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Inspired by the LHCD’s discovery of hidden-charm pentaquarks, the anticharmed strange pentaquarks
P;, in a favor of the hadronic molecule picture are investigated from the one-boson-exchange model.
Similar to the hidden-charm pentaquarks, three molecular bound states, one with spin parity J© = 1/2~
below the DX threshold and another two with J* = {1/27,3/27} below the D*Z threshold, are predicted
at 3-3.2 GeV mass region. The mass ordering of the later two states can be interchanged by different
reductions of the §(r) term. Furthermore, resonances associated with these three bound states are examined
by considering Dy N — DA — DX — D*A — D*X coupled-channel dynamics, and decay widths of them are
predicted. Our study indicates that the D7 p invariant mass spectrum in the BY — 7Dj p decay is an

appropriate place to detect the Pz, pentaquarks.
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I. INTRODUCTION

In the past two decades, many candidates of exotic
tetraquark and pentaquark states in the charm sector have
been observed. An intriguing fact is that most of them are
located near some hadron-hadron thresholds. This property
can be understood as an attraction between the relevant
hadron pair [1], and naturally leads to the hadronic
molecular interpretation for them (see Refs. [2-6]). The
validity of the hadronic molecular picture is also reflected
by the successful quantitative predictions of some exotic
states in the theoretical works focused on the hadron-
hadron interaction [7-15]. The LHCb pentaquarks discov-
ered at the recent experiment at the LHC [16-19] are
similar with the hidden-charm N* states predicted at the
mass region above 4.2 GeV [8-15,20], and lead to
extensive investigation on dynamics of strong interaction
between a hadron pair. With the fact that the masses of
P.(4312), P.(4440), and P.(4457) are just below the
thresholds of the £.D and £_.D* hadron pairs, the survey on
the hadronic molecules formed by light meson exchange
dynamics have been extending our knowledge of exotic
states [21-38].
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In the present work, we study in detail the DHE
molecular systems within the one-boson-exchange
(OBE) model, and predict possible anticharmed strange
pentaquarks, which can be observed in a D7 p invariant
mass spectrum in BY — D7 p decay. Originally, a possible
anticharmed strange pentaquark P, as Dy N bound state
was proposed in Refs. [39,40]. A similar bound state was
also reported in the coupled-channel D;N — DA — DX
system with spin parity J© = 1/2~ and isospin 1 = 1/2
in Ref. [41]. Different from the Dy N bound state, our
proposed DT bound states are well above the D;N
threshold and hence can decay to D p to be detected
through the B? — D7 p process. The corresponding pro-
duction mechanism of P;, pentaquarks states is illustrated
with Fig. 1. Recently, an amplitude analysis of BY —
J/wpp decay preformed by the LHCb Collaboration
indicates the existence of another pentaquark P.(4337)
[19], in which decays of B? or B? are not distinguished and
analyzed together. The observation of P.(4337) stimulates
our present study of the P, pentaquarks which are likely to
be observed from the similar B decay.

From the aspect of molecular picture, the formation
mechanisms of the Pz, are similar with the LHCb hidden-
charm pentaquarks P.(4312), P.(4440), and P.(4457).
A series of work reveals the molecular nature of these
pentaquarks. For instance, P.(4312), P.(4440), and
P.(4457) are well reproduced as three isodoublet states
near the DX, and D*X, threshold with spin parity J© =
1/27 and J* = {1/27,3/27} [37,42-44]. The spin parities
of the P.(4440) and P.(4457) pentaquarks can be
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FIG. 1. Diagrams showing the production of P, in Dy p final
state from BY decay.

interchanged by the mechanism induced by the parame-
trized 5(r) term (it is related to short- range physics) [38]
Somehow, there is an analogy between D)X, and D*
systems, in which the charm quark in the X, component of
the former hadron pair is replaced by a strange quark.
Hence, it comes to our mind to study whether the similar
pattern as the LHCb hidden-charm pentaquarks exists or
not. Similar molecular systems DX are studied in
Ref. [45] with a chiral unitary approach, and they are used
to explain the molecular nature of Z.(2970) and E.(3055)
states. To understand the structure of A.(2940), the
molecular systems D*JN are also studied with the OBE
model in Refs. [46,47], and with the chiral effective field
theory to the next-to-leading order in Ref. [48]. The D=
system, SU(3) partner of the D*)N and D™, is studied
with the OBE model, and several molecular pentaquarks in
this sector are explained as an Q state [49]. However, the
detailed investigation on the hadron pairs in the anticharm
sector, such as DN, D®Y and D®E, is still inadequate.

In this work, the molecular systems DWE are inves-
tigated in the OBE model using the effective Lagrangian
approach. The coupled-channel dynamics of Dy N — DA —
DX — D*A — D*X are considered to evaluate the decay
width of Pz,; S — D wave mixing effects are also included.
The OBE potentials for various channels are derived from
the effective Lagrangian, taking into account of heavy
quark spin symmetry (HQSS) [50-53] and SU(3) flavor
symmetry [54-56]. The possible bound states in the single
channel interaction, and resonances associated with these
bound states are obtained by means of solving the
Schrodinger equation. Also, partial widths of these reso-
nances decaying to lower channels are evaluated.

II. POTENTIALS

The OBE potential model for the pair of hadrons is quite
successful in interpreting the formation mechanisms of
pentaquarks [37,38,42-44]. In this work, we also use the
OBE potentials of Dy N, DA, DX, D*A, and D*X systems
to investigate the possible P, pentaquarks. The inter-
actions of anticharmed meson with light scalar, pseudo-
scalar, and vector mesons can be described by the effective
Lagrangian, taking into account of HQSS and SU(3) flavor
symmetry [50-53,57-59]. The effective vertices relevant to
our work are

Lpp, = 2g5P 6Pl — 2956 P, (1)

Lppy = _\/EﬁgVﬁZZva\/beD 12\/_/19\/732;1:52( ) by
+ (2\/5/19V€aﬂﬂkvk75:;aa\/abﬂlpb + HC)

+ \/EﬁgV,}BZU(I\/be)h’ (2)
2 3

Lrpp = lfg e 0, Pit0aPuy P,
79 (PrhorP,, Py + Hee), (3)

where flavor indices are denoted by a and b. The
anticharmed meson fields represented by scaled fields
P are defined in flavor/isospin space as (D°, D™, D7)
and (D*°, D*=, D}7). The ¢ is the lightest scalar meson and
its physics is governed by the dynamics of the Goldstone
bosons and relevant to the interaction between two pions
[60,61]. The light pseudoscalar octet and the vector
nonet are denoted by P and V*, respectively [38]. The
meson in the P is identified as 7y state, while the @ and
¢ in V* are represented by ideal mixing of wg and ), states.
Field strength tensor is Fh (V) = (V¥ — "W+

i%[\/",\/”]_)ah, where [A, B]_ = AB — BA. The scalar

meson coupling gg is taken as gs = g,/(2v/6) with g, =
3.73 [60]. The pseudoscalar meson coupling is taken as
g = —0.59, which is extracted from the experimental decay
widths of D* — Dz [62] with the pion decay constant
[z =132 MeV, and the sign is determined from the quark
model [63]. Vector meson couplings are taken as gy = 5.9,
f =09, and 1 =0.56 GeV~!, in which g, and S are
determined by vector meson dominance [64], 1 is obtained
by comparing the form factor calculated by light cone
sum rule with that obtained by lattice calculation [65].
These couplings are also used in recent studies focusing
on molecular P_. pentaquarks [24,38,42,43]. On the other
hand, the effective Lagrangian depicting the interaction of
the baryons in the SU(3) flavor octet (B) with light scalar,
pseudoscalar, and vector mesons reads’ [54,55,59,66-70].

