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Inspired by the LHCb’s discovery of hidden-charm pentaquarks, the anticharmed strange pentaquarks
Pc̄s in a favor of the hadronic molecule picture are investigated from the one-boson-exchange model.
Similar to the hidden-charm pentaquarks, three molecular bound states, one with spin parity JP ¼ 1=2−

below the D̄Σ threshold and another two with JP ¼ f1=2−; 3=2−g below the D̄�Σ threshold, are predicted
at 3–3.2 GeV mass region. The mass ordering of the later two states can be interchanged by different
reductions of the δðrÞ term. Furthermore, resonances associated with these three bound states are examined
by considering D−

s N − D̄Λ − D̄Σ − D̄�Λ − D̄�Σ coupled-channel dynamics, and decay widths of them are
predicted. Our study indicates that the D−

s p invariant mass spectrum in the B̄0
s → n̄D−

s p decay is an
appropriate place to detect the Pc̄s pentaquarks.

DOI: 10.1103/PhysRevD.105.094026

I. INTRODUCTION

In the past two decades, many candidates of exotic
tetraquark and pentaquark states in the charm sector have
been observed. An intriguing fact is that most of them are
located near some hadron-hadron thresholds. This property
can be understood as an attraction between the relevant
hadron pair [1], and naturally leads to the hadronic
molecular interpretation for them (see Refs. [2–6]). The
validity of the hadronic molecular picture is also reflected
by the successful quantitative predictions of some exotic
states in the theoretical works focused on the hadron-
hadron interaction [7–15]. The LHCb pentaquarks discov-
ered at the recent experiment at the LHC [16–19] are
similar with the hidden-charm N� states predicted at the
mass region above 4.2 GeV [8–15,20], and lead to
extensive investigation on dynamics of strong interaction
between a hadron pair. With the fact that the masses of
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ are just below the
thresholds of the ΣcD̄ and ΣcD̄� hadron pairs, the survey on
the hadronic molecules formed by light meson exchange
dynamics have been extending our knowledge of exotic
states [21–38].

In the present work, we study in detail the D̄ð�ÞΣ
molecular systems within the one-boson-exchange
(OBE) model, and predict possible anticharmed strange
pentaquarks, which can be observed in a D−

s p invariant
mass spectrum in B̄0

s → n̄D−
s p decay. Originally, a possible

anticharmed strange pentaquark Pc̄s as D−
s N bound state

was proposed in Refs. [39,40]. A similar bound state was
also reported in the coupled-channel D−

s N − D̄Λ − D̄Σ
system with spin parity JP ¼ 1=2− and isospin I ¼ 1=2
in Ref. [41]. Different from the D−

s N bound state, our
proposed D̄ð�ÞΣ bound states are well above the D−

s N
threshold and hence can decay to D−

s p to be detected
through the B̄0

s → n̄D−
s p process. The corresponding pro-

duction mechanism of Pc̄s pentaquarks states is illustrated
with Fig. 1. Recently, an amplitude analysis of B0

s →
J=ψpp̄ decay preformed by the LHCb Collaboration
indicates the existence of another pentaquark Pcð4337Þ
[19], in which decays of B0

s or B̄0
s are not distinguished and

analyzed together. The observation of Pcð4337Þ stimulates
our present study of the Pc̄s pentaquarks which are likely to
be observed from the similar B̄0

s decay.
From the aspect of molecular picture, the formation

mechanisms of the Pc̄s are similar with the LHCb hidden-
charm pentaquarks Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ.
A series of work reveals the molecular nature of these
pentaquarks. For instance, Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ are well reproduced as three isodoublet states
near the D̄Σc and D̄�Σc threshold with spin parity JP ¼
1=2− and JP ¼ f1=2−; 3=2−g [37,42–44]. The spin parities
of the Pcð4440Þ and Pcð4457Þ pentaquarks can be
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interchanged by the mechanism induced by the parame-
trized δðrÞ term (it is related to short-range physics) [38].
Somehow, there is an analogy between D̄ð�ÞΣc and D̄ð�ÞΣ
systems, in which the charm quark in the Σc component of
the former hadron pair is replaced by a strange quark.
Hence, it comes to our mind to study whether the similar
pattern as the LHCb hidden-charm pentaquarks exists or
not. Similar molecular systems Dð�ÞΣ are studied in
Ref. [45] with a chiral unitary approach, and they are used
to explain the molecular nature of Ξcð2970Þ and Ξcð3055Þ
states. To understand the structure of Λcð2940Þ, the
molecular systems Dð�ÞN are also studied with the OBE
model in Refs. [46,47], and with the chiral effective field
theory to the next-to-leading order in Ref. [48]. The DΞ
system, SU(3) partner of the Dð�ÞN and Dð�ÞΣ, is studied
with the OBE model, and several molecular pentaquarks in
this sector are explained as an Ω�

