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We derive the twist-3 gluon fragmentation function (FF) contribution to the transversely polarized
hyperon production in semi-inclusive deep inelastic scattering, ep — e¢A' X, in the leading order (LO) with
respect to the QCD coupling in the framework of the collinear twist-3 factorization. Together with the
known result for the contribution from the twist-3 distribution in the proton and the twist-3 quark FFs for
the hyperon, this completes the LO cross section for this process. The constraint relations among the twist-3
FFs are taken into account. The formula is relevant to large-P; hyperon production in the future electron-

ion-collider experiment.
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I. INTRODUCTION

In a recent paper [1], three of the present authors studied
the transverse polarization of hyperons produced in semi-
inclusive deep inelastic scattering, ep — eA'X. For large-
P hyperon production, this process can be analyzed in the
framework of the collinear factorization, in which the
polarization appears as a twist-3 observable in the absence
of a leading twist-2 effect. For ep — eA'X, the responsible
twist-3 effects are (i) the twist-3 distribution functions
(DFs) in the initial proton combined with the twist-2
transversity fragmentation function (FF) for A and (ii) the
twist-3 FFs for the polarized hyperon combined with the
twist-2 unpolarized parton DFs in the proton. The twist-3
FFs in (ii) are chiral even, and both (a) quark and (b) gluon
types of twist-3 FFs contribute. In Ref. [1], the twist-3
polarized cross section for ep — eA'X from the above (i)
and (ii)(a) was derived in the leading order (LO) with
respect to the QCD coupling constant. As a sequel to
Ref. [1], we will derive in this paper the LO cross section
from (ii)(b), which completes the LO twist-3 cross section
for this process. Since the gluons are ample in the collision
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environment and the twist-3 quark and gluon FFs mix
under renormalization, the effect of (ii)(b) could be as
important as (ii)(a). We also remind that the twist-3
fragmentation effect is important to understand the single
transverse-spin asymmetry in p'p — zX [2,3], which
shows a similar rising asymmetry at large xp as the
polarization in pp — A'X. Our present study has a direct
relevance to the hyperon polarization phenomenon in the
future electron-ion-collider (EIC) experiment.

Here, we make some remarks on the phenomenological
use of the twist-3 cross section. As we will see, it contains
several unknown nonperturbative functions, the determina-
tion of which requires a global analysis of data for various
processes such as ep — eA'X, ete” - A'X, and
pp — A'X, etc., combined with an appropriate modeling
of those functions. We also recall that in the small-P7 region
the transverse-momentum-dependent (TMD) factorization
holds for ep — eA'X and et e~ — A'X, and we anticipate
that the two frameworks match in the intermediate region of
P;' as for the case of p'p — £7¢-X [4] and ep! — exX
[5-7]. Information on the TMD functions obtained from
the analysis of those small-P; data will also help to constrain
the twist-3 functions owing to the relations between the
TMD functions and the twist-3 functions [8,9]. In this
connection, we mention the recent data on ete™ — ATX
at Belle [10] and the phenomenological analyses of the data

'A study on this matching will be reported elsewhere.
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in terms of the TMD factorization [11-14]. These studies
will be useful to analyze the EIC data at large Py in terms of
the twist-3 cross section derived in this work.

The formalism of calculating the twist-3 gluon FFs
contribution is very complicated and was completed only
recently for a similar process in the pp collision, pp —
A'TX [15]. Here, we apply the method to ep — eATX.
Since the kinematics for this process was described in
Ref. [1] and the method is in parallel to the case for pp —
A'X [15], our presentation in this paper will be brief,
referring to those papers for the details.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the twist-3 gluon FFs relevant in our
study. In Sec. III, we briefly describe the formalism for
calculating the twist-3 gluon FF contribution to ep —
eATX and present the LO cross section. Section IV is
devoted to a brief summary.

