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We present a framework that resums threshold enhanced large logarithms to all orders in perturbation
theory for the production of a pair of leptons in the Drell-Yan process and of the Higgs boson in gluon
fusion as well as in bottom quark annihilation. We restrict ourselves to contributions from diagonal partonic
channels. These logarithms include the distributions ðð1 − zÞ−1lnið1 − zÞÞþ resulting from soft plus virtual
(SV) and the logarithms lnið1 − zÞ from next-to-SV contributions. We use collinear factorization and
renormalization group invariance to achieve this. The former allows one to define a soft-collinear (SC)
function that encapsulates soft and collinear dynamics of the perturbative results to all orders in the strong
coupling constant. The logarithmic structure of these results is governed by universal infrared anomalous
dimensions and process-dependent functions of the Sudakov differential equation that the SC satisfies. The
solution to the differential equation is obtained by proposing an all-order ansatz in dimensional
regularization, owing to several state-of-the-art perturbative results available to third order. The z space
solutions thus obtained provide an integral representation to sum up large logarithms originating from both
soft and collinear configurations, conveniently in Mellin N space. We show that in N space, the tower of
logarithms ans=Nα ln2n−αðNÞ; ans =Nα ln2n−1−αðNÞ � � � for α ¼ 0, 1 is summed to all orders in as.
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I. INTRODUCTION

Precision studies in the context of the Large Hadron
Collider (LHC) play an important role to decipher the
experimental data to understand the physics at extremely
small length scales. The tests [1] of the Standard Model
(SM) of high energy physics at the LHC with unprec-
edented accuracy can provide indirect clues to unravel
physics beyond SM (BSM). Accuratemeasurements of SM
observables such as the productions of lepton pairs, vector
bosons such as photons, Zs andWs, top quarks, and Higgs
bosons are underway. From the theory side, the predictions
for these observables are available, taking into account
various higher order quantum effects. Both in the electro-
weak sector of SM and in quantum chromodynamics
(QCD), the observables are computed in power series
expansion of their coupling constants, viz., e; gEW in SM
and gs in QCD. To name a few, the inclusive cross sections
for deep inelastic scattering (DIS) and Higgs boson
production in hadron colliders are known to third order

in QCD, see [2,3] and [4–6] respectively and for invariant
mass distribution up to third order in QCD see [7–9], for
complete list see [8,10–28] for Higgs production in
gluon fusion and [7–9,19–21,25,29–37] for Drell-Yan
production.
The LHC is the hadronic machine, and even electroweak

induced processes get large quantum corrections resulting
from strong interaction. QCD is the theory of strong inter-
actions and provides a framework to compute these correc-
tions. The measurements and predictions from QCD have
reached the level that demands the inclusion of electroweak
effects (EW).TheEWcorrections to hadronic observables are
hard to compute at higher orders due to the presence of heavy
particles such asWs, Zs, and tops in the loops. The results of
higher order quantum effects from QCD and EW theory
provide a theoretical laboratory to understand both ultraviolet
(UV) and infrared (IR) structures of the underlying quantum
field theory (QFT) and also to demonstrate the universal
structure. For IR, see [38–41] (see [42,43] for a QFT with
mixed gauge groups). This is due to certain factorization
properties of scattering amplitudes inUVand IR regions. The
consequence of the factorization is the renormalization group
(RG) invariance which demonstrates the structure of loga-
rithms of the renormalization scale μR from UV and of the
factorization scale μF from IR to all orders in perturbation
theory. The renormalization scale separates the UV divergent
part from the finite part of Green’s function or on-shell
amplitudes, quantifying the arbitrariness in the finite part.
While the parameters of the renormalized version of the
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theory are functions of the renormalization scale, the physical
observables are expected to be independent of this scale. This
is the consequence of renormalization group invariance.
The anomalous dimensions of the RG equations govern
the structure of the logarithms of the renormalization scale in
the perturbation theory to all orders. As the UV sector, the
infrared sectors of both SM and QCD are also very rich.
Massless gauge fields such as photons in QED and gluons in
QCD and light matter particles at high energies give soft and
collinear divergences, collectively called IR divergences, in
scattering amplitudes. The IR divergences are shown to
factorize from on-shell amplitudes and from certain cross
sections, respectively, in a process independent way at an
arbitrary factorization scale. The resulting IR renormalization
group equations are governed by IR anomalous dimensions.
The IR renormalization group equations are peculiar in the
sense that the resulting evolution is controlled not only by
the factorization scale but also by the energy scale(s) in the
amplitude or in the scattering process. Unlike the UV
divergences that are removed by appropriate renormalization
constants, the IR divergences do not require any such
renormalization procedure as they add up to zero for infrared
safe observables thanks to the Kinoshita—Lee—Nauenberg
(KLN) theorem [44,45]. The structure of the resulting IR
logarithms at every order in the perturbation theory is
governed by the IR anomalous dimensions. Hence, most
of the logarithmspresent at higher orders are due toUVand IR
divergences present at the intermediate stages of the compu-
tations. The logarithms of renormalization and factorization
scales present in the perturbative expansions often play an
important role to estimate the error that results due to the
truncation of the perturbative series. The less the dependence
is on these scales, the more the reliability of the truncated
results.Note that there are also logarithms that are functions of
physical scales or the corresponding scaling variables in the
observables. In certain kinematical regions, these logarithms
that are present at every order can be large enough to spoil the
reliability of the truncated perturbative series. Since the
structure of these logarithms at every order is controlled by
anomalous dimensions of IR renormalization group equa-
tions, they can be systematically summed up to all orders.
This procedure is called resummation. There are classic
examples in QCD. For example, the threshold logarithms
of the kind

DiðzÞ ¼
�
lnið1 − zÞ
1 − z

�
þ

ð1Þ

are present in the perturbative results of the inclusive cross
section in deep inelastic scattering and of the invariantmass
distribution of a pair of leptons in the Drell-Yan (DY)
process. Here the subscript þ means that DiðzÞ is a plus
distribution. For DIS, the scaling variable is z ¼ −q2=2p:q
and z ¼ M2

lþl−=ŝ for DY. The momentum transfer from
lepton to parton with momentum p in DIS is denoted by q

and the invariants ŝ andM2
lþl− are the center of mass energy

of incoming partons and the invariant mass of final state
leptons in DY. The distributions DiðzÞ are often called
threshold logarithms as they dominate in the threshold
region, namely z approaches 1. In this limit, the entire
energy of the incoming particles in the scattering event
goes into producing a set of hard particles along with an
infinite number of soft gluons each carrying almost zero
momentum. In particular, the logarithms of the form
lnið1 − zÞ=ð1 − zÞ result from the processes involving real
radiations of soft gluons and collinear particles. While
these contributions are ill-defined in four spacetime
dimensions in the limit z → 1, the inclusion of pure virtual
contributions gives distributions DiðzÞ and δð1 − zÞ.
The terms that constitute these distributions and δð1 − zÞ
are called soft plus virtual (SV) contributions. The SV
results in QCD are available for numerous observables
in hadron colliders. For SV results up to third order, see
[19–21,36,37,46–49]. These logarithms in the perturbative
results when convoluted with appropriate parton distribu-
tion functions to obtain the hadronic cross section not only
can dominate over other contributions but also can give
large contributions at every order. The presence of these
large corrections at every order spoil the reliability of the
predictions from the truncated series. The seminal works
by Sterman [50] and Catani and Trentedue [51] provide
resolution to this problem through reorganization of the
perturbative series called threshold resummation, for its
applications to various inclusive processes (see [52–58] for
Higgs production in gluon fusion, see [59,60] for bottom
quark annihilation, and see [37,53,61–63] for DY). Since z
space results involve convolutions of these distributions,
theMellin space approach using the conjugate variableN is
used for resummation. In the Mellin space, large loga-
rithms of the kindDiðzÞ become functions of lnjþ1N; j ≤ i
with Oð1=NÞ suppressed terms in the corresponding
N space threshold limit, namely N → ∞. Threshold
resummation allows one to resum ω ¼ 2asðμ2RÞβ0 lnN
terms to all orders in ω and then to organize the resulting
perturbative result in powers of coupling constantasðμ2RÞ ¼
g2sðμ2RÞ=16π2, where gs is the strong coupling constant.
Here, β0 is the leading coefficient of theQCDbeta function.
IfON is an observable in Mellin N space, with N being the
conjugate variable to z of the observable OðzÞ in z space,
then the resummation of threshold logarithms gives

lnON ¼ lnNgO1 ðωÞ þ
X∞
i¼0

aisðμ2RÞgOiþ2ðωÞ þ ln gO0 ðasðμ2RÞÞ;

ð2Þ

where gO0 ðasðμ2RÞÞ is N independent and is given by

gO0 ðasðμ2RÞÞ ¼
X∞
i¼0

aisðμ2RÞgO0i: ð3Þ
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The inclusion of more and more terms in (2) predicts the
leading logarithms (LL), next to leading (NLL) logarithms,
etc., of O to all orders in as. The functions gOi ðωÞ are
functions of process independent universal IR anomalous
dimensions while gO0 depend on the hard process. For
inclusive reactions such as DIS, the invariant mass dis-
tribution of lepton pairs in DY, Higgs boson productions in
various channels, all the ingredients to perform the resum-
mation of threshold logarithms inN space up to third order
[next to next to next to leading logarithmic (N3LL)
accuracy] are available.
While the resummed results provide reliable predictions

that can be compared against the experimental data, it is
important to find out the role of subleading terms, namely
lnið1 − zÞ; i ¼ 0; 1;…. We call them by next to SV (NSV)
contributions. In addition, to understand the role of NSV
terms, the question of whether these terms can also be
resummed systematically to all orders exactly as the
leading SV terms are resummed remains unanswered.
These questions have already been addressed in great
detail, and remarkable progress has been made in recent
times leading to a better understanding of NSV terms. For
example, applying diagrammatic techniques and using
factorization properties or through physical evolution
equations, several interesting results on both fixed order
and resummed predictions for NSV terms are available for
the production of a colorless state in hadron colliders. See
[3,23,64–74] for more details. In this paper, exploiting
mass factorization and renormalization group invariance
and using the Sudakov K þ G equation we make an
attempt to provide an all order result both in z space
and in N space, which can predict NSV terms of diagonal
channels in DYand Higgs boson production to all orders in
perturbation theory.

II. NEXT TO SV IN z SPACE

In the following, we study the inclusive cross sections for
the production of a pair of leptons in DYand the production
of a single scalar Higgs boson in gluon fusion and in
bottom quark annihilation. Let us denote the corresponding
inclusive cross sections generically by σðq2; τÞ. In the QCD
improved parton model, σ is written in terms of parton level
coefficient functions (CF) denoted by Δabðq2; μ2R; μ2F; zÞ
convoluted with appropriate parton distribution functions
(PDFs), fcðxi; μ2FÞ, of incoming partons:

σðq2; τÞ ¼ σ0ðμ2RÞ
X
ab

Z
dx1

Z
dx2faðx1; μ2FÞfbðx2; μ2FÞ

× Δabðq2; μ2R; μ2F; zÞ; ð4Þ

where σ0 is the born level cross section. The scaling
variable τ is defined by τ ¼ q2=S, S is the hadronic center
of mass energy. For DY, q2 ¼ M2

lþl− , the invariant mass of
the final state leptons, and q2 ¼ m2

H for the Higgs boson

productions, with mH being the mass of the Higgs boson.
The subscripts a, b in Δab and c in fc collectively denote
the type of parton (quark, antiquark, and gluon), their
flavor, etc. The scaling variable xi is the momentum
fraction of the incoming partons. In the CF, z ¼ q2=ŝ is
the partonic scaling variable and ŝ is the partonic center of
mass energy and is related to hadronic S by ŝ ¼ x1x2S
which implies z ¼ τ=ðx1x2Þ. The scale μF is factorization
scale which results from mass factorization, and the scale
μR is the renormalization scale which results from UV
renormalization of the theory. Both σ0 and Δab depend on
the renormalization scale; however, their product is inde-
pendent of the scale if we include Δab to all orders in
perturbation theory.
The partonic cross section is computable order by order

in QCD perturbation theory. Beyond leading order, one
encounters UV, soft, and collinear divergences at the
intermediate stages of the computation. If we use dimen-
sional regularization to regulate all these divergences, the
partonic cross sections depend on the spacetime dimension
n ¼ 4þ ϵ and the divergences show up as poles in ϵ. The
UV divergences are removed by QCD renormalization
constants in a modified minimal subtraction (MS) scheme.
The soft divergences from the gluons and the collinear
divergence resulting from final state partons cancel inde-
pendently when we perform the sum over all the degenerate
states. Since the hadronic observables under study are
infrared safe, these partonic cross sections are factorizable
in terms of collinear singular Altarelli-Parisi (AP) [75]
kernels Γab and finite CFs at an arbitrary factorization scale
μF. The factorized formula that relates the collinear finite
CFs Δab and the parton level subprocesses is given by

1

z
σ̂abðq2; z; ϵÞ ¼ σ0ðμ2RÞ

X
a0b0

ΓT
aa0 ðz;μ2F;ϵÞ

⊗ ðΔa0b0 ðq2;μ2R;μ2F; z;ϵÞÞ⊗ Γb0bðz;μ2F; ϵÞ:
ð5Þ

These kernels are then absorbed into the bare PDFs to define
collinear finite PDFs. Note that the singular AP kernels do
not depend on the type of partonic reaction but depend only
on the type of partons in addition to the scaling variable z
and scale μF. The symbol ⊗ refers to convolution, which is
defined for functions, fiðxiÞ; i ¼ 1; 2;…; n, as

ðf1 ⊗ f2 ⊗ · · · ⊗ fnÞðzÞ ¼
Yn
i¼1

�Z
dxifiðxiÞ

�

× δðz − x1x2 · · · xnÞ: ð6Þ

The partonic cross section in perturbation theory in QCD can
be expressed in powers of unrenormalized strong coupling
constant âs:

NEXT TO SOFT CORRECTIONS TO DRELL-YAN AND HIGGS … PHYS. REV. D 105, 094035 (2022)

094035-3



σ̂abðq2; z; ϵÞ ¼
X∞
i¼0

âiþα
s σ̂ðiÞabðq2; μ2R; z; ϵÞ; ð7Þ

where the value of α depends on the process under study.
Since the aim of this paper is to investigate the structure of
NSV terms in diagonal channels, wewill restrict ourselves to
Δqq̄ for DY,Δbb̄ for Higgs boson production in bottom quark
annihilation, and Δgg for Higgs boson production in gluon
fusion, throughout the paper unless stated otherwise. We call
these CFs collectively by Δcc̄ with cc̄ ¼ qq̄; bb̄; gg.
Before we proceed further with the diagonal channels, let

us study the structure of mass factorized results (5) for both
diagonal and off-diagonal channels in the threshold limit.
In particular, we would like to find out which are the terms
that survive if we want to retain only SVand/or NSV terms
when we perform threshold expansion. We begin with the
mass factorization formula for a diagonal channel. We will
show that to retain only SVand NSV terms in Δcc̄ using the
mass factorized result, it will be sufficient to keep only
those components of AP kernels Γab’s and of σ̂ab’s orΔab’s
that upon convolution give SV and/or NSV terms. For
definiteness, let us look at the mass factorized Drell-Yan
result:

σ̂qq̄
zσ0

¼ΓT
qq⊗Δqq⊗Γqq̄þΓT

qq⊗Δqg⊗Γgq̄þΓT
qq⊗Δqq̄⊗Γq̄q̄

þΓT
qg⊗Δgq⊗Γqq̄þΓT

qg⊗Δgg⊗Γgq̄þΓT
qg⊗Δgq̄⊗Γq̄q̄

þΓT
qq̄⊗Δq̄q⊗Γqq̄þΓT

qq̄⊗Δq̄g⊗Γgq̄þΓT
qq̄⊗Δq̄q̄⊗Γq̄q̄:

ð8Þ

Here, we either have convolutions with terms involving
only diagonal terms, such as ΓT

qq ⊗ Δqq̄ ⊗ Γq̄ q̄, or with
terms involving one diagonal and a pair of nondiagonal
terms, for example, ΓT

qq ⊗ Δqg ⊗ Γgq̄. The former gives SV
plus NSV terms upon convolutions while the latter will give
only beyond the NSV terms. And the diagonal Γcc’s also
contain convolutions with only diagonal AP splitting
functions, Pcc, or one diagonal and a pair of nondiagonal
AP splitting functions Pab; a ≠ b. We drop those terms in
diagonal Γcc’s that contain a pair of nondiagonal Pab’s, as
they contribute to beyond NSV accuracy. This results in

σ̂svþnsv
qq̄

zσ0
¼ ΓT

qq ⊗ Δsvþnsv
qq̄ ⊗ Γq̄ q̄: ð9Þ

A similar argument will go through for σ̂bb̄ and σ̂gg as well.
This allows us to write the mass factorized result given in
(5) in terms of only diagonal terms σ̂cc̄,Δcc̄, and AP kernels
Γcc, and the sum over ab is dropped. Hence, dropping
beyond NSV terms and restricting to only diagonal terms
result (5) in taking the simple form

Δsvþnsv
cc̄ ðq2; μ2R; μ2F; z; ϵÞ ¼ σ−10 ðμ2RÞ

�
ðΓTÞ−1cc ðz; μ2F; ϵÞ

⊗
1

z
σ̂svþnsv
cc̄ ðq2; z; ϵÞ

⊗ ðΓÞ−1c̄ c̄ðz; μ2F; ϵÞ
�
: ð10Þ

In summary, since our main focus here is on SVand NSV
terms resulting from quark initiated processes for DY and
gluon or bottom quark initiated processes for Higgs boson
production, we can safely drop contributions from non-
diagonal partonic channels in the mass factorized result of
Δcc̄. In addition, gluon-gluon initiated channels which start
contributing at NNLO onwards for DYand quark-antiquark
initiated channels for Higgs boson production are also
dropped as they do not contribute to NSV of Δcc̄.
Turning our attention to off-diagonal terms, for instance

σ̂qg, we find

σ̂qg
zσ0

¼ΓT
qq⊗Δqq⊗ΓqgþΓT

qq⊗Δqg⊗ΓggþΓT
qq⊗Δqq̄⊗Γq̄g

þΓT
qg⊗Δgq⊗ΓqgþΓT

qg⊗Δgg⊗ΓggþΓT
qg⊗Δgq̄⊗Γq̄g

þΓT
qq̄⊗Δq̄q⊗ΓqgþΓT

qq̄⊗Δq̄g⊗ΓggþΓT
qq̄⊗Δq̄q̄⊗Γq̄g:

ð11Þ

As in the case of diagonal channels, the mass factorization
for the off-diagonal ones also contains both diagonal and off-
diagonal terms from Δab and AP kernels, in different
combinations. As expected, in the above result, we find
no single term that can give a pure SV contribution. This is
because every term contains at least one off-diagonal term.
Recall, this is not the case for σ̂qq̄. Hence, the mass factorized
result for the off-diagonal channel starts with NSV and
beyond, where the former comes from terms containing at
least two diagonal terms either fromΔab or Γab. Since we are
interested only in NSV terms, we drop terms that contain
more than two off-diagonal terms in the mass factorization
formula to obtain