c state [49]. However, the
detailed investigation on the hadron pairs in the anticharm
sector, such as D̄ð�ÞN, D̄ð�ÞΣ, and D̄ð�ÞΞ, is still inadequate.
In this work, the molecular systems D̄ð�ÞΣ are inves-

tigated in the OBE model using the effective Lagrangian
approach. The coupled-channel dynamics of D−

s N − D̄Λ −
D̄Σ − D̄�Λ − D̄�Σ are considered to evaluate the decay
width of Pc̄s; S −D wave mixing effects are also included.
The OBE potentials for various channels are derived from
the effective Lagrangian, taking into account of heavy
quark spin symmetry (HQSS) [50–53] and SU(3) flavor
symmetry [54–56]. The possible bound states in the single
channel interaction, and resonances associated with these
bound states are obtained by means of solving the
Schrödinger equation. Also, partial widths of these reso-
nances decaying to lower channels are evaluated.

II. POTENTIALS

The OBE potential model for the pair of hadrons is quite
successful in interpreting the formation mechanisms of
pentaquarks [37,38,42–44]. In this work, we also use the
OBE potentials of D−

s N, D̄Λ, D̄Σ, D̄�Λ, and D̄�Σ systems
to investigate the possible Pc̄s pentaquarks. The inter-
actions of anticharmed meson with light scalar, pseudo-
scalar, and vector mesons can be described by the effective
Lagrangian, taking into account of HQSS and SU(3) flavor
symmetry [50–53,57–59]. The effective vertices relevant to
our work are

LP̃ P̃ σ ¼ 2gSP̃
�μ†
a σP̃�

aμ − 2gSP̃
†
aσP̃a; ð1Þ

LP̃ P̃ V ¼ −
ffiffiffi
2

p
βgVP̃

�†
aμvαVα

abP̃
�μ
b − i2

ffiffiffi
2

p
λgVP̃

�†
aμF

μν
abðVÞP̃�

bν

þ ð2
ffiffiffi
2

p
λgVεαβμκvκP̃

�†
aμ∂αVabβP̃b þ H:c:Þ

þ
ffiffiffi
2

p
βgVP̃

†
avαVα

abP̃b; ð2Þ

LP̃ P̃ P ¼ i
2g
fπ

εαμνκvκP̃
�†
aμ∂αPabP̃

�
bν

þ 2g
fπ

ðP̃�†
aμ∂μPabP̃b þ H:c:Þ; ð3Þ

where flavor indices are denoted by a and b. The
anticharmed meson fields represented by scaled fields
P̃ð�Þ are defined in flavor/isospin space as ðD̄0; D−; D−

s Þ
and ðD̄�0; D�−; D�−

s Þ. The σ is the lightest scalar meson and
its physics is governed by the dynamics of the Goldstone
bosons and relevant to the interaction between two pions
[60,61]. The light pseudoscalar octet and the vector
nonet are denoted by P and Vα, respectively [38]. The η
meson in the P is identified as η8 state, while the ω and
ϕ in Vα are represented by ideal mixing of ω8 and ω1 states.
Field strength tensor is Fμν

abðVÞ ¼ ð∂μVν − ∂νVμþ
i gVffiffi

2
p ½Vμ;Vν�−Þab, where ½A;B�− ¼ AB − BA. The scalar

meson coupling gS is taken as gS ¼ gπ=ð2
ffiffiffi
6

p Þ with gπ ¼
3.73 [60]. The pseudoscalar meson coupling is taken as
g ¼ −0.59, which is extracted from the experimental decay
widths of D� → Dπ [62] with the pion decay constant
fπ ¼ 132 MeV, and the sign is determined from the quark
model [63]. Vector meson couplings are taken as gV ¼ 5.9,
β ¼ 0.9, and λ ¼ 0.56 GeV−1, in which gV and β are
determined by vector meson dominance [64], λ is obtained
by comparing the form factor calculated by light cone
sum rule with that obtained by lattice calculation [65].
These couplings are also used in recent studies focusing
on molecular Pc pentaquarks [24,38,42,43]. On the other
hand, the effective Lagrangian depicting the interaction of
the baryons in the SU(3) flavor octet (B) with light scalar,
pseudoscalar, and vector mesons reads1 [54,55,59,66–70].

LBBσ ¼ −gBBσψ̄ϕσψ ; ð4Þ

LBBV ¼ −gBBV ψ̄
�
γμ −

κBBV
2mB

σμν∂ν

�
Vμψ ; ð5Þ

FIG. 1. Diagrams showing the production of Pc̄s in D−
s p final

state from B̄0
s decay.