II. TWIST-3 GLUON FRAGMENTATION
FUNCTIONS

A. Three types of twist-3 gluon FFs and qgg FFs

Here, we list the twist-3 gluon FFs for the spin-1/2
hyperon which are necessary to derive the twist-3 cross
section for ep — eATX [9,15]. They are classified into the
intrinsic, kinematical, and dynamical FFs. First, the intrin-
sic gluon FFs are defined as the light-cone correlators of the
gluon’s field strength F%” with color index a [9,16]:

F0(6) = gy 3 [ 55 0lloow. 0177 (0)

x (hX|(F"*(Aw)[Aw, cow]), |0)
= —¢76(z) — ie"P (S - w)AG(z)
+ M, e’ SiewPt AGz(2)
+ iM P NGy (2) + - - - (1)

where P;, is the four-momentum of the hyperon with its
mass M,. P), can be regarded as lightlike in the twist-3
accuracy, and w* is another lightlike vector satisfying
P;, - w = 1. $* is the spin vector of the hyperon normalized
as S = —M? and can be decomposed as S* = (S - w) P} +
(S-Pw* +M,S"| with the transverse spin vector S|
(82 = -1). ¢ = g% — PowP — Plw®, N = 3 is the num-
ber of colors for SU(N), and the ellipsis denotes twist-4 or

11

higher. |h)
Pexp[ig f/f drw - A(tw)] is the gauge-link operator which
guarantees gauge invariance of the correlation function. We
use the convention for the Levi-Civita symbol as €°1?* = 1.
The shorthand notation "% = ¢ P, w,, etc., is used,
and {af} denotes the symmetrization of Lorentz indices.
G(z) and AG(z) are twist-2 unpolarized and helicity FFs,
respectively, and AG57(z) and AG5y(z) are intrinsic twist-
3 FFs. All FFs in Eq. (1) are defined to be real and have a
support on 0 < z < 1. AG,7(z) is naively T odd and
contributes to the hyperon polarization.

Second, the kinematical gluon FFs are defined from the
derivative of the correlation functions for the intrinsic one:

denotes the hyperon state. [lw,uw] =

(0= Ej/‘ e 4/5(0]([oow. 0] F*#(0)),hX)
X (hX|(F*(2w)[Aw, cow]) ,|0)
= A; gaﬁep"wsﬂé(rw(z)+%€P’ZW“ﬂS£ACA}<TI)(Z)
- i%(gmwsi{ag/i}y +€P,,wy{aS/i})Aﬁ(Tl)(Z)
4o, )
where

P (w)[Aw, cow][0) 0"

d
= %E%EFW(AW + E)[Aw + & cow + &|0).  (3)

There are three twist-3 gluonic kinematical FFs, G(Tl)(z),
AG(Tl )(z), and AH (Tl )(z), which are real functions and have
'(z) and
AI:IT1 (z) are naively T odd contributing to the hyperon

a support on 0 <z<1. Among them, G

polarization, while AG (z) is naively 7" even. They can
also be written as the k% /M3 moment of the TMD FFs [16].

Third, the dynamical gluon FFs are defined from the
three-gluon correlators. Contraction of color indices with
two structure constants for color SU(N), i.e., —if 4. and
d e, yields two types of FFs [9,17-19]:

fapy _ ~ifape dldﬂ o-il/z1g=in(1/22-1/2; wp wa wy
(1 (5) = S 30 ] e e 0 0) ) X ) )

1
:—Mh<N1< )gayé‘PhwsLﬂ—f—Nz(
21 Z

l _>gﬂ}’ P,wS  a _Nz (l_i 1)9 €PhWSL7> (4)

71 2

2 21 2
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atd 1 abc dﬂ' d/" el —i — W wa W,
(8 () = 5 30 ] e o e 0 0) ) (X ) )

=-M, (01 <_ i) g"‘}'ePhWSL/)’ + 02 (l _> g/?y PywSia 4 0 <l _ i , i) gj_/}GPhWSLJ/) , (5)

21 2
i1 2

where the gauge-link operators are suppressed for simplic-
ity. There are four purely gluonic dynamical FFs,
N 12(2 %) and 01»2%'5)’ which are complex functions
and have a support on 1/z, > 1 and 1/z, > 1/z; > 0.
Their real parts are na'ively T even, while their imaginary
parts are naively 7 odd. N, (— —) and 0, ( 2) satisfy the
symmetry relations

. < 11 ) o ( 1 11 >
Nl | = _Nl I K
1 2 2 1 22
~ (1 1 ~ (1 1 1
G0t
1 2p 21 2
Finally, we introduce other dynamical FFs defined from

the quark-antiquark-gluon correlators [9], which are nec-
essary for the derivation of the twist-3 cross section for

ep —> eATX:
Z//d/{d//l —ll/Zle_i/‘(l/Zz_l/Zl)
2n 2w

A%
Y <Zl Zz)

s (OlgF(uw) [1X) (X1 o)y (0)]0)
=M, (eap”wsL (Pp) JDFT <% Z_12>
T iSS (rsPa) Gt (Zi Zi)) )

where ¢ is the generators of SU(N) and the spinor indices i

and j are shown explicitly. These two functions D FT(% , %)
and (N}FT%,%) are complex functions and have a support
on 1/z;>0,1/zp <0 and 1/z; —1/z, > 1. Their real
|

21 2 2 1 22

|
parts are naively 7 even, while the imaginary parts are
naively 7 odd.

