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We study all-charm tetraquarks in the front form of Hamiltonian dynamics using the many-body basis
function approach known as basis light-front quantization. The model Hamiltonian contains transverse and
longitudinal confining potentials and a one-gluon-exchange effective potential. We calculate masses of
two-charm-two-anticharm states focusing on the lowest state. We also calculate two-quark and four-quark
estimates of meson-meson breakup threshold. The results suggest that the lowest two-charm-two-
anticharm state is not a tightly bound tetraquark. We discuss implications of the cluster decomposition
principle for theories formulated on the light front and present our treatment of identical particles together
with color-singlet restrictions on the space of quantum states.
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I. INTRODUCTION

Even though four-quark states called tetraquarks have
been studied for a long time (see Refs. [1–4] for some early
studies), the stability of tetraquarks is still under debate.
One of the basic questions is whether there are four-quark
states whose masses are smaller than the sum of the masses
of two mesons into which the tetraquark could potentially
decay through a rearrangement of the quarks. Because
ab initio calculations in QCD are challenging, researchers
make use of various strategies and approaches to estimate
the masses of tetraquarks, and their results are often in
conflict with each other [5–40]. The goal of our paper is to
initiate studies of tetraquarks within the framework of the
front form of Hamiltonian dynamics [41] and basis light-
front quantization (BLFQ) [42], an approach whose ulti-
mate goal is to achieve ab initio calculations in QCD.
Therefore, our study is focused on the development of the

approach as much as on providing a preliminary answer to
the main tetraquark problem—whether or not four heavy
quarks can form a bound state.
We choose to study heavy quarks (charm quarks)

because for heavy quarks one would expect it to be possible
for the proper, QCD-based theoretical description to be
simplified. Asymptotic freedom, which is believed to be
relevant for heavy quarks, allows for perturbative expan-
sion of the QCD Hamiltonian and produces some con-
fidence that the simple Hamiltonian with confining and
one-gluon-exchange potentials that we use shares impor-
tant features with the full QCD Hamiltonian. Owing to
asymptotic freedom and quark masses much larger than the
strong interaction scaleΛQCD, charm quarks are expected to
be relatively slow in comparison to the speed of light;
hence, additional pairs of heavy charm quarks cannot be
easily produced and should not contribute significantly to
the tetraquark dynamics. Tetraquarks of any kind are an
interesting topic of study because they are exotic, i.e., they
are neither mesons nor baryons; therefore, they provide
opportunities to test and extend our understanding of
hadron physics beyond the boundary of fairly well-estab-
lished meson and baryon physics. Finally, studies of all-
heavy tetraquarks recently received additional motivation
in the form of the first experimental identification of all-
charm tetraquark resonanceXð6900Þ [43]. The discovery of
a doubly charmed tetraquark is also worth noting [44].
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BLFQ has already been used with success to study
various mesons and baryons [45–54] as well as in QED;
see, for example, Ref. [55]. However, most of those studies
involve only one Fock sector, with recently appearing
extensions [56]. Questions like “how does confinement
work?” cannot be fully answered by studying quark-
antiquark or three-quark systems alone, even if one uses
phenomenologically successful confining potentials. If one
is to believe that gluon strings are formed in a Hamiltonian
approach to QCD (as seems to be the case for lattice QCD),
then one is necessarily forced to explicitly include many-
gluon sectors in addition to the leading “valence” Fock
sector. Furthermore, breaking of those strings requires Fock
sectors with additional quark-antiquark pairs. The strength
of BLFQ stems from the fact that, in principle, it can handle
many Fock sectors, each of which can contain many
particles, in a straightforward manner.
The QCD Fock space is rich in structure and, even with

the help of supercomputers, the calculations are challeng-
ing because the dimensionality of the required spaces of
states grows quickly with the addition of new Fock sectors.
The QQQ̄ Q̄ sector is one of the natural next targets after
the QQ̄ and QQQ sectors.
Another important challenge resides in how to renorm-

alize divergent interactions of QCD. The eventual success
of the approach will probably require an adoption of
effective interactions calculated from QCD using, for
example, the renormalization group procedure for effective
particles (RGPEP) [57]. The Hamiltonian of bare, pointlike
quarks and gluons leads to the problem of overlapping
divergences [58]. RGPEP, by defining effective, finite-size
particles, can tame singular interactions and reduce the
number of Fock sectors necessary to obtain satisfactory
results. Effective Hamiltonians computed using the closely
related similarity renormalization group [59] (see also
Ref. [60]) have been successfully used in combination
with many-body methods in ab initio calculations in
nuclear physics; see, for example, [61–63]. However, a
relativistic quantum field theory such as QCD is much more
complicated than the nonrelativistic nuclear many-body
problem of interacting nucleons.
Since we choose to deal with only charm quarks and

antiquarks, we take into account the antisymmetrization of
identical particles. This is also the first system treated
within BLFQ where the question about color dependence
of the confining potential needs to be addressed because
there are two color-singlet combinations in the QQQ̄ Q̄
sector, whereas both the QQ̄ and QQQ sectors admit only
one color singlet each. We adopt the commonly used
assumption that the confining potential depends on color
in exactly the same manner as one-gluon-exchange inter-
actions depend on color. We also add a color-independent
term in the longitudinal direction. Without this added term,
we find some spurious, unphysical solutions with negative
mass squared.

In Sec. II we present our model many-body Hamiltonian
and derive Schrödinger-like equations for three cases
describing one meson, a tetraquark, and two mesons.
The two-meson system allows us to discuss the cluster
decomposition principle on the light front. Section III is
devoted to a description of the main elements of the
computational framework of BLFQ. Our results for the
masses in the three mentioned cases and a discussion about
whether all-charm tetraquarks are stable against dissocia-
tion are given in Sec. IV. Section V concludes the paper.
Color factors between color-singlet states are given in the
Appendix, where we describe the procedure that takes into
account the Pauli exclusion principle and allows us to work
with color singlets only.

II. HAMILTONIAN

A. Front form of Hamiltonian dynamics

Before we introduce our model Hamiltonian, we mention
a few aspects of the framework that we use that are
important in the context of our long-term goal of ab initio
calculations in QCD. The front form of Hamiltonian
dynamics [41] has two important advantages over other
Hamiltonian approaches. One of them is the fact that
particles cannot be created from the free vacuum in a
way that they can be created, for example, in the instant
form of Hamiltonian dynamics. Front form theories con-
serve total longitudinal momentum of particles taking
part in the interaction, where the longitudinal momentum
of a particle is defined as pþ ¼ p0 þ p3. In Hamiltonian
approaches particles are on mass shell; hence, p0 ≥ jp3j
and pþ cannot be negative. At the same time the vacuum
should have pþ ¼ 0; therefore, all particles created from
the vacuum should have exactly pþ ¼ 0. Since for massive
particles pþ → 0 means energy diverging to infinity, one
should regularize the theory and remove the pþ ¼ 0 states,
which are called zero modes. However, it is also known that
one cannot simply discard those states and that zero modes
have to be taken into account in some way. Even though it
is an open question as to exactly which way zero modes
need to be included, we have still gained something: the
difference between the free vacuum and the interacting
vacuum can be contained only in the singular point pþ ¼ 0.
Therefore, to a large extent one can separate zero modes
from the pþ > 0 region, where most of the usual dynamics
happen [this is similar in form to the Schrödinger equation
or quark model Hamiltonians; see Eqs. (23), (28), and
(36)]. This is in contradistinction with the instant form, in
which particles of arbitrary momenta can be created from
the free vacuum, making the interacting vacuum a com-
plicated state upon which one-, two-, and many-particle
states are to be built.
Another advantage of the front form of Hamiltonian

dynamics is the fact that one can freely boost particles, and
wave functions can be decomposed into products of total
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and relative motion factors. This is very fortunate because
one can use exactly the same wave functions that describe
the internal structure of a hadron regardless of how fast the
hadron is moving in the laboratory frame. Hence, the front
form is uniquely suited to describing high-energy processes
and offers practical advantages for building a Poincaré-
covariant quantum theory in a Hamiltonian approach.
In the front form of Hamiltonian dynamics, the

Hamiltonian is P− ¼ P0 − P3. The momentum operators
are Pþ ¼ P0 þ P3, which is the longitudinal momentum,
and the transverse momenta are P1 and P2. We denote
two-dimensional transverse vectors in bold font, e.g.,
P ¼ ðP1; P2Þ. The evolution of quantum states is given
by the analog of the Schrödinger equation, which in the
stationary version is P−jΨi ¼ EjΨi, where E is the
eigenvalue of operator P−. One can also study the closely
related eigenvalue equation

PμPμjΨi ¼ M2jΨi; ð1Þ

where the eigenvalue M2 is the invariant mass squared of
the eigenstate jΨi. The eigenvalue M2 depends only on
the relative motion of the constituents and not on their
absolute motion. Since we work with PμPμ instead of P− it
is convenient for us to call H ¼ PμPμ the Hamiltonian.
This is sometimes referred to as the “light cone
Hamiltonian” [64]. Therefore,

H ¼ PþP− − P2: ð2Þ

In the front form of Hamiltonian dynamics operators Pþ
and P are kinematic, while P− is dynamic. In other words,
P− contains interactions, while Pþ and P are the same
regardless of which interactions are present in the theory.

