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The electromagnetic Dalitz decays J=ψ → ηð0Þeþe− with large recoil momentum are studied in the
framework of perturbative QCD. Meanwhile, the soft contributions from the small recoil momentum region
are described by the overlap of soft wave functions, and the resonance contributions are estimated by the
vector meson dominance model. Based on this dynamical picture, the transition form factors fψηð0Þ ðq2Þ in
full kinematic region are calculated for the first time, and we find that the transition form factors are
insensitive to the shapes of ηð0Þ distribution amplitudes. Our prediction of the normalized transition form
factor Fψηðq2Þ≡ fψηðq2Þ=fψηð0Þ agrees well with its experimental data. In addition, we also find that the

branching ratios BðJ=ψ → ηð0Þeþe−Þ are dominated by the contributions of perturbative QCD, and the
resonance contributions are negligibly small as well as the soft contributions due to the suppression of
the kinematic factor. With all these contributions, our results of the branching ratios BðJ=ψ → ηð0Þeþe−Þ
and the ratio Re

J=ψ ¼ BðJ=ψ → ηeþe−Þ=BðJ=ψ → η0eþe−Þ are in good agreement with their experimental

data. Using the obtained Fψηð0Þ ðq2Þ, we give the predictions of the branching ratios BðJ=ψ → ηð0Þμþμ−Þ and
their ratio Rμ

J=ψ .

DOI: 10.1103/PhysRevD.105.094034

I. INTRODUCTION

The decays of charmonia into light hadrons have
received a great deal of attention in the past few decades
both experimentally and theoretically, since they provide us
with invaluable information on the strong interactions
between quarks and gluons. In the quantum chromody-
namics (QCD) picture, these decays are expected to
proceed predominantly via cc̄ annihilation with an inter-
mediate state containing only gluons [1–4], so they are
ideal for the study of light hadron production mechanisms,
and the involved dynamical information can be extracted.
In recent years, several groups have revisited the radiative
decays J=ψ → γηð0Þ [5–10] as well as hc → γηð0Þ [11–13] in
the framework of perturbative QCD. On the one hand, these
processes are closely related to the issue of η − η0 mixing,
which could shed light on the Uð1ÞA anomaly and the
SUð3ÞF breaking. On the other hand, these processes
provide a relatively clean environment to study the gluonic
content of ηð0Þ, since there is no complication of interactions
between the final light hadrons. Furthermore, these

investigations show that the perturbative QCD predictions
are reliable in the charmonium physics.
Recently, the BESIII Collaboration has updated the

measurements of the electromagnetic (EM) Dalitz
decays J=ψ → ηð0Þeþe− with the branching ratios
BðJ=ψ → ηeþe−Þ ¼ ð1.42� 0.04� 0.07Þ × 10−5 [14,15]
and BðJ=ψ → η0eþe−Þ ¼ ð6.59� 0.07� 0.17Þ × 10−5

[14,16]. As the EM Dalitz decays of light vector mesons
(ρ0, ω, ϕ), which have attracted much attention in both
experiment [17–22] and theory [23–28], the J=ψ decays
can also be used to extract abundant information of the
dynamical structure of the transition form factors (TFFs)
fVPðq2Þ and offer a potential role in the theoretical deter-
mination of the exotic hadrons [29] as well as the hypo-
thetical dark photon (or, the U-boson) [15,16,24,30–32]. In
addition, the Dalitz decays J=ψ → ηð0Þlþl− (l ¼ e, μ) are
especially interesting since they involve the production of the
light mesons ηð0Þ, which are of great phenomenological
importance because of η and η0 mixing effects.
In the literature, the Dalitz decays J=ψ → ηð0Þlþl− have

been studied in different approaches [30,33,34]. In works
[30,34], the normalized TFFs Fψηð0Þ ðq2Þ, which are defined
as Fψηð0Þ ðq2Þ≡ fψηð0Þ ðq2Þ=fψηð0Þ ð0Þ, were just parametrized

as a simple pole form and the branching ratios of J=ψ →
ηð0Þlþl− were calculated with the vector meson dominance
(VMD) model. Although the predictions of the branching
ratios BðJ=ψ → ηð0Þeþe−Þ are compatible with the exper-
imental measurements [15,16], their normalized TFFs
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Fψηð0Þ ðq2Þ with the pointlike particle assumption would
gloss over much dynamical information from the QCD
processes, while the dynamical information could offer us
an insight into the nature of the Okubo-Zweig-Iizuka (OZI)
rule [35,36] and the UAð1Þ anomaly as well as the η − η0
mixing [6,10,37–40]. Therefore, a deep theoretical study of
the TFFs fψηð0Þ ðq2Þ should consider the information of the
internal structure of mesons, as well as the transition
mechanisms in different kinematic regions. We will present
detailed discussions in the later part of this paper. Besides
the simple pole approximation, Chen et al. [33] studied
these Dalitz decay processes with the effective Lagrangian
approach, and they confirmed that the J=ψ → ηð0Þγð�Þ

processes were predominantly dominated by the J=ψ →
ηcγ

ð�Þ → ηð0Þγð�Þ mechanism. Perhaps this may need more
discussion [10,12,13,40].
In general, there are several types of contributions to

the TFFs involved in the EM Dalitz decay processes
J=ψ → ηð0Þlþl−: (i) In the large recoil momentum region,
q2 ≃ 0, the contributions are dominated by the hard
mechanism, which can be calculated in the framework
of perturbative QCD. Just as our recent investigations
[10,12,13], the perturbative QCD approach can be reliably
employed in the charmonia radiative decay processes
J=ψðhcÞ → γηð0Þ. (ii) In the small recoil momentum region,
q2≃q2max¼ðMJ=ψ −mηð0Þ Þ2, phenomenologically, the TFFs
can be interpreted as the wave function overlap [41–46].
Namely, the corresponding contributions are governed by
the overlapping integration of the soft wave functions.
(iii) In resonance regions, such as q2 ≃m2