B. Constraint relations among twist-3 gluon FFs

The gluon FFs introduced above are not independent but
are subject to the QCD equation-of-motion (EOM) rela-
tions and the Lorentz invariance relations (LIRs). The
complete set of those relations was derived in Ref. [9].
Here, we quote those relations which are useful to simplify
the twist-3 cross section for ep — eATX. The relevant
EOM relation allows us to express the intrinsic FF in terms
of the kinematical and dynamical FFs as

£2(6 ) + Y ()

1 1 ~ (11
+ | d|=)———Im| 2N —,-
/ (z) [/z=1/7 m( ‘(z’ z)
(11 (1 11
+N2(l’>_N2<_l’)), (8)
7’z z 7'z
where Dr(z) is defined as
- 2 [Vz (1) 11 1
Drr(2)=— [ "d(=)Der (=5 -2),
e [ oon(s 1)

N ©)

1 4 -
;AG3T(Z) = —ImDp7(z) +

Other relations derived from the LIRs and the EOM
relations represent the derivative of the kinematical FFs
in terms of other FFs as

1m0 ) (o (1) 5 1)
R O AT Y
At )Ly (1) (1)
) (s 4 )
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The relations (8), (10), and (11) show that the purely
gluonic twist-3 FFs are related to the quark-antiquark-gluon
FFs, which implies the contribution to ep — eATX from
the latter needs to be considered together. It has been shown
that the above three relations (8), (10), and (11) are crucial
to guarantee the frame independence of the cross section
for pp — A'X. Using these relations, we will express the
cross section in terms of G<T]), AIAJ(T]), Imﬁ/lyz, Im@l,z,

ImD sy, and ImGy [see Eq. (54) below], which gives the
most concise expression for the cross section. We also note

that, in principle, the twist-3 kinematical FFs, G(Tl ) and

AI:I(T1 ) can be also eliminated in terms of the twist-3
dynamical FFs [see Egs. (74) and (75) in Ref. [9]].

III. TWIST-3 GLUON FF CONTRIBUTION
TO ep — eA'X

A. Kinematics

Here, we briefly summarize the kinematics for the
process [1],

e(?) +p(p) > e(#) + AT (P, S1) + X, (12)

where 7, ¢, p, and P;, are the momenta of each particle and
S| is the transverse spin vector for A. With the virtual
photon’s momentum g = ¢ —¢’, we introduce the five
Lorentz invariants as

SepE(p‘i‘f)z:’zP‘f’ 0% = —¢*,
Q2 p'Ph 2
— = s = - 5 13

bj 204 zf pq qr qi ( )
where

o u nq “ p-4q pPH

g =q (14)

' PP PP h

is a spacelike momentum satisfying g, - p = ¢q,- P, = 0.
As in Ref. [1], we work in the hadron frame [20] (see
Fig. 1), where p* and ¢" are collinear and take the
following form:

_ 9
P* —szj(l,o,o,l), (15)
g" =(0.0,0,-0). (16)

Defining the azimuthal angles for the hadron plane and the
lepton plane as y and ¢, respectively, as shown in Fig. 1, P},
and £ can be written as

2 9 o) 2

Y

hadron plane

FIG. 1. Hadron frame and the transverse spin vector S 1. To
make clear the convention for ®g, rotate the Z and X axes around

the Y axis by @ (polar angle of P 1) so that the new Z axis becomes
parallel to P,. ®g is defined to be the azimuthal angle of S,

around F’h measured from the new X axis, just like ¢ and y are
measured from the x axis around the z axis.

0
T
4 2

(coshy, sinhys cos ¢, sinhy singp, —1),  (18)

where y is defined by

szjS

coshy = Qze”—l. (19)

With this parametrization, the transverse momentum of the
hyperon Py is given by Pyr = z¢qy-

For the calculation of the cross section, we introduce four
axes by

1
1= 5@+ 2x,p%) = (1.0.0.0).