B. Hamiltonian

The model Hamiltonian that we use to study four-quark
systems is

H ¼ Hkinetic þHtransverse þHlongitudinal þHOGE; ð3Þ

where Hkinetic, Htransverse, Hlongitudinal, and HOGE stand for
the kinetic term, transverse confining potential term,
longitudinal confining potential term, and one-gluon-
exchange (OGE) term, respectively. The kinetic energy
Hamiltonian is

Hkinetic ¼ PþP−
0 − P2; ð4Þ

where P−
0 stands for the noninteracting, kinetic part of P−.

The momentum operators are

Pþ ¼
Z
1

pþ
1 ðb†1b1 þ d†1d1Þ; ð5Þ

P ¼
Z
1

p1ðb†1b1 þ d†1d1Þ; ð6Þ

P−
0 ¼

Z
1

p−
1 ðb†1b1 þ d†1d1Þ; ð7Þ

with p−
1 ¼ ðm2 þ p2

1Þ=pþ
1 , where m is the quark mass and

b1 and d1 are annihilation operators of a quark and an
antiquark with label 1, respectively. Moreover,Z

1

¼
X
c1;σ1

Z
∞

0

dpþ
1

4πpþ
1

Z
d2p1

ð2πÞ2 ; ð8Þ

where c1 and σ1 are the color and the light-front helicity of
particle 1, respectively. The normalization of operators is
fb1; b†2g ¼ fd1; d†2g ¼ pþ

1 δ̃1.2δσ1;σ2δc1;c2 , where δ̃1.2 stands
for the momentum conservation Dirac delta multiplied
by 16π3.
The Hamiltonians of the transverse and longitudinal

confining potentials are

Htransverse ¼
Z
121020

ðpþ
1 þ pþ

2 Þδ̃12.1020Uconf;⊥BDOGE; ð9Þ

Hlongitudinal ¼
Z
121020

ðpþ
1 þ pþ

2 Þδ̃12.1020Uconf;z½aBDOGE

þ CFða − 1ÞBDCI�; ð10Þ

where Uconf;⊥ and Uconf;z are the interaction kernels that
depend on the momenta and helicities of particles 1, 2, 10,
and 20. The momentum conservation Dirac delta is

δ̃12:1020 ¼ 4πδðpþ
1 þ pþ

2 − pþ
10 − pþ

20 Þ
· ð2πÞ2δ2ðp1 þ p2 − p10 − p20 Þ: ð11Þ

The color dependence is encoded in BDOGE and BDCI,

BDOGE ¼
X8
a¼1

�
1

2
ta
110t

a
220b

†
1b

†
2b20b10 − ta

110 t
a
202b

†
1d

†
2d20b10

þ 1

2
ta
101t

a
202d

†
1d

†
2d20d10

�
; ð12Þ

BDCI ¼ δc1;c10 δc2;c20

�
1

2
b†1b

†
2b20b10 þ b†1d

†
2d20b10

þ 1

2
d†1d

†
2d20d10

�
; ð13Þ

with taij standing for χ†ciT
aχcj, where Ta ¼ 1

2
λa, with λa

being a Gell-Mann matrix (a ¼ 1; 2;…; 8) and χc ¼
½δc;1; δc;2; δc;3�T being a three-dimensional vector, while
c ¼ 1, 2, 3 is the color quantum number. In other words, taij
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is half of the matrix element of matrix λa in the cith row and
cjth column. The color dependence of BDOGE is the same
as the color dependence of the one-gluon exchange—hence
the subscript “OGE.” On the other hand, BDCI is diagonal
in color and color independent—hence the subscript “CI.”
BDOGE and BDCI have three terms each that describe
pairwise interactions in quark-quark, quark-antiquark, and
antiquark-antiquark pairs. The factor 1=2 that multiplies
quark-quark as well as antiquark-antiquark terms is present
because the two quarks, or the two antiquarks, that interact
are indistinguishable. Finally, a is a constant between 0 and
1, and CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3 is the value of the
quadratic Casimir operator in a fundamental representation
of SUðNcÞ, Nc ¼ 3. We choose a ¼ 0.85; therefore, in our
Hamiltonian 85% of longitudinal confining strength in a
meson comes from the OGE-like term, and 15% comes
from the color-independent term. See below for a more
detailed discussion.
The kernels are

Uconf;⊥ ¼ κ4δσ1;σ10 δσ2;σ204πδðx12 − x1020 Þðx12x21Þ2

×
� ∂2

∂k2
1020

ð2πÞ2δ2ðk1020 − k12Þ
�
; ð14Þ

Uconf;z ¼ κ4δσ1;σ10 δσ2;σ20 ð2πÞ2δ2ðq12 − q1020 Þ

×

�
−

1ffiffiffiffiffiffiffiffi
D12

p ∂
∂x12

1ffiffiffiffiffiffiffiffi
D12

p 1ffiffiffiffiffiffiffiffiffiffi
D1020

p ∂
∂x1020

1ffiffiffiffiffiffiffiffiffiffi
D1020

p

× 4πδðx1020 − x12Þ
�
; ð15Þ

where κ is the interaction strength parameter, x12 ¼
pþ
1 =ðpþ

1 þ pþ
2 Þ is the longitudinal momentum fraction

of particle 1 with respect to 2, and x21 ¼ 1 − x12 is the
longitudinal momentum fraction of particle 2 with res-
pect to particle 1. The relative transverse momentum is
k12 ¼ x21p1 − x12p2. Moreover,

q12 ¼
k12ffiffiffiffiffiffiffiffiffiffiffiffi
x12x21

p ; ð16Þ

qz12 ¼ m
x12 − x21ffiffiffiffiffiffiffiffiffiffiffiffi
x12x21

p ; ð17Þ

and

D12 ¼
dqz12
dx12

ðx12Þ ¼
m

2½x12ð1 − x12Þ�3=2
: ð18Þ

Objects with the subscript 1020 are defined in the same way
as objects with the subscript 12, except that 1 is replaced by
10 and 2 is replaced by 20.
The confining potential is determined by the anti–de

Sitter (AdS)/QCD holography [65], and its transverse part

reproduces the AdS/QCD harmonic oscillator in the QQ̄
sector. With appropriate momentum variables [66], in the
QQ̄ sector, the longitudinal and transverse terms comple-
ment each other and form a three-dimensional, rotationally
invariant harmonic oscillator; see Eq. (26). The potentials
in the QQ̄ sector are naturally extended to other sectors
through Eqs. (9) and (10), which act in all sectors. The
extension, however, is not unique. For example, the factor
pþ
1 þ pþ

2 could be replaced by the total Pþ. Moreover,
BDOGE and BDCI evaluate to the same expression between
states in the QQ̄ sector up to a factor of CF. Their
combination, as in Eq. (10), gives a result that is indepen-
dent of a in the QQ̄ sector. Our choice of the confining
potential was obtained after studying several variants and
searching for the acceptable spectral behavior of the
solutions.
We found that removing the color-independent part or

replacing pþ
1 þ pþ

2 with Pþ leads to the appearance of
unphysical solutions with negative mass squared. While
in general tachyonlike states can be a sign of unstable
equilibrium in a linear approximation of a field theory (see
Ref. [67]), our approach is nonperturbative and we are
dealing with model Hamiltonians. Therefore, we regard
candidate model Hamiltonians with such tachyonic solu-
tions as unphysical. The properties of these states are very
far from the properties expected of bound tetraquark states.
For example, the dominant components of wave functions
of these nonphysical states reveal a very fast motion of
quarks with respect to each other, making them more like
highly excited, high momentum scale states than like states
characterized by the low relative momenta appropriate for
our model. a ¼ 0.85 is the largest value of a that guarantees
that no negative M2 states will appear up to K ¼ 50 for
Nmax ¼ 6 (see Sec. III). It is worth noting that exchange
potentials consisting of two or more gluons are in general
mixtures of OGE-like and color-independent parts. Hence,
our confining potential appears to be reasonable, apart from
the fact that our CI potential confines at large distances.
However, the states which should be affected the most by
this confinement are the excited states, while we focus
mainly on the ground state.
The Hamiltonian term of the one-gluon-exchange inter-

action is HOGE ¼ PþVOGE, where

VOGE ¼
Z
121020

δ̃12.1020UOGEð1; 2; 10; 20ÞBDOGE: ð19Þ

The kernel of the OGE term is

UOGEð1; 2; 10; 20Þ ¼ −g2
ū1γμu10 ū2γμu20

ðx12 − x1020 ÞD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2 p

þ
10p

þ
20

q
;