ρ; m2
ω; m2

ϕ, the
resonance interaction between photons and hadrons is
predominant, which can be universally described by a
vector meson dominance (VMD) model [23]. In this work,
the aforementioned contributions are all taken into account.
In the large recoil momentum region, we adopt light-cone
distribution amplitudes (DAs) to describe the internal
dynamics of ηð0Þ where both the quark-antiquark content
and the gluonic content are taken into account, and the
detailed structure of J=ψ is described by its Bethe-Salpeter
(B-S) wave function. We evaluate analytically the involved
one-loop integrals, and find the TFFs barely depend on the
light quark masses and the shapes of the light meson DAs,
which is compatible with the situation in the decay
processes J=ψ → γηð0Þ [10] as well as hc → γηð0Þ [12,13].
In the whole kinematic region, we present a QCD analysis
of the TFFs fψηð0Þ ðq2Þ for the first time, and our prediction
of the normalized TFF Fψηðq2Þ is in good agreement with
the experimental data. In addition, although the VMD
contributions and the soft contributions are small in the
branching ratios BðJ=ψ → ηð0Þeþe−Þ because of a suppres-
sion of the kinematic factor, they play a significant role
in the TFFs. By using the normalized TFFs Fψηð0Þ ðq2Þ
extracted from the decay processes J=ψ → ηð0Þeþe−,

we obtain the predictions of the branching ratios
BðJ=ψ → ηð0Þμþμ−Þ and their ratio Rμ

J=ψ ¼ BðJ=ψ →
ημþμ−Þ=BðJ=ψ → η0μþμ−Þ.
The paper is organized as follows. The theoretical

framework for the decay processes J=ψ → ηð0Þlþl− is
shown in detail in Sec. II. In Sec. III we present our
numerical results and some phenomenological discussions,
and the last section is our summary.

II. THEORETICAL FRAMEWORK

A. Hard mechanism

1. The contributions of the quark-antiquark
content of ηð0Þ

For the quark-antiquark content of ηð0Þ, one of the leading
order Feynman diagrams for the decay processes J=ψ →
ηð0Þlþl− is depicted in Fig. 1, and the other five diagrams
arise from permutations of the photon and the gluon legs.
Here f and f̄ represent the momenta of the charm quark and
the charm antiquark, respectively, k1 and k2 represent the
momenta of gluons, p represents the momentum of ηð0Þ, u
and ū are the momentum fractions carried by the light quark
and the light antiquark, respectively. According to the
Feynman diagrams, we can easily give the amplitude of
J=ψ → ηð0Þlþl−:

M ¼ −
e
q2

AαβεαðKÞūðl1Þγβvðl2Þ; ð2:1Þ

whereAαβ represents the amplitude of J=ψ → ηð0Þγ�, K and
εðKÞ are the momentum and polarization vector of J=ψ ,
respectively, q is the momentum of the virtual photon,
q2 ¼ m2

lþl− is the square of the invariant mass of the lepton
pair, l1 and l2 are the momenta of the leptons l− and lþ,
respectively.
Following the method developed in Refs. [47–49], we

divide the amplitude of J=ψ → ηð0Þγ� into two parts. One
part describes the effective coupling between J=ψ , a virtual
photon and two virtual gluons, i.e., the process

FIG. 1. One typical Feynman diagram for J=ψ → ηð0Þlþl−

with the quark-antiquark content of ηð0Þ. The kinematical vari-
ables are labeled.
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J=ψ → g�g�γ�. The other part describes the effective
coupling between ηð0Þ and two virtual gluons, i.e., the
processes g�g� → ηð0Þ. Then one just multiplies the two
parts, inserts the gluon propagators and performs the loop
integrations to obtain the final amplitude of J=ψ → ηð0Þγ�.
In the rest frame of J=ψ , one can write the amplitude of

J=ψ → g�g�γ� in the form [48–50]

Aαβμν
1 εαðKÞϵ�βðqÞϵ�μðk1Þϵ�νðk2Þ

¼
ffiffiffi
3

p Z
d4k
ð2πÞ4 Tr½χðK; kÞOðkÞ�; ð2:2Þ

where χðK; kÞ is the B-S wave function of J=ψ andOðkÞ is
the hard-scattering amplitude. Here

ffiffiffi
3

p
is the color factor

and ϵðqÞ is the polarization vector of the virtual photon. k1,
k2, and ϵðk1Þ, ϵðk2Þ are the momenta and polarization
vectors of the two gluons, respectively. The momenta of the
quark c and antiquark c̄ read

f ¼ K
2
þ k; f̄ ¼ K

2
− k ð2:3Þ

with k the relative momentum between the quark c and
antiquark c̄. In a nonrelativistic bound state picture, one can
reduce the B-S wave function χðK; kÞ to its nonrelativistic
form [47,50]