σ̂svþnsv
qg

zσ0
¼ΓT

qq⊗Δsvþnsv
qq̄ ⊗Γq̄gþΓT

qq⊗Δsvþnsv
qg ⊗Γgg: ð12Þ

Note that the off-diagonal Δqg receives a contribution
from σ̂qg as well as fromΔqq̄ unlike the diagonalΔqq̄ which
receives only from a single σ̂qq̄.
This analysis using the mass factorization formula and

threshold expansion, which is valid to all orders in
perturbation theory, demonstrates a simple structure for
the diagonal Δcc̄; namely it contains only one kind of term
that comprises diagonal kernels and σ̂cc̄. On the other hand,
in the off-diagonal channel, we have two kinds of terms
containing diagonal and off-diagonal Δab’s which mix
under factorization. As we will see in the following, due
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to the simple structure in the diagonal channels, we can
study the all-order structure of NSV logarithms using
certain homogeneous differential equations. However, the
off-diagonal ones pose challenges to such a study due to
inhomogeneous terms present in the corresponding differ-
ential equation. Hence, in the following, we will focus only
on diagonal partonic channels.
Beyond leading order, the partonic channels that con-

tribute to σ̂ðiÞcc̄ can be broadly classified into two classes,
namely those containing no partonic final state/no emission
and the ones with at least one partonic final state. The
former ones are called form factor (FF) contributions while
the latter ones are called real emission contributions. In
FFs, the entire partonic center of mass energy goes into
producing a pair of leptons in DYor a Higgs boson in Higgs
boson production, while in real emission processes, the
initial state energy is shared among all the final state
particles. Let us denote FF of DY by F̂q and FF of Higgs
boson productions by F̂b, F̂g, respectively.
Our next step is to factor out the square of the UV

renormalized FF (ZUV;cF̂c) with c ¼ q; q̄; b; g from the
partonic channels σ̂cc̄. Here the ZUV;c is an overall
renormalization constant that is required for Higgs boson

production from gluon fusion and bottom quark annihila-
tion. We call the resulting one the soft-collinear function,
given by

Scðâs; μ2; q2; z; ϵÞ ¼ ðσ0ðμ2RÞÞ−1ðZUV;cðâs; μ2R; μ2; ϵÞÞ−2
× jF̂cðâs; μ2; Q2; ϵÞj−2 × δð1 − zÞ
⊗ σ̂svþnsv

cc̄ ðq2; z; ϵÞ; ð13Þ

where âs is the bare strong coupling constant, Q2 ¼ −q2.
Note that Sc does not depend on μ2R, and hence, Sc is RG
invariant. The function Sc is computable in perturbation
theory in powers of âs, and later in Sec. II A 1 we discuss its
perturbative structure and also how several of its coeffi-
cients can be determined from the fixed order results. Since
we have restricted ourselves to SVþ NSV contributions to
Δcc̄, that is, those resulting from the phase space region in
the limit z → 1, we keep only those terms that are propor-
tional to distributions δð1 − zÞ, DiðzÞ, and NSV terms of
the kind of lnið1 − zÞ with i ¼ 0; 1;… and drop the rest of
the terms resulting from the convolutions. Substituting for
σ̂cc̄ from (13) in terms of Sc, in (10) and keeping only the
diagonal terms in AP kernels, we find

Δcðq2; μ2R; μ2F; zÞ ¼ Δsvþnsv
cc̄ ðq2; μ2R; μ2F; zÞ

¼ ðZUV;cðâs; μ2R; μ2; ϵÞÞ2jF̂cðâs; μ2; Q2; ϵÞj2δð1 − zÞ ⊗ ðΓTÞ−1cc ðz; μ2F; ϵÞ
⊗ Scðâs; μ2; q2; z; ϵÞ ⊗ Γ−1

c̄ c̄ðz; μ2F; ϵÞ: ð14Þ

The decomposition formula for Δsvþnsv
cc̄ given in (14), is

the first step toward obtaining the all order perturbative
structure, which we are going to unravel in the subsequent
section. It is to be noted that owing to the simplification in
the mass factorized formula, given in (10), we obtain the
above all order decomposition formula. It provides the
pathway to study the partonic CFs in terms of certain
building blocks, namely the form factor F̂c, overall
renormalization constants ZUV;c, the soft-collinear function
Sc, and the AP splitting kernels Γcc, which conspire among
themselves in such a way to lead to a structure for Δc in
terms of certain anomalous dimensions, as well as universal
and process dependent coefficients. In the next subsection,
using differential equations that each of these building
blocks satisfies, we obtain an all-order structure for Δsvþnsv

cc̄ .

A. Next to SV formalism

In this section we discuss the formalism which accounts
for both SV and NSV corrections to Δc owing to the
decomposition formula given in (14). We study the under-
lying evolution equations corresponding to each of the
building blocks, namely fF̂c; ZUV;c;Γcc; Scg, with respect
to the renormalization and factorization scales and also the

energy scale of the process under study. Following this, we
derive the perturbative structure of each of the components
and thereby present the analytic structure of the par-
tonic CF.
In the master formula, Eq. (14), the form factor for the

DY process is the matrix element of vector current ψ̄qγμψq
between on-shell quark states, and for the Higgs boson
production in gluon fusion (bottom quark annihilation), it is
the matrix element of Ga

μνGμνa (ψ̄bψb) between on-shell
gluon (bottom quark) states. Here ψc is the c-type quark
field operator and Gμνa is the gluon field strength operator
with a being the SUðNcÞ gauge group index in the adjoint
representation. These FFs are known in QCD up to third
order in perturbation theory [76–88]. The evolution equa-
tion for the overall renormalization constant with respect to
the renormalization scale reads as

μ2R
d

dμ2R
lnZUV;cðâs; μ2R; μ2; ϵÞ ¼

X∞
i¼1

aisðμ2RÞγci−1; ð15Þ

where γci is the UV anomalous dimension. For the vector
current, the UVanomalous dimension is zero to all orders in
QCD while for the Higgs boson productions, γci ’s are
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nonzero. For c ¼ b, see [89], and for c ¼ g, it is expressed
in terms of QCD beta function coefficients to all
orders [90].
Perturbative results of FF in renormalizable quantum

field theory demonstrate rich structure; in particular, one
finds that they satisfy certain differential equations. The
simplest one is the RG equation that FFs satisfy, namely

μ2R
dF̂c
dμ2R

¼ 0, using which we can predict the logarithms

resulting from the UV sector, i.e., the logarithms of the
form lnkðμ2RÞ; k ¼ 1;…, at every order in perturbation
theory. In addition, these FFs satisfy the Sudakov differ-
ential equation [46,91–97] which is used to study their IR
structure in terms of certain IR anomalous dimensions such
as cusp Ac, collinear Bc, and soft fc anomalous dimensions.
In dimensional regularization, the equation takes the
following form:

Q2
d

dQ2
ln F̂cðâs;Q2;μ2; ϵÞ ¼ 1

2

�
Kc

�
âs;

μ2R
μ2

;ϵ

�

þGc

�
âs;

Q2

μ2R
;
μ2R
μ2

; ϵ

��
; ð16Þ

where Q2 ¼ −q2. The above equation is called the K þ G
equation. The unrenormalized FFs contain both UVand IR
divergences. The latter results from soft gluons and mass-
less partons which give soft and collinear divergences,
respectively. UV divergences go away after UV renorm-
alization. The IR divergences of the FFs can be shown to
factorize. The divergence of FFs are such that the factorized
IR divergent part is q2 dependent. The consequence of
these facts is that the right-hand side of the differential
equation can be expressed in terms of two functions Kc and
Gc in such a way that Kc accounts for all the poles in ϵ,
whereas Gc is a finite term in the limit ϵ → 0. The RG
invariance of FFs implies, in the limit ϵ → 0,

μ2R
d

dμ2R
Kc

�
âs;

μ2R
μ2

; ϵ

�
¼ −μ2R

d
dμ2R

Gc

�
âs;

Q2

μ2R
;
μ2R
μ2

; ϵ

�

¼ −Acðasðμ2RÞÞ: ð17Þ

The solutions to (17) are given in [20,46]. Substituting these
solutions in (16) one can find the structure of FF in terms of
IR anomalous dimensions Ac (cusp), Bc (collinear), and fc

(soft) as well as the process dependent quantities (gc;kj ). A
more elaborate discussion on the structure of FF can be
found in [46]. The IR anomalous dimensions are known to
three loops in QCD (see [28,78,79,84,98–101]) and for
beyond three loops, see [87].
The fact that the initial state collinear divergences in

parton level cross sections factorizes in terms of AP kernels
Γabðz; μ2F; ϵÞ implies the RG evolution equation with
respect to the scale μF:

μ2F
d

dμ2F
Γabðz;μ2F;ϵÞ¼

1

2

X
a0¼q;q̄;g

Paa0 ðz;asðμ2FÞÞ

⊗Γa0bðz;μ2F;ϵÞ; a;b¼q;q̄;g: ð18Þ

Since we are interested only in diagonal Altarelli-Parisi
kernels for our analysis, the corresponding AP splitting
functions Pccðz; μ2FÞ are expanded around z ¼ 1, and all
those terms that do not contribute to SVþ NSV are
dropped. The AP splitting functions near z ¼ 1 take the
following form:

Pccðz; asðμ2FÞÞ ¼ 2Bcðasðμ2FÞÞδð1 − zÞ þ P0
ccðz; asðμ2FÞÞ;

ð19Þ

where

P0
ccðz;asðμ2FÞÞ¼2½Acðasðμ2FÞÞD0ðzÞþCcðasðμ2FÞÞ lnð1−zÞ

þDcðasðμ2FÞÞ�þOðð1−zÞÞ: ð20Þ

In the rest of the paper, we drop the terms in P0
cc

proportional to Oðð1 − zÞÞ for our study. The constants
Cc and Dc can be obtained from the splitting functions P0

cc
which are known to three loops in QCD [100,101] (see
[3,100–108] for the lower order ones). Similar to the cusp
and the collinear anomalous dimensions, the constants
Cc and Dc are also expanded in powers of asðμ2FÞ as

Xcðasðμ2FÞÞ ¼
X∞
i¼1

aisðμ2FÞXc
i ; ∀ Xc ¼ fCc;Dcg; ð21Þ

where Cc
i and Dc

i to third order are available in [100,101].

1. The soft-collinear function

Our next task is to study the soft-collinear function, Sc, in
detail. Equation (13) can be used to compute this function
order by order in QCD perturbation theory. The Sc should
contain right IR divergences to cancel those resulting from
FF and AP kernels to give IR finite Δc. The IR structure of
Sc in the SV limit was studied in [20,46] using a differential
equation analogous to (16) supplemented with RG invari-
ance. It was found that this function demonstrates a rich
infrared structure in the SV approximation. Further, it
provides a suitable framework to obtain the SV contribution
order by order in perturbation theory. Since the function Sc
obtained in [20,46] is an all order result in z space which
allows one to write the integral representation suitable for
studying resummation in Mellin N space. In the following,
we proceed along this direction to study NSV contributions
in z space to all orders in perturbation theory and to provide
an integral representation that can be used for performing
Mellin N space resummation. Using (14) and the K þ G
equation of FFs, Eq. (16), one can set up an evolution
equation for the functions Sc. In other words, we can easily
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show that Sc satisfies theK þ G type of differential equation
of the form

q2
d
dq2

Scðâs; q2; μ2; ϵ; zÞ ¼ ΓSc
ðâs; q2; μ2; ϵ; zÞ

⊗ Scðâs; q2; μ2; ϵ; zÞ; ð22Þ

where

ΓSc
¼

�
K̄c

�
âs;

μ2R
μ2

; ϵ; z

�
þ Ḡc

�
âs;

q2

μ2R
;
μ2R
μ2

; ϵ; z

��
; ð23Þ

where ΓSc
in the above equation is written as a sum of K̄c

which accounts for all the divergent terms and Ḡc, the
finite function of ðz; ϵÞ. The scale μs signifies the arbi-
trariness in separating the divergent part from the remain-
ing finite terms. In consequence to the above differential
equation (22), the soft-collinear function, Sc, admits an
exponential solution given by

Scðâs; q2; μ2; ϵ; zÞ ¼ C exp
�Z

q2

0

dλ2

λ2
ΓSc

ðâs; λ2; μ2; ϵ; zÞ
�

¼ C expð2Φcðâs; q2; μ2; ϵ; zÞÞ; ð24Þ

where the initial condition Scðq2; q2 ¼ 0; μ2; ϵ; zÞ ¼
δð1 − zÞ is used. The exponent Φc gets only contribution
from cc̄ initiated processes containing at least one real
radiation. The symbol “C” refers to convolution. For
instance, C acting on any exponential of a function has
the following expansion:

CefðzÞ ¼ δð1 − zÞ þ 1

1!
fðzÞ þ 1

2!
ðf ⊗ fÞðzÞ þ � � � : ð25Þ

In addition, Sc’s satisfy the renormalization group equa-
tion, namely μ2s

dSc

dμ2s
¼ 0, which implies

μ2s
d
dμ2s

K̄cðasðμ2sÞ; zÞ ¼ −μ2s
d
dμ2s

Ḡcðasðμ2sÞ; zÞ

¼ −Ācðasðμ2sÞÞδð1 − zÞ; ð26Þ

where Āc is analogous to the cusp anomalous dimension
that appears in the K þ G equation of FFs. The perturba-
tive solution to (22) can be obtained by integrating the
differential equation after substituting the fixed order
solutions of RGs for K̄c and Ḡc. We propose an all order
ansatz for the solution Φc which takes the general form

Φcðâs; q2; μ2; z; ϵÞ ¼
X∞
i¼1

âis

�
q2ð1 − zÞ2

μ2z

�
iϵ
2

Siϵ

×

�
iϵ

1 − z

�
ϕ̂ðiÞ
c ðz; ϵÞ; ð27Þ

where Sϵ ¼ exp
�
ϵ
2
½γE − lnð4πÞ�

�
with γE being the Euler

Mascheroni constant. The form of the solution given in
(27) is inspired by the result for the production of a pair of
leptons in the quark-antiquark channel or Higgs boson in
gluon fusion at next to leading order in as. A separate
section (see Sec. III) is devoted to justify this form. The

term
�
q2ð1−zÞ2

μ2z

�ϵ
2 in the parentheses results from two body

phase space while ϕ̂cðz; ϵÞ=ð1 − zÞ comes from the square
of the matrix elements for corresponding amplitudes. In
general, the term q2ð1 − zÞ2=z inside the parentheses is the
hard scale in the problem, and it controls the evolution of

Φc at every order. The function ϕ̂ðiÞ
c ðz; ϵÞ is regular as

z → 0 but contains poles in ϵ. We have factored out
1=ð1 − zÞ explicitly so that it generates all the distributions
Dj and δð1 − zÞ and NSV terms lnkð1 − zÞ; k ¼ 0;…,
when combined with the factor ðð1 − zÞ2Þiϵ=2 and

ϕ̂ðiÞ
c ðz; ϵÞ at each order in âs. Note that the term z−iϵ=2

inside the parentheses does not give distributions Dj and
δð1 − zÞ; however, they can contribute to NSV terms
lnjð1 − zÞ; j ¼ 0; 1;…, when we expand around z ¼ 1.
In addition, the terms proportional to (1 − z) in ϕ̂c near
z ¼ 1 also give NSV terms for Φc. Although the form of
solution for Φc is good enough to study NSV terms, we
rewrite this in a convenient form which separates
SV terms from the NSV in Φc. Hence, we decompose
Φc as Φc ¼ Φc

A þΦc
B in such a way that Φc

A contains
only SV terms and the remaining Φc

B contains next to
soft-virtual terms in the limit z → 1. The distribution Φc

A
satisfies the K þG equation given in Eq. (35) of [46];
also see [20] for details. The solution for Φc

A in powers
of âs in dimensional regularization is given in [46]. It is
given by

Φc
Aðâs; q2; μ2; ϵ; zÞ ¼

X∞
i¼1

âis

�
q2ð1 − zÞ2

μ2

�
iϵ
2

Siϵ

×

�
iϵ

1 − z

�
ϕ̂cðiÞ
SV ðϵÞ; ð28Þ

where

ϕ̂cðiÞ
SV ðϵÞ ¼ 1

iϵ
½K̄cðiÞðϵÞ þ ḠcðiÞ

SV ðϵÞ�: ð29Þ

The constants K̄cðiÞðϵÞ and ḠcðiÞ
SV ðϵÞ are known to third

order in perturbation theory [20,21,25,36,46]. For the
reader’s convenience, we enlist the results of K̄cðiÞðϵÞ and
ḠcðiÞ

SV ðϵÞ in Appendix B. After substituting these pertur-
bative constants one can get the perturbative structure of
the SV coefficients as
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ϕ̂cð1Þ
SV ðϵÞ ¼ 1

ϵ2
ð2Ac

1Þ þ
1

ϵ
ðḠc

1ðϵÞÞ; ϕ̂cð2Þ
SV ðϵÞ ¼ 1

ϵ3
ð−β0Ac

1Þ þ
1

ϵ2

�
1

2
Ac
2 − β0Ḡc

1ðϵÞ
�
þ 1

2ϵ
Ḡc
2ðϵÞ;

ϕ̂cð3Þ
SV ðϵÞ ¼ 1

ϵ4

�
8

9
β20A

c
1

�
þ 1

ϵ3

�
−
2

9
β1Ac

1 −
8

9
β0Ac

2 −
4

3
β20Ḡ

c
1ðϵÞ

�
þ 1

ϵ2

�
2

9
Ac
3 −

1

3
β1Ḡc

1ðϵÞ−
4

3
β0Ḡc

2ðϵÞ
�
þ 1

ϵ

�
1

3
Ḡc
3ðϵÞ

�
;

ϕ̂cð4Þ
SV ðϵÞ ¼ 1

ϵ5
ð−β30Ac

1Þ þ
1

ϵ4

�
2

3
β0β1Ac

1 þ
3

2
β20A

c
2 − 2β30Ḡ

c
1ðϵÞ

�
−

1

ϵ3

�
1

12
β2Ac

1 −
1

4
β1Ac

2 −
3

4
β0Ac

3 þ
4

3
β0β1Ḡc

1ðϵÞ þ 3β20Ḡ
c
2ðϵÞ

�

þ 1

ϵ2

�
1

8
Ac
4 −

1

6
β2Ḡ

c
1ðϵÞ−

1

2
β1Ḡ

c
2ðϵÞ−

3

2
β0Ḡ

c
3ðϵÞ

�
þ 1

ϵ

�
1

4
Ḡc
4ðϵÞ

�
: ð30Þ

The integral representation for Φc
A is given in [20] and is reproduced here for completeness:

Φc
Aðâs; μ2; q2; z; ϵÞ ¼

�
1

1 − z

�Z
q2ð1−zÞ2

μ2F

dλ2

λ2
Acðasðλ2ÞÞ þ Ḡc

SVðasðq2ð1 − zÞ2Þ; ϵÞ
	�

þ

þ δð1 − zÞ
X∞
i¼1

âis

�
q2

μ2

�
iϵ
2

Siϵϕ̂
cðiÞ
SV ðϵÞ þ 1

ð1 − zÞþ
X∞
i¼1

âis

�
μ2F
μ2

�
iϵ
2

SiϵK̄cðiÞðϵÞ: ð31Þ

Having all the information about the SV coefficients, let us now study in detail the structure of Φc
B using Eq. (22).

