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Contribution of the nonresonant mechanism to the double and single
differential distributions over the invariant variables in the reaction
et+e” > N+N+x°

G.L Gakh,* M. L Konchatnij,T and N. P. Merenkov*

National Science Centre, Kharkov Institute of Physics and Technology, Akademicheskaya 1,
and V. N. Karazin Kharkov National University, Department of Physics and Technology,
31 Kurchatov, 61108 Kharkov, Ukraine

E. Tomasi-Gustafsson®®
IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

® (Received 4 March 2022; accepted 28 April 2022; published 24 May 2022)

The general analysis of the differential cross section and various polarization observables is performed
for the process e* + e~ — N + N + z° assuming that the annihilation occurs through the exchange of one
virtual photon. The dependence of the differential distributions over invariant variables is derived for the
reaction e* + e~ — N + N + z° in the so-called nonresonant mechanism, applying the conservation of
the hadron electromagnetic currents and the P-invariance of the hadron electromagnetic interaction. The
detection in an exclusive experimental setup where the nucleon (or antinucleon) and pion are detected in
coincidence is considered. A number of single and double differential distributions have been calculated

analytically and numerical estimates are given for the ppz° and niiz” channels, in the Born (nonresonant)
approximation, in the energy range from threshold up to s = 16 GeV?2.
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I. INTRODUCTION

The aim of hadronic physics is to understand hadrons as
composite systems of strongly interacting quarks and
gluons. The existing theory of the strong interactions,
QCD, does not apply in the GeV energy region. The charge
and magnetic distributions that are fundamental character-
istics of the hadrons are formalized in terms of elastic and
transition electromagnetic form factors. These form factors
characterize the internal structure of the hadrons and they are
the analytical functions of one kinematical variable g, the
square of the four-momentum of the virtual photon. This
variable can be negative (in the scattering type experiments,
the spacelike region) or positive (in the annihilation type
experiments, the timelike region). In the timelike region
these form factors are complex functions, whereas in the
spacelike region they are real ones. The study of the hadron
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form factors in both kinematical regions is important to get
complementary information about the hadron structure.

The importance of good experimental knowledge of the
nucleon electromagnetic form factors in a wide ¢° range is
quite clear since QCD predictions from a nonperturbative
(low g values) to perturbative (high ¢ values) regime can
then be tested according to their capability to reproduce the
form factor measurements for any g> value. Let us note
that any model where the interaction is based on the
valence quarks can hardly foresee a neutron magnetic form
factor bigger than the proton one. In this connection, one
can mention that earlier predictions based on the vector
meson dominance [1,2] and Skyrme [3] based models
give |G| > GY.

In the spacelike region the charge and magnetic form
factors were determined separately, both for the proton and
neutron, in a wide ¢° range (see, for example, review [4]
and references therein). In the timelike region, the annihi-
lation cross section for e 4+ ¢~ — p + p was measured at
Novosibirsk in the threshold region [5,6], by the BABAR
Collaboration at SLAC [7,8] and by the BESIII collabo-
ration at Beijing in several works, using initial state
radiation [9,10] and beam scan method [11] providing
the first separation between electric and magnetic form
factors. Precise data on the neutron effective form factors
have been also published [12]. Unexpected features where
highlighted, that deserve more accurate investigations.
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Among them, (i) in the explored energy range
(¢*> < 6 GeV?), the inequality G%, > G4, takes place;
(ii) the differential cross section measurement suggests
that the G and G’,; are comparable, at threshold; (iii) the
steep decrease of the proton form factor near the threshold,
and the presence of a dip in the ete™ — hadrons in the
same region, suggest the presence of a narrow resonance
just below the threshold (this state is consistent with an NN
bound state, the so-called baryonium) [13]; (iv) the cross
section and effective proton form factor show oscillating
behavior [8,14] (BABAR Collaboration) confirmed by the
BESIII data. The neutron data from BESIII confirm that
similar oscillations exist but are shifted by a phase
Ref. [12]. A review of the form factor data collected by
the BESIII collaboration can be found in Ref. [15].

In this work we focus of the “inelastic” annihilation
reaction et + e~ — p + p + x that is related by crossing
symmetry to the reactions (i) # + N — ¢* + e~ + N con-
taining information on timelike from factors as suggested in
Ref. [16], and investigated by the HADES Collaboration
[17]; (i) N + N = e* + e~ + 7z that allows to determine
FFs in the physical and even unphysical region (see [18]
and references therein) and will be investigated in PANDA,
FAIR; (iii)) as well as e~ 4+ N — ¢~ + N + . Current
measurements at electron-beam facilities accumulated a
considerable amount of precise data of the meson photo-
and electroproduction reactions on the nucleon target,
opening the opportunity to make quantitative study of
the N* structure [19] and extract electromagnetic transition
form factors. Recent experiments have suggested new N*
states which strongly couple to various reaction channels
but not to the dominant zN channels [20,21]. The study of
the e~ + N — e~ + N + z reaction is a privileged channel
to investigate N* spectroscopy. The description of the
experimental results in the framework of constituent quark
models is not satisfactory in terms of “missing resonances.”
For example, the prediction of a substantial number of N*
resonances around 2 GeV/c?, has not been confirmed so
far [22]. The reason may be the weak coupling of these N*
states to zN and yN states, stressing the need to investigate
other reactions.

The study of the different transition form factors in the
timelike region is very important. The measurement of the
ete™ reactions allows one to study also the excited hyperon
states, such as A*,X* and E* [23-25]. The corresponding
experiments at the Beijing Electron-Positron Collider
(BEPC) [26,27] started already about 20 years ago. Up
to now, the N* production from e™e~ annihilations has
been studied only around the charmonium region. The
experimental results on N* from ete™ annihilations and
their phenomenological implications can be found in the
review [28].

BES/BESII/BESIII Collaborations have published their
results on N* production from the decays of the charmo-
nium states [28]. Some interesting results on the N*s

production have been obtained. The N*(1440) peak was
observed for the first time directly from zN invariant mass
spectrum (due to the absence of the strong A peak). Besides
several well-known N* resonances around 1520 and
1670 MeV, three new N* resonances above 2 GeV were
found using partial wave analyses. The measurement of the
w(2S) = ppa° channel (by CLEO Collaboration) found a
similar strong N*(1440) peak [29]. There is no obvious
N*(1440) peak for ete™ — ppa° in the vicinity of the
w(3770) [30].

The timelike region became accessible with the advent
of high-precision, high-intensity e*e™ colliders at inter-
mediate energies. New data from BESIII, collected in a
high-precision energy scan in 2015, will offer improved
precision over a large ¢” range. The coming upgrade of the
BEPCII collider up to c.m.s. energies of 4.9 GeV will allow
one to study more details of the N* production. The topics
which are planned to be studied at BESIII in the near future
can be found in [31].