EBB(T = _gBBﬂl/_/¢o'l//’ (4)
_ K
Lppy = —QBBVU/{V ZBB; JWEQV}W (5)

'In these Lagrangians, flavor information of the particles in the
SU(3) multiplet is embedded in the coupling constants ggg,,
9ssps 988y, and kggy. Explicit form of these Lagrangians can be
found in Appendix A. In actual calculation, we consider small SU
(3) flavor symmetry breaking effects by setting m; and mp to the
physical masses of particles in octet baryon and pseudoscalar
meson matrices, respectively.
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g _
Lppp = —75181) Y70 by, (6)
P

where y represents the Dirac field operator for the SU(3)
octet baryon, ¢,, V¥, and ¢p are field operators corre-
sponding to the scalar, vector, and pseudoscalar mesons,
respectively. The scalar meson couplings for the octet
baryons are given in Refs. [69,70] as gyn, = 8.465,
Ians = 1.579, and gsy, = 10.85. The pseudoscalar and
vector couplings for nucleon N are also available in
Ref. [69] as gNNp = 325, 9NNz = 0989, KNNp = 61,
and xyy, = 0. These couplings are determined by a fit
to the empirical hyperon-nucleon (AN,XN) data. The
relative signs of them with respect to the Lagrangian in
Eqgs. (1)—(3) are fixed by the quark model (see Appendix B)
and are consistent with earlier corresponding studies for the
P, states [8,38,43,44]. The pseudoscalar and vector meson
couplings for the other octet baryons (X, A and E) are
obtained by means of SU(3) flavor symmetry [56].

The potentials for the PUB system in the momentum
space can be obtained from the #-channel scattering
amplitudes (M) with the Breit approximation [71]

Mh1h2—>h3h4
vV Zml m22m3m4 ’

where m; and m, are the masses of the particles 4, and h,
in the initial state, while m3 and m, are the masses of
particles h; and h, in the final state. The #-channel
Feynman diagrams for the scattering processes
PB - PB, PB— P*B, and P*B — P*B are shown in
Fig. 2. Their amplitudes are calculated with the Lagrangian
given in Egs. (1)—(6). In our calculation, we use the Dirac
spinor with positive energy for B as

Vhihy—hshy (q) _ _ (7)

itp.5) = VEFH( f ). (3)

ErmX

which is normalized to 2M, where o is Pauli matrix, and y
is two components spinor. For the scaled-heavy meson
fields P and P*, we adopt the normalization relations as
(0[Pleq(07)) = /Mp and  (0[P,lcq(17)) = €,/ Mp:
[51,71]. In the center-of-mass frame; the four-momenta
of the particles in the initial state are p; = (E;,p) and
p> = (E», —p), while the four-momenta of the particles in
the final state are p; = (E3,p’) and py = (E4, —p’). The

|

98BVPYY
v

V”I , - _
|4 (q Q) T 2 Zm%g

—va[(Z—KBBv)iT- (gxQ)— (1 +xpsy)(6xq) (T xq)]

2m3

1+ 285 i (g x Q)

four-momentum of the exchanged meson is given by
qg=p3—p1=p>—ps=(q°.q). For the convenience
of the calculation, we define the new variables

q=p' -p. QI%(IJ’HJ)- ©)
With Breit approximation in Eq. (7), the potentials in the
momentum space for the scattering processes P13 — PB,
PB — P*B, and P*B — P*B are derived keeping up to
1/ m% order anc~l 1isted~as the three types in Eq. (10).

(i) Type I: PB - PB

ic-(gxQ)] 1
VI s = "7 o 1 - s
+(q. Q) = —1,985 gs[ pye ]q2+%
(10a)
grevPg 1+2k .
Vi(q.0) =170V 1 +— g (g x Q)
2 4mB
1
X, (10b)
q +uy
(i) Type I: PB — P*B
9988z © *q€4-q
Vi(g.Q) =tp— 4 (10c)

V2fmp @ +up

9BBVAY -
Vil(q.0) :TVM[(2+3KBBV)Z€4' (gxQ)

2m5
1
+(1+xpsy)(g€s-6-6-9€4-9)] 55—,
4 s
(10d)
(iii) Type IIl: P*B — P*B
VI (q.0Q) = —7,988:95€; - €2 |1 —w
4dmy
1
qT -q
Vil(g.0) =7 9988 O 4 ’ 10f
7 (4.0) P afmn €+ A (10f)
€1 €
a +uy
1
m, (10g)
4
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FIG.2. The t-channel Feynman diagram for the processes (a) PB — PB, (b) PB — P*B, and (c) P*B — P*B. The exchanged scalar,
vector, and pseudoscalar mesons are labeled with o, V, and P, respectively.

where the subindices V and P represent the exchanged vector
and pseudoscalar mesons, respectively. The polarization
vectors for the P* meson at the final and initial states are
denoted by €; and e€,, respectively; 7 is defined as
T = iey x €. In the inelastic scattering, the energy of the
exchanged meson is nonzero, so the denominator of the
propagator can be rewritten as ¢> —m2, = (¢°)?> —¢* —m2, =
—(q*+p,), where u., represents the effective mass of the
exchanged meson. In the center-of-mass frame, the energy of

the exchanged meson, ¢, is calculated as
2 2 2 2
o _ My —my+m3—nmy

2(m3 + my)

, (11)

where m; and m, are the masses of the particles in the initial
state, while m5 and my are the masses of particles in the final
state. The coupling constants and the isospin factors for the
potentials of the specific scattering processes are listed in
Table I, where the relations of the coupling constants in the
SU(@3) flavor symmetry are adopted [56,69]. The isospin
factors of each meson exchange potential for the total isospin
I = 1/2 system are listed in the column labeled with 7. The
potentials for the specific scattering process listed in the
column labeled with “Transition” in Table I are obtained from
the corresponding type of the potentials in Eq. (10) by
replacing the coupling constants. For instance, the p meson
exchange potential for the process D*E — D* is obtained
by replacing the coupling constants gggy and kzzy in Eq. (10)
with 2gyy,ay and 'Z“TNV", respectively.

The coordinate space representations of the potentials in
Eq. (10) are obtained by preforming the following Fourier
transformation analytically

(LILIII) 1 11, 111
Vi

(4. Q)F*(q. A pex )& dg,

(12)

where the cutoff parameter A is introduced with the
form factor to reflect the inner structure of the interacting
vertices [7],

N m2. — A2 AZ _ ﬂ2
Flg, A o) = ex _ fex 7 13
(q. A pex) @ - - g LA (13)
where we define A =./A>—(¢°)> and jp, =

Vm% —(g%)? for convenience.

Before giving the

TABLE 1. The type of potential, exchanged meson, isospin
factor for I = 1/2, and coupling constant for specific channel.
The label ““- - - means that the coupling is forbidden. The values
of the mixing parameters ap and ay are taken from Ref. [69],
namely ap = 0.4 and ay, = 1.15, which connect the couplings of
the nucleon to other particles in the octet baryon matrix.