7=-20,0,0,1)
- Q - ’ ’ ’ ’
1 [P q?
Xt =— |t gr (1 +—T>x -p"} = (0,cosy,siny,0),
ar Lf )" ( )
YH=e"°Z,T,X, = (0,—siny, cosy,0), (20)

where the actual form in the hadron frame is given after the
last equality in each equation. The final hyperon resides in
the XZ plane, and the transverse spin vector of the hyperon
can be written as

§| = cosOcos DgX¥ + sinDgY# —sinfcos DgZ+,  (21)

where 6 is the polar angle of I;h as measured from the Z
axis and @y is the azimuthal angle of S | around 13,, as
measured from the XZ plane. From Eq. (17), the polar
angle @ is written as

094027-4
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cos§ = L :%, (22)
|Py| a7+ 0

sing = 2ot _ 2419 (23)
Pyl ar+0Q

With the kinematical variables defined above, the

polarized differential cross section for Eq. (12),
c=o(p, ¢, 0", P, S ), takes the following form:
d°c ao?
_ em z Lpo' lxﬂ, Zxﬂ/
dxy;dQ%dzsdgtdpdy — 1287°x3,82,0> .7)
X Wpo‘(p’q’Ph)’ (24)

where a,,, = e?/(4r) is the QED coupling constant, L° =
2(6°¢'° + ¢°¢'7) — Q?¢° is the leptonic tensor, and W, is
the hadronic tensor. Although there are two azimuthal
angles, ¢ and y, the cross section depends on the relative
angle ¢ = ¢ — y only. Therefore, it can be expressed in
terms of S, 0?, Xpjs 25 q%, @, and Dy.

B. Hadronic tensor

We now calculate the twist-3 gluon FF contribution to
Eq. (24) following the formalism developed for pp — ATX
[15]. It occurs as a nonpole contribution from the hard part
as in the case of other twist-3 fragmentation contributions

(d)

in ep! = exX [21] and pp — ATX [15,22]. We first
factorize the twist-2 unpolarized quark DFs f;(x) from
the hadronic tensor W,,(p. q. P;):

d
W/)o’(pv quh) = /?xfl (x)w/m(xp, quh)’ (25)

where x is the momentum fraction of the quark in the
proton and we have omitted the factor associated with the
quark’s fractional electric charge as well as summation over
quark flavors. Up to twist 3, w,,, receives contribution from
the two-gluon, three-gluon, and quark-antiquark-gluon
correlation functions corresponding to Figs. 2(a)-2(e):

Wyo = wﬁ,) + w/(,lf,) + w,(,f;) + wff;) + W,()fr), (26)

where each term can be written as

4
@ _ [ 4k 0w,
= [ T (1S3 0 @7

® 1 d'k d'¥ (Dpva Labc
W _5// (27)* (2x)* Do (k. K)S500 (K K. (28)

1 4 41,1
Wi =3 // Ak A i oy sRabe gy (29)

(2”)4 (2].[)4 Rabe HvA.po

P, ? P,

SR (ky k) 3

(©)
P, ; Py
Bk (b, “

)

g QRa
Sa,po’(kv K

(e)

FIG. 2. Cut diagrams for the twist-3 gluon fragmentation contribution to ep — e¢A'X. In each diagram, the lower blob represents the
unpolarized quark distribution, the middle one represents the partonic hard cross section, and the upper one represents the fragmentation
matrix elements for the final hyperon. The diagrams (a) through (e) correspond to each term in (26).
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d k d4k
W/)o- = )

d*k d*K (1)a .
Wiy = // 2”)4 Ak, K)SRa (I, ).

Here, % ,(k), S i, )p‘;h‘ (k. k'), and S5 (k, k') represent
the partonic hard parts with k and k' the momenta of partons
fragmenting into the final hyperon, and the dependence on

q is suppressed for simplicity. I“Egy)” Y F(Ll()}f)”jbc, and &(Ll(if)a
denote the fragmentation matrix elements defined, respec-
tively, as

ALH”(k K8, (k.K).  (30)

(31)

= [ et om0 1) ),

(32)

i) = 3 ff a0 o))

x (hX|AG(£)gA%(n)]0).