The process ete™ — ppx® has been investigated at the
BEPCII collider (China) at the vicinity of the y/(3770)
resonance [30]. The cross section of the decay y/(3770) —
ppn’ is measured taking into account the interference
between the continuum and resonant production ampli-
tudes. The continuum cross section was described by a
function C/s* with unknown exponent A. The aim of the
experiment was to determine the width of the decay
w(3770) = ppn° since these data are required for pre-
paring the PANDA experiment [32] in which investi-
gating, in particular, the charmonium and charmonium
hybrid states [33] was planned. Later [34], the BESIII
Collaboration measured this reaction in the vicinity of the
Y(4260) resonance, more precisely in the energy range
/s = 4.008-4.600 GeV. No resonant structure is observed
in the shape of the cross section ete™ — ppa’.

In this paper, we open the series of works devoted
to the general analysis of the differential cross section
and polarization observables in the process e™ + e~ —
N + N + 7°, where N(N) is proton (antiproton) or neutron
(antineutron) in the one-photon-annihilation approxima-
tion. We intend to account for the continuum (nonresonant)
and resonance (with different possible vector mesons or
excited baryons in intermediate virtual states of Feynman
diagrams) contributions and concentrate on invariant var-
iables distributions. In this part of our work we consider the
general analysis and investigate in details the nonresonant
contribution.

The paper is organized as follows. The general structure
of the hadronic tensor for the case of unpolarized
final hadrons and polarized nucleon is given in Sec. Il A.
The invariant amplitudes of the process e™ + e~ — N +
N + 7% are introduced in Sec. II B. Section I C contains
the description of the nucleon polarization 4-vector in terms
of the 4-momenta of the final particles. Section III contains
the discussion of the kinematics. The model for the
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et + e~ = N+ N+ 7° reaction mechanism is given in
Sec. IV. The discussion of the obtained results is given in
Sec. V. Conclusions are set in Sec. VL.

II. FORMALISM

The reaction
e (ki) + et (ky) = N(py) + N(py) +2°(k), (1)

in the one-photon-annihilation approximation for the non-
resonant mechanism is described by the two Feynman
diagrams of Fig. 1. The notation of the particle four-
momenta is indicated in parentheses. Here ¢ = k| + k, =
p1 + p> + k is the four-momentum of the virtual photon
and k* = m?, p? = p3 = M?, m(M) is the pion (nucleon)
mass. Further, we neglect the electron mass where it is
possible.

The matrix element, in this approximation, can be
written as a contraction of the leptonic (el,) and hadronic
(eJ,) currents

62

M:—Zlﬂf
q

W

I = v(ky)yu(ky). (2)

Then, the square of the matrix element is

167202

|M|2: q4

L"H,, L*=Fr, H,=JJ;. (3)

A. The structure of the hadronic tensor
The hadronic tensor H,, has the following general form

for the case when the polarizations of the final particles are
not measured:

H/w(o) = Hl.@;w + H27€/,tl~<u + H31~7/413v + H4(pyl~<1/ + 1311]};4)
+iHs(Puk, = puk,). (4)

where g;w = 9w — qulJ/qz’ kﬂ = k/l - (k : Q/q2>qﬂ and
Pu=ru—=(P.a/a*)qu. P =P = P2 H; (i=1-5) are
the so-called structure functions depending on three invari-
ant variables s, 55, and s = ¢> (see below).

The leptonic tensor L,, has the following form in the
case when the electron beam is polarized:

FIG. 1.

The simplest Feynman diagrams which describe the
continuum (nonresonant) contribution to the process (1); (a) with
intermediate nucleon, (b) with intermediate antinucleon.

L/u/ = _ng/w + z(klﬂkh + kll/k2}4) + Zime(ﬂyrl('I)’ (5)
where (uvab) = €,,4,
the electron (we chose ¢
electron mass.

At chosen normalization, the differential cross section of
the process (1), in terms of the leptonic and hadronic
tensors, has the following form (further we use n* = ki /m,
and neglect the electron mass for the initial particles
electromagnetic current):

a®b’ and n,, is the spin four-vector of
0123 — —ep1p3 = +1), m, is the

2

doc = ——L"H, dR;,
o ﬂ3q6 ur 43
d3p1d3p2d3k
dR; = —o(k ky — — - k), (6
3 2E12E22E(1+2 pi—p2—k), (6)

where E| (E,) is the nucleon (antinucleon) energy and F is
the pion one.

In the case when the nucleon polarization is measured,
we can use the following form of the hadronic tensor:

1
H, =~H,0)+T

w5 s
where the tensor 7, depends on the nucleon polarization

4-vector $* and can be written as the sum of the symmet-

rical Tf,‘:) and antisymmetrical Tff,ﬂ)

part can be written as follows:

parts. The symmetrical

T4 (S) = Im{ Tk + Ty Ko + T P + T By + TG

+ T K" +TpP + T pKP"Y, (7)
where
kY = R (vkqS) + K (ukqsS) :
k + & (upqsS).

Py = p*(vpgS) + p* (upqs).
G =g (kpgS), K™ =K'k (kpgsS).
P = prp*(kpgS),  KP" = [k'p* + p"k"](kpgsS).

a’b?c’,  (abcd) = €,,,a"b"c?d°.

(pabc) =€

HvQo

The antisymmetrical part is

T3 (S) = Re{T,(4vgS) + T s (pS) (pq)
+ qus (qS) (.MUPQ) + Tkps (pS) (,Lll/kQ)

Note that the form of the tensor T,(,,Y,) given by Eq. (7) is not
unique, and this point is discussed in Appendix A.
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B. Invariant amplitudes

The general form of the matrix element (2) can be chosen
by analogy with the process of the pion electroproduction
on the nucleons [35]. If the gauge invariance and the space
parity conservation take place, we have

2
e _ .
M =7 o Z8 u(p)rsMiv(pa)As vs=i’y'v*rd, (9)

where ¢, is the pion wave function and the M; structures
have the following form:

1
M, :EWVDFM’ M, :PﬂkyFﬂw
M3=y"k'F,,

Ms=q"k"F,,,

My=(y"p* =2My"y")F

pws
M6:nyVF/wv Fyu:lMQz/_lqu' (10)
The invariant amplitudes A; (i = 1-6) are the complex
functions of three independent variables: for example,
g*—the square of the total invariant mass of the final
hadrons—and s, = (p;, + k)?>—the square of the invari-
ant masses of the Nz° and Nz° systems.

Equations (9) and (10) mean that, in the general case, J,
can be written as follows:

1, = ofa(p1)rs0,v(py). (11)

where the matrix Oﬂ has the form

A

0, = (k-qp, — p-qk,)A; — ¢*)k,As

+ (k- qAs + p - gAs = ¢*Ag )y,

+ (A6q, — Aup, — Ask,)

+ (A) = 4MAY) (7,9 — q,.)- (12)

C. The nucleon polarization four-vector

In the rest frame of the nucleon (p; = 0) its polarization
four-vector has the form Sy = (0,n),n? = 1, and, in the
general case, the three-vector n has three independent
components: two in the plane (q,k) and one along the
three-vector [k x qJ. It means that in an arbitrary Lorentz
system, the four-vector S* can be expressed by means of four-
vectors of the particle momenta and expanded by three
independent four-vectors: longitudinal S, transversal S7,
and normal SY.