1In these Lagrangians, flavor information of the particles in the
SU(3) multiplet is embedded in the coupling constants gBBσ ,
gBBP, gBBV , and κBBV . Explicit form of these Lagrangians can be
found in Appendix A. In actual calculation, we consider small SU
(3) flavor symmetry breaking effects by setting mB and mP to the
physical masses of particles in octet baryon and pseudoscalar
meson matrices, respectively.
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LBBP ¼ −
gBBP
mP

ψ̄γ5γμ∂μϕPψ ; ð6Þ

where ψ represents the Dirac field operator for the SU(3)
octet baryon, ϕσ , Vμ, and ϕP are field operators corre-
sponding to the scalar, vector, and pseudoscalar mesons,
respectively. The scalar meson couplings for the octet
baryons are given in Refs. [69,70] as gNNσ ¼ 8.465,
gΛΛσ ¼ 7.579, and gΣΣσ ¼ 10.85. The pseudoscalar and
vector couplings for nucleon N are also available in
Ref. [69] as gNNρ ¼ 3.25, gNNπ ¼ 0.989, κNNρ ¼ 6.1,
and κNNω ¼ 0. These couplings are determined by a fit
to the empirical hyperon-nucleon (ΛN;ΣN) data. The
relative signs of them with respect to the Lagrangian in
Eqs. (1)–(3) are fixed by the quark model (see Appendix B)
and are consistent with earlier corresponding studies for the
Pc states [8,38,43,44]. The pseudoscalar and vector meson
couplings for the other octet baryons (Σ, Λ and Ξ) are
obtained by means of SU(3) flavor symmetry [56].
The potentials for the P̃ð�ÞB system in the momentum

space can be obtained from the t-channel scattering
amplitudes (M) with the Breit approximation [71]

Vh1h2→h3h4ðqÞ ¼ −
Mh1h2→h3h4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1m22m3m4

p ; ð7Þ

where m1 and m2 are the masses of the particles h1 and h2
in the initial state, while m3 and m4 are the masses of
particles h3 and h4 in the final state. The t-channel
Feynman diagrams for the scattering processes
P̃B → P̃B, P̃B → P̃�B, and P̃�B → P̃�B are shown in
Fig. 2. Their amplitudes are calculated with the Lagrangian
given in Eqs. (1)–(6). In our calculation, we use the Dirac
spinor with positive energy for B as

uðp; sÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM

p �
χ

σ·p
EþM χ

�
; ð8Þ

which is normalized to 2M, where σ is Pauli matrix, and χ
is two components spinor. For the scaled-heavy meson
fields P̃ and P̃�, we adopt the normalization relations as
h0jP̃jc̄qð0−Þi ¼ ffiffiffiffiffiffiffiffi

MP̃

p
and h0jP̃�

μjc̄qð1−Þi ¼ ϵμ
ffiffiffiffiffiffiffiffiffi
MP̃�

p
[51,71]. In the center-of-mass frame; the four-momenta
of the particles in the initial state are p1 ¼ ðE1; pÞ and
p2 ¼ ðE2;−pÞ, while the four-momenta of the particles in
the final state are p3 ¼ ðE3; p0Þ and p4 ¼ ðE4;−p0Þ. The

four-momentum of the exchanged meson is given by
q ¼ p3 − p1 ¼ p2 − p4 ¼ ðq0; qÞ. For the convenience
of the calculation, we define the new variables

q ¼ p0 − p; Q ¼ 1

2
ðp0 þ pÞ: ð9Þ

With Breit approximation in Eq. (7), the potentials in the
momentum space for the scattering processes P̃B → P̃B,
P̃B → P̃�B, and P̃�B → P̃�B are derived keeping up to
1=m2

B order and listed as the three types in Eq. (10).
(i) Type I: P̃B → P̃B

VI
σðq;QÞ ¼ −τσgBBσgS

�
1 −

iσ · ðq × QÞ
4m2

B

�
1

q2 þ μ2σ
;

ð10aÞ

VI
Vðq;QÞ¼−τV

gBBVβgV
2

�
1þ1þ2κBBV

4m2
B

iσ ·ðq×QÞ
�

×
1

q2þμ2V
; ð10bÞ

(ii) Type II: P̃B → P̃�B

VII
P ðq;QÞ ¼ τP

ggBBπffiffiffi
2

p
fπmP

σ · qϵ�4 · q
q2 þ μ2P

; ð10cÞ

VII
V ðq;QÞ¼ τV

gBBVλgV
2mB

½ð2þ3κBBVÞiϵ�4 ·ðq×QÞ

þð1þκBBVÞðq2ϵ�4 ·σ−σ ·qϵ�4 ·qÞ�
1

q2þμ2V
;