Transition Type Ex. 74 9IBBex KBex
Dx->Dx 1 o 1 (30
p 2 2gnnpay Erm
o 1 29NNy ZNTNV/I
T =2 29nnap
n % %QNNH(I —ap)
D'A—-D'x 1L p V3 Zgyy,(l-ay) 4?:(_%
7 3 %QNNzr(l - ap)
Dy = DS n p -2 29nNpQy Gt
o 1 2gNNp2y ’;NTNV/)
T =2 29nNzap
n ﬁ %gNNzr(l —ap)
DA—-DX Il p V3 Fow(l-ay)
T 3 %QNNn(l —ap)
DiN-DT I K & gw(l-2ay) 5%
K V6  gwne(1-2ap)
D'A-D'A I o 1 9AAs o
w 1 Sonwp(Say =2)  — 4(?:\:,@2)
n % —\%QNN;:(I ap) a
DDA I p V3 Fgw(l-ay)  po
T 3 %QNNn( —ap)
DA = D*A 11 o 1 § gNNp(SaV 2) - 4(22];]—/)2)
n % —%QNN;:U_“P) -
D;N — D*A I K* \f2 _%QNN/)(I—FQ’GV) 2(2%2%‘,)
K 2 _%QNNII(I + 2ap)
DY - DY I c 1 9536
p 2 2g9nnpay ZNTNVP
o 1 2gnnpay Z]ZZNV/
DA - DX I p V3 %QNN/)(I —ay) 4§f53”v>
D;N — D% I kK 6 gunp(1 = 2ay) z(fﬁ%v)
DA — DA I o 1 9Iane o
o 1 Sonnp(Say =2)  — 4(35];NVN—/)2)
DIN—DA 1T K V2 —egun,(1+2ay) 2o
D;N - D;N 1 1 INNo -
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potentials in the coordinate space, first, let us fucus on the
Fourier transformation of the typical functions in Eq. (10).

We have
1 1 /~\2—/,¢§x : iqr J3
Yo = 3 2 T xa ) ¢
(27)° ) @ +pex \¢* + A
I Lam N -k ;
B ™ S
1 ic - (gxQ) (AN* =2 \* ..,
G'LOeX: 3/ 2( 5 )( 5 ~62 eq d3q
(27) ¢ tuy \¢*+A
10
:G‘L;EY‘:X, (15)

where we use the definition of the angular momentum
operator L, such as L =r x Q [59]. The Fourier trans-
formations of the functions i€} - (¢ x Q)/(¢* + u3,) and
iT - (g xQ)/(q* + %) can be preformed in the similar
way as Eq. (15) after replacing ¢ with €; and 7,
respectively. Before preforming the Fourier transformation
on 6 - g€ - q/(q* + %), we can decompose it as

6-q€;-q 1{ ( 12 ) .o la?
=—|o-€;| 1 —5—5 | =S(6.€;.9) 5|,

@+ 31 U P PV g+l
(16)

where S(6. €}, §) =306 - e - g — 6 - €} is the tensor oper-
ator in the momentum space. It can be found that the
constant term in Eq. (16) leads to the &(r) term in
coordinate space after the Fourier transformation without
form factor. With the form factor, the §(r) term can be
replaced with the Fourier transformation of the form factor,
and it dominates the short-range part of the potential. As a
result, the short-range part is heavily depending on the
cutoff A [7,38,72]. There are several treatments of the 6(r)
in the literature focused on the molecular pentaquarks,
P.(4312), P.(4380), P.(4440), and P_.(4457). The 5(r) is
fully included in the OBE model in Refs. [24,43], and
several cutoff parameters are used to reproduce the four P,
pentaquarks. And in Ref. [44], the &(r) is dropped, and the
four P, pentaquarks are reproduced with the same cutoff
parameter, but larger values for the coupling constants are
used. In Ref. [38], the four P_. pentaquarks are simulta-
neously reproduced with the same cutoff parameter by
introducing a reduction parameter a, which adjusts the
strength of the short-range part of the potential dominated
by the §(r) term. In the effective field theory, the short-
range contribution cannot be fully captured by the OBE
model, which may be viewed as there can be contributions
from exchanging heavier particles. The introducing a is an
extra subtraction of the regularized potentials. It is equiv-
alent to introducing an extra contact interaction to take into
account extra short-range interaction from the other heavier
meson exchange. It is introduced as

a.qez.q:l{d'e*o_a_ Hax )
¢y 30 :

o lal
—S(6,€4,q)q27 . (17)

After preforming the Fourier transformation on Eq. (17),
we have [38,71]

I [o-q¢5-q (N =1\ 0 s
3 7,2 s | €Vdq
(27)° ) @ +pex \g*+A

1
= _§[a'€zcex +S(67€Zﬂ?)T6X]’ (18)

where S(o.,€;,7) =36 - 7€y - 7 — o - € is the tensor oper-
ator in the coordinate space. The functions C,, and T, can
be expressed as

190 ,0 a A% =2 \? .
C.=——7r*—Y _ex iqr 3 ,
“=2or or °X+(2n)3/(q2+1\2) o
(19)
o190
Tex :”a*r;a ex> (20)

where the term proportional to the parameter a can adjust
the contribution from the §(r) term. a = 0(1) means that
the contribution of the §(r) term is fully included
(excluded). The Fourier transformation of the function o -
q7 - q/(q* + u2,) can be taken in a similar way as Eq. (18).

With the functions Y, O, C., and T,, the potentials
in Eq. (10) can be written in the coordinate space as

(i) Type I: PB — PB

1
thr = —T698Bs9s |:Yl7 -7 50" LOO‘:| s (213)
4dmy

142
VI = —TVgBB‘;BgV |:YV + —tl_ K2BBVO'-L0V:| . (21b)
My

(ii) Type II: PB — P*B

Vi — g, 99BBP 1o i + S(6, €%, P)TH,
P P3\/§f,rmp[ 4%“- P ( 4 )P]
(21c¢)
gpsvigy [ (1 +xgpy) .
V{/I = —Ty 2m6 { 3 [20' . €4CV

_ S(o.e5 FITy] = (2 + 3kgy)el ~Lov},

(21d)
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(iii) Type IIl: P*B — P*B

4m>

o--LOU}, (21e)
B

111 __
Vzr - _TagBBagSej €2 |:Y0 -

9sBvPIv 1 + 2xppy
Vil = g TBEVEIV o ¢, {YV +——2B
2 4m%
A 1
_ 7, JEBVAGY {( + KpBY) 26-TCy
ZmB 3

The OBE potential matrix for the coupled-channel sys-
tem, D;N — DA — DX — D*A — D*Z, can be constructed
with the potentials derived in Eq. (21) and the information
given in Table I. It is convenient to label the five channels,
i.e., D;N, DA, DX, D*A, D*Z, as the first, second, third,
fourth, and fifth channels, respectively. They are sorted
simply by their thresholds. For the transition from the jth to
kth channel, the OBE potential can be obtained by summing
up all possible light meson exchange potentials, such that

Vik = VI VE LV 4V VI VE v

(22)
where V¥ refers to the potential for the transition j — k
when the meson exchanged is being the one at the lower

index. The potential VIX can be obtained from Eq. (21) by
replacing the corresponding coupling constants and isospin
factors given in Table I. For example, the p meson exchange
potential for the transition D*E — D*X, which is denoted by
V53 in our notation, is obtained by replacing the coupling
constants gggy and kppy in Eq. (21g) with 2gyy,ay and

'ZI ”Vﬂ , respectively. For the isospin factor, 7, = —2 is taken for

the potential with 7 = 1/2.