Let us choose the longitudinal polarization such that in
the rest frame n = —q/|q|. It can be expressed in terms of
four-vectors p/ and ¢, and has the following form:

K=\/(q-p)* - ¢*M?,

52 =—1. (13)

Note also that in c.m.s. of the process (1), where q = 0,

St — <|P1| ElPl)
L=\ 7, .
M " Mip,|

The transversal polarization was chosen to be orthogonal
to the longitudinal one, that is

S-S =0, -S;-p=0, S;p-q=0, SE=-1.
The relation S7 - ¢ = 0 indicates that the polarization four-
vector S is expressed in terms of the four-vectors py, p,,
and k. Only two four-vectors are independent since we have
the following relation p; + p, + k = 0. Choosing p; and k

one can obtain

(k- pi—q-pik-q)p +[(q- p1)* — ¢*M?]k*

St =
r KN

, (14)

where

N = /= (ukp1q)(ukp:q),
N? =2k-qk-piq-pi—¢*(k p)* =M (k- q)’
—m*(q-p1)* + g*M*m?.
In both coordinate systems (the rest system and c.m.s.)

the four-vector S% has no time component and its space
component is

[q x [k x q]]
[q x [k xq]]|’

[p1 x [k x py]]
|[p1 x [k x py]]

s

in and c.m.s. and rest frame, correspondingly.
It is clear that the normal polarization is

ﬂ7<ﬂkP1Q): [k x py] CmLs
Sv = <°’|[kxpl]|)(' 5

_ (o laxKk]
= <0, m) (rest system). (15)

III. KINEMATICS

We define five independent invariant variables as fol-
lows:

s= (ki +k)* = (p1 + pr + k)%,
st = (p1+ k) = (ki + ky = p)?
s2= (P2 + k) = (ki +ky = p1),
t1= (ki =p1)* = (P2 +k=ky)?,
= (ky = p2)* = (p1 +k=k)*. (16)

The scalar products of the 4-momenta in the process can
be written in terms of these invariants as

’
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2k1'k:~5‘1+t1—t2—M2,
2p1 pa=S—5—s,+m?, 2k, ky=5—2m2,
2k1-p1:M2+m%_tl, 2k'P1251—M2—m2,

2k py=s—si+t—mi, 2ky-py=s—s3+1—mZ,
2k2'k:S2+t2—t1—M2,
2ky - py=M*+mi -1,

2k- py =5, —M?>—m?. (17)

The kinematical regions allowed for the invariant variables to be obtained from the condition of the positivity of the quantity
(=A) = (kikyp1 p2)?, where A is the Gramian determinant. It has a form

2m2 s —2m? M?* 4+ m2 —t, S—8 +t,—m2
1|s—2m2 2m? S—S,+t,—m2 M*+m:—t,
16| M? + m?2 — 1, S —5,+t, —m> 2M? s—8; =5y +m?|

S—8 4+t —m: M*+m2-t, s—5§ =S, +m> 2M?

Taking into account the azimuthal symmetry relative to the q* =s, pr=2M?> —m? + 5, + 55— 5,
line of the colliding electron-positron beams, the phase §1—§ s; 45
. . . _ _S1— % ) 2
space of the final particles can be written as [36] qg-p=k-p 5 k-q= —H M-,
d1:S2—M2, dzzsl—Mz.

- T dtl d[zdsldSQ
C16(s—2m2) A

The double differential distributions are calculated as
follows. To study the (s,%,) or (s,,f;) distributions, it
is sufficient to measure one of the 4-momenta p; or p,,
respectively. To investigate the (sy,s,), (s1,11), (52,1%),
(11,1,) distributions, both p, and p, have to be known.

dR, (18)

Note that the electron mass can be neglected in our
calculations, with a very high accuracy.

All the scalar products in the hadronic part depend on the
variables s, s;, and s,

Let us consider the range of the invariant variables and
study the (sq,s,) distribution. In this case, it is needed to
integrate over #; and ¢,. From the positivity condition of the
quantity (—A), we find

_A(s, 51,5, ) + 2\/B(s, 51,52)C(s,81,1)

o <t <ty e =

(s + 51 — M?)? — 4s5,

El

A(s, 81,82, t2) = m2[2M* — M?(3s| + 5,) + 555 — 2m*s — 51 (s — 51 — 5,)]

— M?[m?s + 51(55 = 25 — 1p) + (25 — 55)] — to[s(s) + 55 — 5 = 2m?) + 575,
+m?s(s —s1) + MO — M*(s + 51 + 1) — 515,(5 — 51),

B(s,51,5,) = 5152(81 + 55— 8) +2M° — M*(s + s, + 5, + m?)
+ M?[s55 + 51(5 = 25,) + m>(s; + 5, — 28)] + m*s + m?[s(s — 51 — 55) — 515,],

C(s,51,1p) = s[ta(s — 51 + 1y — M?) + M%s|] + m2[M* — M?(s + 2s1) — s(s1 + 2t2) + s3 + m2s].

(19)

The expression under the square root in Eq. (19) factorizes, and the limits on the variable #,(s,) can be found from the
condition C(s, sy, %,) >0 [B(s, s, s») > 0]. For the variable 7, they read

Iy <t <1y, >

L5 2 4mg 2\2
Iy == |M*+2m; —s+ s = 1- g [(s+s; —M*)* —4ss,]|.

094029-5



G.1. GAKH et al.

PHYS. REV. D 105, 094029 (2022)

The s, limits are

§3_ S5y <824,

szizzislw(s,sl)i¢F<s,s1>c<s,s1>>,

D(s,s1)=M*—M>(s=2s,+m?)+m?(s+s,)+5,(s—51),
F(s,s1)=(s+s; —M?)?—4ss,,
G(s,s1)=(s; +m>—M?)>—4m?s,. (21)

Both expressions F(s,s;) and G(s,s;) have not to be
negative; therefore,

(m+M)* <5 < (Vs—M). (22)

The inequalities (20), (21), and (22) define the regions
(s1,5,) and (sy,1,) which are plotted in Figs. 2(a) and 2(b),
correspondingly. Because of the symmetry of the Gramian
determinant with respect to the (s, 2 s,, 1, 2 t,) permu-
tations, one can apply these inequalities to limit also the
region (s, 11).

It is interesting to investigate the distribution over
the nucleon-antinucleon invariant mass squared s;, =
(p1 + p2)? =2M?* + m*> + 5 — 5, — 5,. For this aim, we
define first the region (s, s1,) and apply the inequality [see
Eq. (19)]

B(s,sl,sz:2M2+m2+S—S1—512) >0

to obtain the limits on the s variable at fixed values of the
s1, variable

S1- <851 <814,

S

(c) (d)

ty S12

FIG. 2. The kinematical region at s = 10 GeV? for the double
invariant variables: (a) (sy,s2), (b) (t2,51), (© (t2.11),
and (d) (Sl,slz).

Taking into account that the expression under the square
root in Eq. (23) has not to be negative, one finds the limits
on the s, variable

AM? < 515 < (Vs —m)*.