χðK; kÞ ¼ 2πδðk0Þψ00ðkÞ
� ffiffiffiffiffiffiffi

1

4M

r
=εðKÞð=K −MÞ

�
; ð2:4Þ

where ψ00ðkÞ is the bound state wave function of S-wave
charmonium J=ψ , and M is the mass of J=ψ . For S-wave
charmonium decays, one could neglect the dependence of
the hard-scattering amplitude OðkÞ on the relative momen-
tum k in the leading order approximation [10,50,51]:

OðkÞ ≃Oð0Þ: ð2:5Þ

And the higher order corrections related to the relative
momentum are negligible, because the B-S wave function
of charmonium is heavily damped on the relative momen-
tum. Using the Fourier transformation of the bound state
wave function, one obtains the well-known result in
coordinate space

Z
d3k
ð2πÞ3 ψ00ðkÞ ¼

ffiffiffiffiffiffi
1

4π

r
Rψ ð0Þ: ð2:6Þ

With the help of the B-S wave function Eq. (2.4) and the
hard-scattering amplitude Eq. (2.5) as well as the Fourier
transformation Eq. (2.6), the amplitude of J=ψ → g�g�γ�
can be rewritten as

Aαβμν
1 εαðKÞϵ�βðqÞϵ�μðk1Þϵ�νðk2Þ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
3

4πM

r
Rψð0ÞTr½=εðKÞð=K −MÞOð0Þ�; ð2:7Þ

where the hard-scattering amplitude Oð0Þ reads

Oð0Þ ¼ iQceg2s
δab
6
=ϵ�ðk2Þ

=k2 − =q − =k1 þM
−2ðqþ k1Þ · k2

=ϵ�ðqÞ

×
=k2 þ =q − =k1 þM
−2ðqþ k2Þ · k1

=ϵ�ðk1Þ

þ ð5 permutations of k1; k2 and qÞ: ð2:8Þ

In what follows, we make a brief summary of the
coupling g�g� − ηð0Þ. At the leading twist level, the light-
cone DA of ηð0Þ is defined according to [3,52,53]

hηð0ÞðpÞjq̄αðxÞqβðyÞj0i

¼ i
4
fq
ηð0Þ ðpγ5Þβα

Z
dueiðūp·yþup·xÞϕqðuÞ; ð2:9Þ

where the superscript q denotes the light quark (q ¼ u, d,
s). The decay constants fq

ηð0Þ are defined according to

h0jq̄ð0Þγμγ5qð0Þjηð0ÞðpÞi ¼ ifq
ηð0Þpμ: ð2:10Þ

Using Eq. (2.9), we obtain the amplitude of g�g� → ηð0Þ
[54–56]:

Aμν
2 ¼ −ið4παsÞδabϵμνρσk1ρk2σ

X
q¼u;d;s

fq
ηð0Þ

6

Z
1

0

duϕqðuÞ

×

�
1

ūk21 þ uk22 − uūm2 −m2
q
þ ðu ↔ ūÞ

�
: ð2:11Þ

Here ū ¼ 1 − u, u is the momentum fraction carried by the
quark, mq is the mass of the quark (q ¼ u, d, s), m is the
mass of ηð0Þ. The light-cone DA is [57]

ϕqðuÞ ¼ 6uð1 − uÞ
�
1þ

X
n¼2;4���

cqnðμÞC
3
2
nð2u − 1Þ

�
ð2:12Þ

with cqnðμÞ the Gegenbauer moments, and we take its three
models listed in Table 1 of Refs. [10,12]. We find that the
TFFs barely depend on the shapes of ηð0Þ DAs (we will
estimate them below).
Then the decay amplitude of J=ψ → ηð0Þγ� can be

obtained by contracting the above two couplings, inserting
the gluon propagators and integrating over the loop
momentum (see [48,49] for more details)
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AαβεαðKÞϵ�βðqÞ ¼
1

2

Z
d4k1
ð2πÞ4A

αβμν
1 A2μν

×
i

k21 þ iϵ
i

k22 þ iϵ
εαðKÞϵ�βðqÞ; ð2:13Þ

i.e.,

Aαβ ¼ 1

2

Z
d4k1
ð2πÞ4A

αβμν
1 A2μν

i
k21 þ iϵ

i
k22 þ iϵ

: ð2:14Þ

Considering parity conservation, Lorentz invariance, and
gauge invariance, one knows