ð20Þ

where D is the energy denominator,
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D ¼ 1

2

�
p2
1 þm2

x12
−
p2
10 þm2

x1020
−
p2
2 þm2

x21
þ p2

20 þm2

x2010

�
−
ðp1 − p10 Þ2 þ μ2

x12 − x1020
; ð21Þ

with μ being a fictitious gluon mass. We use the same
spinors as those in Ref. [55], and ū1γμu10 ū2γμu20 can be
found in Table I therein. The fictitious gluon mass μ is
introduced to regulate the Coulomb singularity: if we take
p1 ¼ p10 and x12 ¼ x1020 , then ðx12 − x1020 ÞD, which is in
the denominator of Eq. (20), becomes zero unless μ ≠ 0.
This singularity is integrable if the momenta are continu-
ous; however, in BLFQ we discretize the longitudinal
momenta and the singularity somehow has to be regulated.
Even though diagonal matrix elements of the discretized
version of HOGE diverge as μ → 0, the eigenvalues and
eigenvectors approach a finite limit.
The Hamiltonian of Eq. (3) provides a unified descrip-

tion of the QQ̄ and QQQ̄ Q̄ systems. In fact, one could
apply this Hamiltonian in sectors with an arbitrary number
of heavy quarks and antiquarks. We use it in three separate
calculations for three purposes. In all three cases we restrict
the space of states to color singlets, which can be achieved
since H conserves color. Details are provided in the
Appendix. First, we solve the QQ̄ eigenvalue problem
and, by fitting the numerical spectrum to the experimental
spectrum of charmonium, we fix the free parameters of the
Hamiltonian: quark mass m, confining potential strength
parameter κ and OGE coupling constant g. Second, we
solve the QQQ̄ Q̄ eigenvalue problem to find the four-
quark ground-state mass. Third, we solve the QQQ̄ Q̄
eigenvalue problem with some interactions turned off. The
interactions that are kept allow one quark to form a meson
with one antiquark, and the other quark to form a meson
with the other antiquark. There is no interaction between
the two mesons, and we restrict the space of states to
the states in which both mesons are color singlets sepa-
rately. This way we can numerically estimate the two-
meson threshold, which can be different than the sum of
the masses of two mesons obtained in the QQ̄ calculation
due to the finite basis. Below we briefly present the
three cases.

C. Eigenvalue equation for mesons

The Hamiltonian can have many eigenvectors of various
forms. States that describe a single meson with fixed
momenta Pþ

M and PM are of the form

jψMi ¼
Z
12

Pþ
Mδ̃12:PM

ψMð12Þb†1d†2j0i: ð22Þ

The “front form energy” of the meson is P−
M ¼ M2þP2

M
Pþ
M

,

where M is the mass of the meson. Pμ
M are eigenvalues of

operators Pμ, andM2 is an eigenvalue ofH. The eigenvalue
equation HjψMi ¼ M2jψMi reduces to

m2 þ k2
12

x1
ψMð12Þ þ

m2 þ k2
12

x2
ψMð12Þ

þ
X
c10 ;c20

κ4Ũ12ψMc10c20 ð12Þ −
Z
1020

Pþ
Mδ̃1020:PM

ta
110t

a
202

×UOGEð1; 2; 10; 20ÞψMð1020Þ ¼ M2ψMð12Þ; ð23Þ

where

Ũ12 ¼ ta
110 t

a
202x12x21ðr1 − r2Þ2

−
�
ata

110t
a
202 þ

4

3
ð1 − aÞδc1;c10 δc2;c20

�
×

1ffiffiffiffiffiffiffiffi
D12

p ∂
∂x12

1

D12

∂
∂x12

1ffiffiffiffiffiffiffiffi
D12

p : ð24Þ

One can simplify the form of this equation considerably by
changing the variables from k12 and x12 to q12 and qz12
(collectively denoted as q⃗12), which were introduced in
Eqs. (16) and (17). Moreover, we assume that the meson is
a color-singlet state. Therefore,

ψMð12Þ ¼
δc1;c2ffiffiffiffiffiffi
Nc

p ffiffiffiffiffiffiffiffi
D12

p
ϕσ1σ2ðq⃗12Þ: ð25Þ

We get

ð4m2 þ q⃗212Þϕσ1σ2ðq⃗12Þ − CFκ
4

∂2

∂q⃗212 ϕσ1σ2ðq⃗12Þ

− CF

X
σ10 ;σ20

Z
d3q1020

ð2πÞ3
UOGEð1; 2; 10; 20Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D12D1020

p ϕσ10σ20 ðq⃗1020 Þ

¼ M2ϕσ1σ2ðq⃗12Þ: ð26Þ

This equation looks much like a nonrelativistic Schrödinger
equation in momentum space. The Laplacian acting on the
wave function is equivalent to a rotationally symmetric
harmonic-oscillator potential, and the OGE potential is
written in a generic form. It is worth noting that the same
confining potential can be derived using RGPEP with a
gluon mass ansatz [68,69]. Our OGE potential differs from
the Coulomb plus Breit-Fermi equation in Ref. [68] and is
taken instead from Ref. [55]. The choice was dictated by
the availability of software implementation of the latter
potential. Similarly, instead of the longitudinal potential
given in Eq. (15) we could have chosen a kernel that would
give us the ∂xxð1 − xÞ∂x potential of Refs. [45,46]. In the
limit of relative momenta vanishing with respect to the
quark masses the two potentials become equal; hence, both
should be suitable for phenomenology. It is sufficient for
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our purposes to select one longitudinal confining potential
and one OGE potential and work with them.

D. Eigenvalue equation for tetraquarks

Tetraquark states have a form very similar to that of
meson states,

jψTi ¼
Z
1234

Pþ
T δ̃1234:PT

ψTð1234Þb†1b†2d†3d†4j0i: ð27Þ

This state has the fixed momenta Pþ
T and PT , while

P−
T ¼ M2þP2

T
Pþ
T

. The eigenvalue equation HjψTi ¼ M2jψTi
reduces to

X4
i¼1

m2 þ k2
i

xi
ψTð1234Þ þ

X
i<j

κ4ŨijψTð1234Þ

þ
X
i<j

1

xi þ xj

Z
i0j0
ðpþ

i þ pþ
j Þδ̃ij:i0j0WOGEði; j; i0; j0Þψ 0

¼ M2ψTð1234Þ; ð28Þ

where xi ¼ pþ
i =P

þ
T and

P
4
i¼1 xi ¼ 1, while ki is a trans-

verse momentum of particle i in a rest frame of the bound
state where

P
4
i¼1 ki ¼ 0. The harmonic oscillator Ũij for

the quark-antiquark interaction is given in Eq. (24), with 1,
2, 10, and 20 replaced by i, j, i0, and j0, respectively. For
quark-quark and antiquark-antiquark interactions it is

Ũij ¼ −taii0 t
a
jj0xijxjiðri − rjÞ2

þ
�
ataii0 t

a
jj0 −

4

3
ð1 − aÞδci;ci0 δcj;cj0

�
×

1ffiffiffiffiffiffiffi
Dij

p ∂
∂xij

1

Dij

∂
∂xij

1ffiffiffiffiffiffiffi
Dij

p : ð29Þ

WOGEði; j; i0; j0Þψ 0 differs depending on i and j. For the
quark-quark interaction, i.e., i ¼ 1 and j ¼ 2,

WOGEð1; 2; 10; 20Þψ 0

¼ ta
110 t

a
220UOGEð1; 2; 10; 20Þ − ta

120t
a
210UOGEð1; 2; 20; 10Þ

2

× ψTð102034Þ: ð30Þ

For the antiquark-antiquark interaction, i ¼ 3 and j ¼ 4,

WOGEð3; 4; 30; 40Þψ 0

¼ ta
303t

a
404UOGEð3; 4; 30; 40Þ − ta

403t
a
304UOGEð3; 4; 40; 30Þ

2

× ψTð123040Þ: ð31Þ

For quark-antiquark interactions, i ¼ 1 or 2 and j ¼ 3 or 4,

WOGEði; j; i0; j0Þψ 0 ¼ −taii0 t
a
j0jUOGEði; j; i0; j0Þψ i0j0 ; ð32Þ

where ψ i0j0 ¼ ψTð102304Þ, ψTð102340Þ, ψTð120304Þ, and
ψTð120340Þ for ij ¼ 13, 14, 23, and 24, respectively. The
interaction kernels are antisymmetrized as a result of
having the identical particles b†1b

†
2 and d†3d

†
4 in Eq. (27).