As concerns the region (#;,7,), the corresponding
boundaries are more complicated and the analytical expres-
sions for them require additional short notation. We
introduce

| 2u U—v+x u+w-—y

G(x,y,z,u,v,w):—i u—v+x 2x wHx—z]|,

u+w—-y wH+x—z 2w

with s7 < sy < s, and

S+ :E 2M2+m2—|-s—s|2
4M?
+ \/<1 ——> [(s +m? —515)> —4m s]] (23)
S12
|
g = (a £D)

(m? _S2+)2 — 415,

b= 2\/G(S, 11,80, mg,mg, M*)G(ty, 55, 1, M, mz, m?),

a=sy[s(ty —m?) + M*(t, — M?) — sy15] + s(ty55 — 2M?1) + m2[m2(s — 2M?)
+m*(s = 2M? + 25,) + M?(M?* + 1, + 2s3) + st_ — s,(t. + 5],

—AA AA b
1242 + ay <<l 1‘4'2 |
2f2 2me

’

where

094029-6
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ay =t_(ty—m2) +m*(=M?*+m2 + 1,) + M°t_,
by = s(t, — M?) +m2(s +2M?), 55 =5, %1,
ty =t 1, A(x,y.2) = x% = 2xy = 2xz + y* = 2yz + 2%,

Mo =/ Mt12,mi M?), Aa =/ Aty 1. m?),

Ay = [ A(s,m2, m2).

The boundaries of the region (7, t,) are determined by the
equation

—/112/12 +a - /13‘/11 + bl
21, - 2md

(24)

At such large energies, the electron mass cannot influence
the kinematics. For the sake of simplicity, the following
formulas are derived in the limit m, — 0. Equation (24), in
this limiting case, reads
H(M?*=s—1) (ty—=M*)(Ayp +m?) + tot_ + M>t,
M? — n N 212 ’

and gives
h<ty<Iy,

ty = 2 azﬂ:lgg )
2M* = 1) (M* =5 —1y)

a» = M*2t)(s + t;) — m*s + 2M*
+ sty (m?* —s—1,),

by = s{M*[M* + 4t,(t, — M?) + 2t,(s + 1;)]
+83(s+ 1) (s + t; —4M?) + m?(1; — M?)
X [m?(t) — M?) +2M* = 21, (s + 1,)] 7,

a+b
tl< 3 % az =

=Vs \/s— m+2M

The regions (t,, ;) and (s, s1,) are plotted in the lower
row in Fig. 2.

In addition, the dependence of the differential cross
section on the invariant mass of the NN system is also of
the utmost interest. It depends on the pion 4-momentum k
only, and allows, at least, investigations of the double
distributions over invariants 7, = (k; —k)2,s1,=(p, + p»)?

— M?(s + 41)]

a3—b3

2M(M + m) +m? — s,

Hy =2{[m*¢*+ (p- q)* -

+4Mp - qRe[k - gAs + p - qAy — *AglA},

or 7, = (ky — k)2, s1,. To perform the corresponding cal-
culations, it is necessary to investigate the Gramian
determinant using 7; (or 7,) and s;, of five independent
invariant variables. In the present paper, such kind of
distributions are not considered and will be studied in a
future publication.

IV. CONTINUUM (NONRESONANT)
CONTRIBUTION IN PROCESS (1)

The nonresonant (continuum) contribution, to the reac-
tion ete™ — NN7°, is described by the diagrams given in
Figs. 1(a) and 1(b). The current, corresponding to the
emission of the 7° meson by the nucleon and antinucleon,
has the following form:

N
T3 = gonni(p1) [d—IFiY(pl —q+M)ys
PRI
spn@-p o). e

where d| = ¢> —=2q - pi. dy = q* = 2q - pa, gy is the
coupling of the zZ°NN interaction and

1
FN
2M (q ) }ll/q ’

0y =FY(a*)7, -
O = (Vury = 17,)/2. FY(¢°) and FY(q%) are the
Dirac and Pauli nucleon electromagnetic form factors
which are related to the Sachs magnetic and electric
form factors by Gly(¢?) = FY'(¢?) + FY (%), GY(¢?) =
FY(q%) + (¢ /4M°)F5 (q).
The amplitudes A;(i = 1-6), corresponding to the dia-
grams in Fig. 1, can be written as

2QONN
A = z k- 2\ _ FN(g? ,
V== alFY (@) = FY ()

2QONN _9°NNYG P
A, =—F FN Az = z FY ,
=L@, A= TR ()

gﬂoNNk q N

F3 , As = A = 0. 26

=TS A=A (26)

The hadronic structure functions in Eq. (4), which are
independent on the nucleon polarization states, can be
written, in the general case, in terms of the invariant
amplitudes as follows:

(k- @) |Al? + PPk - qAs + p - A4 — ¢*Ag)?

A=A, —4MA,, (27)
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Hy =2{(p- q)*|A4* + [¢*(P* + ¢*) = (p- 9)*]|As]* + (g = k)*[(p - @)*|As)* + ¢*|As]?]
+ (A6l = [Aul*)} +4Re{~p - q(p - gAs + ¢*As)A}, + p - q(¢°A;s = 2Mp - qAy)A]
+ @ 2M(p - qAs + ¢*As) — ¢*As — p - qAJAL = 2M P p - gALAS
+@*p - q(q = k)*Ay = 2M(q*As + p - qA4)]AS} (28)

Hy =2{(k- q)*[(q = k)*|A: > = |A3 "] + @A * = ¢* A + [(k - ¢ — ¢*)* + ¢*p?]|Aal?}
+4Re{k - q(q* — k- q)Ar (A7, +2MAY) + q*(2MALAT, + k- gA3AQ) ), (29)

Hy =2{k-qp-q(|As]> = (¢ = k)*|A:*) + p - q(q® — k- q)|A4|*} + 2Re{2M g’k - gAA;
+[p-q(2k- g —q*)Ar + 2Mq*As — ¢*(q* — k- q)As]AT,
+ ¢*[(k- g — ¢*)Ay — 2Mk - gAy — p - A3]A; + ¢*[—k - (g — k)?A,
+2M(k - q = q*)AJAS 4+ 2Mp - q(2k - ¢ — ¢°) Ay + ¢*(¢° + p* — k- q)A3]AL}, (30)

Hs = =2¢°Im{[2MA; — q - pA; — (¢* — k- q)As]A}, + [-2Mk - qA; + q - pAs
— (PP 4+ > — k- q)AJA; + [k - q(q — k)?Ay —2M (k - g — ¢*)A4)A}
+ [(¢* — k- q)Ay + 2Mk - gA)A; — 2Mgq - pAyAL}. (31)

The relations between invariant amplitudes and hadronic structure functions in Eqgs. (7) and (8), which depend on the
nucleon polarization states, are more complicated and are given in Appendix B.