For the masses of the exchanged mesons, we take isospin
average masses, which are m, =137.2, m, = 547.9,
m, = 7753, m, = 1827, mg = 4937, and mg. = 891.7
in the unit of MeV [62]. In Ref. [62], the lightest scalar
meson is labeled with f,(500), which is a broad state and
its mass has not been accurately given. In the present work,
we simply take 600 MeV for the 6 meson mass, and the
different choices of its mass from 400 to 800 MeV affect
the result a little, and can be smeared by a small variation of
the cutoff. Thresholds (labeled with W for the jth channel)

yiur — _; \/EggBBP

P 6fﬂ_mP [GTCP+S(G,T, V)Tp],

(21f)

ULOV

- S(6,T,7)Ty] + (2—KBBV)T'L0V}. (21g)

|
and partial wave components of those channels with spin-
parities J” =1/27,3/2 are shown in Table II. The
notation >5T!L, is used to identify various partial waves,
in which S, L, and J stand for the spin, orbital, and total
angular momentums, respectively. In the actual calculation,
the spin operators in the potentials should be projected out,
and this is done by sandwiching the spin operators between
the partial waves of the initial and final states. Since, the
partial waves of the channels listed in Table II are
determined by the spin-parity of the individual hadron
and nothing to do with flavors, we can refer the channels
{D;N,DA,DX} to PB, {D*A,D'X} to P*B. The
partial waves of the P13 and P* B system with spin-parities
JP=1/27,3/2" are

() J* =1/27(PB): [*S))),

(i) J? =1/27(P*B): |S\5),['D12),

(i) J® =3/27(PB): [’Ds2),

(v) J" =3/27(P*B): ['S3/2), ’D32). ['D3)2)-
The spin operators for the three types of scattering
processes in Eq. (21) are listed in the rows labeled with
O of Table III. The partial wave projection of the operator
O can be done by calculating

HLOPIL),, (23)

where ((2IL)| and [**1L,), stand for the partial waves

for the final and initial states, respectively. The results are
calculated with the technics introduced in the Appendix
of Ref. [38], and collected in Table III. For instance,
the partial wave projections of the operators O for the
process PB — P*B with J* =1/2~ and J* =3/2" are
obtained by calculating ((35}/5|0|S},2). (3S1/2|O|*D1 1))

TABLE II.  Thresholds of the channels and partial wave components of J© states.

Channels DyN DA DX D*A D*T
W;[MeV] [62] 2907.3 2982.9 3060.4 3124.2 3201.7
JP=1/2" 281 281 S1) 2812, *D1ja S12. *Dy s
JP=3/2" D3 *Ds)» *Ds)» 4S3/2.°D32. D32 *83/2.2D3/2."D3 )2
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TABLE IIl. The partial wave projection of the spin operators in the potentials of Type I, I, and III in Eq. (21).

i—>f PB - PB PB - P'B

O c-L €L c-€; S(o.,€5.7)

JP=1/2 0 (0.0) (V/3.0) (0.1/6)

JP=3/2" =3 (0,-v3,-v3) (0.+/3,0) (—v3,0.V3)

i—>f PB—PB

@ € -€; €-€;0-L c-T S(6,7T,7) T-L

JP=1/2" 10 0 0 -2 0 0 V2 0 0

0 1 0 -3 0 1 V2 =2 0 -3

JP=3/2" 1 0 0 00 0 10 0 0 -1 2 00 0
010 01 2 0 -2 0 -1 0 1 01 2
0 0 1 0 2 -2 0 0 1 2 1 0 0 2 -2

and ((*Ds35|0|*S32), (*D32|OFD3)2), (*D3 2| O|* D3 )2)),
respectively. Similarly, the partial wave projections for the
process P*B — P*B with J* = 1/2~ and J* = 3/2" are
done by calculating

( (3812|081 2)

(2812|0I'Dy 12) ) (24)
(*D1 210181 2)

(*D12|O1"D; )
and
(18321 0|*S53,2)

(*D32|O1*S5)5)
(*D52|O1*S5)0)

(4832|O*D5.5)
(*D3,2|OFDy5)5)
(*D35|O*D5.5)

(1852|0I'D5.5)
(*D35|O'D5)5) |.
(*D35|0I'D5.5)

(25)

respectively. Results are given as the matrix form in
Table III.

To conclude this section, we show the shapes of the
potentials of the most important channels, such as DX and
D*%, under the two extreme treatments of the §(r). The S
wave potentials of the DX and D*¥ systems with I = 1/2
in a function of coordinate r as the cutoff is set to A =
1.2 GeV are plotted in Fig. 3, where the potentials with
(without) the §(r) term are shown in the left (right) column.
The potentials for the DX system with J* = 1/27 are
shown in the first row, while the potentials for the D*X
system with J¥ = 1/2 and J* = 3/2~ are shown in the
second and third rows. In each of the subplots, various
meson exchange potentials are plotted separately, and the
sum of them is also plotted with line labeled “Total.”
The potentials of the DX system are only proportional to
the Yukawa term Y. and independent of the &(r)
term. With the &(r) term, the vector and pseudoscalar
meson exchange potentials of the D*Y system with

JP =1/27,3/2" can change their signs once due to the
short-range &(r) term in their core which has an opposite
sign relative to its remaining part. After removing the &(r)
term, those potentials are consistent in sign in the whole
range of 7. The S wave total potentials in both DA and D*A
are repulsive, and there is no bound state accordingly. In
addition, the § wave potential for the Dy N system is
attractive due to the ¢ meson exchange alone, but it is not
strong enough to form a bound state.

,,,,,,,,,, -
— O T p
> w
© -25¢t
2 0 S/ T
= -so0r S/ n
= B —— Total
-75} a0 1
JP=1/2-(Dx)
0 =
% a5l
2
E -50f
= i
=751 JP:’1/2—(D*E>
i —— ; ;
i
of 1
3 -2l
2 ,
S?, -50F
~75¢1 | FRCIDRRR S (b
JP=3/2-(D*%) JP=3/2-(D*%)

00 05 10 15 2000 05 1.0 15 20
r [fm] r [fm]

FIG. 3. The potentials of S-wave states of the D)X system
with 7 = 1/2 in the function of coordinate r, where the cutoff is
set to A = 1.2 GeV. a = 0 means the potentials include the full
&(r) term while a = 1 means the 5(r) term is fully removed.
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III. RESULTS

In this section, firstly, we describe our procedure of
solving the two-body Schrodinger equation and explain the
behaviors of the bound states or resonances emerged as
poles of the scattering matrix. Secondly, with the OBE
potentials of DX and D*X systems derived in the previous
section, we investigate the possibilities of the bound states
by solving the single channel Schrodinger equation.
Thirdly, considering the coupled-channel system,
D;N — DA — DX — D*A — D*X, we further investigate
the resonances below the thresholds of channels DX and
D*X, and evaluate their partial decay widths.

For the coupled-channel potential matrix V j, the radial
Schrodinger equation can be written as

n d

s dr?

R+ 1)
12/4;}"2 + Wj:| uj—i—zk:ijuk :Euj,

(26)

where j is the channel index; u; is defined by u;(r) =
rR;(r) with the radial wave function R;(r) for the jth
channel; u; and W; are the corresponding reduced mass and
threshold; and E is the total energy of the system. The

momentum for channel j is given as

4;(E) = /2, (E~W). 27)
By solving Eq. (26), we obtain the wave function which is
normalized to satisfy the incoming boundary condition for
the jth channel given as [73]

Mﬁk)(r)r:méjke_iqu — Sjk(E)eiqus (28)

where S (E) is the scattering matrix component. In a
multichannel problem, there is a sequence of thresholds
W, < W, < -, and the scattering matrix element S ; (E)
is an analytic function of E except at the branch points of
E=W; and poles. Bound states and resonances are
represented as the poles at E,y. of the Sy (E) in the
complex energy plane [73].