ð10dÞ

(iii) Type III: P̃�B → P̃�B

VIII
σ ðq;QÞ ¼ −τσgBBσgSϵ�4 · ϵ2

�
1 −

iσ · ðq × QÞ
4m2

B

�

×
1

q2 þ μ2σ
; ð10eÞ

VIII
P ðq;QÞ ¼ τP

ggBBπffiffiffi
2

p
fπmP

σ · qT · q
q2 þ μ2P

; ð10fÞ

VIII
V ðq;QÞ ¼ −τV

gBBVβgV
2

�
1þ κBBV

2m2
B

iσ · ðq × QÞ
�

ϵ�4 · ϵ2
q2 þ μ2V

− τV
gBBVλgV
2mB

½ð2 − κBBVÞiT · ðq × QÞ − ð1þ κBBVÞðσ × qÞ · ðT × qÞ� 1

q2 þ μ2V
; ð10gÞ
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where the subindicesV andP represent the exchanged vector
and pseudoscalar mesons, respectively. The polarization
vectors for the P̃� meson at the final and initial states are
denoted by ϵ�4 and ϵ2, respectively; T is defined as
T ¼ iϵ2 × ϵ�4. In the inelastic scattering, the energy of the
exchanged meson is nonzero, so the denominator of the
propagator can be rewritten as q2−m2

ex¼ðq0Þ2−q2−m2
ex¼

−ðq2þμ2exÞ, where μex represents the effective mass of the
exchanged meson. In the center-of-mass frame, the energy of
the exchanged meson, q0, is calculated as

q0 ¼ m2
2 −m2

1 þm2
3 −m2

4

2ðm3 þm4Þ
; ð11Þ

wherem1 andm2 are the masses of the particles in the initial
state, whilem3 andm4 are the masses of particles in the final
state. The coupling constants and the isospin factors for the
potentials of the specific scattering processes are listed in
Table I, where the relations of the coupling constants in the
SU(3) flavor symmetry are adopted [56,69]. The isospin
factors of each meson exchange potential for the total isospin
I ¼ 1=2 system are listed in the column labeled with τex. The
potentials for the specific scattering process listed in the
column labeledwith “Transition” in Table I are obtained from
the corresponding type of the potentials in Eq. (10) by
replacing the coupling constants. For instance, the ρ meson
exchange potential for the process D�Σ → D̄�Σ is obtained
by replacing the coupling constants gBBV and κBBV in Eq. (10)
with 2gNNραV and κNNρ

4αV
, respectively.

The coordinate space representations of the potentials in
Eq. (10) are obtained by preforming the following Fourier
transformation analytically

VðI;II;IIIÞ
ex ¼ 1

ð2πÞ3
Z

VðI;II;IIIÞ
ex ðq;QÞF2ðq; Λ̃; μexÞeiq·rd3q;

ð12Þ
where the cutoff parameter Λ is introduced with the
form factor to reflect the inner structure of the interacting
vertices [7],

Fðq; Λ̃; μexÞ ¼
m2

ex − Λ2

ðq0Þ2 − q2 − Λ2
¼ Λ̃2 − μ2ex

q2 þ Λ̃2
; ð13Þ

where we define Λ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − ðq0Þ2

p
and μex ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ex − ðq0Þ2

p
for convenience. Before giving the

FIG. 2. The t-channel Feynman diagram for the processes (a) P̃B → P̃B, (b) P̃B → P̃�B, and (c) P̃�B → P̃�B. The exchanged scalar,
vector, and pseudoscalar mesons are labeled with σ, V, and P, respectively.

TABLE I. The type of potential, exchanged meson, isospin
factor for I ¼ 1=2, and coupling constant for specific channel.
The label “� � �” means that the coupling is forbidden. The values
of the mixing parameters αP and αV are taken from Ref. [69],
namely αP ¼ 0.4 and αV ¼ 1.15, which connect the couplings of
the nucleon to other particles in the octet baryon matrix.