Subtracting out the K þ G equation for the SV part Φc
A from (28), we find that Φc

B satisfies

q2
d
dq2

Φc
Bðq2; z; ϵÞ ¼

1

2

�
Gc

L

�
âs;

q2

μ2R
;
μ2R
μ2

; ϵ; z

��
; ð32Þ

where Gc
L ¼ Ḡc − Ḡc

SV,

Gc
L

�
âs;

q2

μ2R
;
μ2R
μ2

; z; ϵ

�
¼

X∞
i¼1

aisðq2ð1 − zÞ2ÞGc
L;iðz; ϵÞ: ð33Þ

The NSV part of the solution that satisfies (32) takes the following form:

Φc
Bðâs; μ2; q2; z; ϵÞ ¼

X∞
i¼1

âis

�
q2ð1 − zÞ2

μ2

�
iϵ
2

Siϵφ̂
ðiÞ
c ðz; ϵÞ; ð34Þ

where the perturbative expansion of the NSV coefficient φ̂ðiÞ
c ðz; ϵÞ reads as

φ̂ð1Þ
c ðz; ϵÞ ¼ 1

ϵ
Gc
L;1ðz; ϵÞ; φ̂ð2Þ

c ðz; ϵÞ ¼ 1

ϵ2
ð−β0Gc

L;1ðz; ϵÞÞ þ
1

2ϵ
Gc
L;2ðz; ϵÞ;

φ̂ð3Þ
c ðz; ϵÞ ¼ 1

ϵ3

�
4

3
β20G

c
L;1ðz; ϵÞ

�
þ 1

ϵ2

�
−
1

3
β1Gc

L;1ðz; ϵÞ −
4

3
β0Gc

L;2ðz; ϵÞ
�
þ 1

3ϵ
Gc
L;3ðz; ϵÞ;

φ̂ð4Þ
c ðz; ϵÞ ¼ 1

ϵ4
ð−2β30Gc

L;1ðz; ϵÞÞ þ
1

ϵ3

�
4

3
β0β1Gc

L;1ðz; ϵÞ þ 3β20G
c
L;2ðz; ϵÞ

�

þ 1

ϵ2

�
−
1

6
β2Gc

L;1ðz; ϵÞ −
1

2
β1Gc

L;2ðz; ϵÞ −
3

2
β0Gc

L;3ðz; ϵÞ
�
þ 1

4ϵ
Gc
L;4ðz; ϵÞ: ð35Þ

The ϵ expansion of the renormalized NSV quantities Gc
L;iðz; ϵÞ can be further decomposed as

Gc
L;iðz; ϵÞ ¼ Lc

i ðzÞ þ χ̄cL;iðzÞ þ
X∞
j¼1

ϵjGc;ðjÞ
L;i ðzÞ; ð36Þ

with
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χ̄cL;iðzÞ ¼ χ̄ci jðḠc;ðjÞ
i →Gc;ðjÞ

L;i ðzÞÞ; ð37Þ

where χ̄ci is given in (B6). Unlike the SV renormalized

coefficients Ḡc;ðjÞ
i , the NSV coefficients Gc;ðjÞ

L;i ðzÞ in the
above equations are parametrized in terms of
lnkð1 − zÞ; k ¼ 0; 1;…, and all the terms that vanish as
z → 1 are dropped,

Gc;ðjÞ
L;i ðzÞ ¼

Xiþj−1

k¼0

Gc;ðj;kÞ
L;i lnkð1 − zÞ: ð38Þ

The highest power of the lnð1 − zÞ at every order depends
on the order of the perturbation, namely the power of as and
also the power of ϵ at each order in as. We determine this
highest power by studying results for the bare partonic
cross sections σ̂cc̄ at higher orders in âs, expanded in
powers of ϵ to high accuracy. Alternatively, we can use the
known mass factorized results for Δcc̄ to obtain this power.
In the former approach, we used the results for σ̂cc̄,
computed up to second order in âs, i.e., i ¼ 1, 2 with ϵ
expanded up to third power for i ¼ 1 and first power for
i ¼ 2. In the case of Δcc̄, we used the known results up to
third order in as to obtain the highest power of logarithms.
Extrapolating the findings from these two fixed order
results to all orders in âs and ϵ, we obtain the highest
power for lnð1 − zÞ to be iþ j − 1. We devote a separate
subsection (see Sec. III B) to elaborate on this peculiar
structure of the logarithms.
Similar to the SV case, the NSV function Φc

B can be
written in an integral form using (32) and the perturbative
structure given in (35) as

Φc
Bðâs;μ2;q2;z;ϵÞ

¼
Z

q2ð1−zÞ2

μ2F

dλ2

λ2
Lcðasðλ2Þ;zÞ

þφf;cðasðq2ð1− zÞ2Þ;z;ϵÞjϵ¼0þφs;cðasðμ2FÞ;z;ϵÞ: ð39Þ

Here, the first line is completely finite as ϵ → 0 while the
second line, φs;c, is divergent. The fact that Φc

B is RG

invariant implies that φs;c satisfies the renormalization
group equation:

μ2F
d

dμ2F
φs;cðasðμ2FÞ; zÞ ¼ Lcðasðμ2FÞ; zÞ: ð40Þ

Further the Δc in (14) is finite at every order in as in the
limit ϵ → 0 allows us to determine the coefficients Lc in
terms of the NSV coefficients Cc and Dc in splitting
kernels, given in (19). We find at each order in perturbative
expansion

Lcðasðμ2FÞ; zÞ ¼
X∞
i¼1

aisðμ2FÞLi
cðzÞ ð41Þ

with Lc
i ðzÞ ¼ Cc

i lnð1 − zÞ þDc
i , where the coefficients C

c
i

and Dc
i are related to those of cusp Ac

i and collinear Bc
i

anomalous dimensions in the following way up to third
order [101,109]:

Dc
1 ¼ −Ac

1; Dc
2 ¼ −Ac

2 þ Ac
1ðBc

1 − β0Þ;
Dc

3 ¼ −Ac
3 − Ac

1ð−Bc
2 þ β1Þ − Ac

2ð−Bc
1 þ β0Þ;

Cc
1 ¼ 0; Cc

2 ¼ ðAc
1Þ2; Cc

3 ¼ 2Ac
1A

c
2: ð42Þ

Having fixed the divergent part of Φc
B completely, we turn

to the structure of the finite piece φf;c. We first expand them
in powers of renormalized coupling as,

φf;cðasðq2ð1 − zÞ2Þ; zÞ

¼
X∞
i¼1

aisðq2ð1 − zÞ2Þ
Xi

k¼0

φðkÞ
c;i ln

kð1 − zÞ; ð43Þ

where the highest power of lnð1 − zÞ is in accord with the
same in Eq. (38). We will discuss more on this structure in

Sec. III B. The coefficients φðkÞ
c;i can be expressed in terms

of their unrenormalized counterpart Gc;ðj;kÞ
L;i ’s in (38) as

φðkÞ
c;1¼Gc;ð1;kÞ

L;1 ; k¼ 0;1;

φðkÞ
c;2¼

�
1

2
Gc;ð1;kÞ
L;2 þβ0G

c;ð2;kÞ
L;1

�
; k¼ 0;1;2;

φðkÞ
c;3¼

�
1

3
Gc;ð1;kÞ
L;3 þ2

3
β1G

c;ð2;kÞ
L;1 þ2

3
β0G

c;ð2;kÞ
L;2 þ4

3
β20G

c;ð3;kÞ
L;1

�
; k¼ 0;1;2;3;

φðkÞ
c;4¼

�
1

4
Gc;ð1;kÞ
L;4 þ1

2
β2G

c;ð2;kÞ
L;1 þ1

2
β1G

c;ð2;kÞ
L;2 þ1

2
β0G

c;ð2;kÞ
L;3 þ2β0β1G

c;ð3;kÞ
L;1 þβ20G

c;ð3;kÞ
L;2 þ2β30G

c;ð4;kÞ
L;1

�
; k¼ 0;1;2;3;4; ð44Þ
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where Gc;ð2;3Þ
L;1 , Gc;ð2;4Þ

L;1 , Gc;ð2;4Þ
L;2 , Gc;ð3;4Þ

L;1 are all zero. The
structure of divergent and finite pieces of Φc

B allows us to

determine the coefficients Gc;ðj;kÞ
L;i and φðkÞ

c;i , and we postpone
the discussion on this to the next section.
So far, we have discussed the logarithmic structure of the

building blocks of mass factorized CFs within the frame-
work of perturbation theory. We used respective first order
differential equations satisfied by each of them as given in
(15), (16), (18), and (24). We found that each of them
admits the solution which is of the exponential form whose
exponents are controlled by process independent anoma-
lous dimensions as well as process dependent coefficients.
Substituting these solutions for the building blocks, we
obtain

Δsvþnsv
cc̄ ðq2; μ2R; μ2F; zÞ;¼ C expðΨcðq2; μ2R; μ2F; z; ϵÞÞjϵ¼0;

ð45Þ

where Ψc is a finite function in the limit ϵ → 0 and is
given by

Ψcðq2; μ2R; μ2F; z; ϵÞ ¼ ðlnðZUV;cðâs; μ2; μ2R; ϵÞÞ2
þ ln jF̂cðâs; μ2; Q2; ϵÞj2Þδð1 − zÞ
þ 2Φcðâs; μ2; q2; z; ϵÞ
− 2C lnΓccðâs; μ2; μ2F; z; ϵÞ: ð46Þ

This all order result is the master formula which can be
used for obtaining SVþ NSV contributions to Δc order by
order in perturbation theory provided various functions that
appear in Eq. (46) are known to the desired accuracy. In
particular, it can predict certain SV and NSV terms to all
orders in as in terms of lower order terms. We elaborate this
in more detail in Sec. IV. In the above formula, we keep the
entire FF and overall renormalization constant as they are
proportional to only δð1 − zÞ. However, in the functions Φc

and lnΓcc, we keep only SV and NSV terms.
Before we conclude this subsection, we discuss the

general structure of the renormalization group equation
corresponding to Sc resulting from infrared singularities
originating from soft and collinear emissions. IR singular-
ities in Sc are found to be factorizable; i.e., we can write
Scðq2; zÞ ¼ Zcðq2; μ2s ; zÞ ⊗ Sc;finðq2; μ2s ; zÞ with μs being
the IR factorization scale. This is a consequence K̄c þ Ḡc

decomposition, valid to all orders in perturbation theory.
Here, Zc contains all the IR singularities of Sc in terms of
poles in ϵ and Sc;fin is IR finite in the limit ϵ → 0. We can
relate Zc to K̄c and Ḡc through K̄c ¼ d logZc=d logðq2Þ
and Ḡc ¼ d logSc;fin=d logðq2Þ, respectively. The complete
singular structure of Zc can be obtained by solving the
renormalization group equation

μ2s
dZcðμ2s ; q2; z; ϵÞ

dμ2s
¼ γS;cðμ2s ; q2; z; ϵÞ ⊗ Zcðμ2s ; q2; zÞ;

ð47Þ

where γS;c takes the remarkable structure ξ1ðμ2s ; zÞ×
logðq2=μ2sÞ þ ξ2ðμ2s ; zÞ to all orders in perturbation theory.
This structure follows from the fact that Zc has to contain
the right infrared poles to cancel against those from form
factor and AP kernels leaving Δc finite. The latter gives

γS;c ¼
�
Acðμ2sÞ log

�
q2

μ2s

�
−
fcðμ2sÞ

2

�
δð1 − zÞ þ P0

ccðμsÞ:

ð48Þ

Note that the anomalous dimensions Ac and fc control
the renormalization group equation (RGE) of the SV parts,
namely δð1 − zÞ and 1=ð1 − zÞþ, whereas the RGE of NSV
parts is governed through the collinear anomalous dimen-
sions Cc and Dc. This suggests that Zc can be further
decomposed into ZA

c and ZB
c . Here, ZA

c contains the
singularities in the SV part arising from pure soft modes,
and ZB

c accounts for those in the NSV part resulting from
soft and collinear modes. In other words, the soft-collinear
function Sc can be factorized into two exponential func-
tions with exponents Φc

A and Φc
B, and each is governed by

its own renormalization group equation in terms of an
independent set of anomalous dimensions. In conclusion,
we have presented a formula, given in (46), which gives the
analytical structure of the partonic CF in terms of the
anomalous dimensions and SV and NSV coefficients.

2. Results for NSV coefficients

In this subsection, we evaluate explicit expressions for
the NSV coefficients, introduced earlier, by comparing
against the state-of-the-art results of CFs and their building
blocks such as FF and AP kernels. At every order ais, the

coefficients Gc;ðj;kÞ
L;i for various values of ðj; kÞ can be

determined using (14) and (46) known to order ais
expanded in a double series expansion of ϵj lnkð1 − zÞ.
In order to do this we use the available information up to

two loop level to obtain Gc;ðj;kÞ
L;i for i ¼ 1, 2 for all the

allowed values of ðj; kÞ.
We find that unlike the SV coefficients Ḡc;j

i [see (B7)],

the quark and gluon NSV coefficients Gc;ðj;kÞ
L;i do not satisfy

the maximal non-Abelian relation beyond one loop. Recall

that Ḡc;ðjÞ
i satisfy Ḡq;ðjÞ

i ¼ ðCF=CAÞḠg;ðjÞ
i , confirmed up to

third order in as as shown in [20,46].
Third order contributions to Δc for DY became available

very recently in [9], and for the Higgs boson productions in
gluon fusion as well as in bottom quark annihilation the
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third order results were presented in [4–6]. The analytical
results for FFs, over all renormalization constants, the
functions Φc

A and Γcc̄ are all available up to third order in
the literature. Using these results, we can in principle

extract the relevant coefficients Gq;ðj;kÞ
L;i to third order. In the

absence of analytical results for second order corrections to

Δq for positive powers of ϵ, we cannot determine the

coefficients Gq;ðj;kÞ
L;i at the third order.

However, the combination of these coefficients, namely
φf;c, given in (44), can be extracted for c ¼ q (DY) and for
c ¼ b (bb̄H) and c ¼ g (ggH) up to third order using the
available results to third order. We find for the DY

φð0Þ
q;1 ¼ 4CF; φð1Þ

q;1 ¼ 0;

φð0Þ
q;2 ¼ CFCA

�
1402

27
− 28ζ3 −

112

3
ζ2

�
þ C2

Fð−32ζ2Þ þ nfCF

�
−
328

27
þ 16

3
ζ2

�
;

φð1Þ
q;2 ¼ 10CFCA − 10C2

F; φð2Þ
q;2 ¼ −4C2

F;

φð0Þ
q;3 ¼ CFC2

A

�
727211

729
þ 192ζ5 −

29876

27
ζ3 −

82868

81
ζ2 þ

176

3
ζ2ζ3 þ 120ζ22

�

þ C2
FCA

�
−
5143

27
−
2180

9
ζ3 −

11584

27
ζ2 þ

2272

15
ζ22

�
þ C3

F

�
23þ 48ζ3 −

32

3
ζ2 −

448

15
ζ22

�

þ nfCFCA

�
−
155902

729
þ 1292

9
ζ3 þ

26312

81
ζ2 −

368

15
ζ22

�

þ nfC2
F

�
−
1309

9
þ 496

3
ζ3 þ

2536

27
ζ2 þ

32

5
ζ22

�
þ n2fCF

�
12656

729
−
160

27
ζ3 −

704

27
ζ2

�
;

φð1Þ
q;3 ¼ CFC2

A

�
244

9
þ 24ζ3 −

8

9
ζ2

�
þ C2

FCA

�
−
18436

81
þ 544

3
ζ3 þ

964

9
ζ2

�

þ C3
F

�
−
64

3
− 64ζ3 þ

80

3
ζ2

�
þ nfCFCA

�
−
256

9
−
28

9
ζ2

�
þ nfC2

F

�
3952

81
−
160

9
ζ2

�
;

φð2Þ
q;3 ¼ CFC2

A

�
34 −

10

3
ζ2

�
þ C2

FCA

�
−96þ 52

3
ζ2

�
þ C3

F

�
16

3

�
þ nfCFCA

�
−
10

3

�
þ nfC2

F

�
40

3

�
;

φð3Þ
q;3 ¼ C2

FCA

�
−
176

27

�
þ nfC2

F

�
32

27

�
; ð49Þ

and for the Higgs boson production

φð0Þ
g;1 ¼ 4CA;

φð1Þ
g;1 ¼ 0;

φð0Þ
g;2 ¼ C2

A

�
1306

27
− 28ζ3 −

208

3
ζ2

�
þ nfCA

�
−
196

27
þ 16

3
ζ2

�
;

φð1Þ
g;2 ¼ C2

A

�
2

3

�
þ nfCA

�
−
2

3

�
;

φð2Þ
g;2 ¼ −4C2

A;

φð0Þ
g;3 ¼ C3

A

�
563231

729
þ 192ζ5 −

34292

27
ζ3 −

113600

81
ζ2 þ

176

3
ζ2ζ3 þ

3488

15
ζ22

�

þ nfC2
A

�
−
117778

729
þ 1888

9
ζ3 þ

26780

81
ζ2 −

232

15
ζ22

�

þ nfCFCA

�
−
2653

27
þ 616

9
ζ3 þ

40

3
ζ2 þ

32

5
ζ22

�
þ n2fCA

�
1568

729
−
160

27
ζ3 −

152

9
ζ2

�
;
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φð1Þ
g;3 ¼ C3

A

�
−
18988

81
þ 448

3
ζ3 þ

1280

9
ζ2

�
þ nfC2

A

�
1528

81
− 8ζ3 −

248

9
ζ2

�

þ nfCFCA

�
4 −

8

3
ζ2

�
þ n2fCA

�
56

27

�
;

φð2Þ
g;3 ¼ C3

A

�
−
1432

27
þ 40

3
ζ2

�
þ nfC2

A

�
164

27
þ 2

3
ζ2

�
þ n2fCA

�
8

27

�
;

φð3Þ
g;3 ¼ C3

A

�
−
176

27

�
þ nfC2

A

�
32

27

�
: ð50Þ

While the NSV functions Φc
B for quarks and gluons are

not related, they are found to be universal up to second
order in the sense that they do not depend on the hard
process. For example, to second order in as, Φ

q
B of DY is

found to be identical to that of Higgs boson production in
bottom quark annihilation [110]. In addition, we find that
they agree with that of graviton (G) production in quark

annihilation processes [111–116]. In terms of φðkÞ
q;i it

translates to

φðkÞ
q;i





qþq̄→lþl−þX

¼ φðkÞ
q;i





bþb̄→HþX

¼ φðkÞ
q;i





qþq̄→GþX

i ¼ 1; 2; k ¼ 0; i: ð51Þ

Similarly, to second order in as, Φ
g
B from Higgs boson

production in gluon fusion is found to be identical to that of
graviton production in the gluon fusion channel and
pseudoscalar Higgs boson production [18,117–121] in
gluon fusion. That is,

φðkÞ
g;i





gþg→HþX

¼ φðkÞ
g;i





gþg→AþX

¼ φðkÞ
g;i





gþg→GþX

i ¼ 1; 2; k ¼ 0; i: ð52Þ

However, the universality breaks at third order; namely
we find that the φðkÞ

b;3 for k ¼ 0, 1 differs from that of DY
production while for k ¼ 2, 3 they agree:

φð0Þ
b;3 ¼ φð0Þ

q;3 − 16CACFðCA − 2CFÞ;
φð1Þ
b;3 ¼ φð1Þ

q;3 þ 8CACFðCA − 2CFÞ;
φðkÞ
b;3 ¼ φðkÞ

q;3; k ¼ 2; 3: ð53Þ

The origin of this violation for k ¼ 0, 1 at third order,
which has been evaluated using the state-of-the-art results
[4–6,9], needs to be understood within the framework of
factorization.