E. Eigenvalue equation for two mesons

To describe two separate mesons A and B, we choose

jψABi ¼
Z
13

Pþ
A δ̃13:PA

ψAð13Þb†1d†3

×
Z
24

Pþ
B δ̃24:PB

ψBð24Þb†2d†4j0i: ð33Þ

Meson A has the momentum components Pþ
A and PA, while

meson B has the momentum components Pþ
B and PB. By

placing the two mesons far enough from each other, we can
make the total interaction between them arbitrarily small.
We simulate this situation by turning off all interactions
except those between particles 1 and 3, which form meson
A, and between particles 2 and 4, which form meson B.
Moreover, two identical quarks contained in two separated
mesons are in practice distinguishable. Therefore, in this
section we treat all particles as distinguishable. Since there
are no interactions between the two mesons, we expect that
in the general eigenvalue equation,

HjψABi ¼ M2jψABi; ð34Þ

the eigenvalue M2 can be written as the invariant mass of
two mesons with masses MA and MB,

M2 ¼ ðPAμ þ PBμÞðPμ
A þ Pμ

BÞ ¼
M2

A þ k2
AB

xA
þM2

B þ k2
AB

xB
:

ð35Þ
The relative transverse momentum between mesons is
kAB¼xBPA−xAPB, where xA¼Pþ

A =ðPþ
A þPþ

B Þ¼x1þx3,
xB ¼ x2 þ x4. Equation (34) reduces to

1

xA
EAψBð24Þ þ

1

xB
EBψAð13Þ

¼
�
M2

A

xA
þM2

B

xB

�
ψAð13ÞψBð24Þ; ð36Þ

where

EA ¼ m2 þ k2
13

x13x31
ψAð13Þ − xA

X
c10 ;c30

κ4Ũ13ψAc10c30 ð13Þ

−
Z
1030

Pþ
A δ̃1030:PA

ta
110t

a
303UOGEð1; 3; 10; 30ÞψAð1030Þ;

ð37Þ

KUANG, SERAFIN, ZHAO, and VARY PHYS. REV. D 105, 094028 (2022)

094028-6



EB ¼ m2 þ k2
24

x24x42
ψBð24Þ − xB

X
c20 ;c40

κ4Ũ24ψBc20c40 ð24Þ

−
Z
2040

Pþ
B δ̃2040:PB

ta
220 t

a
404UOGEð2; 4; 20; 40ÞψBð2040Þ:

ð38Þ

Note that the relative transverse kinetic energy between the
mesons in the eigenvalue, k2

AB=xA þ k2
AB=xB, canceled

with the transverse kinetic energy between mesons in
Hkinetic, which is fixed by the choice of state jψABi.
We separate Eq. (36) in two, EA ¼ M2

AψAð13Þ and
EB ¼ M2

BψBð24Þ. Using the same kind of substitution as
in Sec. II C,

ψAð13Þ ¼
δc1;c3ffiffiffiffiffiffi
Nc

p ffiffiffiffiffiffiffiffi
D13

p
ϕAσ1σ3ðq⃗13Þ; ð39Þ

ψBð24Þ ¼
δc2;c4ffiffiffiffiffiffi
Nc

p ffiffiffiffiffiffiffiffi
D24

p
ϕBσ2σ4ðq⃗24Þ; ð40Þ

we get two eigenvalue equations,

ð4m2 þ q⃗213ÞϕAσ1σ3ðq⃗13Þ − xACFκ
4

∂2

∂q⃗213 ϕAσ1σ3ðq⃗13Þ

− CF

X
σ10 ;σ30

Z
d3q1030

ð2πÞ3
UOGEð1; 3; 10; 30Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D13D1030

p

× ϕAσ10σ30 ðq⃗1030 Þ ¼ M2
AϕAσ1σ3ðq⃗13Þ; ð41Þ

ð4m2 þ q⃗224ÞϕBσ2σ4ðq⃗24Þ − xBCFκ
4

∂2

∂q⃗224 ϕBσ2σ4ðq⃗24Þ

− CF

X
σ20 ;σ40

Z
d3q2040

ð2πÞ3
UOGEð2; 4; 20; 40Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D24D2040

p

× ϕBσ20σ40 ðq⃗2040 Þ ¼ M2
BϕBσ2σ4ðq⃗24Þ: ð42Þ

F. Cluster decomposition principle

The two-meson solutions in theQQQ̄ Q̄ sector provide a
good example of how the cluster decomposition principle
works in the front form of Hamiltonian dynamics. There are
several elements needed for the cluster decomposition
principle to be satisfied. First, the mass MA of meson A
should not depend on the state of particles in meson B.
Similarly, the mass MB of meson B should not depend on
the state of the particles in meson A. Second, MA and MB

calculated in the QQQ̄ Q̄ sector should be equal to the
corresponding masses in the QQ̄ sector. For example, if
meson A is in the 0−þ ground state and meson B is in the
1−− ground state, then MA should be exactly equal to the
mass of ηc calculated in the QQ̄ sector and MB should be
exactly equal to the mass of J=ψ calculated in the QQ̄

sector. This is expected from the analytic solutions;
numerical solutions may differ slightly.
In the two-meson example in Sec. II E, those conditions

are not satisfied. Comparing Eqs. (41) and (26), one can see
that in Eq. (41) there is an extra factor xA multiplying the
confining potential. Since xA is fixed, the mass MA is
independent of whether meson B is in the ηc or J=ψ or
any other state. Nevertheless,MA depends onP

þ
B because xA

depends on Pþ
B . Moreover, MA cannot be the same as the

mass of the corresponding charmonium in the QQ̄ sector,
because the strength of the confining potential in the QQ̄
sector isCFκ

4, while it is xACFκ
4 for mesonA in theQQQ̄ Q̄

sector.
We could formally restore the decomposition principle

by replacing pþ
1 þ pþ

2 in Eqs. (9) and (10) with Pþ, but this
would lead to the appearance of spurious states, as
described in Sec. II B. We prioritize the acceptable spec-
trum over exact conservation of the decomposition prin-
ciple since the former is more important in practice, while
the latter can be approximately restored. Since charm
quarks are heavy, the two-meson system and tetraquark
can be considered nonrelativistic. Therefore, xA ≈ xB ≈ 1=2,
and one can partly restore the cluster decomposition
principle by rescaling κ in the QQQ̄ Q̄ sector. In other
words, in the QQQ̄ Q̄ sector we use κT ¼ 21=4κ instead of
κ. This guarantees that xACFκ

4
T ≈ CFκ

4 for xA ≈ 1=2.
As opposed to the confining potential, the OGE potential

fully obeys the cluster decomposition principle. This is to
be expected because it can be derived from QCD in
perturbation theory. In fact, all two-body potentials in
QCD have the same generic form of Eq. (19) (apart from
the color factors, which may differ). It is important for
UOGEð1; 2; 10; 20Þ to depend only on the relative momenta
between particles 1 and 2 and between 10 and 20, and not on,
e.g., the momentum fractions x1 or x2, which depend on the
total Pþ of the system. Therefore, Eq. (19) illustrates the
general form of two-body operators that admit the cluster
decomposition principle in the sense described here. A
more general treatment of relativistic theories obeying
cluster separability can be found in Ref. [70].
In the eigenvalue equations the cluster decomposition

principle manifests itself through the presence of the 1=xA
and 1=xB factors in Eq. (36) and the 1=ðxi þ xjÞ factor in
Eq. (28) that multiply interaction terms that depend only on
relative momenta within the interacting pair, with no trace
of the total Pþ. Note that momentum conservation inR
i0j0 ðpþ

i þ pþ
j Þδ̃ij:i0j0 fixes pi0 þ pj0 , and one is left with an

integral over the relative momenta xi0j0 and ki0j0 .