Transition Type Ex. τex gBBex κBBex

D̄�Σ → D̄�Σ III σ 1 gΣΣσ � � �
ρ −2 2gNNραV

κNNρ

4αV
ω 1 2gNNραV

κNNρ

4αV
π −2 2gNNπαP � � �
η 1ffiffi

3
p 2ffiffi

3
p gNNπð1 − αPÞ � � �

D̄�Λ → D̄�Σ III ρ
ffiffiffi
3

p
2ffiffi
3

p gNNρð1 − αVÞ 3κNNρ

4ð1−αV Þ
π

ffiffiffi
3

p
2ffiffi
3

p gNNπð1 − αPÞ � � �
D̄Σ → D̄�Σ II ρ −2 2gNNραV

κNNρ

4αV
ω 1 2gNNραV

κNNρ

4αV
π −2 2gNNπαP � � �
η 1ffiffi

3
p 2ffiffi

3
p gNNπð1 − αPÞ � � �

D̄Λ → D̄�Σ II ρ
ffiffiffi
3

p
2ffiffi
3

p gNNρð1 − αVÞ 3κNNρ

4ð1−αV Þ
π

ffiffiffi
3

p
2ffiffi
3

p gNNπð1 − αPÞ � � �
D−

s N → D̄�Σ II K̄� ffiffiffi
6

p
gNNρð1 − 2αVÞ κNNρ

2ð1−2αV Þ
K̄

ffiffiffi
6

p
gNNπð1 − 2αPÞ � � �

D̄�Λ → D̄�Λ III σ 1 gΛΛσ � � �
ω 1 2

3
gNNρð5αV − 2Þ − 3κNNρ

4ð5αV−2Þ
η 1ffiffi

3
p − 2ffiffi

3
p gNNπð1 − αPÞ –

D̄Σ → D̄�Λ II ρ
ffiffiffi
3

p
2ffiffi
3

p gNNρð1 − αVÞ 3κNNρ

4ð1−αV Þ
π

ffiffiffi
3

p
2ffiffi
3

p gNNπð1 − αPÞ � � �
D̄Λ → D̄�Λ II ω 1 2

3
gNNρð5αV − 2Þ − 3κNNρ

4ð5αV−2Þ
η 1ffiffi

3
p − 2ffiffi

3
p gNNπð1 − αPÞ –

D−
s N → D̄�Λ II K̄� ffiffiffi

2
p

− 1ffiffi
3

p gNNρð1þ 2αVÞ 3κNNρ

2ð1þ2αV Þ
K̄

ffiffiffi
2

p
− 1ffiffi

3
p gNNπð1þ 2αPÞ � � �

D̄Σ → D̄Σ I σ 1 gΣΣσ � � �
ρ −2 2gNNραV

κNNρ

4αV
ω 1 2gNNραV

κNNρ

4αV

D̄Λ → D̄Σ I ρ
ffiffiffi
3

p
2ffiffi
3

p gNNρð1 − αVÞ 3κNNρ

4ð1−αV Þ
D−

s N → D̄Σ I K̄� ffiffiffi
6

p
gNNρð1 − 2αVÞ κNNρ

2ð1−2αV Þ
D̄Λ → D̄Λ I σ 1 gΛΛσ � � �

ω 1 2
3
gNNρð5αV − 2Þ − 3κNNρ

4ð5αV−2Þ
D−

s N → D̄Λ I K̄� ffiffiffi
2

p
− 1ffiffi

3
p gNNρð1þ 2αVÞ 3κNNρ

2ð1þ2αV Þ
D−

s N → D−
s N I σ 1 gNNσ � � �
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potentials in the coordinate space, first, let us fucus on the
Fourier transformation of the typical functions in Eq. (10).
We have

Yex ¼
1

ð2πÞ3
Z

1

q2 þ μex

�
Λ̃2 − μ2ex
q2 þ Λ̃2

�
2

eiq·rd3q;

¼ 1

4πr
ðe−μexr − e−Λ̃rÞ − Λ̃2 − μ2ex

8πΛ̃
e−Λ̃r; ð14Þ

σ · LOex ¼
1

ð2πÞ3
Z

iσ · ðq × QÞ
q2 þ μ2ex

�
Λ̃2 − μ2ex
q2 þ Λ̃2

�
2

eiq·rd3q

¼ σ · L
1

r
∂
∂r Yex; ð15Þ

where we use the definition of the angular momentum
operator L, such as L ¼ r × Q [59]. The Fourier trans-
formations of the functions iϵ�4 · ðq × QÞ=ðq2 þ μ2exÞ and
iT · ðq × QÞ=ðq2 þ μ2exÞ can be preformed in the similar
way as Eq. (15) after replacing σ with ϵ�4 and T ,
respectively. Before preforming the Fourier transformation
on σ · qϵ�4 · q=ðq2 þ μ2exÞ, we can decompose it as

σ ·qϵ�4 ·q
q2þμ2ex

¼1

3

�
σ ·ϵ�4

�
1−

μ2ex
q2þμ2ex

�
−Sðσ;ϵ�4;q̂Þ

jqj2
q2þμ2ex

�
;