III. MORE ON THE SOFT-COLLINEAR
FUNCTION, Φc

B

A. On the form of the solution

In this section, we discuss in detail the peculiar structure
of SV and NSV solutions given in (28) and (34), respec-
tively, that satisfy the K þG equation. Both of them
contain divergent as well as finite terms at every order.
For example, the SV part of the solution, Φc

A, contains the
right soft and collinear divergences proportional to distri-
butions δð1 − zÞ and D0ðzÞ to cancel those from the FF
entirely and from the AP kernels partially and the z
dependent finite terms to correctly reproduce all the
distributions in the SV part of CFs Δc. The NSV part,
Φc

B, removes the remaining collinear divergences of the AP
kernels. The finite part of it when combined with the SV
counterpart of Φc

A contributes to next to SV terms to CFs
Δc. As we mentioned in the previous section, the z
dependence of the solution is inspired from the structure
of various contributions that constitute the next to leading
order contributions to a variety of inclusive reactions,
namely production of a pair of leptons in quark-antiquark
annihilation, a Higgs boson in gluon fusion or in bottom
quark annihilation at hadron colliders. In addition, the
renormalization group equation, Eq. (40), brings in an
additional z dependent logarithmic structure through the
anomalous dimensions CcðasÞ and DcðasÞ.
Note that the solution given in (27) is organized in such a

way that the term Φc
A contains only leading contributions,

namely the distributions such as δð1 − zÞ andDjðzÞ, the so-
called SV terms, and the term Φc

B, the subleading terms,
i.e., the next to SV logarithms lnkð1 − zÞ; k ¼ 0; 1;….
Even though Φc

A does not contain next to SV terms, they
contribute to next to SV terms to Δc, when the exponential
is expanded in powers of as. Not only do distributions
result from the convolutions of two or more distributions,
they also give next to SV logarithms. In addition, the
convolution of distributions with next to SV terms in turn
give pure NSV logarithms. Hence, the leading solution Φc

A
plays an important role for generating next to SV terms for
the CFs Δc at every order in perturbation theory.
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The solutionΦc
A [see (28)] at every order in âs is found to

factorize into the z dependent piece, ðð1 − zÞmÞiϵ=2 1
1−z with

m ¼ 2, and the z independent coefficients ϕ̂cðiÞ
SV ðϵÞ. The

peculiarity of this solution is that we can retain the

independence of ϕ̂cðiÞ
SV ðϵÞ with respect to the variable z

at every order in âs, thanks to the presence of the factor
ðð1 − zÞmÞiϵ=2 1

ð1−zÞ which not only ensures the finiteness of

the SV part of CFs Δc but also gives the right distributions
at every order. The factor m takes the value m ¼ 2 for DY
and Higgs productions as observed in (28) and the origin of
it can be traced to the number of external legs that require
mass factorization [20]. It was observed in [20,122] that the
parameter m takes the value m ¼ 1 for the SV part of the
solutions to CFs of structure functions of DIS and of semi-
inclusive annihilation (SIA) of hadron production and the
reason is that only one of the external legs requires mass

factorization. The uniqueness of the structure of ϕ̂cðiÞ
SV may

be attributed to the fact that the entire z dependence of the
solution factorizes at every order as ðð1 − zÞmÞiϵ=2 1

1−z,

leaving ϕ̂cðiÞ
SV ðϵÞ z independent.

As the SV part, the NSV part of the solution is also
determined by demanding that it should contain the right
divergences to cancel those present in AP kernels. The
structure of the finite part of the solution is determined by
(39), which when combined with the SV part of the
solution, reproduces the correct NSV terms for Δc. The
perturbative structure of higher order results allows only
certain powers of logarithms at every order in perturbation
theory thanks to the inherent transcendentality structure of
Feynman integrals that appear at every order in as and in ϵ
in the dimensionally regularized theory. We find that the

coefficients φðiÞ
c ðz; ϵÞ are consistent with this expectation.

In addition, the solution demonstrates an interesting struc-
ture that deserves a mention.
Recall that the first order differential equation for soft-

collinear function Sc gives the solution C expð2ΦcÞ. We
applied the boundary condition Scðq2 ¼ 0; zÞ ¼ δð1 − zÞ
as we use dimensional regularization. Although it is an
evolution equation with respect to q2, the solution captures
its dependence on both q2 as well as z at every order in as.
This is because the differential equation is valid for all z
near threshold (SVþ NSV). Given the boundary condition,
the exponential of the solution is unique and the explicit
dependence on q2 and z is controlled by the kernels K̄c and
Ḡc. The latter are extracted from the explicit perturbative
results on ΔC, F̂c, and Γcc̄ available in the literature. We
found that in the SV part of the exponent Φc

A, the complete
z dependence can be factored out through ð1 − zÞiε at every
order as. However, this is not possible for the NSV part,
Φc

B. The explicit results obtained through third order in as
suggest the following all order structure for theΦc

B in terms
of âs; ϵ, and logð1 − zÞ:

Φc
Bðâs;μ2; q2; z; ϵÞ ¼

X∞
i¼1

âis

�
q2

μ2

�
iϵ
2

Siϵ

×
X∞
j¼−i

Xiþj

k¼0

Φ̂c;ði;jÞ
k ϵj logkð1− zÞ: ð54Þ

Note that respective expansion coefficients Φ̂c;ði;jÞ
k can be

uniquely determined from the fixed order results. The upper
limit in the summation over k is the generalization based on
the extrapolation of fixed order results. The justification for
this extrapolation is discussed later in this section.
In the following we represent the above solution in two

different forms; both give the same expansion coefficients

Φ̂c;ði;jÞ
k if we expand them in powers of ϵ. The first is the

generalization of the form given in (34), and the second one
is to demonstrate that these logarithms logð1 − zÞ in the
solution (54) originate from soft and collinear configura-
tions. We find that the K þ G equation allows us to
construct not just one solution but a form of solutions, a
minimal form, satisfying the right divergent structure as
well as the dependence on lnkð1 − zÞ; k ¼ 0; 1;…:

1. Form I

We begin with a form parametrized in terms of α:

Φc
B;α ¼

X∞
i¼1

âis

�
q2ð1 − zÞα

μ2

�iϵ
2

Siϵφ
ðiÞ
c;αðz; ϵÞ: ð55Þ

For any arbitrary choice of α, expansion coefficients can be
determined by comparing against the (54) so that the
predictions from the solutions Φc

B;α are unaffected.
The reason for the independence of the choice of α on
the prediction is due to the explicit z-dependence of the

coefficients φðiÞ
c;αðz; ϵÞ that we allow at every order in âs and

in ϵ. Note that in the above expression, if we first insert
1 ¼ ð1 − zÞ−α0 ð1 − zÞα0 and define

ð1 − zÞα0φðiÞ
c;αðz; ϵÞ ¼ φðiÞ

c;α−α0 ðz; ϵÞ; ð56Þ

then we obtain Φc
B;α ¼ Φc

B;α−α0 for any α; α0. Hence any
variation of α in the factor ð1 − zÞiαϵ can always be
compensated by suitably adjusting the z independent

coefficients of lnð1 − zÞ terms in φðiÞ
c;αðz; ϵÞ at every order

in âs and in ϵ. The reason for this is the invariance of the
solution under certain “gaugelike” transformations on both
ð1 − zÞiαϵ and φc;f;αðz; ϵÞ at every order in âs. Note that the
logarithmic structure of φðiÞ

c;αðz; ϵÞ plays an important role.
Because of this invariance, these transformations affect
neither the divergent structure nor the finite parts of Φc

B;α.
We find that the invariance can be realized through the
renormalization group equation of the strong coupling
constant. To end, the solution given in Eq. (55) takes the
following integral form:
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Φc
B;α ¼

Z
q2ð1−zÞα

μ2F

dλ2

λ2
Lcðasðλ2Þ; zÞ þ φf;c;αðasðq2ð1 − zÞαÞ; z; ϵÞjϵ¼0 þ φs;cðasðμ2FÞ; z; ϵÞ: ð57Þ

The finite part φf;c;α can be expanded as

φf;c;αðasðq2zð1 − zÞαÞ; zÞ ¼
X∞
i¼1

aisðqzαÞ
Xi

k¼0

φðkÞ
c;α;iL

k
z; ð58Þ

with Lk
z ¼ lnkð1 − zÞ; qzα ¼ q2ð1 − zÞα. The fact that the predictions are insensitive to α relates the coefficient φðkÞ

c;α;i to φ
ðkÞ
c;i ,

the solution corresponding to α ¼ 2, through

φð0Þ
c;α;1 ¼ φð0Þ

c;1; φð1Þ
c;α;1 ¼ −Dc

1ᾱþ φð1Þ
c;1; φð0Þ

c;α;2 ¼ φð0Þ
c;2;

φð1Þ
c;α;2 ¼ −ᾱðDc

2 − β0φ
ð0Þ
c;1Þ þ φð1Þ

c;2; φð2Þ
c;α;2 ¼ −

1

2
ᾱ2β0Dc

1 − ᾱðCc
2 − β0φ

ð1Þ
c;1Þ þ φð2Þ

c;2;

φð0Þ
c;α;3 ¼ φð0Þ

c;3; φð1Þ
c;α;3 ¼ −ᾱðDc

3 − β1φ
ð0Þ
c;1 − 2β0φ

ð0Þ
c;2Þ þ φð1Þ

c;3;

φð2Þ
c;α;3 ¼ −ᾱ2

�
1

2
β1Dc

1 þ β0Dc
2 − β0

2φð0Þ
c;1

�
− ᾱðCc

3ᾱ − β1φ
ð1Þ
c;1 − 2β0φ

ð1Þ
c;2Þ þ φð2Þ

c;3;

φð3Þ
c;α;3 ¼ β0

2

�
−
1

3
Dc

1ᾱ
3 þ ᾱ2φð1Þ

c;1

�
þ β0ᾱð−Cc

2ᾱþ 2φð2Þ
c;2Þ þ φð3Þ

c;3;

φð0Þ
c;α;4 ¼ φð0Þ

c;4; φð1Þ
c;α;4 ¼ −Dc

4ᾱþ β2ᾱφ
ð0Þ
c;1 þ 2β1ᾱφ

ð0Þ
c;2 þ 3β0ᾱφ

ð0Þ
c;3 þ φð1Þ

c;4;

φð2Þ
c;α;4 ¼ −Cc

4ᾱ −
1

2
β2Dc

1ᾱ
2 − β1Dc

2ᾱ
2 −

3

2
β0Dc

3ᾱ
2 þ 5

2
β0β1ᾱ

2φð0Þ
c;1

þ β2ᾱφ
ð1Þ
c;1 þ 3β0

2ᾱ2φð0Þ
c;2 þ 2β1ᾱφ

ð1Þ
c;2 þ 3β0ᾱφ

ð1Þ
c;3 þ φð2Þ

c;4;

φð3Þ
c;α;4 ¼ β0

3ᾱ3φð0Þ
c;1 þ β0

2ᾱ2ð−Dc
2ᾱþ 3φð1Þ

c;2Þ −
1

6
β1ᾱð6Cc

2ᾱþ 5β0ᾱðDc
1ᾱ − 3φð1Þ

c;1Þ

− 12φð2Þ
c;2Þ −

3

2
β0ᾱðCc

3ᾱ − 2φð2Þ
c;3Þ þ φð3Þ

c;4;

φð4Þ
c;α;4 ¼ β0

3

�
−
1

4
Dc

1ᾱ
4 þ ᾱ3φð1Þ

c;1

�
þ β0

2ᾱ2ð−Cc
2ᾱþ 3φð2Þ

c;2Þ þ 3β0ᾱφ
ð3Þ
c;3 þ φð4Þ

c;4; ð59Þ

where ᾱ ¼ α − 2. The above relations are the transforma-

tions for φðkÞ
c;α;i that are required to compensate the con-

tributions resulting from the change in the exponent of
(1 − z) from iϵ to iαϵ. This invariance property with respect
to the parameter α makes the solution a peculiar one
compared to the SV counterpart.

2. Form II

We point out that the form of solutions parametrized by α
is not the only one that satisfies the K þ G equation. For

example, if we do not restrict z-dependence in φðiÞ
c , we can

obtain a different form of solution. Then for such a solution,
we need to add more terms on the right-hand side of (55) in
such a way that all the requirements are fulfilled. In other
words, if we assume the following form for the solution:

Φ̃c
B ¼

X∞
i¼1

âis
X2i
α¼2

�
q2ð1 − zÞαi

μ2

�iϵ
2

Siϵφ̃
ðiÞ
c;αðϵÞ ð60Þ

with various φ̃ðiÞ
c;αðϵÞ’s to contain right divergent as well as

finite terms which when we sum them up over α’s, we can
obtain Δc that agrees with the known result. In the
following we explain this using an example that can
provide the justification for the proposed solution. We
use [123] for this purpose. In [123] inclusive production of
the Higgs boson was computed using the method of
threshold expansion up to third order in as in dimensional
regularization. For the diagonal channel, σ̂gg, the results to
third order show remarkable structure in terms of z and ϵ,
namely the factorization of terms of the form ð1 − zÞϵ and
functions that depend only on ϵ. Generalizing this structure
to ith order in as, one obtains the factorization of the form

AJJATH, MUKHERJEE, and RAVINDRAN PHYS. REV. D 105, 094035 (2022)

094035-14



P
2i
α¼2ð1 − zÞαϵ=2χαi ðϵÞ. The factor ð1 − zÞαϵ=2 originates

from soft and collinear configurations of partons. The
corresponding soft and collinear scales are given by
ðq2ð1 − zÞÞαϵ=2, and hence one can conclude that the
threshold expansion beyond SV approximation contains
multiple scales parametrized by α. From the explicit
computations one finds that every collinear parton gives
ð1 − zÞϵ=2 and the soft parton gives ð1 − zÞϵ .1 Pure virtual
contributions to born amplitude give δð1 − zÞ, and the hard
part from the real emissions gives terms proportional to
ð1 − zÞη; η ≥ 0. For a given process, we can determine the
values of α by studying the number of soft and collinear
configurations. This way we can find out the allowed
values of α for every process at every order in as. The
highest power of α at a given order is determined by the
number of allowed soft and collinear configurations in that
order. The values of α extracted from results known to third
order can be used to extrapolate the upper limit on α at ith
order in as and it turns out to be 2i. The coefficients of the
scales χαi ðϵÞ can be expanded in powers of ϵ. The
singularity structure in ϵ is completely determined by
the finiteness of the mass factorized result. Note that the
remarkable multiscale structure of the fixed order results
[123] for the cross sections confirms the structure of Φ̃c

B
given above.
The fact that the exponent Φc

B (60) is identical to the
exponent in (34) if we expand them around ϵ ¼ 0 implies

ð1 − zÞiϵφ̂i
cðz; ϵÞ ¼

X2i
α¼2

ð1 − zÞαϵ2 φ̃i
c;αðϵÞ: ð61Þ

In the following we explain how the parameter α counts
the soft and collinear modes. Let us begin with one loop
(i ¼ 1) where we have α ¼ 2 and the corresponding soft
scale is ðq2ð1 − zÞ2Þϵ2. At two loops (i ¼ 2), we have α ¼ 2,
3, 4 and the corresponding scales are ðq4ð1 − zÞ2Þϵ2,
ðq4ð1 − zÞ3Þϵ2, and ðq4ð1 − zÞ4Þϵ2, respectively. Note that
the first scale results from two collinear modes each with
the scale q2ð1 − zÞ, and the second one arises from the
combination of soft and collinear modes each with the
scales q2ð1 − zÞ and q2ð1 − zÞ2, respectively. The last one
is from a combination of two soft modes with the scale
q2ð1 − zÞ2 each. The explicit results onΦc

B up to third order
suggest that the expansion coefficients vanish for α > iþ j
for all i, j.
While these two forms of solutions may look different in

the structure, both of them give identical predictions to all
orders for CFs, and in addition, it is easy to relate the
coefficients of these solutions by finite transformations.
Hence, they are equivalent. In the present paper, we use the
form-I solution with the choice α ¼ 2 in (55) so that the
solution resembles the SV part. Thanks to the invariance

property of the solution, the different choices for α neither
alter the qualitative behavior nor the quantitative predic-
tions for Δc to all orders. For example, an alternate choice,
say α ¼ 1, can only change the coefficients of lnkð1 − zÞ in
the φf;c without affecting the all order structure and the
predictions for Δc. With our choice of α ¼ 2, the all order
solution, equivalently integral representation resembles that
of the SV part. We will see later that this choice will allow
us to study N space resummation for both SV and NSV
terms with single order one term, namely ω ¼ 2asβ0 lnN.

B. On the logarithmic structure

In the last section, we derived the z space result that can
correctly predict certain SV and NSV terms to all orders
from the knowledge of previous orders. This was possible
due to a peculiar logarithm structure of the solution to the
K þG equation at every order in âs and ϵ; see (38). In this
subsection, we present an explicit result for Φc; c ¼ b to
second order in perturbation theory in order to explain the
structure of SV and NSV logarithms at a given order in âs
with an accuracy of ϵn. We have used the inclusive cross
section for the production of the Higgs boson in bottom
quark annihilation for this purpose. The conclusions remain
unchanged as long as color neutral production in diagonal
channels are considered. To order â2s, the inclusive cross
section for the production of the Higgs boson in bottom
quark annihilation receives contributions from (a) pure real
emissions

bþ b̄ → H þ g; bþ b̄ → H þ gþ g;

bþ b̄ → H þ bþ b̄; bþ b̄ → H þ qþ q̄;

(b) pure virtual corrections through one and two loop
corrections to leading order bþ b̄ → H, and (c) interference
of pure real emission process bþ b̄ → H þ g with the loop
corrected process bþ b̄ → H þ g. Here, q refers light
quarks leaving t- and b-quarks. We compute these parton
level subprocesses using the standard Feynman diagram
approach. Beyond the leading order in strong coupling, all
these subprocesses develop UV and IR divergences, and
they are regulated in dimensional regularization. As we
encounter a large number of Feynman diagrams, we use
QGRAF to generate them and an in-house FORM routine
to perform all the symbolic manipulations, e.g., for Dirac,
SUðNcÞ color, and Lorentz algebra. We use the integration-
by-parts (IBP) identities through a Mathematica based
package, LiteRed, to reduce Feynman integrals to a
minimum set of master integrals. In addition, for real
emission and real-virtual processes the method of reverse
unitarity is used along with IBP identities to reduce the
resulting phase-space integrals to a set of a few master
integrals. The master integrals for the virtual processes can
be found in [88,124] and for the real emission in [124] up to
the desired accuracy in ϵ. While individual subprocesses1We thank Claude Duhr for explaining this point to us.
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contain UV, soft, and collinear divergences, after renorm-
alizing the strong coupling constant âs and the Yukawa
coupling λ, the sum becomes UV finite. In addition, the soft
and final state collinear divergences cancel in real and
virtual subprocesses, leaving only initial state collinear
divergences in σ̂bb̄.
Since we are interested only in those terms that are

proportional to distributions and NSV logarithms
lnkð1 − zÞ, we expand 2 σ̂bb̄ around z ¼ 1 and drop those
terms that vanish when z → 1. In order to extract Φc from
the latter, we follow (13), where the virtual contributions
are factored out from σ̂cc̄, giving rise to the function Sc.
Owing to (22), Sb has an exponential structure

Sbðz; q2; ϵÞ ¼ C exp ð2Φbðz; q2; ϵÞÞ; ð62Þ

where Φb ¼ Φb
A þΦb

B. Expanding Φb
B in powers of âs as

Φb
Bðâs; μ2; q2; z; ϵÞ ¼

X∞
i¼1

âis

�
q2ð1 − zÞ2

μ2

�
iϵ
2

Siϵφ
ðiÞ
b ðz; ϵÞ

¼
X∞
i¼1

âis

�
q2

μ2

�
iϵ
2

SiϵΦ̂
ðiÞ
NSV;bðz; ϵÞ; ð63Þ

and using explicit results for σ̂svþnsv
bb̄

, ZUV;b, and F̂, we

obtain Φ̂ðiÞ
NSV;b for i ¼ 1, 2 in powers of ϵ. They are given by

Φ̂ð1Þ
NSV;b ¼ CF

�
1

ϵ
ð−8Þ þ ð−8Lz þ 4Þ þ ϵð−4L2

z þþ4Lz þ 3ζ2Þ þ ϵ2
�
−
4

3
L3
z þ 2L2

z þ 3ζ2Lz −
�
7

3
ζ3 þ

3

2
ζ2

��

þ ϵ3
�
−
1

3
L4
z þ

2

3
L3
z þ

3

2
ζ2L2

z −
�
7

3
ζ3 þ

3

2
ζ2

�
Lz þ

�
7

6
ζ3 þ

3

16
ζ22

��	
;