III. BASIS LIGHT-FRONT QUANTIZATION
AND TRUNCATION SCHEME

Basis light-front quantization is a basis function approach
to Hamiltonian light-front field theories [42]. Longitudinal
and transverse directions are treated differently. In the
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longitudinal direction a box of length 2L, i.e., coordinate
x− ∈ ½−L;L�, is introduced. This leads to discretization of
the longitudinal momenta. We apply antiperiodic boundary
condition for the quark field, which means that quark
longitudinal momenta can take only the values

pþ ¼ 2π

L
k; ð43Þ

where k is called the longitudinal quantum number and it is a
positive half integer. In sectors with many particles, the total
longitudinal momentum is by definition Pþ ¼ 2π

L K, where
K ¼ P

i ki is the sumof longitudinal quantumnumbers of all
particles. In Sec. II Pþ denoted the momentum operator;
from now on,Pþ indicates the eigenvalue of the operatorPþ
and we keep it fixed (we use only eigenstates of the operator
Pþ with eigenvalue Pþ). For a given particle i, the longi-
tudinal momentum fraction xi is

xi ¼
pþ
i

Pþ ¼ ki
K
: ð44Þ

The longitudinal continuum limit is L;K → ∞, while Pþ is
kept fixed.None of the quantities thatwe calculate depend on
the exact values of Pþ and L due to front form boost
invariance.
For transverse momenta we introduce the harmonic-

oscillator basis [42]. We define the new creation and
annihilation operators as

Bi ¼
1ffiffiffiffiffiffi
Pþp

Z
d2q
ð2πÞ2Ψ

mi
ni ðqÞ�bijpi¼ ffiffiffi

xi
p

q; ð45Þ

Di ¼
1ffiffiffiffiffiffi
Pþp

Z
d2q
ð2πÞ2 Ψ

mi
ni ðqÞ�dijpi¼ ffiffiffi

xi
p

q: ð46Þ

Note that the operators Bi and Di depend on the discrete
quantum numbers ni, mi, ki, σi, and ci, while the plane-
wave operators bi and di depend on the continuum trans-
verse momentum pi ¼ ffiffiffiffi

xi
p

q, the discretized longitudinal
momentum pþ

i ¼ 2πki=L (or, equivalently, on ki), and the
spin and color σi and ci. Operators Bi and Di are
normalized to unity, that is,

fBi; B
†
jg ¼ fDi;D

†
jg ¼ δni;njδmi;mj

δki;kjδσi;σjδci;cj : ð47Þ

The basis wave functions are

Ψm
n ðqÞ ¼

1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn!

ðnþ jmjÞ!

s
Ljmj
n

�
q2

b2

�
e−

q2

2b2

���� qb
����jmj

eimφ; ð48Þ

where Ljmj
n are the associated Laguerre polynomials,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1Þ2 þ ðq2Þ2

p
, φ ¼ argq, and b is a selectable

positive parameter of dimension of P. The principal

quantum number n is a non-negative integer, while m
can be an arbitrary integer. The choice of the harmonic-
oscillator wave functions is compatible with our choice of
the transverse confining potential and is important for the
factorization of the center-of-mass motion, which we
describe in detail later in this section.
In practice one has to truncate the many-particle basis in

the transverse direction by limiting the allowed radial
numbers ni and angular numbers mi to a cutoff in the
number of oscillator quanta in each basis state,X

i

ð2ni þ jmij þ 1Þ ≤ Nmax: ð49Þ

Removing this truncation is equivalent to taking the limit
Nmax → ∞. In addition, we require our multiparticle basis
state to have the total angular momentum projection

MJ ¼
X
i

ðmi þ σiÞ; ð50Þ

where σi ¼ � 1
2
is the fermion light-front helicity. Through-

out this article we limit our attention toMJ ¼ 0 states.1 It is
also worth mentioning that the truncation of the basis
breaks the cluster decomposition principle. For example, if
we consider our two-meson example from Sec. II E and if
the quantum numbers of particles forming meson A already
almost saturate Eq. (49), then the particles of meson B will
be restricted to a much smaller space of states than the
particles of meson A. The opposite situation is also possible
and is included in the truncated basis. Therefore, one meson
can influence the other through the truncation, even if there
are no interactions between them. Moreover, each of the
mesons in the QQQ̄ Q̄ sector is subject to a different
truncation than the one meson in the QQ̄ sector and meson
masses in the QQ̄ and QQQ̄ Q̄ sectors can differ slightly,
but the difference should vanish as the basis size is
increased.
It is straightforward to rewrite the Hamiltonian presented

in Sec. II using new operators B and D. One has to addi-
tionally discretize the longitudinal momenta by following a
simple prescription, 4πδðpþ

1 − pþ
2 Þ → 2Lδk1;k2 ,

R∞
0

dpþ
4π →

1
2L

P
k, b →

ffiffiffiffiffiffi
2L

p
b, d →

ffiffiffiffiffiffi
2L

p
d. Then it is only a matter of

computing the matrix elements of H and diagonalizing the
obtained matrix to obtain the eigenstates of H and their
masses. Computation of matrix elements between states
containing two quarks and two antiquarks is not much more
complicated than the analogous computation between

1A tetraquark state withMJ ¼ 0 can, in principle, be built from
one meson having, for example, MJ ¼ þ1, and the other having
MJ ¼ −1. However, this is not expected to play a role in
calculations focused on the tetraquark ground state since such
states would be expected to result in a higher tetraquark
dissociation threshold than the one where both mesons have
MJ ¼ 0.
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states containing only one quark and one antiquark,
because no particle or any pair of particles is distinguished.
One obviously has to calculate terms for all six pairs of
particles instead of just one, and interactions between
identical particles must be property antisymmetrized.
Using a basis in relative momenta of the Jacobi type, for
example, would require us to use different formulas for
different pairs of interacting particles. It should be evident
that the addition of more particles to our calculation
(including gluons) would be straightforward. Admittedly,
this comes at the cost of larger matrices (effectively one
more particle per Fock sector compared to Jacobi coor-
dinates), but the larger matrices are also more sparse, which
aids applications on modern computers, while the simplic-
ity makes the software development more reliable.
Probably the most important complication is introduced
by restricting our space of states to only color-singlet states.
This important, but rather technical, topic is described in
more detail in the Appendix. Similar basis spaces restricted
to include only color singlets have been implemented for a
BLFQ treatment of glueballs with Fock spaces having up to
six gluons [71].
Since BLFQ implements states using single-particle

transverse motion instead of relative motion, the resulting
eigenvectors will possess center-of-mass motion excita-
tions which are of no interest to us because they do not
influence the invariant mass or the internal structure of
hadrons on the light front. The harmonic-oscillator basis
allows us to easily deal with this problem. By adopting
Eq. (49) the eigenvectors of the truncated Hamiltonian
have a known and simple center-of-mass motion. This can
be demonstrated by showing that, even in the truncated
basis, H commutes with the similarly truncated center-of-
mass harmonic-oscillator Hamiltonian

HCM ¼ λCMðP2 þ b4R2 − 2b2Þ; ð51Þ

where P is the transverse momentum operator and R is the
transverse center-of-mass position operator,

R ¼
X

k1;k2;σ1;σ2;c1;c2

δk1;k2δσ1;σ2δc1;c2
Pþ

Z
d2p1

ð2πÞ2
Z

d2p2

ð2πÞ2

×

�
−i

∂
∂p1

ð2πÞ2δ2ðp1 − p2Þ
�
ðb†1b2 þ d†1d2Þ: ð52Þ

Eigenvalues of HCM are n · 2b2λCM, where n is a non-
negative integer. n ¼ 0 corresponds to the ground state of
center-of-mass motion and n ≥ 1 correspond to excited
states of the center-of-mass motion. In a typical scenario
among eigenstates of H with the lowest eigenvalues, there
will be states with the same relative motion but a different
center-of-mass motion. To keep only the eigenstates with
the ground-state center-of-mass motion, we diagonalize
H þHCM instead of H. Since H and HCM commute, they

have the same eigenvectors, while the eigenvalues of the
sum will be the sum of the eigenvalues of H and HCM.
Therefore, states with an excited-state center-of-mass
motion will be shifted up by a multiple of 2b2λCM.
Choosing λCM sufficiently large and positive, all states
with an excited center-of-mass motion will have eigenval-
ues larger than the eigenvalues of the limited number of
states that we obtain numerically. We use λCM ¼ 50 in our
calculations.

IV. ANALYSIS OF BINDING ENERGY

To address the question of whether there are ccc̄ c̄ states
that cannot break up into two charmonia, we need to know
the mass of the lowest tetraquark state and the value of
the two-charmonium threshold taking into account the
implications of the truncated basis space for the subsys-
tems. We obtain estimates of both by numerically diagonal-
izing the truncated matrices of our model Hamiltonian
obtained using BLFQ. We therefore solve three problems
which correspond to three eigenvalue equations presen-
ted in Secs. II C–II E. The discrete spectra of truncated
Hamiltonians should look more and more like the spectrum
of the untruncated, infinite Hamiltonian as Nmax → ∞
and K → ∞.
The Hamiltonian matrix in the sector with one meson is

used to fix the free parameters of the model, m, κ, and
α ¼ g2=ð4πÞ. The gluon mass μ ¼ 10 MeV and the basis
parameter b in the meson calculation is fixed to be equal
to κ. We fit the lowest eight states in the spectrum of
charmonium. The root mean square difference between
the fitted and experimental masses is 31 MeV. The
parameters are given in Table I, while Table II lists the
fitted meson masses and the corresponding experimental
values. The fitting was carried out forNmax ¼ 6 andK ¼ 9.
In all calculations we calculate MJ ¼ 0 states. For the pur-
pose of estimating the two-meson threshold [see Eq. (55)],
we also calculated meson masses for all 2 ≤ Nmax ≤ 10 and
1 ≤ K ≤ 17, and cc̄masses with interactions between c and
c̄ turned off for the same range of Nmax and K. The lowest
possible Nmax in a system with two particles is 2, while the
lowestK is 1. The upper bounds onNmax andK for a meson

TABLE I. Parameters obtained from a fit to an experimental
meson spectrum.

m κ α

1.25 GeV 1.21 GeV 0.367

TABLE II. Fitted masses in MeV. Nmax ¼ 6, K ¼ 9.