Aαβ ∝ ðϵαβμνpμqνÞ: ð2:15Þ

Then the J=ψ → ηð0Þγ� TFFs are defined by

Aαβ ¼ −efQ
ψηð0Þ ðq2Þϵαβμνpμqν: ð2:16Þ

With the help of the projection operator

Pαβ ¼ ϵαβμνpμqν
λ
1
2ðM2; m2; q2Þ ð2:17Þ

and the normalization condition

PαβPαβ ¼
1

2
; ð2:18Þ

the TFFs can be rewritten as

fQ
ψηð0Þ

ðq2Þ ¼ −
2e−1

λ
1
2ðM2; m2; q2ÞPαβAαβ ð2:19Þ

with λða; b; cÞ≡ a2 þ b2 þ c2 − 2ðabþ bcþ acÞ the
usual Källén function. Here we show the expression of
the TFFs more clearly

fQ
ψηð0Þ ðq2Þ ¼

16Rψð0Þ
λðM2; m2; q2Þ

Qcð4παsÞ2
3

ffiffiffi
3

p
ffiffiffiffiffi
M
π

r X
q

fq
ηð0Þ

Z
duϕqðuÞ

Z
d4k1
ð2πÞ4

ðk21 − k1 · pÞ
ðM2 −m2 − q2Þ

×

��
k1 · pðM2 −m2 − q2Þð4k1 · qþM2 −m2 − q2Þ

2D1D2D3D4D5

−
8q2k1 · p2

2D1D2D3D4D5

−
2m2k1 · qðM2 −m2 − q2Þ

2D1D2D3D4D5

−
λðM2; m2; q2Þ
D2D3D4D5

�
þ ðu ↔ ūÞ

�
; ð2:20Þ

where the expressions of the denominators read

D1 ¼ k21 þ iϵ

D2 ¼ ðk1 − pÞ2 þ iϵ

D3 ¼ ðk1 − upÞ2 −m2
q þ iϵ

D4 ¼
1

4
½ð2k1 − p − qÞ2 −M2� þ iϵ

D5 ¼
1

4
½ð2k1 − pþ qÞ2 −M2� þ iϵ: ð2:21Þ

By using the algebraic identity

1 ¼ 2ðD1 þD2 −D4 −D5Þ
M2 þm2 − q2

; ð2:22Þ

the TFFs fQ
ψηð0Þ

ðq2Þ in Eq. (2.20) can be decomposed into
sum of four-point one-loop integrals, and then it can be
analytically evaluated with the technique proposed in
Refs. [58–60] or the computer program Package-X
[61,62]. By integrating over the loop momentum k1 and
the momentum fraction u, we find that the TFFs fQ

ψηð0Þ
ðq2Þ

are very insensitive to the light quark massmq as well as the
shapes of ηð0Þ DAs. This is similar to the situations of the

dimensionless functions involved in the radiative decays
J=ψðhcÞ → γηð0Þ [10,12,13]. Specifically, the change of the
modulus of the TFFs fQ

ψηð0Þ
ðq2Þ does not exceed 1% when

the value of the light quark mass mq varies in the range
ð0–100Þ MeV with the different models of the DAs.
Therefore, the theoretical uncertainties from the DAs are
ignorable in our calculations of the TFFs.
It is worthwhile to point out that the QED processes

J=ψ → γ� → ηð0Þlþl− can also contribute to the EM Dalitz
decays J=ψ → ηð0Þlþl− and the corresponding Feynman
diagrams are shown in Fig. 2. Then the corresponding TFFs
fE
ψηð0Þ ðq2Þ can be expressed as

fE
ψηð0Þ ðq2Þ

¼ i
ffiffiffi
3

p
Qcð4παÞ

Rψð0Þ
M2

ffiffiffiffiffi
M
π

r X
q¼u;d;s

Q2
qf

q
ηð0Þ

Z
duϕqðuÞ

×

�
1

q2þu2m2þuðM2 −m2−q2Þ−m2
qþ iϵ

þðu↔ ūÞ
�
;

ð2:23Þ

where the Qq represents the light quark charge.
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2. The contributions of the gluonic content of ηð0Þ

As we have emphasized in Ref. [10], although the
contributions of the gluonic content of ηð0Þ in the radiative
decay processes J=ψ → ηð0Þγ can directly come from the
tree level, the amplitudes are strongly suppressed by
the factor m2=M2. As a consequence, the gluonic contri-
butions only offer small corrections. Obviously, the sit-
uation should be found in the Dalitz decay processes
J=ψ → ηð0Þlþl−, because the Dalitz decay processes and
the corresponding radiative decay processes have the same
spin structures in their hadronic matrix elements. The
typical Feynman diagram is exhibited in Fig. 3, and there
are the other two diagrams from permutations of the photon
and the gluon legs.
At the leading twist level, the light-cone matrix elements

of the meson ηð0Þ over two-gluon fields can be written as
[53,57,63]:

hηð0ÞðpÞjAa
αðxÞAb

βðyÞj0i ¼
1

4
ϵαβμν

nμpν

p · n
CFffiffiffi
3

p δab

8
f1
ηð0Þ

×
Z

dueiðup·xþūp·yÞ ϕgðuÞ
uð1 − uÞ ;

ð2:24Þ

where n ¼ ð0; 1; 0⊥Þ is a lightlike vector [63]. Here f1ηð0Þ ¼
1ffiffi
3

p ðfu
ηð0Þ þ fd

ηð0Þ þ fs
ηð0Þ Þ are the effective decay constant and

the gluonic twist-2 DA reads [53,57,64]