Ra/;zcul(k k/ Z //d4§d4ne"k fe—z (K'=k)n

x (0[5 (0)gA: ()| hX) (hX|AG(£)[0).  (34)

(33)

ALk k) =Y // ded ne= keI =01 (0] A% () |hX)
X

x (hX|y;(0)y;(£)(0), (35)
Agj?j("v k/) _ Z // d4§d4ne—ik~:e—i(k’—k)n
x (Oly;(0); (&) |hX) (hX|gAZ (1)[0).  (36)

The contribution with two parton lines in the left (right) of
the cut in Figs. 2(b)-2(e) are characterized by the symbol
L(R) in the hard parts and the fragmentation matrix
elements. The superscripts (0) and (1) indicate the order
|

N e 1 I\ et OSus oK)
aOPf v o vA ap.po
= Q Q /d( ) 21"!4 ( )Sa[}’pﬂ <Z> - lQﬂQyQyj’ / d<g) erg (Z)a—]/(y

of the gauge coupling ¢ corresponding, respectively,
to the two-parton and three-parton correlation functions.
The factor 1/2 in Egs. (28) and (29) takes into account the
exchange symmetry in the corresponding matrix
element. In Eqgs. (30) and (31), the hard parts and the
fragmentation matrix elements are matrices in both
color and spinor spaces for the quark, and Tr indicates
trace over both indices. The hard parts and the fragmenta-

tion matrix elements satisfy ga)’;zl(k K) = (Lb);'i’l(k’ k)*,
SLbac (k/,k)*,

1a X (Da abc
Al(la) (k’kl) :}/OALJ) (k/ k) S/,ljvﬂbpo(k k/) vpld.op
and SR¢ (k. k') = y°8L% ,(K'.k)Ty°. We, thus, have

Woe = Wi + 2Rewly) + 2Rewly. (37)

To extract the twist-3 contribution to ep — eAtX, we

apply the collinear expansion to the hard part, Sjjfj o>

Stabe and SL%,, with respect to the momenta k and K’

uvd,pe?
around P;,/z and P, /7, respectively, taking into account of
the following Ward-Takahashi (WT) identities [15]:

K Siip o (k) = K Spy o (k) = 0, (38)
u QLabc / fabc ’

k Sﬂulpo’(k’k) = N ISil/pﬂ(k) (39)

KvSpare (k. K') =0, (40)
/ A QLabc / _ifabc /

(k k) S/u;ipa<k’ k ) = ﬁsﬂu,pzr(k )’ (41)

(k— k’)“Sb‘;;n(k, k') =0, (42)

where S, ,,(k) = 6?84, (k). We note that, unlike the

case for pp — A'X, no ghostlike terms appear in the WT
identities (38)—(42) for the present case. This way, one
obtains the hadronic tensor w,, in terms of the gauge
invariant FFs as [see Eq. (51) in Ref. [15] and Eq. (56)
in Ref. [21]]

k=Ph/Z

et o

Ndabc i
—4 FS

G-

ifve <1 1)
|4 +
N f\7’z

)
o o) -]

(43)

094027-6
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i = Piw, and D (2), P42, PR

where Qf
5 —1) are given by Egs. (1), (2),

DY), and AL,
Zz Zz 7'z
4), (5), and (7), respectively. For the hard part, we have
used the notation S ,,(2) for Saﬂ‘pa(%) and S];[‘}f;a(%%)

z
for S&;ﬁzd(% , %) etc., suppressing P, for short. In the last

term of Eq. (43), S‘I;.p,, is defined from §];jm in Eq. (30) by
(Slg,f},a)m = 5k 1% St 0 Where r, s indicates the color indices
for the quark and Tr, denotes the trace in the spinor space.
The LO diagrams for the hard parts of Figs. 2(a), 2(b),
and 2(d) are, respectively, shown in Figs. 3, 4, and 5. It is

p b

FIG. 3. The lowest-order Feynman diagrams for S,,/;.,,,,(l) in Eq. (43). We set p = xp and P, = P,/z. The symbol ® indicates the

z

fragmentation to the final hadron, and p, is the momentum of

Pd

FIG.4. The lowest-order Feynman diagrams for S%‘ﬁ " U(} , %) in

upper diagrams indicate that the virtual photon line with a cross
diagrams have to be included. Thus, the number of diagrams for

same as in Fig. 3.

an unobserved parton in the final state.