ηcð1SÞ J=ψ χc0 χc1 χc2 hc ηcð2SÞ ψð2SÞ
Fit 3031 3067 3415 3517 3564 3474 3676 3666
Expt. 2984 3097 3415 3511 3556 3525 3637 3686
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are determined by the largest Nmax and K that we used in
the tetraquark computations.
Tetraquark masses are calculated for Nmax ¼ 6, 8, 10, 12

and for K ¼ 6, 10, 14, 18. We calculated three sets of
tetraquark masses: masses with all interactions turned on
[cf. Eq. (28)], masses with all interactions turned off, κ ¼ 0,
α ¼ 0, and masses with only interactions in the pair 13 and
in the pair 24 turned on [cf. Eq. (36)]. For the purpose of the
tetraquark calculations, we readjust the parameter b to
remove a possible source of mismatch between meson and
tetraquark calculations. The characteristic value of q in
Eq. (48) is b, which means that the characteristic value
of jpj is ffiffiffi

x
p

b. In the tetraquark case, similarly, we have
jpj ∼ ffiffiffi

x
p

b. However, in the meson case, the expected value
of x is 1=2, while in the tetraquark case the expected value
of x is 1=4. Therefore, it is reasonable to take bT ¼ ffiffiffi

2
p

bM,
where bT is the value of b for tetraquark calculations and
bM is the value of b for meson calculations. This way the
characteristic scale of jpj in the basis is the same in the two
cases. This readjustment is not strictly necessary, because
for sufficiently large Nmax and K the results should be
rather insensitive to the choice of b for fixed κ over a wide
range of values of b, but it should increase the utility of the
results for small Nmax and K. Moreover, as mentioned in
Sec. II F, instead of κ we use κT ¼ 21=4κ for the confining
strength parameter.
One of the sources of systematic errors of the framework

that we adopt originates from the fact that a pair of particles
in a ccc̄ c̄ system has a minimal nonzero kinetic energy
with respect to the other two particles. The minimal kinetic
energy should approach zero from above as Nmax
approaches infinity, but it may be of importance for finite
Nmax. This artifact of a finite basis is called “kinetic
energy penalty” in Ref. [6]. Here we estimate it in the
following way,

ΔM2 ¼ M2 free
ccc̄ c̄ðNmax; KÞ

− min
N1;K1

�
M2 free

cc̄ ðN1; K1Þ
K1=K

þM2 free
cc̄ ðN2; K2Þ
K2=K

�
; ð53Þ

where N2 and K2 are fixed by the conditions N1 þ N2 ¼
Nmax and K1 þ K2 ¼ K. M2 free

ccc̄ c̄ and M2 free
cc̄ are tetraquark

and meson ground-state masses squared, respectively,
computed with all interactions turned off. We use masses
squared instead of masses because they, and not the masses,
are the eigenvalues of our Hamiltonian. Moreover, the two
two-quark masses, M2free

cc̄ ðN1; K1Þ and M2free
cc̄ ðN2; K2Þ,

need to be combined according to Eq. (35) to get the
invariant mass of the full state. To get the minimal invariant
mass we put kAB ¼ 0 and minimize over all possible values
of N1, N2 and K1, K2 into which Nmax and K can be
partitioned. Hence, ΔM2, being the difference between the
actual tetraquark mass and the minimal possible mass of
two separate two-quark subsystems, is a measure of

minimal kAB between the two subsystems. Table III lists
the values that we obtain. Note that ΔM2 does not depend
on K for the choice of K’s that we made. It should stay the
same for all K ¼ 2 (mod 4). We correct the actual
eigenvalues of the truncated Hamiltonians by subtracting
the kinetic energy penalty,

M2 corrected
ccc̄ c̄ ¼ M2 full

ccc̄ c̄ðNmax; KÞ − ΔM2ðNmax; KÞ: ð54Þ

To give an estimate for a typical downward shift of
tetraquark masses introduced by this correction, for
Nmax ¼ 12, if Mfull

ccc̄ c̄ ¼ 6 GeV, then Mfull
ccc̄ c̄ −Mcorrected

ccc̄ c̄ ≈
49 MeV.
We introduce three estimates of the threshold with which

we compare our numerical tetraquark masses. One estimate
uses the same idea behind the second term in Eq. (53) but
with full meson masses that include interactions,

T 0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
N1;K1

�
M2 full

cc̄ ðN1; K1Þ
K1=K

þM2 full
cc̄ ðN2; K2Þ
K2=K

�s
; ð55Þ

where the minimum, as in Eq. (53), is taken over all
possible values of N1 and K1. Threshold T 0

1 gives an
unexpectedly poor estimate. It is substantially smaller than
twice our fitted numerical mass of ηc. The reason seems to
be an overestimation of the OGE potential for small values
of K because the minima of T 0

1 tend to be reached at the
minimal K1 ¼ 1, while turning off the OGE potential
makes the minima appear for K1 ¼ K2 ¼ K=2. In fact,
one naively expects the minimum in the definition of T 0

1

to be reached for K1 ¼ K=2 because it implies xA ¼
xB ¼ 1=2, which means zero relative longitudinal momen-
tum between the two mesons (as long as they have equal
masses). Moreover, the actual M2 full

cc̄ turns out to be
negative for some K ¼ 1 cases, which is unacceptable.
Therefore, we define another estimate of the threshold, for
which both Nmax and K are equally partitioned among N1,
N2 and K1, K2, i.e.,

T1ðNmax; KÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 full

cc̄

�
Nmax

2
;
K
2

�s
: ð56Þ

This estimate seems to be more reasonable, and it is in
rough agreement with a third estimate of the threshold
provided below.
By turning off interactions between particles that

do not belong to the same meson, we can compute the
invariant mass of two mesons occupying almost the same

TABLE III. Kinetic energy penalty in GeV2.

Nmax 6 8 10 12

ΔM2 1.213 1.013 0.659 0.584
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finite basis—we have to make identical particles distin-
guishable because otherwise one would not be able to
consistently turn off, for example, an interaction between 1
and 4 and at the same time keep interaction between 1 and 3
turned on. Therefore, we define

T2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

two-mesonðNmax; KÞ − ΔM2ðNmax; KÞ
q

; ð57Þ

where M2
two-meson is the ground-state mass in the afore-

mentioned calculation of a two-meson system in a tetra-
quark calculation. The results for threshold estimates and
tetraquark masses are summarized in Table IV and plotted
in Fig. 1.
Figure 2 shows the result of a least squares fit of aþ

b=K þ c=K2 to threshold estimates and tetraquark masses
for Nmax ¼ 12. The results for parameter a, i.e., extrapo-
lations of the fitted curves to the point 1=K ¼ 0 are T1 ¼
ð6748� 225Þ MeV, T2 ¼ ð7009� 111Þ MeV, Mfull

ccc̄ c̄ ¼
ð7477� 2Þ MeV, and Mcorrected

ccc̄ c̄ ¼ ð7438� 2Þ MeV. All
those numbers are expected to go down in the limit
Nmax → ∞ (provided that we do not refit our meson
masses), but we expect that the shift should be much
smaller than the shift due to K → ∞ extrapolation. Our
gluon mass introduces an additional shift upward on the
order of the value of μ, i.e., 10 MeV. All tetraquark masses
lie substantially above all threshold estimates, including the
extrapolations. These results indicate that the lowest ccc̄ c̄
eigenstate of our model Hamiltonian is not bound with
respect to breakup into two separated mesons. It could be a
resonant state. However, such a conclusion would require
additional confirmation in the form of a decay analysis.

V. CONCLUSION

We have done, to our knowledge, the first study of
all-heavy tetraquark states using a Hamiltonian in the
front form of dynamics, where all quarks are treated
individually, color degrees of freedom are unconstrained
(apart from the restriction to global color singlets), and
antisymmetrizations due to identical particles are taken into
account.
We note, however, that our confining potential breaks the

cluster decomposition principle, but the breaking should be
rather small for a nonrelativistic system like an all-charm
tetraquark. Attempts to restore it exactly lead to unphysical
states with negative mass squared. Therefore, our confining
potential should be regarded as an approximate effective
potential with a limited range of applicability.
Even without the negative M2 problem, confining

long-range forces lead to problematic long-range van der
Waals forces [72,73]. Such long-range forces are unlikely
to be present in QCD. A more likely picture would involve

FIG. 2. Threshold estimates and tetraquark masses as functions
of 1=K for Nmax ¼ 12. The fitted solid lines (of the form
aþ b=K þ c=K2) are used to extrapolate the results to the point
1=K ¼ 0.