ϕgðuÞ ¼ 30u2ð1 − uÞ2
X

n¼2;4���
cgnðμÞC

5
2

n−1ð2u − 1Þ: ð2:25Þ

After a series of calculations, the corresponding TFFs
fG
ψηð0Þ

ðq2Þ can be expressed as

fG
ψηð0Þ ðq2Þ ¼ i

8Rψð0Þ
λðM2; m2; q2Þ

Qcð4παsÞ
9

ffiffiffiffiffi
M
π

r
f1
ηð0Þ

×
Z

du
ϕgðuÞ

uð1 − uÞ
m2ðM2 −m2 − q2Þð1 − 2uÞ
½ðM2 − q2Þ2 −m4ð1 − 2uÞ2� :

ð2:26Þ

Clearly, the TFFs are suppressed by m2 (namely, a dimen-
sionless factor m2=M2). As pointed out in Ref. [10], the
leading twist gluonic content contributions mainly come
from two on-shell gluons, which give a suppression factor
m2=M2 due to the special form of the Ore-Powell matrix
elements [65,66]. From the point of view of the QCD
evolution of the gluon DA [52,56,63], the contributions
from the gluonic content of ηð0Þ are supposed to be small
since the gluonic content can be seen as the higher order
effects.
Based on the foregoing discussions, in the large

recoil momentum region, the J=ψ → ηð0Þγ� TFFs can be
obtained by

fH
ψηð0Þ ðq2Þ ¼ fQ

ψηð0Þ
ðq2Þ þ fE

ψηð0Þ ðq2Þ þ fG
ψηð0Þ

ðq2Þ; ð2:27Þ

which include the dynamical structure information from the
QCD and the QED processes. And all these contributions
can be reliably calculated in the framework of the hard
mechanism.

B. Soft mechanism

In the small recoil momentum region, the perturbative
QCD approach becomes invalid in the EM Dalitz decay
processes J=ψ → ηð0Þlþl−. And the dominant contribu-
tions to the TFFs are controlled by the soft mechanism,
which can be treated as the soft wave function overlap.
Phenomenologically, one can adopt an empirical form
factor [46,67]:

FIG. 2. Feynman diagrams for the QED processes J=ψ → γ� → ηð0Þlþl−. The kinematical variables are labeled.

FIG. 3. One typical Feynman diagram for J=ψ → ηð0Þlþl−

with the gluonic content of ηð0Þ. The kinematical variables are
labeled.
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fS
ψηð0Þ

ðq2Þ ¼ gψηð0Þ exp

�
−

q2

8β2

�
; ð2:28Þ

where gψηð0Þ denote the J=ψ − ηð0Þ − γ� coupling and are
determined by the continuity condition of the TFFs
between the large and the small recoil momentum regions,
and the parameter β is in a range of ð300–500Þ MeV
[46,67]. Our numerical analysis of the TFF fψηðq2Þ
indicates that a smaller value β ¼ 370 MeV is favored,
which may be due to that the intermediate photon is in a
highly virtual kinematic region and part of the off-shell
effects would be absorbed into the parameter β. The smaller
value is compatible with the result in Ref [46]. In addition,
the branching ratios BðJ=ψ → ηð0Þlþl−Þ are insensitive to
the parameter β due to a strong suppression of the
kinematic factor in the small recoil momentum region.
In the whole recoil momentum region, the TFFs can be

expressed as

fψηð0Þ ðq2Þ ¼
(
fH
ψηð0Þ ðq2Þ q2 ≤ 1 GeV2;

fS
ψηð0Þ ðq2Þ q2 > 1 GeV2:

ð2:29Þ

It is worth reminding that the recoil momentum of ηð0Þ is
above 1 GeV when q2 ≤ 1 GeV2, and below or near 1 GeV
when q2 > 1 GeV2. Generally speaking [68–71], pertur-
bative QCD begins to be self-consistent at the recoil
momentum as low as 1 GeV, i.e., the transition to
perturbative QCD appears at about q2 ¼ 1 GeV2, where
the hard mechanism begins to dominate as the q2 decreases.
Although we clearly separate the hard contributions in the
large recoil momentum region and the soft ones in the small
recoil momentum region, how to precisely match these two
contributions in the intermediate recoil momentum region
still needs further investigations. Even so, our description
of the decay processes J=ψ → ηð0Þγ� may constitute an
important step forward toward a satisfactory description.

C. VMD model

In this subsection we will briefly discuss the resonance
interaction, which can be described by VMD model. The
VMD contributing diagram is illustrated in Fig. 4, where V
represents vector mesons. Here we concentrate on the

resonance that is closest to the physical decay region, in
which it mainly includes the light mesons ρ, ω and ϕ.
The effective Lagrangian for J=ψ − V − P coupling can

be written as [46,72–74]:

LψVP ¼ gψVPðq2Þ
M

ϵαβμν∂αψβ∂μVνP; ð2:30Þ

where V (V ¼ ρ;ω;ϕ), ψ (ψ ¼ J=ψ) and P (P ¼ ηð0Þ)
are the corresponding vector and pseudoscalar meson

fields, gψVPðq2Þ ¼ gψVP expð−q
2

8β2
Þ is dimensionless cou-

pling parameter (see Refs. [46,73] for more details) and
the undetermined constant gψVP can be determined by
the decay process J=ψ → VP. Following the effective
Lagrangian of Eq (2.30), one can easily derive the
undetermined constant:

gψVP ¼
�
96πM5Γexp

J=ψ→VP

λ
3
2ðM2; m2

V;m
2
PÞ

�1
2

exp

�
λðM2; m2

V;m
2
PÞ

32M2β2

�
;