Φ̂ð2Þ
NSV;b ¼ CFCA

�
1

ϵ2

�
88

3

�
þ 1

ϵ

�
176

3
Lz þ 8ζ2 −

664

9

�
þ
�
176

3
L2
z þ

�
16ζ2 −

1238

9

�
Lz þ

1402

27
− 28ζ3 −

178

3
ζ2

�

þ ϵ

�
352

9
L3
z þ

�
16ζ2 −

2341

18

�
L2
z þ

�
2750

27
− 56ζ3 −

356

3
ζ2

�
Lz þ

934

9
ζ3 −

4021

81
þ 982

9
ζ2 − 4ζ22

�	

þ C2
F

�
1

ϵ
ð16Lz þ 12Þ þ ð28L2

z þ 14Lz − 32ζ2Þ þ ϵ

�
74

3
L3
z þ

13

2
L2
z þ ð6 − 76ζ2ÞLz − 8þ 48ζ3 − ζ2

�	

þ CFnf

�
1

ϵ2

�
−16
3

�
þ 1

ϵ

�
−32
3

Lz þ
112

9

�
þ
�
−32
3

L2
z þ

�
224

9

�
Lz þ

28

3
ζ2 −

328

27

�

þ ϵ

�
−64
9

L3
z þ

224

9
L2
z þ

�
56

3
ζ2 −

656

27

�
Lz þ

1030

81
−
124

9
ζ3 −

196

9
ζ2

�	
: ð64Þ

As can be seen from the above results, at order âs, the
leading pole in ϵ is of order one, it is two at â2s , and the
increment of one unit for the leading poles is expected to
continue with the order of perturbation. However, the pole
structure for σ̂bb̄ shows an increment of twounits. In addition,
at every order in âs, for a given color factor, the combination
of ϵ and the leading logarithm shows uniform transcenden-
tality weight. In other words, if we assign nϵ weight for ϵ−nϵ
and nL for lnnLð1 − zÞ, then the highest weight at every order
in ϵ shows uniform transcendentality w ¼ nϵ þ nL. For
instance, at one loop, we find w ¼ 1 at every order of ϵ
and at two loops it is two (w ¼ 2). This clearly explains that
the highest power of lnð1 − zÞ at every order in ϵ is
constrained by the order of âs and the accuracy in ϵ and
is found to be iþ j for the term âisϵj. This translates to iþ
j − 1 forGðjÞ

L;i in (38) as the latter is the coefficient of ϵ
j−1. This

exercise provides an explanation for the logarithmic structure

given in (38), in particular the upper limit of the summation.
This logarithmic structure determines the structure of φf;c

given in (43). In Appendix C, we present Gc;ðj;kÞ
L;i up to second

order in âs with i ¼ 1; 2. We add that the inclusive results for
Higgs production in gluon fusion aswell as production of the
pair of leptons in quark-antiquark annihilation also show
exactly same logarithmic structure. Beyond second order,
explicit results for σ̂ab are not available in the literature.
However, results for Δc, F̂c, and Γcc̄ to third order have
become available in recent times, and they can be used to

determine Φ̂ð3Þ
NSV;c for c ¼ q, b, g up to the accuracy ε0. We

find that the logarithmic structure at a given accuracy in ε is
consistent with our expectation based on uniform
transcendentality.
Precisely because of the peculiar logarithmic structure of

the exponents, namely an increment by one unit, we get
logarithms in CFs with an increment of two units. It is easy
to understand this structure if we observe that when we
expand the exponents containing Dk and lnkð1 − zÞ to
obtain CFs, the resulting convolutions between various

2We thank Claude Duhr for helping us with the expansion of
Harmonic Polylogs [125].
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orders in as will be of the form Dk ⊗ Dl and/or Dk ⊗
lnlð1 − zÞ which will result in leading distributions Dkþlþ1

and leading NSV logarithms lnkþlþ1ð1 − zÞ.

IV. ALL ORDER PREDICTIONS FOR Δc

In this section, we discuss the predictive power of the
master formula (14). In otherwords, givenZUV;c, F̂c,Φc, and
the Γcc up to a certain order in perturbation theory, we show
that themaster formula can predict certain SVandNSV terms
to all orders in perturbation theory. The reason for the
predictions of certain SV and NSV logarithms in CFs to
all orders from the knowledge of data available from the first
few orders is that near threshold, the building blocks (form
factor F̂c, renormalization constant Zc, soft collinear func-
tion Sc, and AP kernel Γcc) that constitute CFs satisfy
respective first order (homogeneous) differential equations
whose solutions turn out to be exponential in form with the
unit boundary conditions in dimensional regularization.
Because of this exponential form for the CFs, the knowledge
of (or the data on) the exponent at lower orders in as will be
sufficient to predict certain SVandNSV logarithms ofCFs to
all order upon expanding the exponential. The partonic
coefficient function Δc can be expanded order by order in
perturbation theory in powers of asðμ2RÞ as

Δcðq2; μ2R; μ2F; zÞ ¼
X∞
i¼0

aisðμ2RÞΔðiÞ
c ðq2; μ2R; μ2F; zÞ; ð65Þ

where the coefficientΔðiÞ
c can be obtained by first expanding

the exponential given in (46) in powers of asðμ2RÞ and then
performing all the resulting convolutions in z space.Note that

Δð0Þ
c ¼ δð1 − zÞ. We have dropped all those terms that are of

order Oðð1 − zÞαÞ; α > 0. Finally, we write the following
decomposition:

ΔðiÞ
c ðq2; μ2R; μ2F; zÞ ¼ ΔSV;ðiÞ

c ðq2; μ2R; μ2F; zÞ
þ ΔNSV;ðiÞ

c ðq2; μ2R; μ2F; zÞ: ð66Þ

HereΔSV;ðiÞ
c contains only SV terms, such as the distributions

Diði ¼ 0; 1;…Þ and δð1 − zÞ and next to SV terms; i.e., the
logarithms lnið1 − zÞði ¼ 0; 1;…Þ are embedded within

ΔNSV;ðiÞ
c . Now given the distribution function Φc, up to a

certain order in as, there are several SVand NSV logarithms
that can be predicted to all orders in as. For example, we
observe that if Ψc is known at leading order in as, we can
predict all the leading distributions Di and leading NSV
terms lnið1 − zÞ to all orders in as. In the following, we
elaborate on this by comparing our predictions with the
available N3LO results and also predict N4LO and some
higher order results for a few observables.
Given Ψc at order as, by expanding the master

formula (14) in powers of a strong coupling constant,
we obtain the leading SV terms ðD3;D2Þ,
ðD5;D4Þ;…; ðD2i−1;D2i−2Þ and the leading NSV terms
ln3ð1 − zÞ; ln5ð1 − zÞ;…; ln2i−1ð1 − zÞ at a2s ; a3s ;…; ais,
respectively, for all i. Since Cc

1 is identically zero,
ln2ið1 − zÞ terms do not contribute for all i. Hence, we
predict

ΔNSV
c ¼ asΔ

NSVð1Þ
c þ a2s ½−128C2

i L
3
z þOðL2

zÞ�
þ a3s ½−512C3

i L
5
z þOðL4

zÞ�

þ a4s

�
−
4096

3
C4
i L

7
z þOðL6

zÞ
�
þOða5sÞ: ð67Þ

Here we write lnið1 − zÞ≡ Li
z for brevity. Also Ci ¼ CF

for c ¼ fq; bg, i.e., for DY and Higgs production through
bottom quark annihilation. And for Higgs production
through gluon fusion, i.e., c ¼ g, we have Ci ¼ CA.
Thus with the knowledge of one loop anomalous dimen-

sions fCc
1; D

c
1; A

c
1; B

c
1; f

c
1g and one-loop φðkÞ

c;1, we predicted
the above NSV logarithms and the known NNLO and
N3LO results [4–6] for DY and Higgs boson productions
confirm this. Note that these predictions will be unaffected
if we include the second order result for Ψc simply because
the leading logarithm at εj accuracy is 2þ j, and hence at
ε0 order the highest logarithm is log2ð1 − zÞ which will
only contribute to the subleading contribution at a2s .
Similarly the prediction at third order will be unaffected
by the third order result for Ψc and so on.
Similarly from Ψc to order a2s, we can predict the tower

consisting of ðD3;D2Þ, ðD5;D4Þ, …, ðD2i−3;D2i−4Þ and of
L4
z ; L6

z ;…; L2i−2
z at a3s ; a4s ;…; ais, respectively, for all i. For

the DYand Higgs production in bottom quark annihilation,
our prediction reads as

ΔNSV
qðbÞ ¼ asΔ

NSVð1Þ
qðbÞ þ a2sΔ

NSVð2Þ
qðbÞ þ a3s

�
−512C3

FL
5
z þ

�
7040

9
C2
FCA −

1280

9
nfC2

F þ 1728C3
F

�
L4
z þOðL3

zÞ
�

þ a4s

�
−
4096

3
C4
FL

7
z þ

�
39424

9
C3
FCA þ 19712

3
C4
F −

7168

9
nfC3

F

�
L6
z þOðL5

zÞ
�
þOða5sÞ ð68Þ

and for the Higgs production in gluon fusion
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ΔNSV
g ¼ asΔ

NSVð1Þ
g þ a2sΔ

NSVð2Þ
g þ a3s

�
−512C3

AL
5
z þ

�
22592

9
C3
A −

1280

9
nfC2

A

�
L4
z þOðL3

zÞ
�

þ a4s

�
−
4096

3
C4
AL

7
z þ

�
98560

9
C4
A −

7168

9
nfC3

A

�
L6
z þOðL5

zÞ
�
þOða5sÞ: ð69Þ

Our predictions for Li
z; i ¼ 5; 4 agree with those

obtained by explicit computation [6,123]. For the com-
parison purpose, we have presented the logarithms only up
to order a4s ; however, the master formula can predict such
logarithms to all orders in as. Note that even though the L4

z

term is absent at the second order in Ψc at the accuracy ε0,
we can predict this term simply because of convolutions
betweenDl and Lm

z from first and second order terms inΨc.

Thanks to [6,9,123], the third order results are now
available for all these processes allowing us to determine
φf;c for c ¼ q, b, g till third order. Using this, we can
predict a tower of ðD3;D2Þ; ðD5;D4Þ;…; ðD2i−5;D2i−6Þ
and of L5

z ;…; L2i−3
z at a4s ; a5s ;…; ais, respectively, for all i.

In the following for the illustrative purpose, we have
presented the NSV terms Lz till seventh order in as. For
DY, we find

ΔNSV
q ¼ asΔ

NSVð1Þ
q þ a2sΔ

NSVð2Þ
q þ a3sΔ

NSVð3Þ
q þ a4s

��
−
4096

3
C4
F
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�
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9
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F
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þ
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FC
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for the Higgs production in bottom quark annihilation,

ΔNSV
b ¼ asΔ

NSVð1Þ
b þ a2sΔ

NSVð2Þ
b þ a3sΔ

NSVð3Þ
b þ a4s ½ΔNSVð4Þ

q − 6144C4
FL

5
z þOðL4

zÞ� þ a5s ½ΔNSVð5Þ
q − 16384C5

FL
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z þOðL6

zÞ�

þ a6s ½ΔNSVð6Þ
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�
ΔNSVð7Þ

q −
262144

5
C7
FL
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z þOðL10

z Þ
�
þOða8sÞ; ð71Þ

and for the Higgs production in gluon fusion,
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ΔNSV
g ¼ asΔ

NSVð1Þ
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n2fC

5
A

	
L11
z þOðL10

z Þ
�
þOða8sÞ: ð72Þ

Our predictions for L7
z, L6

z , and L5
z terms at fourth order

for Δc agree with those of [3,23,28,71] predicted using
physical evolution equations. As can be seen from (70)–
(72), given the third order results, our master formula can
predict three highest logarithms for fifth order onwards in
as. For instance, at a5s , we can predict L9

z , L8, L7
z . Again,

these predictions are from the lower order results.
Generalizing this, if we know Ψc up to nth order, we
can predict ðD2i−2nþ1;D2i−2nÞ and L2i−n

z at every order in
ais for all i. Table I is devoted to summarizing the
predictions from the master formula for any given order
of as. We also present the explicit structure of Δc till four
loop in Appendix E as well as in the Supplementary
Material [126].
The predictive power of the master formula to all orders

in as in terms of distributions and lnð1 − zÞ terms in Δc is
due to the all order structure of the exponent Ψc, and this
can be further exploited to resum them. We devote a
separate section for this. So far, we have compared our
higher predictions for SV and NSV logarithms obtained
using the lower order results against those available in the

literature and found that our all order master formula
correctly predicts these logarithms. For example, from
the knowledge of the second order result for Ψc, we can
correctly predict ln5ð1 − zÞ and ln4ð1 − zÞ terms at third
order. Even though this second order information is not
sufficient to predict the lower order NSV logarithms,
namely lnkð1 − zÞ for k ¼ 3, 2, 1, 0 at a3s level, we observe
that our predictions for these logarithms agree with the
known results for several color factors.
In Table II we compare our predictions for ln3ð1 − zÞ

terms at the third order, which are obtained using Ψc

considered till a2s , against the known results for the DY
production, Higgs productions in bottom quark annihila-
tion, and gluon fusion. As can be seen from the table, the
master formula correctly predicts the results for many color
factors. For instance, for DY, the predictions for color
factors C3

F; CFn2f; CACFnf, and C2
ACF are matching with

the exact results. However, for the other color factors,
certain third order information is required, which is
represented as χi which when taken into account will
reproduce the exact ln3ð1 − zÞ terms at third order.

TABLE I. Towers of distributions (Di) and NSV logarithms [lnið1 − zÞ] that can be predicted for Δc using (14).

Here ΨðiÞ
c and ΔðiÞ

c denote Ψc and Δc at order ais, respectively. Also the symbol Li
z denotes lnið1 − zÞ.

Given Predictions

Ψð1Þ
c Ψð2Þ

c Ψð3Þ
c ΨðnÞ

c Δð2Þ
c Δð3Þ

c ΔðiÞ
c

D0, D1, δ D3, D2 D5, D4 Dð2i−1Þ, Dð2i−2Þ
L1
z , L0

z L3
z L5

z Lð2i−1Þ
z

D0, D1, δ D3, D2 Dð2i−3Þ, Dð2i−4Þ
L2
z , L1

z , L0
z L4

z Lð2i−2Þ
z

D0, D1, δ Dð2i−5Þ, Dð2i−6Þ
L3
z ;…; L0

z Lð2i−3Þ
z

D0, D1, δ Dð2i−ð2n−1ÞÞ, Dð2i−2nÞ
Ln
z ;…; L0

z Lð2i−nÞ
z
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V. RESUMMATION OF NEXT TO SV IN N SPACE

To study all order behavior of Δc in Mellin space, it is
convenient to use the integral representations of both Φc

A
andΦc

B given in (31) and (39), respectively. Substituting the
solutions for F̂c and renormalization constant ZUV;c and the
lnΓcc along with the integral representations forΦc

A andΦc
B

in (14), we find

Δcðq2; μ2R; μ2F; zÞ ¼ Cc
0ðq2; μ2R; μ2FÞC expð2Ψc

Dðq2; μ2F; zÞÞ;
ð73Þ

where

Ψc
Dðq2; μ2F; zÞ ¼

1

2

Z
q2ð1−zÞ2

μ2F

dλ2

λ2
P0
ccðasðλ2Þ; zÞ

þQcðasðq2ð1 − zÞ2Þ; zÞ; ð74Þ
with

Qcðasðq2ð1 − zÞ2Þ; zÞ ¼
�

1

1 − z
Ḡc

SVðasðq2ð1 − zÞ2ÞÞ
�

þ
þ φf;cðasðq2ð1 − zÞ2Þ; zÞ: ð75Þ

The coefficient Cc
0 is the z independent coefficient and is

expanded in powers of asðμ2RÞ as

Cc
0ðq2; μ2R; μ2FÞ ¼

X∞
i¼0

aisðμ2RÞCc
0iðq2; μ2R; μ2FÞ; ð76Þ

where the coefficients Cc
0i are presented in the ancillary

files along with the arXiv submission. Also one can find Cc
0

for DYand Higgs production in [37]. Equation (73) is our z
space resummed result for Δc in integral representation that
can be used to predict SV and NSV terms to all orders in
perturbation theory in terms of universal anomalous

dimensions, Ac, Bc, Cc, Dc, fc, SV coefficients Ḡc;ðjÞ
i ,

NSV coefficients Gc;ðj;kÞ
L;i , and process dependent Cc

0i. We
have few comments in order. The next to SV corrections to
various inclusive processes were studied in a series of

papers [64–67,73,74,127], and a lot of progress has been
made that leads to better understanding of the underlying
physics. Our result has a close resemblance with the one
which was conjectured in [64], and indeed there are few
terms which are common in both the results. Our result,
Eq. (74), differs from Eq. (31) in [64], in the upper limit of
the integral, the presence of extra term φf;c, and the
dependence on the variable z. These differences do not
alter the SV predictions but will give NSV terms different
from those obtained using Eq. (31) of [64].
The Mellin moment of Δc is now straightforward to

compute using the integral representation given in (74).
Note that Eq. (74) is suitable for obtaining only SV
and NSV terms while the predictions using this formula
beyond NSV terms such as those proportional to
Oðð1 − zÞn lnjð1 − zÞÞ; n; j ≥ 0 in z space and terms of
Oð1=N2Þ in N space will not be correct. Hence, we
compute the Mellin moment of (73) in the appropriate
limit of N such that the resulting expression in N space
correctly predicts all the SV and NSV terms. The limit
z → 1 translates to N → ∞, and if one is interested in
including NSV terms, we need to keepOð1=NÞ corrections
in the large N limit. The Mellin moment of Δc is given by

Δc;Nðq2; μ2R; μ2FÞ ¼ C0ðq2; μ2R; μ2FÞ exp ðΨc
Nðq2; μ2FÞÞ; ð77Þ

where

Ψc
Nðq2; μ2FÞ ¼ 2

Z
1

0

dzzN−1Ψc
Dðq2; μ2F; zÞ: ð78Þ

The computation of the Mellin moment in the large N limit
which retains SVand NSV terms involves two major steps:
1. following [64] we replace

R
dzðzN−1 − 1Þ=ð1 − zÞ andR

dzzN−1 by a theta function θð1 − z − 1=NÞ and apply the

operators ΓAðN d
dNÞ and ΓB

�
N d

dN

�
on the integrals, respec-

tively; 2. we perform the integrals over λ2 after expressing
asðλ2Þ in terms of asðμ2RÞ obtained using the resummed
solution to the RG equation of as in (A5). Step 1 makes

TABLE II. Comparison of ln3ð1 − zÞ coefficients at the third order against exact results. The left column stands for the exact results,
and the right column gives the respective contributions when Ψc is taken till two loop.