The characterization of these poles requires to analyti-
cally continue the S matrix to the complex energy plane,
and the poles should be searched on the correct Riemann
sheet. Note that channel momentum ¢; is a multivalued
function of energy E; there are two Riemann sheets in the
complex energy plane for each channel: one is called
the first or physical sheet, while the other one is called the
second or unphysical sheet. In the physical sheet, complex
energy E maps to the upper-half plane (Im[g;| > 0) of the
channel momentum ¢g;. In the multichannel case with
different thresholds, bound states can emerge as poles on
the real energy axis of the physical sheet at the energy

region below the lowest threshold W;. The binding energy
labeled as B in our notation can be evaluated as

B= Epole - Wy, (29)

where E, is the position of the pole. In the unphysical
sheet, complex energy E maps to the lower-half plane
(Im[g,] < 0) of the channel momentum g¢;. Poles may
appear in this sheet, and those poles correspond to
resonances if their real parts are larger than the thresholds
of some channels (these channels are called open channels).
Any of the resonance poles has its conjugate pole E;ole-
Among them, the one with a negative imaginary part which
is closer to the real energy axis of the physical sheet than
the other one has a significant impact on the scattering
amplitude (see the review section in [62]). The real and
imaginary parts of the pole E., may be parametrized as

the mass and the half-width of the resonance [74], such as
Epoe = M —iT'/2. (30)

Resonance poles that are located on the unphysical sheet
closest to the physical sheet are the ones that, together with
bound states, are much likely to generate structures in the
scattering amplitude.

A. Bound states

We start by discussing the bound states in DX and D*X
systems within the OBE framework. Bound state energy is
obtained by solving the Schrédinger equation in Eq. (26),
and S—D wave mixing effects are considered. The
parameter a is added to adjust the short-range contribution
from &(r) in the OBE model. On the other hand, the
parameter a also plays a similar role as the phenomeno-
logical contact term which is used to determine the short-
range dynamics of the hadron interaction [37]. Bound state
energy of the DX and D*Y molecular isodoublet systems
with spin parity J* = 1/2~ and J© = 3/2 is evaluated by
varying the cutoff A after several values for a are taken.

Table IV shows the behavior of the bound state energies
within the cutoff range 1-1.8 GeV, in which the binding
energies of corresponding single channel systems (given in
the parentheses) are listed at the columns labeled with B.
Here, we list the results for four different 5(r) term
contributions, a = 0, 0.58, 0.78 and a = 1. The §(r) term
is included in the OBE potentials by setting a = 0 and it is
fully excluded by taking a = 1. The case with a = 0.58 or
a =0.78 corresponds to that §(r) term in whole OBE
potentials reduced by 58% or 78%, respectively. The two
parameters are constrained in the our previous work in
Ref. [38] to simultaneously reproduce the masses of the
P.(4440) and P_.(4457) with the same cutoff in the single
channel D*X,. The binding energy of the DX bound state
with J¥ = 1/27 is independent of the §(r) term, because
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TABLEIV. Binding energy (B) of the bound states in the single
channel DX and D*¥ systems with isospin / = 1/2 as a function
of cutoff A after fixing the value for a. Each entry with a *“--.”
means that the potentials are not strong enough to form a bound
state. The values of cutoff and binding energy are in units of GeV
and MeV, respectively.

B(DX) B(D*X)
S-wave S-wave S — D wave mixing
a A JP=1/2= 1/20 3/2° 1/2~ 3/2°
0.0 1.0 =735 —8.96
1.25 e —1255 —129.23
1.5 -0.66 < =500 < =500 e
1.8 —-11.11 < =500 —-1.22
0.58 1.0
1.25 —-0.11 -1.1
1.5 —0.66 -263 -0.18 —32.06 -5.02
1.8 —-11.11  -130.7 =557 —140.55 —19.07
0.78 1.0
1.25 —0.68
1.5 —-0.66 -3.33 —-0.05 —12.17
1.8 —11.11 -6.37 -1831 —12.58 -37.14
1.0 1.0
1.25 X e -0.2 -3.56
1.5 —0.66 —13.42 —26.17
1.8 —11.11 —48.0 =71.73

the OBE potential of this system is free from the §(r) term.
For the two bound states in the D*T system with spin
parities J© = 1/27 and J? = 3/2, the different reduction
of the &(r) term has a large effect on the binding energy.
The binding energy is heavily dependent on the cutoff A
when the 6(r) term is fully included in the OBE potentials.
As the value of a increases, 1/27(D*X) state tends to be a
shallow bound state, while the 3/27(D*X) state, by
contrast, tends to be deep bound state. The reason is that,
for the D*X system, the total potential with J¥ = 1/2~ gets
shallower as the parameter a increases, which leads to
smaller binding energy, while the situation is reversed for
the potential with J© = 3/2~. Furthermore, three bound
states, 1/27(DX), 1/2=(D*X), and 3/2~(D*X) are simul-
taneously bound with the cutoff 1.5 GeV with either
a = 0.58 or a = 0.78. In addition, the S — D wave mixing
effects on the J¥ = 3/27(D*X) state are relatively larger
than that on J* = 1/27(D*) state.

The masses of the P, states observed in the experiment
are close to the thresholds of the DX, and D*Y,. channels.
In the OBE framework, these two channels support three
bound states which can reproduce the masses of the three
P, states, P.(4312), P.(4440), and P.(4457) with proper
values of cutoff [37,38,42-44]. It indicates that, the
existence of the bound states formed by the single channel
interaction may be a hint for experimental observation.
Compared to the bound states found in the single channel
DX, and D*X, systems in Ref. [38], the discussed three

bound states in the single channel DX and D*X systems
have similar formation mechanism, and support the exist-
ence of the anticharmed strange pentaquarks proposed in
Refs. [39,40]. In addition, a bound state which is 220 MeV
below the Dy N threshold has been found after considering
the coupled-channel dynamics of DyN — DA — DX in
Ref. [41], and which state is strongly coupled to the DX
channel compared to the other two channels. It indicates
that the DX channel provides a more attractive force than
others. Thus, a loose bound state below the DX threshold,
which is different from the one found in Ref. [41] based on
the assumption of the SU(4) symmetry, may be bound first
in the single channel DY interaction.

B. Resonances

With the coupled-channel potentials of the system
D;N — DA — DX — D*A — D*Y obtained in Eq. (22),
we solve the Schrodinger equation in Eq. (26), and
the energy dependent S(E) matrix is extracted from the
asymptotic wave function in Eq. (28) (see Refs. [73,75]). It
is seen that the poles of the S(E) matrix on the physical
sheet correspond to bound states. Now, we go to the
unphysical sheets to search for the poles by analytic
continuation of the S(E) matrix, and then evaluate their
partial decay widths. In the coupled-channel system
D;N — DA — DX — D*A — D*%, the poles are searched
for around the thresholds of DX and D*X channels. Those
bound states of these two channels as listed in Table IV turn
out to be resonances when subthreshold coupled channels
are taken into account. These resonances are easily found
near the two thresholds. For the n channels system, there
are 2" Riemann sheets in the complex energy plane, which
can be defined by the imaginary part of the momentum
q,(E) of the jth channel (see chapter 20 of Ref. [73] for
more details). In our case of the five channels system, there
are 2° Riemann sheets, and we focus on the two of them:
one is called the physical sheet of the DX channel
(Im[g;] <0, Im[g,] <0, TImlgs] >0,  Imlg,] >0,
Im([gs] > 0), and the another one is called the physical
sheet of the D*T channel (Im[q,] <0, Im[g,] <O,
Im[g3] <0, Im[g,] <0, Im[gs] > 0). These two sheets
are also close to the real energy axis of the physical sheet
(imaginary parts of the momenta for all channels are
positive). The poles below the DX threshold are searched
in the physical sheet of the DX channel, while the poles
below the D*X threshold are searched in the physical sheet
of the D*T channel.