FIG. 1. Threshold estimates T1, T2 and tetraquark masses
Mcorrected

ccc̄ c̄ depending on Nmax and K. Dashed lines connect
symbols representing Mcorrected

ccc̄ c̄ , solid lines connect symbols
representing T1, and dotted lines connect symbols representing
T2. Different symbols represent different K. With an increasingK
the threshold lines go up, while the tetraquark lines go down.

TABLE IV. Values (in MeV) of threshold estimates T1, T2 and corrected tetraquark masses Mcorrected
ccc̄ c̄ for various Nmax and K.

K 6 10 14 18

Nmax 6 8 10 12 6 8 10 12 6 8 10 12 6 8 10 12

T1 5215 4832 4758 4565 5895 5662 5613 5484 6105 5987 5970 5918 6192 6100 6089 6060
T2 4999 4754 4513 4093 5774 5598 5484 5372 6140 6032 5972 5903 6282 6208 6178 6140
Mcorrected

ccc̄ c̄ 7810 7783 7787 7781 7659 7631 7637 7633 7600 7572 7578 7574 7567 7540 7546 7542
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effective, massive gluons to be the source of confining
forces. They may or may not form strings, but in any case a
force mediated by such gluons would be short-range.
All our estimates for the ccc̄ c̄ ground-state mass turn out

to be substantially higher than the estimates we made for
the lowest threshold for breakup into two cc̄ mesons.
Therefore, in our model, the ground-state tetraquark is
unstable against dissociation into two charmonia. There
remain, however, open questions. For example, what would
happen if we used much larger basis spaces? Our estimates
seem to indicate a gap between the two-meson threshold
and the lowest tetraquark, but ultimately, close to the
threshold, we should see a lot of states filling a continuum
spectrum. We might also see some molecular states bound
by the van der Waals forces. The 15% color-independent
admixture might play a role here because it is, perhaps a bit
counterintuitively, likely to work against the binding of
tetraquark states. This is because all pairs of quarks in a
tetraquark contribute an upward shift of mass due to zero-
point energy, while for the OGE-like case four of the
potentials cancel each other to a large extent in the color
configuration with two color singlets. At the same time, by
design, meson spectra and two-meson spectra are unaf-
fected by the admixture.
Even if the ground-state tetraquark is unstable, there may

still be stable tetraquarks higher in the mass, because their
thresholds can be higher. For example, Barnea et al. [7],
using hyperspherical expansion to solve the Schrödinger
equation, find exotic states 0þ− (6515 MeV) and 2þ−

(6586 MeV) to be substantially below their respective
thresholds for dissociation.
It is also worth noting that the results for tetraquark

masses seem to be much more reliable than the threshold
estimates that we obtain, as can be seen in Fig. 2 and in our
extrapolations. Fit uncertainties are very small for tetra-
quarks, and very large for threshold estimates. This is
fortunate because meson calculations require far less
amount of computational resources, and hence can be
straightforwardly improved. Therefore, we could fit param-
eters using the extrapolations K → ∞ and Nmax → ∞ of
meson masses (instead of at fixed K and Nmax). This would
give us the threshold at physical values, while extrapola-
tions of tetraquark masses from comparatively smaller K
and Nmax would still give reliable results.
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APPENDIX: ANTISYMMETRIZATION OF THE
BASIS AND COLOR PROJECTION

The color space for two quarks and two antiquarks is
34 ¼ 81 dimensional. Assuming color confinement, only
color-singlet states can be physically realized. The space of
QQQ̄ Q̄ color-singlet states is only two dimensional. It is,
therefore, worth working with color-singlet states only
because that means that the matrices that need to be
diagonalized numerically have, roughly speaking, 40 times
smaller dimensions. We refer the reader to Fig. 12 in
Ref. [42] for detailed examples of numbers of color singlets
in sectors with more particles. One has to invest, however,
extra effort in the evaluation of the matrix elements of the
Hamiltonian.
The first step, which needs to be taken in any case, is to

define a space of states with arbitrary color that takes into
account the fact that some particles are identical. One can
use states

j1234i ¼ B†
1B

†
2D

†
3D

†
4j0i: ðA1Þ

Each particle is characterized by five quantum numbers: ki,
longitudinal momentum number; ni, transverse-harmonic-
oscillator radial number;mi, transverse-harmonic-oscillator
angular number; σi, light-front helicity; ci, color, with
i ¼ 1, 2, 3, 4. For each state j1234i there are several other
states that are linearly dependent, e.g., j2134i ¼ −j1234i
and j1243i ¼ −j1234i. Moreover, some states are identi-
cally zero, e.g., j1134i ¼ 0. To define a proper orthonormal
basis one has to constrain possible quantum numbers
of the particles. Since quarks are fermions, this can be
done using a relation of strict order. We say that 1 > 2 if
and only if k1 > k2, or k1 ¼ k2 and n1 > n2, or k1 ¼ k2 and
n1 ¼ n2 and m1 > m2, or k1 ¼ k2 and n1 ¼ n2 and m1 ¼
m2 and σ1 > σ2, or k1 ¼ k2 and n1 ¼ n2 and m1 ¼ m2 and
σ1 ¼ σ2 and c1 > c2. We define our basis to contain
only such states j1234i for which 1 > 2 and 3 > 4.
Taking another such state j10203040i with 10 > 20 and
30 > 40, we have h1234j10203040i ¼ δ110δ220δ330δ440 , where
δij ¼ δki;kjδni;njδmi;mj

δσi;σjδci;cj .
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For the second step we need to find color-singlet states,
which are defined as the kernel of the quadratic Casimir
operator C2 ¼

P
8
a¼1 T̂

aT̂a, where

T̂a ¼
X
12

δk1;k2δn1;n2δm1;m2
δσ1;σ2ðtac1c2B†

1B2 − tac2c1D
†
1D2Þ;

ðA2Þ

where
P

12 is the sum over all quantum numbers of
particles 1 and 2. We omit the gluon part because we do
not have gluons in our model. The color operators T̂a do not
change any of the momentum and spin quantum numbers;
hence, C2 is diagonal in momentum and spin. Therefore,
we can separately diagonalize C2 in subspaces of fixed
momentum and spin quantum numbers. Note that our
relation i > j compares colors ci and cj in the very end
only if all the other quantum numbers turned out to be
the same.
There are four different kinds of subspaces. To classify

them, it is convenient to introduce another two relations.
We say that i ≈ j if all quantum numbers of i and j except
color are the same (colors can be arbitrary). We say that
i ≫ j if i > j and not i ≈ j. In other words, either ki > kj or
ki ¼ kj and ni > nj, or ki ¼ kj and ni ¼ nj and mi > mj,
or ki ¼ kj and ni ¼ nj and mi ¼ mj and σi > σj. Hence,
the symbol≫ is just like> except that it does not take color
into account. We can now easily classify the four cases of
color spaces.
Case 1: 1 ≫ 2 and 3 ≫ 4. In this case all 81 color

combinations are allowed. The color-singlet subspace is
two dimensional and spanned by

j1234; Si ¼ 1

2
ffiffiffi
6

p ð2jrrr̄ r̄i þ 2jggḡ ḡi þ 2jbbb̄ b̄i

þ jrgr̄ ḡi þ jgrr̄ ḡi þ jgrḡ r̄i þ jrgḡ r̄i
þ jgbḡ b̄i þ jbgḡ b̄i þ jbgb̄ ḡi þ jgbb̄ ḡi
þ jbrb̄ r̄i þ jrbb̄ r̄i þ jrbr̄ b̄i þ jbrr̄ b̄iÞ;

ðA3Þ

j1234; A1i ¼
1ffiffiffiffiffi
12

p ðjrgr̄ ḡi − jgrr̄ ḡi þ jgrḡ r̄i − jrgḡ r̄i

þ jgbḡ b̄i − jbgḡ b̄i þ jbgb̄ ḡi − jgbb̄ ḡi
þ jbrb̄ r̄i − jrbb̄ r̄i þ jrbr̄ b̄i − jbrr̄ b̄iÞ;

ðA4Þ

where kets on the right-hand sides are denoted by colors
jc1c2c3c4i and we omit momentum and spin quantum
numbers, which are the same for each ket. Instead of 1, 2, 3,
colors are called r, g, b, respectively, for quarks and r̄, ḡ, b̄,
respectively, for antiquarks. For completeness, r < g < b
and r̄ < ḡ < b̄. Note that j1234; Si is symmetric for either