Color factors gg → H Color factors Drell-Yan (DY) bb̄ → H

C3
A

−111008
27

þ 3584ζ2
−110656

27
þ 3584ζ2 þ χ1 C3

F 2272þ 3072ζ2 2272þ 3072ζ2 736þ 3072ζ2 736þ 3072ζ2

C2
Anf

6560
9

19616
27

þ χ2 C2
Fnf

19456
27

6464
9

þ χ3
19456
27

6464
9

þ χ3

CAn2f
−256
27

−256
27

CAC2
F

−111904
27

þ 512ζ2
−37184

9
þ 512ζ2 þ χ4

−111904
27

þ 512ζ2
−37184

9
þ 512ζ2 þ χ4

CFn2f
−256
27

−256
27

−256
27

−256
27

CACFnf 2816
27

2816
27

2816
27

2816
27

C2
ACF

−7744
27

−7744
27

−7744
27

−7744
27
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sure that we retain only lnjðNÞ and ð1=NÞ lnjðNÞ terms,
and step 2 guarantees the resummation of 2β0asðμ2RÞ lnN
terms to all orders and also the organization of the result in
powers of asðμ2RÞ. The details of the computation are
described in Appendix A. The Mellin moment of the
exponent takes the following form:

Ψc
N ¼ Ψc

sv;N þΨc
nsv;N ð79Þ

where we have split Ψc
N in such a way that all those terms

that are functions of lnjðNÞ; j ¼ 0; 1;…, are kept in Ψc
sv;N

and the remaining terms that are proportional to
ð1=NÞ lnjðNÞ; j ¼ 0; 1;…, are contained in Ψc

nsv;N . Hence,

Ψc
sv;N ¼ lnðgc0ðasðμ2RÞÞÞ þ gc1ðωÞ lnN

þ
X∞
i¼0

aisðμ2RÞgciþ2ðωÞ; ð80Þ

where gci ðωÞ are identical to those in [51,53,60] obtained
from the resummed formula for SV terms. It is to be noted
that gci ðωÞ vanishes in the limit ω → 0. The coefficients
gc0ðasÞ are expanded in powers of as as (see [53])

lnðgc0ðasðμ2RÞÞÞ ¼
X∞
i¼1

aisðμ2RÞgc0;i: ð81Þ

We also provide gc0ðasðμ2RÞÞ in the ancillary files along with
the arXiv submission. The N independent coefficients Cc

0

and gc0 are related to the coefficients g̃c0 given in the paper
[60,63] using the following relation:

g̃c0ðq2; μ2R; μ2FÞ ¼ Cc
0ðq2; μ2R; μ2FÞgc0ðasðμ2RÞÞ; ð82Þ

which can be expanded in terms of asðμ2RÞ as

g̃c0ðasðμ2RÞÞ ¼
X∞
i¼0

aisðμ2RÞg̃c0;i: ð83Þ

The function Ψc
nsv;N is given by

Ψc
nsv;N ¼ 1

N

X∞
i¼0

aisðμ2RÞðḡciþ1ðωÞ þ hci ðω; NÞÞ; ð84Þ

with

hci ðω; NÞ ¼
Xi

k¼0

hcikðωÞ lnkðNÞ: ð85Þ

where ḡci ðωÞ and hcikðωÞ are presented in Appendices G and
F, respectively. We also provide these coefficients till four
loop in the Supplementary Material [126]. We can see that
in each coefficient, say gci ðωÞ; ḡci ðωÞ; hcikðωÞ from the SVas

well as the NSV, we are resumming in Mellin space the
“order one” term ω to all orders in perturbation theory. This
is the consequence of the argument in the coupling constant
asðq2ð1 − zÞ2Þ resulting from the integral over λ and the
function Qc. The peculiarity of the series is that the SV
gc1ðωÞ comes with lnN, and hence it starts with a double
logarithm. This extra lnN arises from the Mellin moment
of the factor 1=ð1 − zÞþ appearing in the exponent.
Similarly for Ψc

nsv;N we note that it is proportional to
1=N at every order as expected. Explicit lnN that appear
with hcikðωÞ results from the explicit lnð1 − xÞ appearing in
the exponent. The sum containing ḡci ; i ¼ 1; 2;…, results
entirely from Ac coefficients of P0

cc and from the function
Ḡc

SV of (75). We find that none of the coefficients
ḡci ðωÞ contain explicit lnN. The second sum comes from
Cc, Dc coefficients of P0

cc and from φf;c and each term in
this expansion contains explicit lnkðNÞ; k ¼ 0;…; i. We
find that the coefficient of hc01 is proportional to Cc

1 which
is identically zero. Hence, at order a0s, there is no
ð1=NÞ lnN term.
Summarizing, we find that in Mellin N space one obtains

a compact expression for the exponent in terms of quan-
tities that are functions of ω ¼ 2asðμ2RÞβ0 lnN as we use
resummed as to perform the integral. In addition, the
resummed as allows us to organize theN space perturbative
expansion in such a way that ω is treated as order one at
every order in asðμ2RÞ. Both integral representation in z
space and Mellin moment of the integral in N space contain
exactly the same information and hence predict SV and
NSV logarithms to all orders in perturbation theory. The all
order structure is more transparent in N space compared to
the z space result, and it is technically easy to use the
resummed result in N space for any phenomenological
studies.
Let us first consider Ψc

sv;N given in (80). If we keep only
g̃0;0 and g1 terms in (80) and expand the exponent in powers
of as ¼ asðμ2RÞ, we can predict leading ais ln2iðNÞ terms for
all i > 1. This happens because of the all order structure of
Φc

A in z space. For example, if we know Φc
A to order as, we

can predict the rest of the other terms of the form
aisD2i−1ðzÞ in Φc

A for all i > 1. If we further include g̃0;1
and g2 terms, then we can predict next to leading
ais ln2i−1ðNÞ terms for all i > 2. Again this is due to the
fact that in z space, knowing Φc

A to second order one can
predict aisD2i−2ðzÞ terms for all i > 3. In general, the
resummed result with terms g̃c0;0;…; g̃c0;n−1 and gn1;…; gcn
can predict ais ln2i−nþ1ðNÞ or aisD2i−nðzÞ terms for i > n.
The inclusion of subleading terms through expðΨc

nsv;NÞ
gives additional ð1=NÞ lnjðNÞ terms in N space or
lnjð1 − zÞ terms in z space. In perturbative QCD,
Cc
1 ¼ 0, where c ¼ q, g, and we use this in the rest of

our analysis. As the Ψc
sv;N exponent, Ψc

nsv;N also organizes
the perturbation theory by keeping 2asðμ2RÞβ0 lnN terms as
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order one at every order in as. However, these terms are
suppressed by the 1=N factor at every order in as.
We find that if we keep fg̃c0;0; gc1g inΨc

sv;N and fḡc1; hc0g in
Ψc

nsv;N and drop the rest, one can predict ðais=NÞ ln2i−1ðNÞ
terms for CFs for all i > 1. We call this tower of logarithms
NSV-leading logarithm (NSV-LL). Similarly, knowing,
along with the previous ones, fg̃c0;1; gc2g in Ψc

sv;N and
fḡc2; hc1g in Ψc

nsv;N , one can predict ðais=NÞ ln2i−2ðNÞ for
CFs for all i > 2. This belongs to NSV-next-to-leading
logarithm (NSV-NLL). In general, the resummed result
with ḡc1;…; ḡcnþ1 and hc0;…; hcn in Ψc

nsv;N along with
g̃c0;0;…; g̃c0;n and gc1;…; gcnþ1 in Ψc

sv;N can predict
ðais=NÞ ln2i−ðnþ1ÞðNÞ for all i > n in Mellin space N,
and it is NSV-NnLL. We summarize our findings in
Table III.
We find that unlike SV resummed terms, which result

from onlyD0 and asðq2ð1 − zÞ2Þ, the resummation of NSV
terms is controlled in addition by lnð1 − zÞ at each order in
as as can be seen from (74). This logarithmic dependence in
Φc

B at each order along with resummed asðq2ð1 − zÞ2Þ
allows one to reorganize order one terms differently from
the SV case. Hence, the resulting NSV resummed result has
a different logarithmic structure in terms of order one ω
compared to that of SV.
A few remarks on the resummed result are in order in

light of the previous section. Note that we considered a
particular solution Φc

B that corresponds to the case α ¼ 2
and summed up order one terms ω in Mellin N space using
the resummed solution to RGE of as. While the SV part is
insensitive to α, the NSV terms, namely the resummation
exponents hcðωÞ, depend on α (α ¼ 2) through ω resulting

from asðq2=NαÞ and the coefficients φðkÞ
c;α;i. We had already

seen how φðkÞ
c;α;i transforms with respect to α. The resummed

result in the N space for arbitrary α will be a function of
asðq2=NαÞ. This will lead to the resummation of order one
ωα ¼ αβ0asðμ2RÞ lnN to all orders in as. Hence, the
summation of order one ωα terms with α dependent
coefficients φc;α;i leads to a variety of resummed predic-
tions each depending on the choice of α. However, the fixed
order predictions for the CFs Δc will be unaffected, thanks

to the invariance in the NSV solution. This invariance has
allowed us to choose α ¼ 2 to resum order one ω terms
analogous to the SV counterpart.
There have been several attempts [69,70,72–74] in the

past to understand the structure of NSV logarithms of
inclusive cross sections and its all order structure, and in
this context, we compare our prediction at the LL level for
CF of DY, ΔLL

q against that of [72]. Note that [72] contains
NSV terms only to LL accuracy. In [72], within the
framework of soft-collinear effective theory (SCET), the
authors have obtained leading logarithmic terms at NSV for
the quark-antiquark production channel of the DY process
to all orders in as. This was achieved by extending the
factorization properties of the cross section to the NSV
level and using renormalization group equations of NSV
operators and soft functions. Using ourN space result in the
LL approximation, that is for DY

ΔLL
c;N ¼ g̃c0;0 exp

�
lnNgc1ðωÞ þ

1

N
ðḡc1ðωÞ þ hc0ðω; NÞÞ

�




LL
;

ð86Þ

we obtain

ΔLL
c;N ¼ exp

�
8CFas

�
ln2N þ lnN

N

��
; ð87Þ

where we have expanded the exponents in powers of as and
kept only terms of Oð1=NÞ. The above N space result can
be Mellin transformed to z space, and it reads as

ΔLL
c;N ¼ ΔLL

c;SV − 16CFas exp½8CFasln2ð1 − zÞ� lnð1 − zÞ:
ð88Þ

The above result agrees exactly with Eq. (4.2) of [72] for
μ ¼ Q. Our result given in (79) contains terms that can in
principle resum NnLL, n ≥ 0 provided the universal
anomalous dimensions and process dependent coefficients
are available to the desired accuracy in as. Hence, given
three loop results, which are available for several observ-
ables, we can perform N2LL resummation taking into
account NSV logarithms.

VI. PHYSICAL EVOLUTION KERNEL

In the past, in [128], the scheme invariant approach
through the physical evolution equation was explored to
understand the structure of NSV terms for the coefficient
functions of the DIS cross section. The physical evolution
kernel that controls the evolution of the physical observ-
ables with respect to external scale q2 is invariant under
scheme transformations with respect to renormalization and
factorization. This property can be exploited to understand
certain universal structures of perturbative predictions. By
suitably modifying the physical evolution kernel (PEK)

TABLE III. The all order predictions for 1=N coefficients of
Δc;N for a given set of resummation coefficients
fg̃c0;i; gci ðωÞ; ḡci ðωÞ; hci ðωÞg at a given order. Here Li

N ¼ 1
N ln

iðNÞ.
Given Predictions

Logarithmic Accuracy Resummed Exponents Δð2Þ
c;N Δð3Þ

c;N ΔðiÞ
c;N

NSV-LL g̃c0;0; g
c
1; ḡ

c
1; h

c
0 L3

N L5
N L2i−1

N

NSV-NLL g̃c0;1; g
c
2; ḡ

c
2; h

c
1 L4

N L2i−2
N

NSV-N2LL g̃c0;2; g
c
3; ḡ

c
3; h

c
2 L2i−3

N

NSV-NnLL g̃c0;n; g
c
nþ1; ḡ

c
nþ1; h

c
n L2i−ðnþ1Þ

N
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[128] with the help of scales in the strong coupling constant
and using the renormalization group invariance, predictions
at second and third orders for the CFs of DIS structure
functions were made, given the known lower order results
for CFs. Even though the predictions did not agree for some
of the color factors, it was found that they were very close
to the known results. Using the second order results for
DIS, semi-inclusive eþe− annihilation, and DY, a striking
observation was made by Moch and Vogt in [71] (and
[23,28]) on the PEK, namely the enhancement of single
logarithms at large z to all order in 1 − z. It was found that
if one conjectures that it will hold true at every order in as,
the structure of corresponding leading lnð1 − zÞ terms in
the kernel can be constrained. This allowed them to predict
certain next to SV logarithms at higher orders in as which
are in agreement with the known results up to third order.
Motivated by this approach, we use our formulation that

describes next to SV logarithms in both z and N spaces to
study the structure of the physical evolution equation and
present our findings on the structure of leading logarithms
in the PEK. For convenience we work in Mellin space. The
Mellin moment of hadronic cross section σðq2; τÞ is
given by

σNðq2Þ ¼
Z

1

0

dττN−1σðq2; τÞ: ð89Þ

The hadronic observable σðq2; τÞ is renormalization
scheme (RS) independent, namely it does not depend on
the scheme in which CFsΔab and the structure functions fc
are defined. The fact that fc is independent of q2, the first
derivative of σ with respect to q2 will not depend on fc.
Restricting ourselves to SV and NSV terms, we can define
physical evolution kernel Kc by

Kcðasðμ2RÞ; NÞ ¼ q2
d
dq2

ln

�
σNðq2Þ
σ0ðq2Þ

�




svþnsv

¼ q2
d
dq2

lnΔc;Nðq2Þ; ð90Þ

which is independent of any renormalization scheme. The
kernel Kcðasðμ2RÞ; NÞ can be computed order by order in
perturbation theory using lnΔc;N ,

Kcðasðμ2RÞ; NÞ ¼
X∞
i¼1

aisðμ2RÞKc
i−1ðNÞ: ð91Þ

As in [71], the leading ð1=NÞ lniðNÞ terms at every order
defined by Kc,

K̄c
i ¼ Kc

i jð1=NÞ lniðNÞ; ð92Þ

can be obtained. Using (77), we find that these terms can be
obtained directly from Ψc

nsv;N alone and are given by

K̄c
0 ¼ Ac

1 þ 2Dc
1;

K̄c
1 ¼ 2Ac

1β0 − 2Cc
2 þ 4β0Dc

1 þ 2β0φ
ð1Þ
c;1;

K̄c
2 ¼ 4Ac

1β
2
0 − 8β0Cc

2 þ 8β20D
c
1 þ 8β20φ

ð1Þ
c;1 − 4β0φ

ð2Þ
c;2;

K̄3 ¼ 8Ac
1β

3
0 − 24β20C

c
2 þ 16β30D

c
1 þ 24β30φ

ð1Þ
c;1 − 24β20φ

ð2Þ
c;2 þ 6β0φ

ð3Þ
c;3;

K̄c
4 ¼ 16Ac

1β
4
0 − 64β30C

c
2 þ 32β40D

c
1 þ 64β40φ

ð1Þ
c;1 − 96β30φ

ð2Þ
c;2 þ 48β20φ

ð3Þ
c;3 − 8β0φ

ð4Þ
c;4: ð93Þ

We find that the structure of K̄c
i resembles very much that

of [71]. Interestingly, the leading logarithms at every order
depend only on the universal anomalous dimensions Ac

1,D
c
1,

andCc
2, and the diagonal coefficientsφ

k
c;k with k < i, where i

is the order of the perturbation. In addition, if we substitute
the known values for these quantities in Eq. (93), we obtain

K̄c
1 ¼ −8β0Ci − 32C2

i ;

K̄c
2 ¼ −16β20Ci − 112β0C2

i ;

K̄c
3 ¼ −32β30Ci −

896

3
β20C

2
i ;

K̄c
4 ¼ −64β40Ci −

2176

3
β30C

2
i − 8β0φ

ð4Þ
c;4; ð94Þ

where Ci ¼ CF for c ¼ q, b and Ci ¼ CA for c ¼ g.

The reason for the agreement of our predictions for PEK
to third order with those of [71] is simply because of the
K þG equation that Φc satisfies. In fact, the K þG
equation is a partonic version of the physical evolution
equation and the partonic PEK given by K̄c þ Ḡc. The
logarithm structure of PEK is controlled by the upper limit i
in the summation over the index k in (43). In N space, the
highest power of corresponding lnN in the 1=N coefficient
of Kc is in turn controlled by the upper limit on the
summation in (38). Our predictions based on the inherent
transcendentality structure of perturbative results are in
complete agreement with the logarithmic structure of CFs
or PEKs obtained from explicit results. Note that the
structure of PEK (93) expressed in terms of Ac

1, C
c
2, D

c
1,

and φðiÞ
c;i is straightforward to understand from K þ G
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equations and renormalization group invariance. However,
as was already noted in [71], the coefficient of the leading
logarithms contains a peculiar structure containing only βi0
and βi−10 at every order in ais. In addition, if the structure

continues to be true at every order, the coefficients φðiÞ
c;i have

to be proportional to βi−20 for every i, which can be tested
when results beyond third order become available.

VII. CONCLUSIONS

Understanding the structure of threshold logarithms in
inclusive reactions such as the production of a pair of
leptons in the Drell-Yan process and of the Higgs boson in
gluon annihilation as well as bottom quark annihilation is
important because they not only dominate but also become
large in certain kinematical regions spoiling the reliability
of the perturbative predictions. The soft plus virtual
contributions that dominate in the threshold region are
well understood in terms of certain IR anomalous dimen-
sions and process independent soft distributions. A sys-
tematic way of resumming SV logarithms to all orders
exists in MellinN space. While SV contributions dominate,
the next to SV contributions are as important as SV for any
precision studies and hence cannot be ignored. Next to SV
terms also can give large contributions at every order,
thereby spoiling the reliability of the perturbation series.
The canonical resolution through resummation for the next
to SV terms is unfortunately hard to achieve. In this article,
we have studied the structure of next to SV logarithms in
both z and N spaces for the diagonal partonic channels.
Using IR factorization and UV renormalization group
invariance, we show that both SV and next to SV con-
tributions satisfy the Sudakov differential equation whose
solution provides an all order perturbative result in the
strong coupling constant. We show that like SV contribu-
tions, next to SV contributions also demonstrate IR
structure in terms of certain infrared anomalous dimen-
sions. However, NSV terms depend, in addition, on certain
process dependent functions. The underlying universal IR
structure of NSV terms can be further unraveled when
results for a variety of inclusive reactions become available.
In z space, we show that the next to SV contributions do
exponentiate, allowing us to predict the corresponding next

to SV logarithms to all orders. We find that the NSV part of
the solution is invariant under gaugelike transformations,
allowing us to construct a form of solutions, all giving
identical fixed order predictions for NSV terms of CFs Δc.
We show that the exponent in the z space has an integral
representation which can be used to study these threshold
logarithms in Mellin N space. We also show that the NSV
logarithms in N space organize themselves exactly as the
SV ones in such a way so as to keep 2asðμ2RÞβ0 lnN as an
order one term to all orders in asðμ2RÞ. Unlike the SV part of
the resummed result, the resummation coefficients for NSV
terms are found to be controlled not only by process
independent anomalous dimensions but also by process

dependent φðkÞ
c;i .

The all order master formula that we obtain in z space
demonstrates a perturbative structure which can predict
certain SV and NSV logarithms to all orders in strong
coupling constant as, given the lower order results. From
the available results at as and at a2s for the CFs, our
predictions for third order NSV logarithms are in complete
agreement with the known results available for a variety of
inclusive reactions, namely DY production and Higgs
productions in bottom quark annihilation and gluon fusion.
Using the corresponding CFs that are known to third order,
our formalism allows us to predict three leading NSV
logarithms to all orders starting from fourth order, of which
we reported here the results to order a7s. We have studied the
logarithmic structure of the physical evolution kernel, in
particular the leading logarithms, and found that they are
controlled only by process independent anomalous dimen-

sions β0, Ac
1, C

c
2, D

c
1 and diagonal coefficients φðiÞ

c;i at every
order ais. We conclude by noting that the structure of NSV
logarithms demonstrates a rich perturbative structure that
needs to be explored further.