To evaluate the partial widths of the poles decaying to
open channels, first, we calculate the residues of the poles
of amplitude T(E). The S(E) matrix has the relation with
T(E) [74,76],

Si(E) = 1+i\/2p;T 3 (E)\/2py, (31)
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where j and k are channel indices. In nonrelativistic
approximation, two body phase space factor p; for channel
J can be written as a function of channel momentum ¢, (E)
in Eq. (27) as

_ ‘Ij(E)
8zE

Pj (32)

The residue matrix R ; of the pole E,,. can be extracted as

Ry = lim (E* = E2,)Tu(E) = gjgr.  (33)

/ E_)Epole
where g; is a pole coupling of the jth channel. The partial

decay widths of the open channels can be calculated
as [74,77]

o C]j(M)
I 8xM?

9,1, (34)
where M is the real part of the pole.

The positions of the poles and partial decay widths as the
function of cutoff A are shown in Tables V and VI, in which
we fix the values of the parameter a to 0.58 for Table V and
0.78 for Table VI. These two values for the parameter a are
also used in Ref. [38] to simultaneously reproducing the
P.(4400) and P.(4457) pentaquark masses. Among
these poles, the first pole with J* = 1/2~ below the DX
threshold is found in the physical sheet of DX channel,
while the second and third poles with spin parity
JP =1/27 and JP =3/27 are found in the physical
sheet of the D*T channel. The pole positions and partial
decay widths of the first, second, and third poles are given
in the multicolumns labeled as JP =1/27(DX),
JP=1/27(D*Y), and JP =3/27(D*X), respectively.
The dominant channel, which couples with poles stronger
than other channels, is given in the parentheses. In the case
with a = 0.58, with cutoff A = 1.2 GeV, the first pole is
located at 3060.3 — i0.3, while the second and third poles

are located at 3197.3 — i3.9 and 3201.2 — i2.8 respectively.
For the first pole, there are two S-wave open channels,
which are D; N and DA channels. Among these channels,
the first pole prefers to decay into the D7 N channel
as shown in Table V. For the second pole, five channels
(four S-wave channels D; N, DA, DX, and D*A, and one
D-wave channel D*A) are opened. For the third pole, there
are six open channels (D; N, DA, DX in D-wave, one S-
wave and two D-wave D*A). It is also seen from the results
in Table V that the S-wave DX channel is a dominant decay
channel for both the second and third poles, and the
dominant decay channel remains the same as the cutoff
increases except that it changes from a DX to a D*A
channel in the S-wave for the third pole when cutoff is up
to 1.4 GeV.

The three poles have a similar behavior that they tend to
move away from the thresholds of their dominant chan-
nels in the complex energy plane as the cutoff increases.
In other words, the masses of the poles decrease and
their half widths increase as the cutoff increases. The
reason is that, these poles are associated with the bound
states given in Table IV which is inferred from their
dominant channels, and the pole masses (M) behave
similar as the bound state masses (B + W, where W is
the threshold of the channel for the bound state in the
single channel interaction discussed in Sec. III A). The
partial widths of the poles decaying to open channels,
which are calculated with Eq. (34), imply that the half
widths of the poles are proportional to the pole couplings
g;- For the results presented in Table IV, the magnitude of
the pole couplings for the open channels which provide
large contributions to their widths, increases together with
the cutoff, so the half widths also increase. At the energy
region much above the thresholds of open channels, the
impact of the phase space factor is not significant. A
similar phenomenon can be seen in Ref. [45], which is
governed by the complicated structure of the coupled-
channel potential matrix.

TABLE V. Pole positions (M — i['/2) and partial decay widths I'; for each of the open channels in the isodoublet system with spin
parity J” by varying cutoff A when a = 0.58 is taken. The channel given in the parentheses correspond to the dominant channel.
The partial decay widths for the partial wave channels in the same hadron pair are given separately. From left to right in
each multicolumn T, the partial decay widths correspond to the channels {DyN(%S;/). DA(*S;;)} for the first pole

JP =1/27(D%),

{D;N(2S/,). DA(*S}/2). DZ(*S}/2). D*A(*S12), D*A(*D, )} for the second pole J =1/27(D*E), and

{D;N(*D5)5). DA(*D5),), DZ(*D5)5), D*A(*S5)5). D*A(*Ds;,), D*A(*D5 )} for the third pole J” = 3/27(D*X). Mass and width

are in units of MeV.

JP =1/2-(Dx) JP =1/2-(D*%) JP =3/2-(D*%)
AlGeV] M —il)2 T M—iT/2 I M—iT/2 T
1.2 30603 —i0.3 0.6 0.1 3197.3-i39 03 07 61 07 06 32012-i28 00 19 23 12 02 14
1.25 3059.0 —i1.2 23 03 31902-i7.1 07 1.1 113 12 05 31993-i37 00 22 27 17 02 15
1.3 3055.8—i3.0 5.7 0.7 3179.0—i12.1 1.5 1.8 188 2.1 03 31969-i45 00 2.5 30 23 02 15
1.35 3049.6 —i6.2 115 14 3162.0—i20.1 3.5 3.1 29.1 35 0.1 31940—i51 00 27 32 29 02 15
1.4 3036.8—i10.6 189 2.5 3136.1—i32.1 7.8 55 387 3.8 02 3190.6—i56 0.0 29 34 35 0.1 14
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TABLE VI.  Similar table as Table V while a = 0.78 is taken. Each entry with a ““- - - means that the pole goes to other Riemann sheet
far away from the physical sheet.
JP =1/27(Dx) JP =1/27(D*Y) JP =3/27(D*Y)

A[GeV] M—il'/2 I; M—il/2 I; M—ir/2 I;

1.2 30604 -i0.1 02 0.0 3199.0-i49 0.0 24 26 44 02 1.6
1.3 30585 —-i1.3 24 03 e 3191.8—-i7.5 0.0 29 3.0 79 02 15
1.4 30539-i42 7.8 1.0 e R 3181.5-i9.6 00 32 32 11.6 0.1 1.2
1.55 3044.6 —i13.4 23.7 4.2 3200.6-i21.1 03 23.6 1.6 30.1 0.6 31609-i112 0.1 3.1 32 149 0.0 0.5
1.6 30419 -i17.7 30.6 6.2 3193.6-i26.5 0.1 289 20 322 0.5 31525-il11.2 0.1 3.0 34 147 0.0 0.3

The results corresponding to a = 0.78 are shown in
Table VI. This value for a is also taken in Ref. [38] to
simultaneously reproduce the mass spectra of the three
observed P, states [18], P.(4312), P.(4440), and
P.(4457) with the same cutoff, and it is mentioned that
a larger value for a is favorable after their widths are taken
into account. It is seen from the results in Table VI that, the
first pole is not sensitive to the parameter a compared to the
results in Table V due to the independence behavior of
the dominant channel potential on @ shown in the first
column of Fig. 3, and the minor changes can be understood
as the coupled-channel effect. For second and third poles,
the mass ordering is reversed compared to the results
in Table V due to the similar mechanism explained in
Sec. Il A. A similar phenomenon can be found in Ref. [38]
that, among the two poles near X, D* threshold, the
pole with JP =1/2 is higher than the poles with
JP = 3/2 for large a while the situation is reversed with
small a. Besides, the results in Table VI also indicate that
the S wave D* A channel is the dominant decay channel for
the second and third poles while the Dy N channel is the
dominant decay channel for the first pole.