ð2:31Þ
wheremV is the mass of the vector meson V,mP is the mass
of the pseudoscalar meson P.
The effective Lagrangian for V − γ� coupling can be

described as [46,73,75]:

LVγ� ¼
em2

V

fV
VμAμ; ð2:32Þ

where em2
V=fV is the photon-vector-meson coupling con-

stant, A denotes the EM field. The undetermined constant
fV can be extracted from the decay process V → eþe−:

jfV j ¼
�
4πα2mV

3Γexp
V→eþe−

�1
2

: ð2:33Þ

Then the corresponding TFFs can be read as

fV
ψηð0Þ

ðq2Þ ¼ −i
gψVηð0Þm

2
V

MfVðq2 −m2
V þ imVΓVÞ

exp

�
−q2

8β2

�
;

ð2:34Þ
where ΓV is the full width of the vector meson V. When the
intermediate vector meson is near the on-mass-shell, we
obtain

fV
ψηð0Þ ∼

�Γexp
J=ψ→Vηð0Þ

ΓV

�1
2

BexpðV → eþe−Þ12: ð2:35Þ

It is worth noting that the TFFs fρ
ψηð0Þ are an order of

magnitude smaller than the TFFs fω;ϕ
ψηð0Þ due to the smaller

decay widths Γexp
J=ψ→ρηð0Þ

and branching ratio Bexpðρ →

eþe−Þ as well as the larger full width Γρ [76]. As pointed
FIG. 4. Schematic diagram for J=ψ → ηð0Þγ� in the framework
of VMD. The kinematical variables are labeled.
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out in Ref [72], there is still some open questions for the
VMD model, such as the sign ambiguity in the generalized
amplitude from the intermediate vector mesons (ρ;ω;ϕ)
and the off-mass-shell effects of the coupling constants, and
more discussions could be found in Refs. [3,23,46,72,75].

III. RESULTS AND DISCUSSIONS

The q2-dependent differential decay widths of J=ψ →
ηð0Þlþl− can be expressed as

dΓðJ=ψ → ηð0Þlþl−Þ
dq2

¼ 1

3

α2

24πM3

jfψηð0Þ ðq2Þj2
q2

�
1þ 2m2

l

q2

�

×

�
1 −

4m2
l

q2

�1
2

λ
3
2ðM2; m2; q2Þ;

ð3:1Þ

with ml the lepton mass. Here it should be noted that the
TFFs fψηð0Þ ðq2Þ are taken the forms given in Eq. (2.29) in
the numerical calculations without considering the VMD
contributions; while in the numerical calculations including
the hard, the soft and the VMD contributions, one can just
take the replacement

fψηð0Þ ðq2Þ → fψηð0Þ ðq2Þ þ
X

V¼ρ;ω;ϕ

fV
ψηð0Þ ðq2Þ; ð3:2Þ

with the fV
ψηð0Þ ðq2Þ given in Eq. (2.34). In the following

numerical calculations, the values of the involved meson
masses, full widths, decay widths and decay constant are
quoted from the PDG [76]. The QCD running coupling
constant is adopted αsðM=2Þ ¼ 0.34, which is calculated
through the two-loop renormalization group equation. As
we have already mentioned, the theoretical uncertainties
from ηð0Þ DAs are negligible. So in our calculations, we
choose the Model I of the meson DA in Table 1 of
Refs. [10,12]. For the value of the radial wave function
at the origin Rψð0Þ, we adopt the result of the Cornell
potential model [77–79]

jRψ ð0Þj2 ¼ 1.454 GeV3: ð3:3Þ

For η − η0 system, in the quark-flavor basis, the effective
decay constants fq

ηð0Þ
are parametrized as [40,80–83]

fuðdÞη ¼ fqffiffiffi
2

p cosϕ; fsη ¼ −fs sinϕ;

fuðdÞη0 ¼ fqffiffiffi
2

p sinϕ; fsη0 ¼ fs cosϕ: ð3:4Þ

Here the phenomenological parameters, i.e., the mixing
angle ϕ and the decay constants fqðsÞ, could be determined
by different methods [10,12,13,33,40,84–89]. It is worth
noting that this mixing scheme (i.e., Feldmann-Kroll-Stech
scheme) arises as a special limit of the chiral Lagrangian,
and more details and discussions could be found in
Ref. [90]. Usually, the value of mixing angle is in the
range ϕ ∼ ð30° − 45°Þ. In this work, we take the set of the
parameter values [86]