1 ↔ 2 or 3 ↔ 4, while j1234; A1i is antisymmetric for
either 1 ↔ 2 or 3 ↔ 4.
Case 2: 1 ≈ 2 and 3 ≫ 4. Now only three quark-quark

color combinations, bg, br, and gr, are allowed (because
1 > 2 still holds), while the colors of antiquarks are
unconstrained. Therefore, this color space is 27 dimen-
sional and there is only one antisymmetric color-singlet
combination,

j1234; A2i ¼
1ffiffiffi
6

p ðjgrḡ r̄i − jgrr̄ ḡi þ jbrb̄ r̄i

− jbrr̄ b̄i þ jbgb̄ ḡi − jbgḡ b̄iÞ: ðA5Þ

Case 3: 1 ≫ 2 and 3 ≈ 4. In analogy with case 2, only
three antiquark-antiquark color combinations, b̄ ḡ, b̄ r̄,
and ḡ r̄, are allowed because 3 > 4, while the colors of
quarks are unconstrained. The color space is again 27
dimensional and there is only one antisymmetric color-
singlet combination,

j1234; A3i ¼
1ffiffiffi
6

p ðjgrḡ r̄i − jrgḡ r̄i þ jbrb̄ r̄i

− jrbb̄ r̄i þ jbgb̄ ḡi − jgbb̄ ḡiÞ: ðA6Þ

Case 4: 1 ≈ 2 and 3 ≈ 4. Both quarks and antiquarks
have constrained colors because 1 > 2 and 3 > 4. The
color space is nine dimensional and there is only one
antisymmetric color-singlet combination,

j1234; A4i ¼
1ffiffiffi
3

p ðjgrḡ r̄i þ jbrb̄ r̄i þ jbgb̄ ḡiÞ: ðA7Þ

The third and last step is to calculate the common factors
in Hamiltonian matrix elements between states with differ-
ent color-singlet configurations that arise due to color and
antisymmetrization. We summarize the results. In general
we need to evaluate matrix elements of the following types
of operators,

V̂q ¼
X
50;5

δc50 ;c5V50;5B
†
50B5; ðA8Þ

V̂q̄ ¼
X
50;5

δc50 ;c5V50;5D
†
50D5; ðA9Þ

V̂qq ¼
X

50;60;5;6

Cqq
50;60;5;6V50;60;5;6

1

2
B†
50B

†
60B6B5; ðA10Þ

V̂q̄ q̄ ¼
X

50;60;5;6

Cq̄ q̄
50;60;5;6V50;60;5;6

1

2
D†

50D
†
60D6D5; ðA11Þ

V̂qq̄ ¼
X

50;60;5;6

Cqq̄
50;60;5;6V50;60;5;6B

†
50D

†
60D6B5; ðA12Þ
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where V50;5 and V50;60;5;6 depend on all quantum numbers
except color, while Cqq

50;60;5;6, C
q̄ q̄
50;60;5;6, and Cqq̄

50;60;5;6 depend
only on color. There are two types of interactions: color-
independent ones, for which

Cqq
50;60;5;6 ¼ Cq̄ q̄

50;60;5;6 ¼ Cqq̄
50;60;5;6 ¼ δc50 ;c5δc60 ;c6 ; ðA13Þ

and OGE-like interactions, for which

Cqq
50;60;5;6 ¼

X8
a¼1

ta
505t

a
606; ðA14Þ

Cq̄ q̄
50;60;5;6 ¼

X8
a¼1

ta
550 t

a
660 ; ðA15Þ

Cqq̄
50;60;5;6 ¼ −

X8
a¼1

ta
505t

a
660 : ðA16Þ

Note that Cqq
50;60;5;6 ¼ Cq̄ q̄

50;60;5;6. We label color singlets with
capital letters I and J that can equal S, A1, A2, A3, or A4.
The general matrix elements are

h10203040; IjV̂qj1234; Ji ¼ Cq
IJS

q
I S

q
JV

q
IJδe30 ;e3δe40 ;e4 ; ðA17Þ

h10203040; IjV̂q̄j1234; Ji ¼ Cq̄
IJS

q̄
I S

q̄
JV

q̄
IJδe10 ;e1δe20 ;e2 ; ðA18Þ

h10203040; IjV̂qqj1234;Ji¼Cqq
IJ S

q
I S

q
JV

qq
IJ δe30 ;e3δe40 ;e4 ; ðA19Þ

h10203040; IjV̂q̄ q̄j1234; Ji ¼ Cq̄ q̄
IJ S

q̄
I S

q̄
JV

q̄ q̄
IJ δe10 ;e1δe20 ;e2 ;

ðA20Þ

h10203040; IjV̂qq̄j1234; Ji ¼ Cqq̄
IJ S

qq̄
I Sqq̄J Vqq̄

IJ ; ðA21Þ

where ei stands for all quantum numbers of particle i except
color, i.e., ni,mi, ki, and σi. Hence, δei;ej is a product of four
Kronecker deltas, δki;kjδni;njδmi;mj

δσi;σj . The color factors
CIJ are given in Table V. The symmetry factors SI are given
in Table VI. Finally, the V factors are

Vq
SS ¼ V10;1δe20 ;e2 − V10;2δe20 ;e1 − V20;1δe10 ;e2 þ V20;2δe10 ;e1 ;

ðA22Þ

Vq
AiAj

¼ V10;1δe20 ;e2 þ V10;2δe20 ;e1 þ V20;1δe10 ;e2 þ V20;2δe10 ;e1 ;

ðA23Þ

Vq̄
SS ¼ V30;3δe40 ;e4 − V30;4δe40 ;e3 − V40;3δe30 ;e4 þ V40;4δe30 ;e3 ;

ðA24Þ

Vq̄
AiAj

¼ V30;3δe40 ;e4 þ V30;4δe40 ;e3 þ V40;3δe30 ;e4 þ V40;4δe30 ;e3 ;

ðA25Þ

Vqq
SS ¼ V10;20;1;2 − V20;10;1;2 − V10;20;2;1 þ V20;10;2;1; ðA26Þ

Vqq
AiAj

¼ V10;20;1;2 þ V20;10;1;2 þ V10;20;2;1 þ V20;10;2;1; ðA27Þ

Vq̄ q̄
SS ¼ V30;40;3;4 − V40;30;3;4 − V30;40;4;3 þ V40;30;4;3; ðA28Þ

Vq̄ q̄
AiAj

¼ V30;40;3;4 þ V40;30;3;4 þ V30;40;4;3 þ V40;30;4;3; ðA29Þ

Vqq̄
IJ ¼ ½V10;30;1;3 þ aV10;40;1;3 þ aV20;30;1;3 þ V20;40;1;3

þ bV10;30;1;4 þ abV10;40;1;4 þ abV20;30;1;4 þ bV20;40;1;4

þ bV10;30;2;3 þ abV10;40;2;3 þ abV20;30;2;3 þ bV20;40;2;3

þ V10;30;2;4 þ aV10;40;2;4 þ aV20;30;2;4 þ V20;40;2;4� eδδ;
ðA30Þ

where a ¼ −1 if I ¼ S and a ¼ 1 if I ¼ Ai, while b ¼ −1
if J ¼ S and b ¼ 1 if J ¼ Aj. eδδ stands for matching
Kronecker deltas in quantum numbers of the spectators of
the interaction, and it is different for each of the 16 terms in
Eq. (A30). For example, V20;40;1;3 describes an interaction
where the final interacting quark-antiquark pair is 2040,
while initial interacting quark-antiquark pair is 13. Hence,
the final spectator quark-antiquark pair is 1030 and the initial

TABLE VI. Symmetry factors SI as functions of I. Note that
Sqq̄I ¼ SqI S

q̄
I .

I SqI Sq̄I Sqq̄I

S 1 1 1
A1 1 1 1
A2

1ffiffi
2

p 1 1ffiffi
2

p

A3 1 1ffiffi
2

p 1ffiffi
2

p

A4
1ffiffi
2

p 1ffiffi
2

p 1
2

TABLE V. Interaction color factors between color-singlet
states.

Color independent OGE-like

IJ Cq
IJ Cq̄

IJ Cqq
IJ Cq̄ q̄

IJ Cqq̄
IJ Cqq

IJ Cq̄ q̄
IJ Cqq̄

IJ

SS 1 1 1
2

1
2

1 1
6

1
6

− 5
6

SAj or AiS 0 0 0 0 0 0 0 − 1ffiffi
2

p

AiAj 1 1 1
2

1
2

1 − 1
3

− 1
3

− 1
3
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spectator quark-antiquark pair is 24. Therefore, eδδ ¼
δe10 ;e2δe30 ;e4 in this case. Vq, Vq̄, Vqq, and Vq̄ q̄ need not
be defined for IJ ¼ SAj or AiS, because color factors are
always zero in those cases. It is also worth noting that if

I ∈ fA3; A4g and J ∈ fS; A1; A2g or if J ∈ fA3; A4g and
I ∈ fS; A1; A2g, then δe30 ;e3δe40 ;e4 is always zero. Similarly,
if I ∈ fA2; A4g and J ∈ fS; A1; A3g or if J ∈ fA2; A4g and
I ∈ fS; A1; A3g, then δe10 ;e1δe20 ;e2 is always zero.
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