Basically, in our calculation, we can determine neither
the cutoff A nor the reduction parameter a, because there is
no experimental data for anticharmed strange pentaquarks.
But the cutoff ranges taken in our work are somehow
reasonable, as the LHCb P_. pentaquakrs [18] are repro-
duced with A = 1.4 GeV in Ref. [38], with A = 1.04 and
A = 1.32 in Ref. [43]. In Ref. [7], it is mentioned that in
nucleon-nucleon interactions values for A between 0.8 and
1.5 GeV have been used depending on the model and
application, and the larger values (A > 1.5 GeV) are also
required for nucleon-nucleon phase shifts. For the param-
eter a, we simply follow the suggestion in Ref. [38], and it
is also noted that small variation of the parameter a can
change the results presented in the present work by a few
percent. Besides, the Dy N channel is the lowest channel
which the anticharmed strange pentaquarks can strongly
decay to. The first pole dominantly decays to the Dy N
channel, and it implies that the production rate of this
channel is larger than the other channel, and may be easily
detected. For the second and third poles, partial decay
widths of the Dy N channel are tiny, but this channel stands

out as a sharp peak and can be easily distinguished from the
background signal in the experiment with high luminosity.

IV. CONCLUSION

Stimulated by the experiment evidence of the LHCb
hidden-charm pentaquarks, we investigate the molecular
structure of the P, pentaquarks from the OBE model. The
potentials for the systems of DX, DA, and D; N are
constructed with an effective Lagrangian taking into account
HQSS, SU (3) flavor symmetry, and all possible light meson
exchange dynamics. The dipole form factor as a function of
the phenomenological parameter A is used to regularize the
potentials. The short-range contribution from the §(r) term is
parametrized with a parameter a, and it can mimic the role of
the contact term used in effective field theory. The possible
bound states in the single channels (DX and D*X) are
searched for with various cutoff A and parameter a. The
resonance parameters associated with those bound states are
calculated after taking into account the coupled-channel
system Dy N — DA — DX — D*A — D*X.

There are three bound states found in the DX and D*X
systems with isospin /= 1/2. Among them, one is
identified with the spin parity J* =1/2~ below DX
threshold, and the other two are identified with J¥ =
{1/27,3/27} below the D*X threshold. The J* = 1/2"
bound state below the DX threshold can be bound when the
cutoff A is above 1.5 GeV, and its binding energy is
independent of the parameter a. The binding energies
of the two bound states, J* = 1/2~ and J* = 3/2~ below
D*¥ threshold, depend on the parameter a, because the
potentials of the D*X system have contribution of the §(r)
term. In this system, when the §(r) term is fully kept with
a = 0, the binding energy of the J¥ = 1/2~ state is heavily
depending on the cutoff A while the state with J* = 3/2~
cannot be bound until the cutoff increases up to 1.8 GeV. As
the value of a increases, the J© = 1 /2~ bound state tends to
be shallower and the J© = 3/2~ bound state tends to be
deeper. It is caused by the sign difference of the §(r) term
between the potentials corresponding to the J* = 1/2~ and
JP =3/27 systems. Until now, there has been no exper-
imental data for any P, pentaquarks; therefore, we simply
take a = 0.58 and a = 0.78 by following the argument in

094026-11



NIIATI YALIKUN and BING-SONG ZOU

PHYS. REV. D 105, 094026 (2022)

Ref. [38], in which the masses of the P.(4440) and
P.(4457) pentaquarks are simultaneously reproduced with
the same cutoff in the D*X single channel system. As a
result, the three states above begin to be bound with
cutoff A = 1.5 GeV.

The decay widths of the resonances associated with
those bound states are evaluated considering the coupled-
channel system DyN — DA — DX — D*A — D*X. With
values of a = 0.58 or a = 0.78, widths of these resonances
emerged as the poles of the S matrix are calculated by
varying the cutoff A. The first pole with J* = 1/2~ below
DX threshold decay dominantly to the Dy N channel. It may
be easily detected in the process BY — Dy p. For
the second pole with J” = 1/2~ and the third pole with
JP = 3/27 below the D*Z threshold, partial decay widths
of Dy N channel are small. Detecting them in this channel
may require much higher statistics. In addition, the mass
ordering of the second and third poles is interchanged in the
cases with these two values of a. The predicted masses and
decay widths of those three states may provide valuable
information for discovering the P;, pentaquarks in future
experiments.
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APPENDIX A: EXPLICIT FORM OF THE OCTET
LAGRANGIAN

Following Refs. [56,69], we show the explicit form of
the Lagrangian in Egs. (5) and (6) below. For the SU(3)
octet baryon and pseudoscalar scalar meson interaction, the
effective Lagrangian can be written as

V2D

_ V2F
Lppp=— - (Br’y,[0"P.B],) -

P mp

(Briy,[0rP.B]_),

(A1)

where the symbol (---) denotes trace of SU(3) matrices,
and [A,B], = AB+ BA. SU(3) matrices for the octet
baryon and pseudoscalar meson are [62,78,79]

B=| ¥ %tk on [ a2
B- B —\/3A
\’}—05+\/i€ a Kt

p=| T —HtE K @)
K~ KO —\@n

where we identify the 5 with the octet 73 and assume the
singlet coupling to be zero. The D and F couplings
appearing in the Lagrangian in Eq. (A1) have relation with
two independent couplings g; and g, defined in Ref. [56],
such as

V30 V6
D—Wgu F—ﬁgz’ (A4)

and these can be expressed with another two independent
parameters, i.e., the nucleon-nucleon-pion coupling
gvnz = D + F and mixing parameter ap = F/(D + F)
[ap connects the gyy, to other couplings], where we adopt
the notations used in Ref. [56]. With the Lagrangian in
Eq. (Al), we can reproduce the relation of relevant
coupling constants given in Refs. [56,69]. Similarly, the
Lagrangian for tje octet baryon and nonet vector meson
interaction takes the form

Ligy=~V2D'(By,[V{.B..) = V2F (By,[V}.B].)

\/ED// _ B \/EF//
(Boy @ (V3.B],) +

+ ZmB mpg

(Boy, 0 V3. 8]).
(AS)

where \71- is the nonet vector meson matrix, in which octet
wg and singlet @, states are not mixed and D’(D”) and
F'(F") are the two independent coupling for vector (tensor)
currents. The matrix form of V, is

2 o + ot
it r K
Vi=| » - \’/’—05 +% KV
K+ I_(*O _\/%wg
w1 0 0
+g 0 o 0], (A6)
0 0 ()]

where i =1, 2, ¢}, and ¢} describe the couplings of the
singlet vector meson w; via vector and tensor currents. The
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couplings of the physical w and ¢ are obtained by assuming
ideal mixing of wg and w, [62]

e
(0} w
()~ (a)
T\ )

3 3
Furthermore, we assume that the ¢ meson does not couple
to the nucleon (Okubo-Zweig-lizuka rule) to fix the singlet
coupling constants to be ¢, = (3F —D')/(2v/3D') and
¢y = (3F" = D")/(2+/3D"). The vertex of nucleon-
nucleon-p meson interaction is [69]

_ KnN 5 o
LNNp = —INNp¥N {y/z - ngﬂyay}r Py (AS)
N

After expending the Lagrangian in Eq. (A5), couplings of
vector and tensor currents (gyn, and fyy, = gyn,Knn,) are
expressed in terms of D', F', D", and F”, such as

Iny = D'+ F, fanpy =D"+F".  (A9)
For the nonet vector meson, we have two mixing param-
eters,ay = F'/(F' +D')and af, = F"/(F' + D") = 1/4,
and the value of the later one is fixed from the hypothesis
Sane = 0 [69]. With the knowledge above, we can also
reproduce the relation of couplings relevant to octet baryon
and vector meson interaction in Ref. [69], and expressing
the couplings for other octet baryon (A and X) in terms of
nucleons as the manner in Table I is obvious.

