV'(") to fourth order where we set
u% = uz = q* with the following expansion:

2i
ANV (2) =37 Ak (1 - 2). (E2)
k=0
The following results with the explicit dependence on uy and py are provided in the ancillary files supplied with the arXiv
submission. We also put A, ... A2 and A%, ..., A% in the ancillary files as they were lengthy:

A =2¢0O Al =297 145, AR =4c,

820 =29 + 49 (G146 +4 506~ 16£1CIE + 85010 +64T9 0+ 2712 ~ S ATCIG 84T,
+8D1f1¢2 + 16D1A(Es,

A2 =20 ) +4p (G + G =4 Bo — 4F 50+ 16£Ci0, = 24501 0o + 4D — BAS £ + 644 Ci¢5 —4DSATC
+8D"(Gf’(1) Gc,l)

A2 =20~ 401 Bo+4C5+ C5 (8T +-8G1 ") — 4150l +4A50.)] ~2045C50, +8(A5)? ~8DS f5 —4D5f,

A23:—4C3ﬂ0—8f‘C‘+4A o)+ 8DSAS, A =8ACS,

AP = Sﬁo((ﬂcz (pcl)ﬂo+Cc) ACS(By + 660G +250G5T) = 8(F5C5 + £5C5) — 4f1¢cz+12f1r/)clﬂo
—c. c. c ~C 32 c cc
—16ffcf(g1 G 1)+4(f ) (Pc1+4A2(P£f+4A (P£%+8A1(Pc1(g1 Gl’l)—?AM”c 1Po+08ATCI0f

—8AS £ ) + 10445 £5C 0, — 16(A)20 — 20(AS)20 )£, + 320(AS)2CE L — 32(A§)2 5 + 16D £5 5 + 8D (5>
1) | s ‘ 16
+8D{AS + 16D{AT (7 +Gi) ~40D{ (456 +— D§ +8DSAT,
16 e e e 32, s e peregmel) L A
AY = Ci5 +16/{Cfo +8CE (1)’ +A5) +16(Af)’ —|—4A1(p(c2> 3 AT +8ATCs +1641C1(GY + G
c e\2,,(0) c c 40 CAC f£C
= 8AG fill] +4(A7 20l ~ T2(A5PCi L, =5 DiAT By — 16DSALFS,

40 . .
A == TATCify— 16ATFSCF +4(4Ppl!) + 8D5 (402, A =8(A9)2C,

A5 =8~ F1CHR = 2415 Ciy — 5 ()7 Cl S ASCifly = 1645715 + 4Gl - %Aﬁwczﬁ(ﬁ—%f\]wc 5
634ACDCﬂo = ATCH o~ ACCC(40ﬁ1+176ﬁogl '+ 80005 ") — 165 £5C5 — 8AG £ ¢L2+ Acflcoc B0
+?Amz>fﬁo — 164 7Cs =324 F5C (G 4977 +8AT(F5) %) + 1645 (£5)2D5 + SACA;q)E |+ 16A7AsDf
AN (AT G 4 ) = AT 00+ 8(ADDEH16(ADDE+GE Y + g7+ (AT Cift
~ 847210+ 2404 F{CTE — 5 (AT 0 = 36(A0 )2 = T2(A DS C + 1 (A CEE; ~48(AS)’

s =L xcip+ 2 Cfinﬂw16Ai<ff)205+16A5Asci+4<Ai>2<p<f%—?(Ai)%é?%ﬁo—53—6(Af>205ﬂ0+8<Ai>205
FI6(ADCT G+ g7) = 8(45)2 ') = 16(ADF(DS +3 (AT 0] ~ 104(ATCiE, + 16(47)"

887 = = (AT CT0— 16(AT P FCT 45 (A0l 4w (AT1D5, A% =10(agpcy. (E3)

The symbols G;f’“‘) and gj’k are also provided in the Supplementary Material [126].
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APPENDIX F: EXPRESSIONS OF RESUMMATION CONSTANTS h;-(a))

The resummation constants h{;(w) given in Eq. (85) are found to be as follows. Here L,, = In(1 — ), L,, = ln(Z—z),
L = ln(”i), and @ = 2fyas(u%) In N:

2 .
hiy (@) = /TOLw[—ﬁC? + i Dfl,
2
h(c)l(w) = ,B_OL{”[_}/?CH’

25, D5 28 .. cs
l 1{ i +yllng} lC {Yza)+72 (1)} 27},1604»27},20) 24)51)724’2@5 l)yl

o
Mol@) =72 )[ 2 7 fo %

+2D{LyyY = Lyyy% + Ly — 2/8} = 2C{Ly,v5 — Lpy5 + Lyyso — 45},

Cs
hil(w)i(l—w) [ﬂl Ci{- 271‘0 2}/?Lw}—|—2ﬁ—y1w 2405 1>71 + Ci{- 2Lqr71 +2Lfr71 2Lfr7113w+47§}
o)
(I-w) | Ao
1 iC p.C ﬁlC
hS, () = L—yBa? +yBL2} + 2{ 20w+ w*—2L,}y
4(0) = g [ b o P - it