ϕ ¼ 33.5°� 0.9°; fq ¼ ð1.09� 0.02Þfπ;
fs ¼ ð0.96� 0.04Þfπ; ð3:5Þ

which is compatible with the BABAR measurement [91]
and consistent with the values obtained in other methods
[33,84]. In addition, our previous works [10,12,13] also
indicated that a smaller value of the mixing angle ϕ (∼34°)
is favored in the radiative decays of charmonia with the
framework of perturbative QCD.
With inputting all the parameters, we present the

predictions of the branching ratios BðJ=ψ → ηð0Þeþe−Þ
and their ratio Re

J=ψ in Table I. In the second column,
we give the results without considering the VMD contri-
butions; in the third column, we give the total results
including the hard, the soft and the VMD contributions.
Obviously, one can find that the VMD corrections are small
in the branching ratios, especially for the η0 channel. And
the main reason is due to the very narrow peaks of
resonances and the suppression of the kinematic factor
[see Eq. (3.1)]. In other words, this reminds us that an
intuitive physical picture of the EM Dalitz decays of J=ψ is
mainly governed by the mesons’ internal structure effects
rather than the resonance effects. In addition, although the
individual branching ratio is slightly smaller than the
experiment data, their ratio agrees with its experiment
data. This may imply that the higher order corrections
related to the initial meson, such as the higher Fock-state
contributions and the relativistic corrections, play an
important role in these decay processes.
Besides the branching ratios, the study of the q2-

dependent TFFs is also important. It could provide more

TABLE I. The branching ratios BðJ=ψ → ηð0Þeþe−Þ and their ratio Re
J=ψ .

Without VMD Total Exp [15,16,76]

BðJ=ψ → ηeþe−Þ 0.96 × 10−5 1.05 × 10−5 ð1.43� 0.07Þ × 10−5

BðJ=ψ → η0eþe−Þ 4.00 × 10−5 4.05 × 10−5 ð6.59� 0.18Þ × 10−5

Re
J=ψ 24.1% 25.9% ð21.7� 1.2Þ%

QCD ANALYSIS OF ELECTROMAGNETIC DALITZ DECAYS … PHYS. REV. D 105, 094034 (2022)

094034-7



dynamical information on interactions between J=ψ and
the light mesons ηð0Þ, and offer a powerful probe of their
internal structure. Given the uncertainties from the radial
wave function at the origin Rψð0Þ, the coupling constant
αsðμÞ and the mixing angle ϕ, one can relate the Dalitz
decays J=ψ → ηð0Þlþl− to the corresponding radiative
decays J=ψ → ηð0Þγ due to the similar dynamical proper-
ties, to lead to large cancellations of the uncertainties in the
normalized TFFs Fψηð0Þ ðq2Þ≡ fψηð0Þ ðq2Þ=fψηð0Þ ð0Þ. Even so,
the q2 dependence of the TFFs fψηð0Þ ðq2Þ is still retained in
the normalized TFFs Fψηð0Þ ðq2Þ. In Fig. 5, we show the q2

dependence of the modulus square of the normalized TFFs
jFψηð0Þ ðq2Þj2 in the full kinematic region. In small q2 region,
we find that the jFψηðq2Þj2 is quite steady, and it is in very
nice agreement with the experimental measurement [15].
This indicates that the hard mechanism gives a reliable
description, in which both the quark-antiquark contribu-
tions and the gluonic contributions are included. While, in
large q2 region, the overlap of soft wave functions provides
an intuitive physical picture, and its prediction is in accord
with the recent BESIII measurement [15]. For the inter-
mediate region, the change tendency of the predicted

jFψηðq2Þj2 with VMD corrections is compatible with that
of the experimental data [15]. And it is worth noting that
the small peaks correspond to the contributions from the
intermediate vector mesons. In addition, the peaks in the η0
channel are smaller than those in the η channel mainly due
to the coupling constants gψVη0 < gψVη, which leads to the
suppression of the VMD contributions in the η0 channel.
The small discrepancies in some certain bins maybe due to
the sign ambiguity of the amplitude from VMD model [72]
or/and more resonance effects (such as the excited vector
mesons or other exotic hadronic states [92]). As discussed
before, although the VMD contributions are negligibly
small in the branching ratios purely due to a suppression of
the kinematic factor, they play a limited but significant role
in the TFFs, and the physical picture in intermediate region
is certainly worth further investigations.
By employing the normalized TFFs Fψηð0Þ ðq2Þ, the

differential branching ratios of J=ψ → ηð0Þeþe− are given
in Fig. 6. Similar to the situation in our discussion about the
normalized TFFs, an excellent agreement between calcu-
lated and experimental data is obtained in small and large
q2 regions, and the change tendency of the predicted
differential branching ratio dBðJ=ψ → ηeþe−Þ=dq is
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FIG. 5. The dependence of the modulus square of the normalized TFFs jFψηð0Þ ðq2Þj2 on the dielectron invariant mass meþe− (or, q2).
The blue dots with error bars are our results and the orange dots with error bars are experimental data [15].
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FIG. 6. The differential branching ratios of J=ψ → ηð0Þeþe− in the full kinematic region. The blue dots with error bars are our results
and the orange dots with error bars are experimental data [15].
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compatible with the experimental data in the intermediate
region, where the small peaks correspond to the contribu-
tions from the intermediate vector mesons. As shown in
Fig. 6, one can find that the contributions of perturbative
QCD from the large recoil momentum region (i.e., small
q2) are much larger than the ones from other region.
Specifically, the perturbative QCD contributions are an
order of magnitude larger than the VMD and the soft
contributions. The main reason is that the differential
branching ratio is proportional to jpηð0Þ j3=q, i.e.,

dBðJ=ψ → ηð0Þeþe−Þ
dq

∝
jpηð0Þ j3
q

; ð3:6Þ

where jpηð0Þ j ¼ λ
1
2ðM2; m2; q2Þ=ð2MÞ (easily, q is a mono-

tonically decreasing function of jpηð0Þ j) is the recoil momen-

tum of ηð0Þ in the rest frame of J=ψ , and just this kinematic
factor leads to a strong suppression as jpηð0Þ j decrease.
Performing the corresponding integration, we present the
results of the branching ratios BðJ=ψ → ηð0Þeþe−Þ and their
ratio Re