ð16Þ

where Sðσ; ϵ�4; q̂Þ ¼ 3σ · q̂ϵ�4 · q̂ − σ · ϵ�4 is the tensor oper-
ator in the momentum space. It can be found that the
constant term in Eq. (16) leads to the δðrÞ term in
coordinate space after the Fourier transformation without
form factor. With the form factor, the δðrÞ term can be
replaced with the Fourier transformation of the form factor,
and it dominates the short-range part of the potential. As a
result, the short-range part is heavily depending on the
cutoff Λ [7,38,72]. There are several treatments of the δðrÞ
in the literature focused on the molecular pentaquarks,
Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ. The δðrÞ is
fully included in the OBE model in Refs. [24,43], and
several cutoff parameters are used to reproduce the four Pc
pentaquarks. And in Ref. [44], the δðrÞ is dropped, and the
four Pc pentaquarks are reproduced with the same cutoff
parameter, but larger values for the coupling constants are
used. In Ref. [38], the four Pc pentaquarks are simulta-
neously reproduced with the same cutoff parameter by
introducing a reduction parameter a, which adjusts the
strength of the short-range part of the potential dominated
by the δðrÞ term. In the effective field theory, the short-
range contribution cannot be fully captured by the OBE
model, which may be viewed as there can be contributions
from exchanging heavier particles. The introducing a is an
extra subtraction of the regularized potentials. It is equiv-
alent to introducing an extra contact interaction to take into
account extra short-range interaction from the other heavier
meson exchange. It is introduced as

σ · qϵ�4 · q
q2 þ μ2ex

¼ 1

3

�
σ · ϵ�4

�
1 − a −

μ2ex
q2 þ μ2ex

�

− Sðσ; ϵ�4; q̂Þ
jqj2

q2 þ μ2ex

�
: ð17Þ

After preforming the Fourier transformation on Eq. (17),
we have [38,71]

1

ð2πÞ3
Z

σ · qϵ�4 · q
q2 þ μ2ex

�
Λ̃2 − μ2ex
q2 þ Λ̃2

�
2

eiq·rd3q

¼ −
1

3
½σ · ϵ�4Cex þ Sðσ; ϵ�4; r̂ÞTex�; ð18Þ

where Sðσ; ϵ�4; r̂Þ ¼ 3σ · r̂ϵ�4 · r̂ − σ · ϵ�4 is the tensor oper-
ator in the coordinate space. The functions Cex and Tex can
be expressed as

Cex ¼
1

r2
∂
∂r r

2
∂
∂r Yex þ

a
ð2πÞ3

Z �
Λ̃2 − μ2ex
q2 þ Λ̃2

�
2

eiq·rd3q;

ð19Þ

Tex ¼ r
∂
∂r

1

r
∂
∂r Yex; ð20Þ

where the term proportional to the parameter a can adjust
the contribution from the δðrÞ term. a ¼ 0ð1Þ means that
the contribution of the δðrÞ term is fully included
(excluded). The Fourier transformation of the function σ ·
qT · q=ðq2 þ μ2exÞ can be taken in a similar way as Eq. (18).
With the functions Yex, Oex, Cex, and Tex, the potentials

in Eq. (10) can be written in the coordinate space as
(i) Type I: P̃B → P̃B

VI
σ ¼ −τσgBBσgS

�
Yσ −

1

4m2
B

σ · LOσ

�
; ð21aÞ

VI
V ¼−τV

gBBVβgV
2

�
YVþ

1þ2κBBV
4m2

B

σ ·LOV

�
; ð21bÞ

(ii) Type II: P̃B → P̃�B

VII
P ¼ −τP

ggBBP
3

ffiffiffi
2

p
fπmP

½σ · ϵ�4CP þ Sðσ; ϵ�4; r̂ÞTP�;

ð21cÞ

VII
V ¼ −τV

gBBVλgV
2mB

�ð1þ κBBVÞ
3

½2σ · ϵ�4CV

− Sðσ; ϵ�4; r̂ÞTV � − ð2þ 3κBBVÞϵ�4 · LOV

�
;

ð21dÞ
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(iii) Type III: P̃�B → P̃�B

VIII
σ ¼−τσgBBσgSϵ�4 ·ϵ2

�
Yσ−

1

4m2
B

σ ·LOσ

�
; ð21eÞ

VIII
P ¼ −τP

ffiffiffi
2

p
ggBBP

6fπmP
½σ · T CP þ Sðσ; T ; r̂ÞTP�;