(1)
ce _
+ —3 {ZY?w — i’} + 2ﬁ1/;pc" yiL, +ﬂ1 :
0

—2405 DB + C5{=2L ,y% +2L;,75(1 - ) + 478} + 2800 WL ,r% - 278}

= 2
(2L 17— 4/8YL,, + 49 r8

+ ﬁOCc {Lqryl 4Lqry2 Lfryl + 2L]2‘ry?w + 8},33 - LJZ‘rY?wZ}] ’

( )
h%Z(a)) = (l _ (1))3 ﬂ(: 37/?:| ’

- @)
. 1 - [P
hs, (@) = (- a))g —43’?1«0{#} 6(/’£3>7’2 + 2405 371 4ﬂofﬂc z{Lqr71 2}’]29}],
)
c @ (pc4
(o) = (- o)
. 1 261 - 4p, 3p 641
h42(a)) =—— =t c2{3L2 20 — 2Lw}le 2 Q%Yl + —14052)’2 Lw + 24(022 g 1 (23)}’1 L - 6405 2&72
(1-w)* | f} Bo Po Bo
+ 20078 = 41N L yyy® = 3Ly P L, — 208 + 6y5L,} + 186000 Loyvh — 475}
— 6B00 3 Lyr? — 278} + 6530+ L2y P — 4L 1% + 875 }} :
. 2 3 3 3
i) = g | g 0L+ d0llrE = oLl + 30l Lo =218) .
w [0
hi,(w) = —ap { ﬂo’ Vﬂ- (F1)

The above results along with the bigger ones [hS,(w), hSy(@), h§;(@)] and [h§y(®), h, ()] are all provided in the
Supplementary Material [126].
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APPENDIX G: EXPRESSIONS OF RESUMMATION CONSTANTS g{(w)

The resummation constants §¢(w) given in Eq. (84) are presented below. Here L, =

In(l -w), L, = ln(z—zz),

Ly = 111(;%), and @ = 2fya,(u%) In N. Also, DS are the threshold exponents given in [46]:
; R
= Af
gq\w)=—,
i(@) 5
. 1 D{ Af ASp .
g2(a))*(1_w) {71_,5_5(0 ! 1( +L,) - A1(2—|—2yE—Lq,—|—Lf,(1—a)))],
_ 1 . 1 . wﬂl 1 AC - lBl 1 2
‘(@) =——|pd =\ 4 pe 1-= AS ——w?+1L,
o) = (g [P5{} ¢ 1{ 2ﬁ+ﬁ°< TrETy ">} F{1-ghorasl+ AN
pAS 0 | . '
—(2+2yE—Lq,+Lfr<1—w>2>} 7 7+A @ = L3) + 5 24+ 25 = Loy =260 25 +72
0 0
1 1
+€2_Lr qr},E+4 qr — 4 fr(l_ ) ’
do(w) = — | pi [2)+ % L —2L,)+2p3(2 -L
94(w)_m zﬂo( + )+ﬁ+ﬁl +7/E w + ﬁ() yE+yE+CZ_ qr qryE
1
+4L3,,>}+Dg{ /ﬁ;L + o242y — Lq,)}—i— D5 - a){l w—+= a)}
ﬂl 1 ﬂz 1 3 72
+AS | o- o’ +-w*+ L, —2-=2yp+ Ly — Ly +3Lg (1 - +AS ——w’ =Ly,
’ b 3 /30 3
1 -
_%<1 3 ) 2+2§1(2+2}/5—L )Lw—ﬁ0<8y5+4y§+4§2—4Lq,(1+yE)+L3], L3, +3L3,
0
? /1 1 - -, 1.
l—w+— AL —— @+ Lyw+-L2 —-L3
x< a)+3>a)>}+ 1{ ﬁé(Zw 360 + Ww+2 w3 W)
2 - 1 1
—l—%( —a)z—i—LW>a)—ﬁ—3 2(———@)
B 3 B 2 3
ﬂZ(LL21 A B YR S W) dyp—2y% =28, +2L
ﬂo o+ - ) +vE— D) +ﬁ_()(_ —2yp+ qr)a)+ﬂ1 —YE—<VE— CZ+ qr
1. (g2 8 35 16 2
_ELqr+2LqryE (1_2LW)+2 jr(l_ )_ﬂo 87/E+§7E+?C3+2(4C2+Lqr)(1+yE)
4 2 4 L 2 dpa 1 3 Gl
- Lqr},E( +YE)_ Lqr€2 3Lqr+3L ( —(1)) . ( )

As before here we also provide the above results along with g¢(w) in the Supplementary Material [126].
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