APPENDIX B: RELATIVE SIGN OF THE
COUPLING CONSTANTS

The sign of the coupling constants can be fixed by the
quark model. The procedure is to calculate the effective
vertices twice at quark level and at hadronic level, and to
equate them (only a rough estimation can be made on the
strength of the couplings, it does however determine their
signs) [80]. The effective Lagrangian depicting the inter-
actions of the light constituent u, d quark fields y, with 7,
p, and o mesons can be written as

Yagr - ..
L,=- :f W 10,7 By,

T

— K S
- gqqpll/q{yﬂ - ﬁgﬂvay}f ez
q

- gqqﬁl/_/qm//qv (Bl)
where 7 is the Pauli matrix, representing the isospin. For
convenience, the currents in Eq. (B1) can be written as

_ Yqqn

Jagr = W7 Ty, (B2)
mﬂ
o = —q,, W, YT (B3)
J‘I‘IP gqqpl//qy qu
Y9qqpK _
tip = Y ey, (Ba)
ny
Jage = ~Yaqa¥ ¥ q» (BS)

where jign. jigos taap » Jago couple with 8,7, p4, 9,pt, and
o, respectively. The spin-flavor wave functions of the
proton and D** meson with s, (third component of the
spin) can be written as

i 11
p.s > _ 1 Ls1n 2552 LI, 2
= |—7=01 1 1ol 1
TUe \/E 3805352 LSa123383 plagda Llngds

L 0 0.0
+ VGl ClyitsnCorr, OOl
X |szhsz%Sz3>|lzl’112’lz3>7 (B6)
_ s
|D*,5.) = C%,j;'l;%,szﬁ%,m5112,0\&1,Sz2>|111,112>v (B7)

where s_;(1_;) is the third component of the spin(isospin)
for the ith quark, C/f:;; . tepresents the Clebsch-Gordan
coefficient, 9,, is a Kronecker delta function, and the
quantum numbers [s,;, S5, S;12, S3, L1, 12, 112, 13]
should be summed. With the proton wave function above,
we can calculate the matrix elements of the currents in
Egs. (B2)—(B5) for a proton with spin up,

1 33| 1 5 Yqgr
— ’71.' , = = — ) B
<p,2 ;Jqq p 2> T (B8a)
1< 1
0,3
<P,§ quqp P’§> = “Yqap (BSb)
g=1
1| < 23] 1 5 9gapKaqp
Z Sl 2\ — _ZJ499pq9p B
<P72 ;tqqp P72> 6 m, ’ (B8c)
1< 1
p9§ Z]qqa pvi = _3gqqm (Bgd)

where 22=1 represents the sum over the three quarks in the

proton. Similarly, for the D** meson with s, = 1, the matrix
elements of the currents in Eqgs. (B2)—(B5) are

<D*0’ 1|jg’;n|l_)*0, ]> _ @, (B9a)
mﬂ
) * 0.3 1y
<D 0’ 1|Jqqp|D 0’ 1> = —Yqqp> (B9b)
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) 7 Kgqp
(D01 2431D0, 1) = -t (o)
qu
<D*O’ 1|jqqa|D*O’ 1) = ~Yqq0- (B9d)

Now, we calculate the same currents at hadronic level.
Considering the isospin parts in the Lagrangian in Eqs (4)—
(6), the effective vertices for the interaction of nucleon with
7, p, and 6 mesons can be written as

g _ 5 o
Lyng = — Al WNYSY”(auT T)Yy, (B10)
/1
_ — KNNP v 2. ou
‘CNN/) = “INNp¥WN\ Vu — 2—0-/1118 T PYN, (Bl 1)
my
LyNe = —INNeWNOWN - (B12)
We can also define similar currents for nucleon
vertices,
. g _ a
Jive = = Gy, (B13)
p/

JNNy = —INNpINT T W N (B14)

. INNpKNNp _ a
tNnp = #WNGWT 08 (B15)
JNNo = —INNoWNWN- (B16)

For the proton with spin up, the matrix elements of them
calculated at hadronic level are

1l 33 1 9NNz
<P,§ JNNz P7§> = m—” (B17a)
1] . 1
P.= J%?V/) P.=5)= gNNp’ (B17b)
2 2
p lt21’3 p 1 _ _gNN/)KNN/) (B17C)
) R ) 2my
1. 1
P’E JNNo Pi = —YNNo- (B17d)

After expanding the Lagrangian in Egs. (1)~(3) in flavor
space, interaction vertices of the D* meson with the z, p,
and o mesons are

2 L
Lip, = iﬁeaf‘%m;*(aaf - 7)Dr.

ya

(B18)

‘CD*D*p = _ﬂgVD;T,Ua? : /_501[)*”
- 24gyD*(0,7-p, — 8,7-p,)D™, (B19)

L po = 295D} 6D*, (B20)
where D* is a scaled filed satisfying (0|Dj|cq(17)) =
€,1/Mp- as P~ field, and it is written in the isospin space as
D* = (D*°, D). The similar currents for z, p, and &
mesons can be written as

. . 29 =t P
I =¥y €™ DI DL (B21)
Ji, = —Pav DD, (B22)
t55., = i24gy(D*7“D* — D*iz*D*),  (B23)
Jpbre = 295Dy D, (B24)

For a D* meson with s, = 1, the matrix elements of these
currents at hadronic level are

DO D01 == Y20 (aasy
(D 1)j52s. |D.1) = mp-Pgy,  (B25b)
(D155, [D,1) = =2mpdgy,  (B25c)
(D 1|jp p-o| D, 1) = =2mp.gs.  (B25d)

With the assumption that the currents calculated at the
quark level [Eqgs. (B8) and (B9)] and hadronic level
[Egs. (B17) and (B25)] are consistent in sign, we can
determine the relative sign between gy, and g, gyy, and f3,
kynp and 4, gyy, and gg. For instance, the relative sign
between the currents in Egs. (B8a) and (B17a) which
couple to the z® with k; (third component of the z°
momentum) requires that g,,, and gyy, have the same
sign, while the relative sign between the currents in
Egs. (B9a) and (B25a) indicates that the signs of g,,,
and g are opposite. Thus, we can determine the relative sign
between gyy, and g, and they are opposite to each other. In
this way, we can determine the relative sign between gyy,
and f, kyy, and 4, gy, and gg, that is, both of them have
the same sign (positive or negative). Also, the signs of other
octet baryon couplings gpgy and gggp are fixed with
respect to that of nucleons in the SU(3) flavor symmetry.
For the scalar couplings, we assume that the signs of gsy,,
and g, are the same as gyy,-
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