Pd

p

p

Eq. (43). We set P, = P, /7. Three crosses (x) on the quark line in the
at one end needs to be attached to one of these crosses, and all three

Seir, is (3 + 3) x 2 = 12. The meaning of the other symbols are the

094027-7
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FIG.5. The lowest-order Feynman diagrams for quw (% , % -
of diagrams for S ,, is (4 +2) x 2 = 12.

1
z

easy to show that the hadronic tensor w,, satisfies the
electromagnetic gauge invariance ¢’w,, = ¢°w,, =0,
owing to the WT identity in QED.

C. Spin-dependent cross section

The calculation of L°W ,, in Eq. (24) can be done in the
same way as Ref. [1]: WP? can be expanded in terms of the
six tensors [20] WZ” (k=1,...,4,8,9) defined by

DI = XHXY + YIY",
DR = THXY 4+ XITY,
VR = THYY 4 YITY,

%/241/ =gv 4+ Zr7",
DI — XXV — YHY",
TR = XPYY 4+ YEXY.  (44)

By introducing the inverses of 777 and 77%° satisfying
%‘ia%k’/)o’ = 6/{/{” as

~ 1 ~

T =S QDT+ XX+ YY) T =TT,

- 1 - 1

Ty = (DX +XT). T = (XX = Yy),

. 1 s _ 1
VY =5 (DY VITY), 7§ =S (XY 4 YIXY), (45)

WH can be expanded as

p

3

). The meaning of the symbols is the same as in Fig. 4. The total number

W= N VW, T (46)
k=1,....4.89
Then, one obtains
L”UW/H/ - [Luv%zy][wpa%ia]
k=1,...489
=0 Y AP -2)W, TV (47)
k=1....4.89

where <7 () = L, 77"/ Q? are given by

(@) = 1+4cosh’y, o5(p)=-2,

3(p) =—cospsinh2y, o 4(p) = cos2psinh’y,

g(p) =—singsinh2y, (@) =sin2gpsinh®y, (48)

with y defined in Eq. (19). From Eqgs. (47) and (48), one
sees the cross section can be decomposed into the five
structure functions with different azimuthal dependences
which are carried by the <7 (¢)’s. Substituting Eqgs. (1), (2),
(4), (5), and (7) into Eq, (43), we find that the cross
section (24) takes the following structure:
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d’c oM,
% Nt (9)S, [ dxd
dxydQ2dz didpdy 167,572 QZZ o "// * <>

I .
x {—AG3T(Z)51

oY
Jo)E oo

1

+ G ()86 +

3 L m ! 1
D[S (50 (et (e
— 1/z-1/7 %, z\1/z—-1/7
1 1 2 0 +3) | 2% s
1 (gez) i v 2ol + Sl

— | 6h +
) (obr+

~+(1)

(G- (1=5) (0 -3))

laGr (z )A (1) laAﬁ(Tl)(z) n
z 9(1/z) DG+AH ()NDH+Z a(1/2) OpH

1 1 "y 7
*m“am +;6DF3

1

+

1

8y +
—(1—q}/Q%z;/2 P71 -

+ImG L1 DY (& +1
m —,5——||6 —
FI\z°7 z GF " 721/z7 -

(1=gq7/0%)zp(1/2=1/7) &ng>
1 7.

A

Ak
/7 GFz + Z"GF3

+ 8Gps +
1= (1=¢3/0%)zp/7 " 1

where

81,2’3.4 = Sin ®S7 88,9 = COS q’s,

and we have set
~ (11 ~ (1 11
N3 - =-N, ———-_ |
7z z 7z
~ (11 ~ (1 11
7z z 7z
for convenience. Partonic hard parts for each FF can be
computed from the corresponding diagrams, Figs. 3-5. We
have reached the form (49) based on the observation that
the 7’ dependence of the hard parts for the dynamical FFs
appears in the cross section only through the factors

explicitly shown in Eq. (49) (see Appendix C in
|

d°c oG, a.My
dxbdedequ d¢d){

x {G%”(z)aé

PRSI

+ AHY (2)8),

- (1= q%/QZl)zf(l/z —1/7) 5151’5)} } (49)

Ref. [15]), and, hence, we can define all the partonic hard
cross section 6’s in Eq. (49) as the functions of X, Z, O, and
qr- In addition, we found by explicit calculation of the LO
diagrams that

o =a, (52)
AkDF = 5’&F =0. (53)