ACKNOWLEDGMENTS

We thank Claude Duhr for useful discussion and his
constant help throughout this project. We thank Claude
Duhr and Bernhard Mistlberger for providing third order
results for the inclusive reactions. V. R. thanks G. Grunberg
for useful discussions. We also thank L. Magnea and
E. Laenen for their encouragement to work on this area.

APPENDIX A: DETAILS OF THE MELLIN MOMENT OF Ψc
D

In this section, we evaluate the Mellin moment ofΨc
D in the following way. At first, following Eq. (78) we decomposeΨc

N
into Σc

sv;N and Σc
nsv;N . So, we begin with

Σc
sv;N ¼

Z
1

0

dz

�
zN−1 − 1

1 − z

��Z
q2ð1−zÞ2

μ2F

dλ2

λ2
2Acðasðλ2ÞÞ þ 2Ḡc

SVðasðq2ð1 − zÞ2ÞÞ
�
: ðA1Þ
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We follow the method described in [64] to perform the Mellin moment. In the large N, keeping 1
N corrections, we replace

Z
1

0

dzðzN−1 − 1Þ → ΓA

�
N

d
dN

�Z
1

0

dzθ

�
1 − z −

1

N

�
; ðA2Þ

where ΓAðN d
dNÞ is given in Appendix D. We expand ΓA in powers of Nd=dN and apply on the integral. We then make the

appropriate change of variables and interchange of integrals to obtain

Σc
sv;N ¼ −

Z
q2

q2=N2

dλ2

λ2

��
ln

q2

λ2N2
− 2γA1

�
Acðasðλ2ÞÞ þ Ḡc

SVðasðλ2ÞÞ þ λ2
d
dλ2

F c
Aðasðλ2ÞÞ

	

þ F c
Aðasðq2ÞÞ − 2ðγA1 þ lnNÞ

Z
q2

μ2F

dλ2

λ2
Acðasðλ2ÞÞ; ðA3Þ

where

F c
Aðasðλ2ÞÞ ¼ −2γA1 Ḡc

SVðasðλ2ÞÞ þ 4
X∞
i¼0

γAiþ2

�
−2βðasðλ2ÞÞ

∂
∂asðλ2Þ

�
i
�
Acðasðλ2ÞÞ

þ βðasðλ2ÞÞ
∂

∂asðλ2Þ Ḡ
c
SVðasðλ2ÞÞ

	
: ðA4Þ

Here βðasðλ2ÞÞ is defined as βðasðλ2ÞÞ ¼ −
P∞

i¼0 βia
iþ2
s ðλ2Þ (also see [129–131] for QCD). Replacing asðλ2Þ by

asðλ2Þ ¼
�
asðμ2RÞ

l

��
1−

asðμ2RÞ
l

β1
β0

ln lþ
�
asðμ2RÞ

l

�
2
�
β21
β20

ðln2l− ln lþ l− 1Þ− β2
β0

ðl− 1Þ
�

þ
�
asðμ2RÞ

l

�
3
�
β31
β30

�
2ð1− lÞ ln lþ 5

2
ln2l− ln3l−

1

2
þ l−

1

2
l2
�
þ β3
2β0

ð1− l2Þ þ β1β2
β20

ð2l ln l− 3 ln l− lð1− lÞÞ
��

;

ðA5Þ

where l ¼ 1 − β0asðμ2RÞ lnðμ2R=λ2Þ and performing the integrals over λ2 we obtain the result. The entire result is
decomposed into two parts. The ones proportional to 1

N are expressed in terms of ḡci ðωÞ given in Eq. (84). And the remaining
part is embedded in Eq. (80).
Similarly we define

Σc
nsv;N ¼ 2

Z
1

0

dzzN−1
�Z

q2ð1−zÞ2

μ2F

dλ2

λ2
Lcðasðλ2Þ; zÞ þ φf;cðasðq2ð1 − zÞ2Þ; zÞ

	
: ðA6Þ

Following [64], in the large N and keeping 1
N corrections, we replace

Z
1

0

dzzN−1 → ΓB

�
N

d
dN

�Z
1

0

dz
1 − z

θ

�
1 − z −

1

N

�
; ðA7Þ

where ΓB

�
N d

dN

�
is given in Appendix D and we replace Nd=dN by

N
d
dN

¼ N
∂
∂N − 2βðasðλ2ÞÞ

∂
∂asðλ2Þ ; ðA8Þ

to deal with N appearing in the argument of asðq2=N2Þ and also the explicit ones present in φf;c. After a little algebra, we
obtain

NEXT TO SOFT CORRECTIONS TO DRELL-YAN AND HIGGS … PHYS. REV. D 105, 094035 (2022)

094035-25



Σc
nsv;N ¼ −

1

N

Z
q2

q2

N2

dλ2

λ2

�
ξcðasðλ2Þ; NÞ þ λ2

d
dλ2

F c
Bðasðλ2Þ; NÞ

	
þ 1

N
F c

Bðasðq2Þ; NÞ

þ 1

N

Z
q2

μ2F

dλ2

λ2
ξcðasðλ2Þ; NÞ; ðA9Þ

where the functions ξc are defined as

ξcðas; NÞ ¼ −2ð−γB1 ðDcðasÞ − CcðasÞ lnNÞ þ γB2C
cðasÞÞ ðA10Þ

and

F c
Bðasðλ2Þ; NÞ ¼ 2γB1φf;cðasðλ2Þ; NÞ − 4γB2

�
λ2

d
dλ2

φf;cðasðλ2Þ; NÞ þ ξ̃cðasðλ2Þ; NÞ
�

þ 8ðγB3 þ γ̃BÞ
�
λ2

d
dλ2

�
λ2

d
dλ2

φf;cðasðλ2Þ; NÞ þ ξ̃cðasðλ2Þ; NÞ
	
þ 1

2
Ccðasðλ2ÞÞ

�
; ðA11Þ

where

ξ̃cðas; NÞ ¼ ðDcðasÞ − CcðasÞ lnNÞ;

φf;cðasðλ2Þ; NÞ ¼
X∞
i¼1

Xi

k¼0

aisðλ2ÞφðkÞ
c;i ð− lnNÞk; γ̃B ¼

X∞
i¼4

γBi

�
N

d
dN

�
i−3

: ðA12Þ

Using Eq. (A5), we perform λ2 integrations to obtain the result in terms of hcijðωÞ given in Eq. (84).

APPENDIX B: PERTURBATIVE CONSTANT OF Φc
A

In this section, we present the SV coefficients K̄cðiÞðϵÞ to fourth order:

K̄cð1ÞðϵÞ ¼ 1

ϵ
f2Ac

1g;

K̄cð2ÞðϵÞ ¼ 1

ϵ2
f−2β0Ac

1g þ
1

ϵ
fAc

2g;

K̄cð3ÞðϵÞ ¼ 1

ϵ3

�
8

3
β20A

c
1

	
þ 1

ϵ2

�
−
2

3
β1Ac

1 −
8

3
β0Ac

2

	
þ 1

ϵ

�
2

3
Ac
3

	
;

K̄cð4ÞðϵÞ ¼ 1

ϵ4
f−4β30Ac

1g þ
1

ϵ3

�
8

3
β0β1Ac

1 þ 6β20A
c
2

	
þ 1

ϵ2

�
−
1

3
β2Ac

1 − β1Ac
2 − 3β0Ac

3

	
þ 1

ϵ

�
1

2
Ac
4

	
; ðB1Þ

where Ac
i are the ith order cusp anomalous dimensions:

Acðasðμ2RÞÞ ¼
X
i

aisðμ2RÞAc
i : ðB2Þ

The finite quantity ḠcðiÞ
SV ðϵÞ is related to its renormalized counterparts Ḡc

i ðϵÞ in the following way:

X∞
i¼1

âis

�
q2ð1 − zÞ2

μ2

�
iϵ
2

SiϵḠ
cðiÞ
SV ðϵÞ ¼

X∞
i¼1

aisðq2ð1 − zÞ2ÞḠc
i ðϵÞ; ðB3Þ

and we find
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ḠcðiÞ
SV ðϵÞ ¼ Ḡc

1ðϵÞ;

Ḡcð2Þ
SV ðϵÞ ¼ 1

ϵ
ð−2β0Ḡc

1ðϵÞÞ þ Ḡc
2ðϵÞ;

Ḡcð3Þ
SV ðϵÞ ¼ 1

ϵ2
ð4β20Ḡc

1ðϵÞÞ þ
1

ϵ
ð−β1Ḡc

1ðϵÞ − 4β0Ḡc
2ðϵÞÞ þ Ḡc

3ðϵÞ;

Ḡcð4Þ
SV ðϵÞ ¼ 1

ϵ3
ð−8β30Ḡc

1ðϵÞÞ þ
1

ϵ2

�
16

3
β0β1Ḡc

1ðϵÞ þ 12β20Ḡ
c
2ðϵÞ

�

þ 1

ϵ

�
−
2

3
β2Ḡc

1ðϵÞ − 2β1Ḡc
2ðϵÞ − 6β0Ḡc

3ðϵÞ
�
þ Ḡc

4ðϵÞ: ðB4Þ

Through explicit determination of the quantity ḠI
iðϵÞ, it was found that it is dependent only on the initial partons and can be

further decomposed as

Ḡc
i ðϵÞ ¼ −fci þ χ̄ci þ

X∞
j¼1

ϵjḠc;ðjÞ
i ; ðB5Þ

where

χ̄c1 ¼ 0;

χ̄c2 ¼ −2β0Ḡ
c;ð1Þ
1 ;

χ̄c3 ¼ −2β1Ḡ
c;ð1Þ
1 − 2β0ðḠc;ð1Þ

2 þ 2β0Ḡ
c;ð2Þ
1 Þ;

χ̄c4 ¼ −2β2Ḡ
c;ð1Þ
1 − 2β1ðḠc;ð1Þ

2 þ 4β0Ḡ
c;ð2Þ
1 Þ − 2β0ðḠc;ð1Þ

3 þ 2β0Ḡ
c;ð2Þ
2 þ 4β20Ḡ

c;ð3Þ
1 Þ: ðB6Þ

The SV coefficients Ḡc;k
i in Eq. (B5) are found to exhibit the Casimir scaling principle up to three loop. Hence, these

coefficients for the Drell-Yan and Higgs production from gluon and bottom quark annihilation channels can be expressed
together in the following way:

Ḡc;ð1Þ
1 ¼ CRð−3ζ2Þ; Ḡc;ð2Þ

1 ¼ CR

�
7

3
ζ3

�
;

Ḡc;ð3Þ
1 ¼ CR

�
−

3

16
ζ22

�
; Ḡc;ð4Þ

1 ¼ CR

�
−
7

8
ζ2ζ3 þ

31

20
ζ5

�
;

Ḡc;ð1Þ
2 ¼ CRCA

�
2428

81
−
469

9
ζ2 þ 4ζ22 −

176

3
ζ3

�
þ CRnf

�
−
328

81
þ 70

9
ζ2 þ

32

3
ζ3

�
;

Ḡc;ð2Þ
2 ¼ CRnf

�
976

243
−
196

27
ζ2 −

1

20
ζ22 −

310

27
ζ3

�
þ CRCA

�
−
7288

243
þ 1414

27
ζ2 þ

11

40
ζ22 þ

2077

27
ζ3 −

203

3
ζ2ζ3 þ 43ζ5

�
;

Ḡc;ð1Þ
3 ¼ CRCA

2

�
152

63
ζ2

3 þ 1964

9
ζ2

2 þ 11000

9
ζ2ζ3 −

765127

486
ζ2 þ

536

3
ζ3

2 −
59648

27
ζ3 −

1430

3
ζ5 þ

7135981

8748

�

þ CRCAnf

�
−
532

9
ζ2

2 −
1208

9
ζ2ζ3 þ

105059

243
ζ2 þ

45956

81
ζ3 þ

148

3
ζ5 −

716509

4374

�
þ CRCFnf

�
152

15
ζ2

2 − 88ζ2ζ3

þ 605

6
ζ2 þ

2536

27
ζ3 þ

112

3
ζ5 −

42727

324

�
þ CRnf2

�
32

9
ζ2

2 −
1996

81
ζ2 −

2720

81
ζ3 þ

11584

2187

�
: ðB7Þ

Here, CR ¼ CA for c ¼ g and CR ¼ Cf for c ¼ q, b, with CA ≡ Nc and CF ≡ N2
c−1
2Nc

the Casimirs of adjoint and fundamental

representations. Also, Ḡc
SVðasðq2ð1 − zÞ2Þ; ϵÞ are related to the threshold exponentDcðasðq2ð1 − zÞ2ÞÞ via Eq. (46) of [20].
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APPENDIX C: PERTURBATIVE CONSTANT OF Φc
B

In this appendix, we present the relations between the expansion coefficients φðkÞ
c;i appearing in Eq. (43) and the

coefficients Gc;ðj;kÞ
L;i :

φðkÞ
c;1 ¼ Gc;ð1;kÞ

L;1 ; k ¼ 0; 1;

φðkÞ
c;2 ¼

�
1

2
Gc;ð1;kÞ
L;2 þ β0G

c;ð2;kÞ
L;1

�
; k ¼ 0; 1; 2;

φðkÞ
c;3 ¼

�
1

3
Gc;ð1;kÞ
L;3 þ 2

3
β1G

c;ð2;kÞ
L;1 þ 2

3
β0G

c;ð2;kÞ
L;2 þ 4

3
β20G

c;ð3;kÞ
L;1

�
; k ¼ 0; 1; 2; 3;

φðkÞ
c;4 ¼

�
1

4
Gc;ð1;kÞ
L;4 þ 1

2
β2G

c;ð2;kÞ
L;1 þ 1

2
β1G

c;ð2;kÞ
L;2 þ 1

2
β0G

c;ð2;kÞ
L;3 þ 2β0β1G

c;ð3;kÞ
L;1 þ β20G

c;ð3;kÞ
L;2 þ 2β30G

c;ð4;kÞ
L;1

�
; k ¼ 0; 1; 2; 3; 4;

ðC1Þ

where Gc;ð2;3Þ
L;1 , Gc;ð2;4Þ

L;1 , Gc;ð2;4Þ
L;2 , Gc;ð3;4Þ

L;1 are all zero. We also present the explicit results for Gc;ðj;kÞ
L;i for bottom quark

annihilation which is found to be the same as Drell-Yan till second order in âs:

Gb;ð1;0Þ
L;1 ¼ 4CF; Gb;ð2;0Þ

L;1 ¼ 3CFζ2; Gb;ð3;0Þ
L;1 ¼ −CF

�
3

2
ζ2 þ

7

3
ζ3

�
;

Gb;ð1;0Þ
L;2 ¼ CACF

�
2804

27
−
290

3
ζ2 − 56ζ3

�
þ CFnf

�
−
656

27
þ 44

3
ζ2

�
− 64C2

Fζ2;

Gb;ð1;1Þ
L;2 ¼ 20CFðCA − CFÞ; Gb;ð1;2Þ

L;2 ¼ −8C2
F; ðC2Þ

and for Higgs boson production in gluon fusion:

Gg;ð1;0Þ
L;1 ¼ 4CA; Gg;ð2;0Þ

L;1 ¼ 3CAζ2; Gg;ð3;0Þ
L;1 ¼ −CA

�
3

2
ζ2 þ

7

3
ζ3

�
;

Gg;ð1;0Þ
L;2 ¼ C2

A

�
2612

27
−
482

3
ζ2 − 56ζ3

�
þ CAnf

�
−
392

27
þ 44

3
ζ2

�
;

Gg;ð1;1Þ
L;2 ¼ 4

3
CAðCA − nfÞ; Gg;ð1;2Þ

L;2 ¼ −8C2
A; ðC3Þ

and the remaining coefficients up to second order are
identically zero.

APPENDIX D: EXPANSION COEFFICIENTS
OF ΓAðxÞ AND ΓBðxÞ

In this appendix, we present the expansion coefficients of
ΓAðxÞ and ΓBðxÞ used in Eqs. (A2) and (A7) of
Appendix A. As in [64], the operators ΓAðxÞ and ΓBðxÞ
are expanded in powers of x as

ΓAðxÞ ¼
X
k¼0

− γAk x
k; ðD1Þ

where coefficients γAk are given by [64]

γAk ¼ ΓkðNÞ
k!

ð−1Þk−1: ðD2Þ

See Eq. (25) of [64] for the definition of ΓkðNÞ. We find
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γA0 ¼ 1; γA1 ¼ γE −
1

2N
;

γA2 ¼ 1

2
ðγ2E þ ζ2Þ −

1

2N
ð1þ γEÞ;

γA3 ¼ 1

6
γ3E þ 1

2
ðγEζ2Þ þ

1

3
ζ3 −

1

4N
ðγ2E þ 2γE þ ζ2Þ;

γA4 ¼ 1

24
γ4E þ 1

4
ðγ2Eζ2Þ þ

9

40
ζ22 þ

1

3
ðγEζ3Þ −

1

12N
ðγ3E þ 3γ2E þ 3ζ2 þ 3γEζ2 þ 2ζ3Þ;

γA5 ¼ 1

120
γ5E þ 1

12
ðγ3Eζ2Þ þ

1

40
ð9γEζ22Þ þ

1

6
ðγ2Eζ3Þ þ

1

6
ðζ2ζ3Þ þ

1

5
ζ5 −

1

240N
ð20γ3E þ 5γ4E þ 30γ2Eζ2 þ 27ζ22

þ 40ζ3 þ 20γEð3ζ2 þ 2ζ3ÞÞ;

γA6 ¼ 1

720
γ6E þ 1

48
ðγ4Eζ2Þ þ

9

80
ðγ2Eζ22Þ þ

61

560
ζ32 þ

1

18
ðγ3Eζ3Þ þ

1

6
ðγEζ2ζ3Þ þ

1

18
ζ23 þ

1

5
γEζ5

−
1

240N
ð5γ4E þ γ5E þ 10γ3Eζ2 þ 27ζ22 þ 20ζ2ζ3 þ 10γ2Eð3ζ2 þ 2ζ3Þ þ γEð27ζ22 þ 40ζ3Þ þ 24ζ5Þ;

γA7 ¼ 1

5040
γ7E þ 1

240
ðγ5Eζ2Þ þ

3

80
ðγ3Eζ22Þ þ

61

560
ðγEζ32Þ þ

1

72
ðγ4Eζ3Þ þ

1

12
ðγ2Eζ2ζ3Þ þ

3

40
ðζ22ζ3Þ

þ 1

18
ðγEζ23Þ þ

1

10
ðγ2Eζ5Þ þ

1

10
ðζ2ζ5Þ þ

1

7
ζ7 −

1

10080N
ð42γ5E þ 7γ6E þ 105γ4Eζ2 þ 549ζ32 þ 840ζ2ζ3

þ 140γ3Eð3ζ2 þ 2ζ3Þ þ 21γ2Eð27ζ22 þ 40ζ3Þ þ 56ð5ζ23 þ 18ζ5Þ þ 42γEð27ζ22 þ 20ζ2ζ3 þ 24ζ5ÞÞ; ðD3Þ

and similarly ΓBðxÞ is given by [64]

ΓBðxÞ ¼
X
k¼1

γBk x
k; ðD4Þ

where γBkþ1 are given by [64]

γBkþ1 ¼
Γkð1Þ
k!