J=ψ in Table II. It is found that not only the ratio Re
J=ψ

but also the individual branching ratios BðJ=ψ → ηeþe−Þ
and BðJ=ψ → η0eþe−Þ are in nice agreement with their
experiment data. Comparing the results listed in Table I
with those listed in Table II, we find that both the branching
ratios BðJ=ψ → ηeþe−Þ and BðJ=ψ → η0eþe−Þ are
enhanced considerably. This indicates that the dynamical
effects from the initial meson J=ψ may play a key role in
both its EM Dalitz decays and the corresponding radiative
decays. And similar effects have been studied in the
radiative decays of hc [12,13].
Furthermore, we give our predictions of the branching

ratios BðJ=ψ → ημþμ−Þ, BðJ=ψ → η0μþμ−Þ and their ratio
Rμ
J=ψ employing the normalized TFF Fψηð0Þ ðq2Þ:

BðJ=ψ → ημþμ−Þ ¼ 4.61 × 10−6;

BðJ=ψ → η0μþμ−Þ ¼ 1.72 × 10−5; Rμ
J=ψ ¼ 26.7%:

ð3:7Þ

Clearly, the branching ratios of the μþμ− channels are much
smaller than those of the eþe− channels, and the main
reason is due to the shrinking of phase space. Future

experimental measurement is expected to provide tests for
these predictions.
Besides, the EM Dalitz decays J=ψ → π0lþl− have

been studied in the experimental aspect [14] and the
theoretical aspect (such as the effective Lagrangian
approach [33] and the dispersion theory [93]). Similar to
the situation in the radiative decay J=ψ → π0γ [10], we find
that the one-loop QCD contributions to the Dalitz decays
J=ψ → π0lþl− almost vanish as a consequence of the
antisymmetrical flavor wave function of π0 and the QED
contributions are an order of magnitude smaller than the
experimental data. As pointed out in Ref. [3], the processes
J=ψ → π0lþl−, as well as J=ψ → π0γ, may be dominated
by the two-loop QCD contributions which are beyond the
scope of this paper.

IV. SUMMARY

In this work, we present a QCD analysis of the EM
Dalitz decays J=ψ → ηð0Þlþl−, and propose a dynamical
description in the full kinematic region. In the large recoil
momentum region, these processes are studied in detail
with the perturbative QCD approach, in which the internal
structure effects of J=ψ are absorbed into its bound state
wave function and the light mesons ηð0Þ are described by
their light-cone DAs due to the large recoil momentum. In
the small recoil momentum region, the picture of the soft
wave function overlap is adopted to describe these tran-
sition processes. In the intermediate region, the resonance
contributions are estimated by the VMD model. Based on
this intuitive physical picture, the contributions from hard
mechanism, soft mechanism and VMD model in these
processes are explored for the first time. We find that the
branching ratios BðJ=ψ → ηð0Þlþl−Þ are dominated by the
perturbative QCD contributions from the hard mechanism,
while the contributions from the soft mechanism and the
VMD model are strongly suppressed by a kinematic factor.
By relating to their radiative decay processes, the branching
ratios BðJ=ψ → ηð0Þeþe−Þ and the ratio Re

J=ψ are in excel-
lent agreement with the experimental measurements, and
then the predictions for the μþμ− channels are given.
Furthermore, the q2-dependent TFFs and differential

branching ratios are analysed in detail. It is found that
the TFFs with small q2 are insensitive to the light quark
masses and the shapes of the ηð0Þ DAs, which is in line with
the conclusion given in our previous works [10,12,13]. As
shown in the numerical analysis, our predictions of the
TFFs and the differential branching ratios are in good
agreement with the experimental data in small and large q2

regions, and the change tendency of the predictions in the
intermediate region is compatible with the experimental
data. And this further indicates that the dynamical picture
adopted by us is reasonable. In addition, this dynamical
description is quite general, it can be widely used to
dynamically study the similar decays of charmonia.

TABLE II. The branching ratios BðJ=ψ → ηð0Þeþe−Þ and their
ratio Re

J=ψ with the normalized TFFs.

Theory Exp [15,16,76]

BðJ=ψ → ηeþe−Þ 1.38 × 10−5 ð1.43� 0.07Þ × 10−5

BðJ=ψ → η0eþe−Þ 6.06 × 10−5 ð6.59� 0.18Þ × 10−5

Re
J=ψ 22.7% ð21.7� 1.2Þ%
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Lastly, it should be pointed out that there exist the
radiative corrections in the case of electron pair production.
However, a full analysis of radiative corrections seems
highly impractical since it would require a two-loop
calculation. Of course, the radiative corrections are negli-
gibly small in the case of muon pair production [23].
Anyhow, these EMDalitz decay processes not only provide
rich dynamical information about the charmonium physics,
but also could be used for exploring the nature of exotic

hadrons [29] and testing the lepton-flavor universality
(see [94] and references therein for more details). And it
deserves further experimental and theoretical studies.
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