ð21fÞ

VIII
V ¼ −τV

gBBVβgV
2

ϵ�4 · ϵ2

�
YV þ 1þ 2κBBV

4m2
B

σ · LOV

�

− τV
gBBVλgV
2mB

�ð1þ κBBVÞ
3

½2σ · T CV − Sðσ; T ; r̂ÞTV � þ ð2 − κBBVÞT · LOV

�
: ð21gÞ

The OBE potential matrix for the coupled-channel sys-
tem, D−

s N − D̄Λ − D̄Σ − D̄�Λ − D̄�Σ, can be constructed
with the potentials derived in Eq. (21) and the information
given in Table I. It is convenient to label the five channels,
i.e., D−

s N, D̄Λ, D̄Σ, D̄�Λ, D̄�Σ, as the first, second, third,
fourth, and fifth channels, respectively. They are sorted
simply by their thresholds. For the transition from the jth to
kth channel, the OBE potential can be obtained by summing
up all possible light meson exchange potentials, such that

Vjk ¼ Vjk
σ þ Vjk

π þ Vjk
η þ Vjk

ρ þ Vjk
ω þ Vjk

K̄ þ Vjk
K̄� ; ð22Þ

where Vjk
ex refers to the potential for the transition j → k

when the meson exchanged is being the one at the lower
index. The potential Vjk

ex can be obtained from Eq. (21) by
replacing the corresponding coupling constants and isospin
factors given in Table I. For example, the ρmeson exchange
potential for the transition D̄�Σ → D̄�Σ, which is denoted by
V55
ρ in our notation, is obtained by replacing the coupling

constants gBBV and κBBV in Eq. (21g) with 2gNNραV and
κNNρ

4αV
, respectively. For the isospin factor, τV ¼ −2 is taken for

the potential with I ¼ 1=2.
For the masses of the exchanged mesons, we take isospin

average masses, which are mπ ¼ 137.2, mη ¼ 547.9,
mρ ¼ 775.3, mω ¼ 782.7, mK̄ ¼ 493.7, and mK̄� ¼ 891.7
in the unit of MeV [62]. In Ref. [62], the lightest scalar
meson is labeled with f0ð500Þ, which is a broad state and
its mass has not been accurately given. In the present work,
we simply take 600 MeV for the σ meson mass, and the
different choices of its mass from 400 to 800 MeV affect
the result a little, and can be smeared by a small variation of
the cutoff. Thresholds (labeled withWj for the jth channel)

and partial wave components of those channels with spin-
parities JP ¼ 1=2−; 3=2− are shown in Table II. The
notation 2Sþ1LJ is used to identify various partial waves,
in which S, L, and J stand for the spin, orbital, and total
angular momentums, respectively. In the actual calculation,
the spin operators in the potentials should be projected out,
and this is done by sandwiching the spin operators between
the partial waves of the initial and final states. Since, the
partial waves of the channels listed in Table II are
determined by the spin-parity of the individual hadron
and nothing to do with flavors, we can refer the channels
fD−

s N; D̄Λ; D̄Σg to P̃B, fD̄�Λ; D̄�Σg to P̃�B. The
partial waves of the P̃B and P̃�B system with spin-parities
JP ¼ 1=2−; 3=2− are

(i) JP ¼ 1=2−ðP̃BÞ: j2S1=2i,
(ii) JP ¼ 1=2−ðP̃�BÞ: j2S1=2i; j4D1=2i,
(iii) JP ¼ 3=2−ðP̃BÞ: j2D3=2i,
(iv) JP ¼ 3=2−ðP̃�BÞ: j4S3=2i; j2D3=2i; j4D3=2i.

The spin operators for the three types of scattering
processes in Eq. (21) are listed in the rows labeled with
O of Table III. The partial wave projection of the operator
O can be done by calculating

fh2sþ1L0
JjOj2sþ1LJii; ð23Þ

where fh2s
0þ1L0

Jj and j2sþ1LJii stand for the partial waves
for the final and initial states, respectively. The results are
calculated with the technics introduced in the Appendix
of Ref. [38], and collected in Table III. For instance,
the partial wave projections of the operators O for the
process P̃B → P̃�B with JP ¼ 1=2− and JP ¼ 3=2− are
obtained by calculating ðh2S1=2jOj2S1=2i; h2S1=2jOj4D1=2iÞ

TABLE II. Thresholds of the channels and partial wave components of JP states.