Using the relations (26), we obtain very simple expressions for the contribution of the nonresonant mechanism in terms of
the electromagnetic form factors (further we will omit the upper index of the form factors keeping in mind that they are
different for pp and ni)

H, = 8M*G*(k - q)*(m*q* — d,d>)|Gy(q%) |,
2

Hy = =2 7 (AP = P1Gu () = (- 91 hlGu ) = Gl

+4m*M?*(1 = 7)(|Ge(q*)]* = 71Gu(q*) )]},
2

Hy =2(k-q) L [4m*M*(1 = 7)(|Ge(q*) P = 7|Gu(g*) ) + d1d1|G i (q) = Ge(g?) P,
H4 = —%.Z 3,
Hs =0, (32)

where G = g,oyy/(Md,d,), © = ¢*/(4M?).
The product of the leptonic and hadronic tensors, which define the matrix element squared (3), reads

L, H"(0) = =2sH| + [=sm® + (s) = M* + 1; — 1) (s5 = M* + 1, — 1) |H,
+ {s[m? =2(t; + 1)] = (s1 + M> =1, — 1) (52 + M* —t; — 1) } H;
+2[(t; — 1) (s + 1y + 15 = M?) + 51 (15 — M?) — 55(t; — M?)|Hy + 8(k1kyp1 p2)Hs, (33)

where we used the electron polarization four-vector # = k;/m, and went to the limit m, — O.

The double differential distributions over (sy, s,), (s1, 512) and (#;,1,), (¢1, s,) can be obtained analytically. The first two
distributions have simple forms:
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9o CIN oGP b E PGy = Gul 4 1 lsGy — 4MG )
dsids,  24zP, (s —am?)2 3M Tk M ELE
Py = (51 = M?)*(sy = M?)*s%,
Py =8M8 —16M® (s, + 5,) + M*[8s,5, + 10(s] + 55)* — 8m?s]
—2M?(s; + 85)[4s152 + (51 + 52)% — dm?s] — m?s[3(s) + 5,)% — 45152,
Py = —8MS + 4M*(s +m?* + s, + 55) — 4M?[(s + m?)(s; + 52) — 25,52]

+S(S1 +52)2 —4S182<S1 +SZ —mz),

Py = AM*[M* — M?(s| + s5) + 5152

The (s1, 51,) distribution is obtained from Eq. (34) with the
replacement s, — 2M?* + m? + s — 5, — 51,. The analyti-
cal forms of the (,, #;) and (¢, s,) distributions, are much
more involved and not reported in this paper. Note that all
double differential nonresonant cross sections are symmet-
rical under the substitution s; <> 55,1 <> t,.

A. Choice of the form factors

It is obvious that a key moment in our calculations is
the choice of the electromagnetic form factors in the
timelike region, and the corresponding data used to fit
different theoretical models of the form factors. Our
numerical results are obtained for two different paramet-
rizations of the two-component model based on the vector
dominance (VDM) at low and intermediate energies and
predictions of the perturbative QCD at the large ones.
Recently, precise data were obtained by direct beam scan
[6,11,12] or radiative return measurements of the e +
e~ — N + N cross section [7,8,10] from the threshold up
to /s = 6.5 GeV. A general parametrization including
these data is not yet available, but a comparison with the

0,0014

0 g*(Gel?) 0 g2(GeV?)

== Rl i\
—AE] ¥

0011

0,001

10 42(Gel'?) 1 2(Ger?)

—m?s]. (34)

parametrization used here was done in Ref. [37], showing
that they give a description of the new data on the
individual proton form factors, even without refitting, that
is sufficient for the present purposes. However, it is not
evident that these simple parametrizations based on a few
parameters will be successful in describing simultaneously
the new precise sets of data, on proton, neutron, electric,
and magnetic form factors in both spacelike and timelike
regions.

To account for the VDM properties, the Dirac (F) and
Pauli (F,) form factors are divided by the isotopic vector
(FY,) and scalar (Fy ,) parts which are normalized in such a
way that

P __
F1,2_

(FY,+ FY5), 1y =5(F, = FY,).

N =
N =

In the parametrizations used here, the vector part is ful-
filled by the p meson and the scalar part by @, ¢ meson
contributions.

The first parametrization is taken from the papers [1,4,38]
and is labeled as the “old” one. The second parametrization,

19 - GE

P

=~ IRelGg,l| 014
Im(Ge, |

> Im* 0,01

0014 o

0,001+

0,001

10 qZ(GeVZ)

-~ IRe[Ge,ll
[Im[Ge, I

1b qz(GeVz)

e GEp

™ - RelGg,l
- ~Re” Im(Ge,l

014!

0,001 4

0 g2 (Geb?) 0 42(Gel?)

FIG. 3. The moduli of the real and imaginary parts of the proton and neutron electromagnetic form factors as calculated from
Refs [1,4,38] (“old” version, upper row) and [2] (“new” version, lower row). The notation (Re, Im)*(Re, Im)~ means that the real or

imaginary part is positive (negative).
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labeled as “new,” is taken from [2]. In Fig. 3 the real and
imaginary parts of the electric and magnetic form factors of a
proton and neutron for both parametrizations, old (upper
row) and new (bottom row), are plotted.

In Fig. 4 the moduli are shown for comparison with the
original papers. As one can see, above the threshold of the
process (1), the moduli of all form factors, except G, are
larger for the old parametrization than for the new one. This
characteristic affects directly the corresponding values of
the differential (see Figs. 7 and 8) and total cross sections.

In Figs. 5 and 6 we plot the double differential
distributions for the 7°pp— and 7°n#i channel at different
|

2.2
do o gzp)p

Kl 2m2S(S—4M2)(Sl—M2)2

energies of the colliding electron and positron beams. At
chosen parametrization of the form factors (here we use the
old version), the differential cross section of the z°nn
channel is systematically larger than the 7°pp channel (the
same is valid also for the new version). In our numerical
calculations we chose the value of the neutral pion-nucleon
constant interaction as 972#’ NN/(47z) = 13.5 [39].

The integration of the double differential cross sec-
tion (34) with respect to the variable s, at fixed value of
§1 Or sy, in the limits (21) or (23), gives the single
differential cross section over s; or s;,, respectively,

—— =P LGP — G2 |2M2D | =
ds, 24zN {' w = Gl [ (s%

DK,

K > +4M2(S1 —MZ)KLL:|

+ [4M2GY, — sGY,|? {——K +2(s) — M?)(s —2s) —2M* + 2m2)L}
S

+ |GY |2 (s — 4M?)? [D(
ST

10 .

0,15

0,014

0,001 +

Q
N
4~
Q
xQ
~
(3]
~

014 I
0,014 I
0,001 - L
q’(GeV'?)
2 10

K5 3m?s(s, — M?)?
e L il

)+ 2050 =G = 0 = sl

10 .