ð−1Þk: ðD5Þ

Explicitly we find

γB1 ¼ 1; γB2 ¼ γE; γB3 ¼ 1

2
ðγ2E þ ζ2Þ; γB4 ¼ 1

6
γ3E þ

1

2
ðγEζ2Þ þ

1

3
ζ3; γB5 ¼ 1

24
γ4E þ

1

4
ðγ2Eζ2Þ þ

9

40
ζ22 þ

1

3
ðγEζ3Þ;

γB6 ¼ 1

120
γ5E þ

1

12
ðγ3Eζ2Þ þ

1

40
ð9γEζ22Þ þ

1

6
ðγ2Eζ3Þ þ

1

6
ðζ2ζ3Þ þ

1

5
ζ5;

γB7 ¼ 1

720
γ6E þ

1

48
ðγ4Eζ2Þ þ

9

80
ðγ2Eζ22Þ þ

61

560
ζ32 þ

1

18
ðγ3Eζ3Þ þ

1

6
ðγEζ2ζ3Þ þ

1

18
ζ23 þ

1

5
γEζ5;

γB8 ¼ 1

5040
γ7E þ

1

240
ðγ5Eζ2Þ þ

3

80
ðγ3Eζ22Þ þ

61

560
ðγEζ32Þ þ

1

72
ðγ4Eζ3Þ þ

1

12
ðγ2Eζ2ζ3Þ þ

3

40
ðζ22ζ3Þ þ

1

18
ðγEζ23Þ

þ 1

10
ðγ2Eζ5Þ þ

1

10
ðζ2ζ5Þ þ

1

7
ζ7: ðD6Þ

APPENDIX E: ANALYTICAL STRUCTURE OF NSV COEFFICIENTS OF Δcc̄ TILL FOUR LOOP

The partonic coefficient function given in Eq. (65) can be written as

ΔðiÞ
c ðq2; μ2R; μ2F; zÞ ¼ ΔSV;ðiÞ

c ðq2; μ2R; μ2F; zÞ þ ΔNSV;ðiÞ
c ðq2; μ2R; μ2F; zÞ; ðE1Þ
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where ΔSV;ðiÞ
c ðq2; μ2R; μ2F; zÞ can be found in [20,21,25,36,46]. Here we present ΔNSV;ðiÞ

c to fourth order where we set
μ2R ¼ μ2F ¼ q2 with the following expansion:

ΔNSV;ðiÞ
c ðzÞ ¼

X2i
k¼0

Δik
c lnkð1 − zÞ: ðE2Þ

The following results with the explicit dependence on μR and μF are provided in the ancillary files supplied with the arXiv
submission. We also put Δ30

c ;…;Δ32
c and Δ40

c ;…;Δ44
c in the ancillary files as they were lengthy:

Δ10
c ¼ 2φc;ð0Þ

1 ; Δ11
c ¼ 2φc;ð1Þ

1 þ4Dc
1; Δ12

c ¼ 4Cc
1;

Δ20
c ¼ 2φð0Þ

c;2þ4φð0Þ
c;1ðḠc;ð1Þ

1 þ G̃c;1
1 Þþ4fc1φ

ð1Þ
c;1ζ2−16fc1C

c
1ζ3þ8Ac

1φ
ð1Þ
c;1ζ3þ6Ac

1φ
ð0Þ
c;1ζ2þ2ðfc1Þ2−

16

5
Ac
1C

c
1ζ

2
2−8ðAc

1Þ2ζ2
þ8Dc

1f
c
1ζ2þ16Dc

1A
c
1ζ3;

Δ21
c ¼ 2φð1Þ

c;2þ4φð1Þ
c;1ðḠc;ð1Þ

1 þ G̃c;1
1 Þ−4φð0Þ

c;1β0−4fc1φ
ð0Þ
c;1þ16fc1C

c
1ζ2−2Ac

1φ
ð1Þ
c;1ζ2þ4Dc

2−8Ac
1f

c
1þ64Ac

1C
c
1ζ3−4Dc

1A
c
1ζ2

þ8Dc
1ðḠc;ð1Þ

1 þ G̃c;1
1 Þ;

Δ22
c ¼ 2φð2Þ

c;2−4φð1Þ
c;1β0þ4Cc

2þCc
1ð8Ḡc;ð1Þ

1 þ8G̃c;1
1 Þ−4fc1φ

ð1Þ
c;1þ4Ac

1φ
ð0Þ
c;1−20Ac

1C
c
1ζ2þ8ðAc

1Þ2−8Dc
1f

c
1−4Dc

1β0;

Δ23
c ¼−4Cc

1β0−8fc1C
c
1þ4Ac

1φ
ð1Þ
c;1þ8Dc

1A
c
1; Δ24

c ¼ 8Ac
1C

c
1;

Δ33
c ¼ 2φð3Þ

c;3−8β0ðφð2Þ
c;2−φð1Þ

c;1β0þCc
2Þ−4Cc

1ðβ1þ6β0Ḡ
c;ð1Þ
1 þ2β0G̃

c;1
1 Þ−8ðfc2Cc

1þfc1C
c
2Þ−4fc1φ

ð2Þ
c;2þ12fc1φ

ð1Þ
c;1β0

−16fc1C
c
1ðḠc;ð1Þ

1 þ G̃c;1
1 Þþ4ðfc1Þ2φð1Þ

c;1þ4Ac
2φ

ð1Þ
c;1þ4Ac

1φ
ð1Þ
c;2þ8Ac

1φ
ð1Þ
c;1ðḠc;ð1Þ

1 þ G̃c;1
1 Þ−32

3
Ac
1φ

ð0Þ
c;1β0þ68Ac

1C
c
1ζ2β0

−8Ac
1f

c
1φ

ð0Þ
c;1þ104Ac

1f
c
1C

c
1ζ2−16ðAc

1Þ2β0−20ðAc
1Þ2φð1Þ

c;1ζ2þ320ðAc
1Þ2Cc

1ζ3−32ðAc
1Þ2fc1þ16Dc

1f
c
1β0þ8Dc

1ðfc1Þ2

þ8Dc
1A

c
2þ16Dc

1A
c
1ðḠc;ð1Þ

1 þ G̃c;1
1 Þ−40Dc

1ðAc
1Þ2ζ2þ

16

3
Dc

1β
2
0þ8Dc

2A
c
1;

Δ34
c ¼ 16

3
Cc
1β

2
0þ16fc1C

c
1β0þ8Cc

1ððfc1Þ2þAc
2Þþ16ðAc

1Þ3þ4Ac
1φ

ð2Þ
c;2−

32

3
Ac
1φ

ð1Þ
c;1β0þ8Ac

1C
c
2þ16Ac

1C
c
1ðḠc;ð1Þ

1 þ G̃c;1
1 Þ

−8Ac
1f

c
1φ

ð1Þ
c;1þ4ðAc

1Þ2φð0Þ
c;1−72ðAc

1Þ2Cc
1ζ2−

40

3
Dc

1A
c
1β0−16Dc

1A
c
1f

c
1;

Δ35
c ¼−

40

3
Ac
1C

c
1β0−16Ac

1f
c
1C

c
1þ4ðAc

1Þ2φð1Þ
c;1þ8Dc

1ðAc
1Þ2; Δ36

c ¼ 8ðAc
1Þ2Cc

1;

Δ45
c ¼−8Cc

1β
3
0−

88

3
fc1C

c
1β

2
0−24ðfc1Þ2Cc

1β0−
16

3
ðfc1Þ3Cc

1−
56

3
Ac
2C

c
1β0−16Ac

2f
c
1C

c
1þ4Ac

1φ
ð3Þ
c;3−

56

3
Ac
1φ

ð2Þ
c;2β0þ24Ac

1φ
ð1Þ
c;1β

2
0

þ64

3
Ac
1D

c
1β

2
0−

64

3
Ac
1C

c
2β0−

1

3
Ac
1C

c
1ð40β1þ176β0Ḡ

c;ð1Þ
1 þ80β0g

c;1
1 Þ−16Ac

1f
c
2C

c
1−8Ac

1f
c
1φ

ð2Þ
c;2þ

88

3
Ac
1f

c
1φ

ð1Þ
c;1β0

þ128

3
Ac
1f

c
1D

c
1β0−16Ac

1f
c
1C

c
2−32Ac

1f
c
1C

c
1ðḠc;ð1Þ

1 þgc;11 Þþ8Ac
1ðfc1Þ2φð1Þ

c;1þ16Ac
1ðfc1Þ2Dc

1þ8Ac
1A

c
2φ

ð1Þ
c;1þ16Ac

1A
c
2D

c
1

þ4ðAc
1Þ2φð1Þ

c;2þ8ðAc
1Þ2φð1Þ

c;1ðḠc;ð1Þ
1 þgc;11 Þ−40

3
ðAc

1Þ2φð0Þ
c;1β0þ8ðAc

1Þ2Dc
2þ16ðAc

1Þ2Dc
1ðþḠc;ð1Þ

1 þgc;11 Þþ776

3
ðAc

1Þ2Cc
1β0ζ2

−8ðAc
1Þ2fc1φð0Þ

c;1þ240ðAc
1Þ2fc1Cc

1ζ2−
128

3
ðAc

1Þ3β0−36ðAc
1Þ3φð1Þ

c;1ζ2−72ðAc
1Þ3Dc

1ζ2þ
1792

3
ðAc

1Þ3Cc
1ζ3−48ðAc

1Þ3fc1;

Δ46
c ¼ 64

3
Ac
1C

c
1β

2
0þ

128

3
Ac
1f

c
1C

c
1β0þ16Ac

1ðfc1Þ2Cc
1þ16Ac

1A
c
2C

c
1þ4ðAc

1Þ2φð2Þ
c;2−

40

3
ðAc

1Þ2φð1Þ
c;1β0−

56

3
ðAc

1Þ2Dc
1β0þ8ðAc

1Þ2Cc
2

þ16ðAc
1Þ2Cc

1ðḠc;ð1Þ
1 þgc;11 Þ−8ðAc

1Þ2fc1φð1Þ
c;1−16ðAc

1Þ2fc1Dc
1þ

8

3
ðAc

1Þ3φð0Þ
c;1−104ðAc

1Þ3Cc
1ζ2þ16ðAc

1Þ4;

Δ47
c ¼−

56

3
ðAc

1Þ2Cc
1β0−16ðAc

1Þ2fc1Cc
1þ

8

3
ðAc

1Þ3φð1Þ
c;1þ

16

3
ðAc

1Þ3Dc
1; Δ48

c ¼ 16

3
ðAc

1Þ3Cc
1: ðE3Þ

The symbols Ḡc;ðkÞ
j and gc;kj are also provided in the Supplementary Material [126].
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APPENDIX F: EXPRESSIONS OF RESUMMATION CONSTANTS hcijðωÞ
The resummation constants hcijðωÞ given in Eq. (85) are found to be as follows. Here L̄ω ¼ lnð1 − ωÞ, Lqr ¼ lnðq2

μ2R
Þ,

Lfr ¼ lnðμ2F
μ2R
Þ, and ω ¼ 2β0asðμ2RÞ lnN:

hc00ðωÞ ¼
2

β0
L̄ω½−γB2Cc

1 þ γB1D
c
1�;

hc01ðωÞ ¼
2

β0
L̄ω½−γB1Cc

1�;

hc10ðωÞ ¼
1

ð1 − ωÞ
�
2β1Dc

1

β20
fγB1ωþ γB1 L̄ωg −

2β1
β20

Cc
1fγB2ωþ γB2 L̄ωg − 2

Dc
2

β0
γB1ωþ 2

Cc
2

β0
γB2ω − 2φð1Þ

c;1γ
B
2 þ 2φð0Þ

c;1γ
B
1

þ 2Dc
1fLqrγ

B
1 − Lfrγ

B
1 þ Lfrγ

B
1ω − 2γB2 g − 2Cc

1fLqrγ
B
2 − Lfrγ

B
2 þ Lfrγ

B
2ω − 4γB3 g

�
;

hc11ðωÞ ¼
1

ð1 − ωÞ
�
β1
β20

Cc
1f−2γB1ω − 2γB1 L̄ωg þ 2

Cc
2

β0
γB1ω − 2φð1Þ

c;1γ
B
1 þ Cc

1f−2Lqrγ
B
1 þ 2Lfrγ

B
1 − 2Lfrγ

B
1ωþ 4γB2 g

þ ω

ð1 − ωÞ
�
φð2Þ
c;2

β0
γB1

	�
;

hc21ðωÞ ¼
1

ð1 − ωÞ2
�
β21C

c
1

β30
f−γB1ω2 þ γB1 L̄

2
ωg þ

β2Cc
1

β20
γB1ω

2 þ β1Cc
2

β20
f−2ωþ ω2 − 2L̄ωgγB1

þ Cc
3

β0
f2γB1ω − γB1ω

2g þ 2
β1φ

ð1Þ
c;1

β0
γB1 L̄ω þ β1Cc

1

β0
f2Lqrγ

B
1 − 4γB2 gL̄ω þ 4φð2Þ

c;2γ
B
2

− 2φð1Þ
c;2γ

B
1 þ Cc

2f−2Lqrγ
B
1 þ 2Lfrγ

B
1 ð1 − ωÞ2 þ 4γB2 g þ 2β0φ

ð1Þ
c;1fLqrγ

B
1 − 2γB2 g

þ β0Cc
1fL2

qrγ
B
1 − 4Lqrγ

B
2 − L2

frγ
B
1 þ 2L2

frγ
B
1ωþ 8γB3 − L2

frγ
B
1ω

2g
�
;

hc22ðωÞ ¼
ω

ð1 − ωÞ3
�−φð3Þ

c;3

β0
γB1

�
;

hc32ðωÞ ¼
1

ð1 − ωÞ3
�
−4γB1 L̄ω

�
β1φ

ð2Þ
c;2

β0

	
− 6φð3Þ

c;3γ
B
2 þ 2φð2Þ

c;3γ
B
1 − 4β0φ

ð2Þ
c;2fLqrγ

B
1 − 2γB2 g

�
;

hc33ðωÞ ¼
ω

ð1 − ωÞ4
�
φð4Þ
c;4

β0
γB1

�
;

hc42ðωÞ ¼
1

ð1 − ωÞ4
�
2β21
β20

φð2Þ
c;2f3L̄2

w − 2ω − 2L̄wgγB1 þ 4β2
β0

φð2Þ
c;2γ

B
1ωþ 18β1

β0
φð3Þ
c;3γ

B
2 L̄w þ 24φð4Þ

c;4γ
B
3 −

6β1
β0

φð2Þ
c;3γ

B
1 L̄w − 6φð3Þ

c;4γ
B
2

þ 2φð2Þ
c;4γ

B
1 − 4β1φ

ð2Þ
c;2fLqrγ

B
1 − 3Lqrγ

B
1 L̄w − 2γB2 þ 6γB2 L̄wg þ 18β0φ

ð3Þ
c;3fLqrγ

B
2 − 4γB3 g

− 6β0φ
ð2Þ
c;3fLqrγ

B
1 − 2γB2 g þ 6β20φ

ð2Þ
c;2fþL2

qrγ
B
1 − 4Lqrγ

B
2 þ 8γB3 g

�
;

hc43ðωÞ ¼
2

ð1 − ωÞ4
�
3β1
β0

φð3Þ
c;3γ

B
1 L̄w þ 4φð4Þ

c;4γ
B
2 − φð3Þ

c;4γ
B
1 þ 3β0φ

ð3Þ
c;3fLqrγ

B
1 − 2γB2 g

�
;

hc44ðωÞ ¼
ω

ð1 − ωÞ5
�−φð5Þ

c;5

β0
γB1

�
: ðF1Þ

The above results along with the bigger ones ½hc20ðωÞ; hc30ðωÞ; hc31ðωÞ� and ½hc40ðωÞ; hc41ðωÞ� are all provided in the
Supplementary Material [126].
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APPENDIX G: EXPRESSIONS OF RESUMMATION CONSTANTS ḡci ðωÞ
The resummation constants ḡci ðωÞ given in Eq. (84) are presented below. Here L̄ω ¼ lnð1 − ωÞ, Lqr ¼ lnðq2

μ2R
Þ,

Lfr ¼ lnðμ2F
μ2R
Þ, and ω ¼ 2β0asðμ2RÞ lnN. Also, Dc

i are the threshold exponents given in [46]:

ḡc1ðωÞ ¼
Ac
1

β0
;

ḡc2ðωÞ ¼
1

ð1−ωÞ
�
Dc

1

2
−
Ac
2

β0
ωþAc

1β1
β20

ðωþ L̄wÞ−Ac
1ð2þ 2γE −Lqr þLfrð1−ωÞÞ

�
;

ḡc3ðωÞ ¼
1

ð1−ωÞ2
�
Dc

2

�
1

2

	
þDc

1

�
−
L̄w

2

β1
β0

þ β0

�
1þ γE −

1

2
Lqr

�	
−
Ac
3

β0

�
1−

ω

2

	
ωþAc

2

�
þβ1
β20

�
ω−

1

2
ω2 þ L̄w

�

− ð2þ 2γE −Lqr þLfrð1−ωÞ2Þ
	
−
β2Ac

1

β20

ω2

2
þAc

1

�
β21
2β30

ðω2 − L̄2
wÞ þ

β1
β0

ð2þ 2γE −LqrÞL̄w − 2β0

�
2γE þ γ2E

þ ζ2 −Lqr −LqrγE þ
1

4
L2
qr −

1

4
L2
frð1−ωÞ2

�	�
;

ḡc4ðωÞ ¼
1

ð1−ωÞ3
�
Dc

1

�
β21
2β20

ð−ω− L̄w þ L̄2
wÞ þ

ωβ2
2β0

þ β1

�
1þ γE −

1

2
Lqr

�
ð1− 2L̄wÞ þ 2β20

�
2γE þ γ2E þ ζ2 −Lqr −LqrγE

þ 1

4
L2
qr

�	
þDc

2

�
−
β1
β0

L̄w þ β0ð2þ 2γE −LqrÞ
	
þ 1

2
Dc

3 −
Ac
4

β0
ω

�
1−ωþ 1

3
ω2

	

þAc
3

�
β1
β20

�
ω−ω2 þ 1

3
ω3 þ L̄w

�
− 2− 2γE þLqr −Lfr þ 3Lfr

�
1−ωþω2

3

�
ω

	
þAc

2

�
β21
β30

�
ω2 −

1

3
ω3 − L̄2

w

�

−
β2
β20

�
1−

1

3
ω

�
ω2 þ 2

β1
β0

ð2þ 2γE −LqrÞL̄w − β0

�
8γE þ 4γ2E þ 4ζ2 − 4Lqrð1þ γEÞ þL2

qr −L2
fr þ 3L2

fr

×
�
1−ωþω2

3

�
ω

�	
þAc

1

�
−
β31
β40

�
1

2
ω2 −

1

3
ω3 þ L̄wωþ 1

2
L̄2
w −

1

3
L̄3
w

�

þ β1β2
β30

�
ω−

2

3
ω2 þ L̄w

�
ω−

β3
β20

ω2

�
1

2
− 1

3
ω

�

þ 2
β21
β20

ðωþ L̄w − L̄2
wÞ
�
1þ γE −

Lqr

2

�
þ β2
β0

ð−2− 2γE þLqrÞωþ β1

�
−4γE − 2γ2E − 2ζ2 þ 2Lqr

−
1

2
L2
qr þ 2LqrγE

�
ð1− 2L̄wÞ þ

β1
2
L2
frð1−ωÞ3 − β20

�
8γ2E þ

8

3
γ3E þ

16

3
ζ3 þ 2ð4ζ2 þL2

qrÞð1þ γEÞ

− 4LqrγEð2þ γEÞ− 4Lqrζ2 −
1

3
L3
qr þ

1

3
L3
frð1−ωÞ3

�	�
: ðG1Þ

As before here we also provide the above results along with ḡc5ðωÞ in the Supplementary Material [126].
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