In order to transform the cross section (49) into a more
concise form, we note the following points: (I) Owing to
the symmetry property under 1/7 <> 1/z7—1/7' of N| and
0 1 (6) and the relations (51), the terms of 6_;(3) and 6554)

can be combined, respectively, with those of 85?,5” and

6'?352), taking into account the relation (52). (II) Using

Egs. (8), (10), and (11), one can eliminate the intrinsic FF
and the derivative of the kinematical FFs in favor of the
kinematical and the dynamical FFs. This way, we finally
obtain the twist-3 gluon FF contribution to ep — eATX as

2 Snw-ns [ 2 [ Eanws(E-(1-1) (1-3
167 thSgsz ‘ Ik Xrsin Zoin ! Q2 X Z
TN i (DN g (LoD
ok —,— )&k ———.,— )6k
Z Z N1 2 Z/ z N2 2 z Z z N3

*As was noted at the end of Sec. II, the kinematical FFs @y)(z) and AI:I(T])(z) can, in principle, be eliminated in terms of the

dynamical FFs.
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1 1 (& (L1 11 (111
+E m m{ M 7z UDN1+N2 'z Gbv T N2 | z 7'z Fbns
Lo 1011Ak+011%+0111ﬂk
7m — — — — — —— —
1/z-1/7 \zz)% 2gg)oo 2\ Ty )00
1 1 2 /(1 1), L /11 111\,
e R G e G e e )]
N2 - /11 1\/. I 7,
o) & e (o 2) (b Sz b
. 1 g 1 "
(o2 O
1= (1=q3/Q%zp /2 P T 1= (1= q7/Q%)z(1/2 = 1/2) PP