0,15

0,014 s
2 2
0,001 - q (GelV) |
2 10
10 :

0,1+

0,01 4

0,001 4

q’(GeV?)
2 10

FIG. 4. Moduli of the electromagnetic form factors as given in the cited papers [1,4,38] (old version) and [2] (new version).
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N = s3(s — 4M?)* (s, — M?), K = M°® = 2M*s; + M?(s? = 3m?%s) + m%s(s — s; +m?),

D= \/M4 —2M?(s+s1) + (s —5)° \/M4 —2M?(s; + m?) + (s; — m?)?,

C-D
Ky = —MO(s + 4s;) + M*[s*> + (s, +m?)(s +4s))] + M*[s; (45 — 25> + 55,) — m>(s> — 255, + 8s2)]
+ 51[51(s% = 557 — 4s?) + m*(—s? + 555, + 4s7)],
Ky = —=MO(s — 8s1) + M*s (s — 16s1) + M>*[s?(s + 8s1) + 3m>s(s — 4s,)]
— s[m*(s = 4s,) + m*(s* = 555, + 4s%) + 53],
K3 = —M® + M*(s + 55, + m?) — M?[s;(2s + 7s;) + m*(s + 2s)] + s1[s1(s + 3s1) + m>(s; — 25)],
K; = —4M°® + M*(s + 8sy) + M?[4m>s — 25, (s + 2s1)] + s[s? — 2m>(s — 25, + 2m?)]. (35)

C+D
Lzln( + > C=M*—M*(s+m?) +s,(s—s;) +m*(s+s,),

FIG. 5. Double differential distributions of the process (1), for the z°pp channel and the “old version” of the form factor
parametrization over the dimensionless invariant variables: (xy,x;),x;, = s12/s (first row), (x3,x4), X34 = 11,/5 (second row),
(x3,%,) (third row), and (x1,x},), %1, = 515/ (fourth row), and for different values of s: s = 5 GeV? (first column), s = 6 GeV?
(second column), s = 10 GeV? (third column), and s = 16 GeV? (fourth column).
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FIG. 6. The same as in Fig. 5 but for the z°n# channel.

The distribution, over the invariant mass squared of the proton-antiproton system, can be written in the following
form:

2
do a gzopp D, 0, or

= - 8M?|G, — GEJ? - L
dS12 247[S3(S - 4M2)2 | M E| S12Q s+ m2 ) !

(S —4M2)D1 _ 2(S +4M2 - 2S12) L1:|

+2m2[AMPGY — sGF 2[
| E ! ) s+m?—sp,

6m*sD,  4[m?(s —2s15) + m* + (s — 512)?] L
- + 2 _ 1 5
Q s+m S12

D, = \/ S12(s12 = 4M2)lo, lo=(s+sp— m2)2 —4ss12, 0= IOM2 + mzssu,

Q1 = —m?ss15(35 = 2515) + 2M*[2m?(s? + 5515, — 53,) — m*(s — 515) — (s — 512)°],
Qp = 4M*[m* —2m*sy, + (s — 512)%] — s[m* + m?(4s — 6515) + (s — 512)%].

L = ln([Dl + s12(s +m? — Slz)]z)
45,0

+1G4 PG -4 |

(36)
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FIG. 9. Total cross sections for the z°pp and z%n#i channels: left panel corresponds to the old version and the right panel to the

new one.

As noted above, the (7, #,) double distribution is derived
in analytical form but the single distribution over ¢ is
obtained by numerical computation. In Figs. 7 and 8 the
corresponding differential cross sections are plotted at
different energies versus the dimensionless variables xi,
x3, and x,, for the 7°pp and 7z°nii channels, respectively.

The total cross sections for the 7°pp and 7°nii channels
are shown in Fig. 9.

V. DISCUSSION

About 20 years ago, the BES Collaboration initiated a
systematic study of baryon resonances [26,27] at Beijing
Electron-Positron Collider (BEPC). The major experimen-
tal results obtained on N* from e*e™ annihilations and
some of their interesting phenomenological implications
are reviewed in [28]. The reaction et + e~ — p + p + 2°
was recently measured with the BESIII detector at the
BEPCII collider. In the experiment [30], this reaction had
been studied in the vicinity of the w(3770) resonance. The
Born cross section of et + e~ — w(3770) = p + p + n°
has been extracted allowing the continuum production
amplitude to interfere with the resonance production
amplitude. Later, the measurement of this reaction was
performed at higher energies [34], namely at 13 center of
mass energies, /s, from 4.008 to 4.600 GeV [in the
vicinity of the Y(4260) resonance].

The upper limit on the Born cross section of the reaction
ete” —» R — ppn®, where R is the w(3770) or Y(4260)
resonance, is determined by a least squares fit of

ml’ 5

0o(5) = [\/Goan + i~ xp(id)

— e
—m* + imI’
where o,,, and oy represent the continuum cross section
and resonant cross section, respectively, and o.,, can be
described by a function of s, 6., = C/s*, where the
exponent 4 is a priori unknown. The parameter ¢ describes
the phase between resonant and continuum production

amplitudes. The values of C, 4, o, and the interference
phase ¢ are free parameters of the fit. So, the precision of
the determination of the resonance parameters depends on
the knowledge of the continuum cross section.

The total, single, and double differential distributions are
calculated for the reactions ete™ — ppa’ and ete™ —
niizr® using the nonresonant (continuum) contribution
which is described by the diagrams given in Fig. 1.

The analytical expressions are calculated for the double
differential distributions over (s, 5,) and (s, s1,) variables.
The integration of these distributions over the correspond-
ing variables allows one to obtain analytical expressions for
the single differential distributions over the invariant mass
squared of the nucleon-pion and nucleon-antinucleon
system.

The numerical estimation of the various differential
distributions requires the knowledge of the electromagnetic
nucleon form factors in the timelike region. We use two
different parametrizations of a two-component model based
on the vector dominance at low and intermediate energies
and predictions of the perturbative QCD at the large ones.
Some features of these parametrizations are shortly con-
sidered in Sec. IV.

The double differential distributions for the ete™ —
ppr’ and ete” — niiz’ channels at different values of
variable s (from 5 to 16 GeV?) are given in Figs. 5 and 6.
At chosen parametrization of the form factors the differ-
ential distribution of the niiz’ channel is systematically
larger than the ppz® channel. It is difficult to say to what
extent this feature depends on the choice of the para-
metrizations of the nucleon form factors. The BESIII
experiment has collected data samples between /s =
2 GeV and 3.08 GeV to study baryon cross sections and
form factors [40]. This lead to the world’s most precise
measurement of the ee™ — nii cross section. It is inter-
esting to note that the ratio R = o(e*e™ — nit)/o(ete” —
pp) seems to change at 2.4 GeV. Above this value, the ratio
becomes closer to R~ 1, that is the expected results
predicted by perturbative QCD [4]. Below this value, the
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ratio is flat and smaller, R ~ 0.25, increasing again at
threshold [6].

The single differential distribution over the variables x;,
x3, and x,, for the ppa° (niin®) channel are given in Fig. 7
(8) for various values of the variable s. One can see that
these differential distributions strongly differ for the old
and new parametrizations of the nucleon form factors. But
at s = 10 GeV? this difference is small for the ppr°
channel, as an effect of these specific parametrizations.

The total cross sections for the ete™ — ppa’ and
ete” — niin® reactions as a function of the variable s
are given in Fig. 9. One can see that the behavior of the
cross sections as a function of s depends strongly on the
nucleon form factor parametrization. For the case of the old
parametrization, the cross section of the eTe™ — niiz®
reaction is appreciably larger than the cross section of the
ete™ — ppn° reaction. The last cross section, in this case,
decreases more rapidly than the e*e™ — niiz” one. For the
case of the new parametrization of the nucleon form factors,
the cross section of the eTe™ — niiz’ reaction is smaller
than the cross section of the ete™ — ppa’ one, both
decreasing rapidly when the variable s increases.

The ongoing physics program at BESIII is described in
the review [31]. One of the goals of this program is the
experimental study of hadron spectroscopy, namely to map
out all the resonances and determine their properties. This
requires a good knowledge of the corresponding back-
ground. The nonresonant (continuum) contribution to the
ete™ — NNr reaction constitutes the background for the
resonances decaying mostly to Nz state.

VI. CONCLUSION

The general analysis of the differential cross section and
various polarization observables is performed for the process
et +e >N+ N+ in the one-photon-annihilation

approximation. This analysis is useful for the description
of the continuum (nonresonant) and resonant (with different
possible vector mesons or excited baryons in the intermediate
virtual states of the Feynman diagrams) contributions. A
number of double differential distributions is calculated
analytically and numerical estimates are given for the
ppn’ and niz’ channels in the Born (nonresonant)
approximation.

The general structure of the matrix element of the
reaction (1) has been determined in terms of the six
independent invariant amplitudes. The expression of the
hadronic tensor is given for the case of the unpolarized final
particles or polarized nucleon. The formalism is very
general, as it is based on fundamental symmetries of the
strong and electromagnetic interaction as parity and time
invariance, and holds for different models of the nucleon
structure.

The kinematics of this process is investigated in details.
We introduced useful invariant variables and illustrated the
physical kinematical range. The allowed double invariant
variables regions are illustrated for s = 10 GeV? in Fig. 2.

The nonresonant (continuum) contribution to the reac-
tion e + e~ — N+ N +z° has been calculated. This
contribution is described by two diagrams in Fig. 1, where
the pion is emitted by the nucleon or the antinucleon.

The numerical results depend on the choice of the
nucleon electromagnetic form factors in the timelike
region. We use two different parametrizations of the
two-component model based on the vector dominance at
low and intermediate energies and predictions of the
perturbative QCD at the large ones. The predictions differ,
depending on the kinematical region.

The present calculation can be generalized to other
“inelastic” annihilation processes, with emission of different
mesons and can be used to model the background contri-
bution for the experimental study of nucleon resonances.

APPENDIX A: INVARIANT STRUCTURES

The 13 chosen symmetrical gauge invariant structures are as follows:

S = St (vkpq) + S (vkpq),
(kS)k* = (kS)[k* (vkpq) + K (ukpq].
(kS)p™ = (kS)[K*(vkpq) + p*(ukpq)),

o=k (vpqS) + K (upqS). P
Py = p*(vpqS) + p*(upgS).  G™
P = prpt(kpgs).  KP" = [R'p*

(gS)k* = (qS) [k (vkpq) + k* (ukpq)].

(a8)p" = (¢5)[p"(vkpq) + p*(ukpq)).
kY = ' (vkqS) + K (ukgs),
= p"(vkqS) + p*(ukqS),
= 7*(kpqS), K" =k (kpgS),
+ prk] (kpgsS).

Our aim is to show that only eight from them are independent and we choose the eight bottom ones.

We use the well-known relation

9" (aphp) = g (vpAp) — 9 (vadp) + ¢ (vafp) — g (vapd).

(A1)
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By contraction of Eq. (A1) with k,psq,S, we obtain after
symmetrization

{[K(vpgS) + K (upqS)]
[P (vkqS) + p*(ukqS)]

[NSR

g¢*(kpgS) =

+ [¢" (vkpS) + g (ukpS)]
- [$"(vkpq) + S (ukpq)]}.  (A2)
The  quantity ¢*(kpgS) is  derived  using
[“q, = ¢"|(kpgS). Such a procedure gives
q"(kpqS) = (kq)(upqS) — (pq)(ukqS) + q*(ukpS)
— (¢8)(ukpq). (A3)

We then multiply (A3) by ¢“ and symmetrize. This
leads to

{(kq)[q"(vPqS) + ¢*(upqS)]

- (rq)lq" (vkqS) + q*(ukqS)]
+ ¢*[q" (vkpS) + ¢* (ukpS))
- (49)1q"(vkpq) + ¢*(ukpq)]}.

N =

q"q*(kpgS) =

(A4)
We have all tools to write the structure G**, namely

. |
G =S jy = pl =57, (43)
As one can see, the structure $* is not independent (it is
expressed in terms of the chosen independent structures).

Now we use Eq. (A5) to write the quantities k¥ (kpgS)
and p*(kpgS) bearing in mind that

Pk =R grp =
We have
k(kpqS) = Cii(upqS) — Cry(ukqS) — Crs(ukpq).
R 2 (kq)2

Cix = (kk) =m q2 )

Cop = (kp) = () = (kp) - LLLL.

i = (31) = (s0) L), (A6)
P (kpqS) = Cip(uprgS) — C,p(1kqS) — Cps(ukpq),

C,, = (pp) =p* - (pqz)z :

Cps = (5) = (pS) - AP,

(pS) = (kS) = (¢9). (A7)

Now, we are ready to write the structures K* and Prv.
The multiplication of Eq. (A6) by & and the symmetriza-
tion gives

KW = = (Cykly — Ci ki = Ciik™). (A8)

NS

A fully analogous procedure with the use of Eq. (A7) and
pY leads to

P/w = (Ckpi)I;?y - Cppi)zy - Cpsf)m/)‘ (A9)

[NSR

As concerns the structure KP*, it may be expressed by
two different equations and both of them will be applied. It
easy to show that on the one side

KP" = Cubly — CrpPi — CrsP™, (A10)
and on the other one
KP" = Cp kY — C, ke — Cpk. (A1)

To exclude the structures (¢S)k* and (kS)k*, we use
the relations (A8) and (A11) and obtain

2

q
2(qp1)
- (Ckp - Cpp)icﬁu + Ei)’w - 21?””]’

(gS)k™ = [(Crx — Ckp)]?ll’l/

(A12)

(kS = ﬁ{qu + (pa)) = Cip (k)R

= [Cip(q* + (pq)) = C,p(kq) R,

+ KP"(kq) — 2K" (> + (pq))}. (A13)

To exclude the structures (¢S)p** and (kS)p**, we use
the relations (A9) and (A10) and obtain

q2
Z(flpl)
— (Chp = Cpp) P — KP™ + 2P, (A14)

ﬁ{[qw + (pq)) = Cp (k)] P

— [Cip(¢* + (pq)) — C,p(kq)I P}
— KP"(¢* + (pq)) + 2P" (kq)}.