G 11 1\/1 1 +Z'
m -l 5k
I\ 7 ")\l =1/7 6k ; 0GF3

1 A |
o —617%/Q2)zf/Z’6I&F4Jr - (1=q7/0%)z;(1/2=1/2) G”)H 54)
|

where the lower limits of x and z are, respectively, given by

7 X dr N L@ | o+
Xmin = Xp; (1 + lzfz 22) and i, = z,(1 + l_ihj %) The 6500 = E(GZ;() + 63+’,(( )), (67)
partonic hard cross sections which appear newly in
Eq. (54) are defined from those in Eq. (49) as
N L @, 0
R o3 = 5(‘7;1&) + "3+.1(< )>’ (68)
%G =5 & + 8NpG + 2676 (55)
1, N N N N
64 = > ok + 6hpy + 465, (56) &br1 = Ol — 2656 — 46y (69)
ok = 26% + 465, + 86%,y, (57) and others are the same as those appearing in Eq. (49).
1 Although 6%, = 0 as shown in Eq. (53), 6’1‘) ) term appears
65, = 6% + 868, +=(5 ;scl) _ 53—53)), (58)  in Eq. (54) due to the relations (8), (10), and (11).
2°° ' To write down the partonic hard cross sections in
M) () Eq. (54), we further take into account the following
&Ny = —6h — 4676 +5 5 Gy = 634)s (59)  relations:
. . . l .2 .-« . .
Epy1 = 267 + 48hpy + 5( k) - ‘71.<1<>)7 (60) 860 = 603, (70)
. . . l .2 .-
e = 268G + 485y + 5(52,5(> - 63,<k ))’ (61) o 1,
Opr1 = 26N1’ (71)
. R —(4) -2
Gpns = —46pc T3 (52,<k) - ‘7%%)% (62)
Ak Ak Ak Ak
. (1 OpN1 = OpN2 = Opo1 = Opo2» (72)
6t =610 - (63)
1 A
oy =561 + 530, (64) 8hn3 = ~8hos- (73)
s 1 (8+ 1 n 6+<1)) (65) The relations (70) and (71) are obvious from Eq.s. (64),
03 = 5 \%2k 3k ) (65), (57), and (69), and Egs. (72) and (73) are obtained by
explicit calculation of the LO diagrams.
A 1 e ~+(4 Then, the independent hard cross sections are given as
&hor = ) (0"1,/(() + Gl,l(c ))’ (66) follows: P &
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20% (=1 4 2)> (=1 = &2 + 22(1 — 63 + 632)) 8
oL = Cpr—=- : 6% = Cr—2x(—-1+2),
G F q3T 3623 G FqT ( )
20 (=1 +2)(2 =3 =228 +22(=2 + 4%)) 1
A3 A4 A2
°G = CFq—% 32 ’ °¢ = 5%
20 (=1 +2)(=% + 5(-1 + 2% 4 (=142
6% =, 2T DR AEELH2Y) - o 431D (74)
qr < qr Z
. 40% (-1 +2)? . . 20 (-1 +2)(=1+22
6}-1:_CF—3( ') ) , 6% =0, UZ,:—CF—Z( )A(z )
T < qr z
) 4 (=142 . . . .
64 = _CFE< ; ), 6% = 0'%,, 6?_[ = 6%, (75)
N 80% (=1 +2)2(32(1 = 2%)% + 2(1 + &) + 22(1 — 63 + 63?)) - 32%(=1432)?
N1 — CF—3 ~23 , oy1 = Cr— 2 ,
qr Xz qr 4
- 80 (=1 +2)> (=1 —=2% +2(=2 +4%)) " 8 (=1 +2)(1=2(=14+2)x)
o5 = Cr— 2 ) oy = —Crp— - )
qT Z qT Z
. 80 (=1 +2)? . 8 (=1432)
0§v1 =—Cr— ) ) 019\/1 = _CFE 3 ) (76)
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Uzlvzz_CF—s( Al 3 ( ) )7 612\/2:_CF_¥’
qr Z qr Z
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qr Z qr 2
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?vz = CFq_z 2 , ONny = ‘7?\12’ (77)
T
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Ony = —LFp—3 ~23 s oy3 = —LFp ~ s
qr XZ qr Z
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0-33\]3 = _CF_z( )( - ( ))’ 0,9\,3 — _CF_¥’ (78)
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N 207 (-1 +2)%(22(1 =3%)% + (1 + %)* + 22(1 — 6% + 6%?)) " 1,
OpN1 :Cpq—3 52_23 ’ OpN1 :ZGNI’
T
5 40 (=142 (=1 =& +2(=1+24)) o 4 (141 +i-42)
Opn1 = LFr—> ) ) OpN1 = F py )
qar Z qr Z
~8 g ~9 1o
OpN1 = EGNI’ OpN1 = EO-NI’ (79)
o 407 (=1 +2)2(1 +22(2 = 33)% + 32 + 22(1 — 6% + 63%)) > >
DN3 = _CFq—% 253 ) 6pn3 = —26pN1-
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02)1\/3 = _CFq_z 2 ) U%NS = —U%)va O-%NS =0, U%NB =0, (80)
T
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Equations (74)—(90) and the relations (70)—(73) specify all
the partonic cross sections in the final formula (54).

IV. SUMMARY

In this paper, we have studied the transversely polarized
spin-1/2 hyperon production in semi-inclusive deep inelas-
tic scattering (SIDIS), ep — eA'X. Specifically, we have
derived the LO twist-3 gluon FF contribution to the
polarized cross section. Since the twist-3 gluon FFs are
related to the ggg FFs through the EOM relations and the
LIRs, we consistently took into account the latter contri-
bution together. This has completed the twist-3 LO cross
section for this process together with the results for the
contribution from the twist-3 DF and the twist-3 quark FFs
derived in Ref. [1]. The final result for the cross section is
given in Eq. (54). It consists of five components with
different azimuthal structures as

dxbdeijqu%dgﬁd)( = Fsin®g + F, sinDgcos ¢
+ F5 sin @g cos 2¢
+ F4cos Dgsin g
+ F5cos Dy sin 2¢, (91)

where ¢ = ¢ — y is the relative azimuthal angle between
the lepton (¢) and the hadron (y) planes and @y is the

azimuthal angle of the transverse spin vector of A'
measured from the hadron plane with the structure func-
tions F ;34,5 written as the convolution of the twist-3 FFs
and the quark DF in the proton and the partonic hard cross
sections. The LO cross section given in Ref. [1] and the
present study contains several unknown nonperturbative
functions, and their determination requires global analyses
of many twist-3 processes in which the same twist-3
functions appear. Information from analyses of small-P;
data in terms of the TMD factorization is also of great help
to constrain some of the twist-3 functions. In any case, our
twist-3 cross section formula is the starting point of
analyzing the large-P; hyperon polarization in SIDIS,
which we hope to be measured in the future EIC
experiment.
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