(gS)p™ = [(Cix — Crp) Py

(kS)p* =

(A15)

Thus, we demonstrated that the five upper structures in
the list of this Appendix are expressed as a function of the
bottom eight ones.
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APPENDIX B: THE HADRONIC TENSOR

The structure functions of the symmetrical spin-dependent part of the hadronic tensor [see Eq. (7)] read

Ty = [p ~q(Ay = 2MAy) — ¢*(2MAs + Ag) + [P +a* —k-q)+p-qlk-q—p- q)As|A},

2g - p
2
tag o, Kk + 1 qAs— ¢ As)(p - 9A3 + PA3), (B1)
2 2.2 2
p-q)+mqg —k-qlp-q+gq .
Ty, = [que—P'qA4+( ) > ( )A3}A14
q- D1
M * 2 * (p1+p2)2 2 * 2 A%
+2M(p - qA3A; — q7A3AF) +W(’<'CIA3 + P qAs = ¢°Ag) (P - qA5 + q°AS), (B2)

2 . PE . k-gp® 24\ Ax
Ty = |k-q2MA, + A5) —q*Ag— | k-q—¢q -3 Ay|ATy— (k-qAs + p-qAs — ¢*Ag)A;,  (B3)
q- P 2q - p

2 2.2 2
p-q)+qgm - —(k-q .
Tppz[qua—k'qAa—{p'q—( ) ( )]A4]Al4

2q - p,
. k-q(pi+ pr)? .
+2M(q*A — k - qA3) A} — % (k- qAs + p-qAs — g*Ag)A3, (B4)
: 1
Tx="1 {[4°As — P qAs = (P~ a+ @*)As](p - 9A5 + °A%) — PPAsALL ) (BS)
1
Tp = 7 {k-qlq°As — (k- g — q*)As — k- qA3]AS + G*A4AT, ), (B6)
1
Tkp = —m{[f(p q+k-q)Ag—k-q2p-q+q*)Ay— p-q(2k-q—q*)A4A5
+ ¢*(Ay — A3)AT, + PGP As — k- gAs + (¢* — k- q)A4)As}, (B7)
T =2(k-qA;y+ p - qAs — G*Ag)AT,. (B8)

Let us remind the reader that in accordance with Eq. (7) one has to take the imaginary part from these structure functions;
therefore, in Eqs. (B1)—-(B8) we can use A,A;f = —A7A;.
The structure functions of the antisymmetrical spin-dependent part of the hadronic tensor [see Eq. (8)] can be written as
follows:
Ty =2Mp - q(k- qlAs]® + p*|As* + ¢*|A|” + A1)

+2Mp-q(k-q—m*)Ay +[k-q(p* —k-q) + (p- 9)* + m*@’]A; + p - q(4M> + p*)A,

+2M([(k - q)* = m*q’|As + (k- q = ¢°)* = (P q)* — 4M>q*|Ag|AT,

+([(4M2 = p*)(p-q)* + p*k - qlk - q = *)|Ay = 2M[p - q(k - q + ¢*)As + (P - 9)* + P*q*)A4]

+ (4M2 = p?)(p - @)q*As]Ag + [-(4M? = p*)p - gk - qAs + p*[(k - q)* — m*q*|A4JAS

+[p?p - qlk-qg—m*)A;, +2M[p*k - g + (p - )*As]AL + p?k - q(k - g — m?)AyA5, (B9)

Tpps = 2M(k Q‘A3|2 +p- q|A4|2) +p- Q(A3 +A4)AT4
+(k-g—p-q)(k-q—q*)Ay —2Mq*(As + Ay) AL + [ (k- q)* —m? q*| A4 A
+[(k-g—m?)p-qA, +2M(k-q+ p-q)A5)A; + (k- q—m?)k- qArA5+ (k- q—q*) (k- qA3s — ¢*Ag)AL,  (B10)
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Tpys = 2M (k- qlA5|* + ¢*|Ag|* + P - gA3AL) +2(q - p2As — k - prA3)AT,
+[(4M? = p*)(p - qAy + q*As) = 2M[(k - q + ¢*)As + p - qA4]|A;

— (4M? — p?)k - gA;AL,

(B11)

Tips = 2M[(k-q—p-q)As — ¢*As] + (¢ — k- q)(As + Aq)]AT,
+p-ql(p-g—k-q)A + ¢*As|A; + (p - g — p*) (k- gA A% + p - gAA})

+[~k-qp-qAs+[~k-qp-q+ ¢*(p - q— p*)]A4AL,

(B12)

Tigs = —2M|A 4> + 2M[(k - g — q*)As — p - qAs] +2q - pa(As — Ag) — P*A4]AT,

+ PPk - q(AyAL — AyA3) — p - qALA;) + (k- g — ¢*)ALAL],

(B13)

where the real part of structure functions (B9)—(B13) we bear in mind.

APPENDIX C: FORM FACTOR
PARAMETRIZATIONS

Here we report the old [38] and new [2] parametrizations
of the Dirac and Pauli electromagnetic form factors in the
case when the intermediate photon couples with an intrinsic
quark-gluon structure and a meson cloud. The interaction
with the intrinsic structure is described by the pQCD form
factor g(Q?), Q% = —q?, whereas the interaction with the
meson cloud by the vector dominance (p, ®, ).

First these parametrizations were written for the space-
like regions and then rules are formulated for the analytical
extension to the timelike region. The analytic form of the
Dirac form factors F§ and F| is the same for both
parametrizations, namely

S(N2 2 mg} m(zp
Fl(Q ):g<Q )|:1_ﬂw_ﬂ(p+ﬂwmé+Q2+ﬂ(ﬂmé+Q2:|’

(C1)

FY(0%) = g(0?) [1 _5,

ny m,z, +8C,m/x }
Pm’+ Q* + (4m* + Q*)T,a(Q?)/m]’
1
2\ _
where

o 2 A2 Q2 (VamE Q7+ /07

The values of the fitting parameters for the old version
are

p, = 0.672, B, = 1.102,
y = 0.25(GeV)72,

B, =0.112,
r,=0.112 GeV

and for the new version

B, = 0512,
B, = —0.263,

B, = 1.129,
y = 0.515(GeV)™2.

The values of the vector meson masses are m, =
0.776 GeV,m,, = 0.783 GeV,m, = 1.019 GeV.

As concerns the Pauli form factors, they are for the old
version

n n
F§ = ()| (-0.120— ) 5t s+ a5t s .
w @

m5 + 80 ,m/x

FY = 3.7064(0? ’
Y g(Q )m/% + Q* + (4m* + QM) ,a(q*)/m

a, = —0.052,

and for the new version

- m2 2
F§:g<Q2) (ﬂp+”n_1_a¢)m2 _:)Q2+a¢m2 _fQZ:|’
w @

a, = —0.200,

[y —pa—1—a
FV— 2\ |Hp P
2 g(Q ) | 1 +)/Q2
i m3 + 8T ,m/x ] ’
Pms+ Q% + (4m*> + 0*)T,a(Q?)/m
a, =2.675, (C4)
where p), = 2.793, u, = —1.913 are the magnetic moments

of proton and neutron.

The second step consists of the analytic continuation to
the timelike region of the intrinsic and vector meson
contributions to form factors. Due to the complex nature
of the NN interaction, the intrinsic part can be written as
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1

i0 2 _ _N2
7 o @

9(q*) =

il
I
<
(2

where the fitting phase is 6 = 53°(22.7°) for the old
(new) version. The vector meson part is obtained by the
replacement

0’ —¢* a(Qz)—wv )—izp(q

|4 m+f>
o | —4Am?
)—\/7{12 - (Co)

q* > 4m?,
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