Channels D−
s N D̄Λ D̄Σ D̄�Λ D̄�Σ

Wj[MeV] [62] 2907.3 2982.9 3060.4 3124.2 3201.7

JP ¼ 1=2− 2S1=2 2S1=2 2S1=2 2S1=2, 4D1=2
2S1=2, 4D1=2

JP ¼ 3=2− 2D3=2
2D3=2

2D3=2
4S3=2; 2D3=2; 4D3=2

4S3=2; 2D3=2; 4D3=2
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and ðh2D3=2jOj4S3=2i; h2D3=2jOj2D3=2i; h2D3=2jOj4D3=2iÞ,
respectively. Similarly, the partial wave projections for the
process P̃�B → P̃�B with JP ¼ 1=2− and JP ¼ 3=2− are
done by calculating

� h2S1=2jOj2S1=2i h2S1=2jOj4D1=2i
h4D1=2jOj2S1=2i h4D1=2jOj4D1=2i

�
ð24Þ

and

0
BBB@

h4S3=2jOj4S3=2i h4S3=2jOj2D3=2i h4S3=2jOj4D3=2i
h2D3=2jOj4S3=2i h2D3=2jOj2D3=2i h2D3=2jOj4D3=2i
h4D3=2jOj4S3=2i h4D3=2jOj2D3=2i h4D3=2jOj4D3=2i

1
CCCA;

ð25Þ

respectively. Results are given as the matrix form in
Table III.
To conclude this section, we show the shapes of the

potentials of the most important channels, such as D̄Σ and
D̄�Σ, under the two extreme treatments of the δðrÞ. The S
wave potentials of the D̄Σ and D̄�Σ systems with I ¼ 1=2
in a function of coordinate r as the cutoff is set to Λ ¼
1.2 GeV are plotted in Fig. 3, where the potentials with
(without) the δðrÞ term are shown in the left (right) column.
The potentials for the D̄Σ system with JP ¼ 1=2− are
shown in the first row, while the potentials for the D̄�Σ
system with JP ¼ 1=2− and JP ¼ 3=2− are shown in the
second and third rows. In each of the subplots, various
meson exchange potentials are plotted separately, and the
sum of them is also plotted with line labeled “Total.”
The potentials of the D̄Σ system are only proportional to
the Yukawa term Yex and independent of the δðrÞ
term. With the δðrÞ term, the vector and pseudoscalar
meson exchange potentials of the D̄�Σ system with

JP ¼ 1=2−; 3=2− can change their signs once due to the
short-range δðrÞ term in their core which has an opposite
sign relative to its remaining part. After removing the δðrÞ
term, those potentials are consistent in sign in the whole
range of r. The S wave total potentials in both D̄Λ and D̄�Λ
are repulsive, and there is no bound state accordingly. In
addition, the S wave potential for the D−

s N system is
attractive due to the σ meson exchange alone, but it is not
strong enough to form a bound state.

FIG. 3. The potentials of S-wave states of the D̄ð�ÞΣ system
with I ¼ 1=2 in the function of coordinate r, where the cutoff is
set to Λ ¼ 1.2 GeV. a ¼ 0 means the potentials include the full
δðrÞ term while a ¼ 1 means the δðrÞ term is fully removed.

TABLE III. The partial wave projection of the spin operators in the potentials of Type I, II, and III in Eq. (21).

i → f P̃B → P̃B P̃B → P̃�B

O σ · L ϵ�4 · L σ · ϵ�4 Sðσ; ϵ�4; r̂Þ
JP ¼ 1=2− 0 (0,0) ð ffiffiffi

3
p

; 0Þ ð0; ffiffiffi
6

p Þ
JP ¼ 3=2− −3 ð0;− ffiffiffi

3
p

;−
ffiffiffi
3

p Þ ð0; ffiffiffi
3

p
; 0Þ ð− ffiffiffi

3
p

; 0;
ffiffiffi
3

p Þ

i → f P̃�B → P̃�B

O ϵ2 · ϵ�4 ϵ2 · ϵ�4σ · L σ · T Sðσ; T ; r̂Þ T · L

JP ¼ 1=2−
�
1 0

0 1

� �
0 0

0 −3

� �
−2 0

0 1

� �
0

ffiffiffi
2

pffiffiffi
2

p
−2

� �
0 0

0 −3

�

JP ¼ 3=2−
0
B@

1 0 0

0 1 0

0 0 1

1
CA

0
B@

0 0 0

0 1 2

0 2 −2

1
CA

0
B@

1 0 0

0 −2 0

0 0 1

1
CA

0
B@

0 −1 2

−1 0 1

2 1 0

1
CA

0
B@

0 0 0

0 1 2

0 2 −2

1
CA
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III. RESULTS

In this section, firstly, we describe our procedure of
solving the two-body Schrödinger equation and explain the
behaviors of the bound states or resonances emerged as
poles of the scattering matrix. Secondly, with the OBE
potentials of D̄Σ and D̄�Σ systems derived in the previous
section, we investigate the possibilities of the bound states
by solving the single channel Schrödinger equation.
Thirdly, considering the coupled-channel system,
D−

s N − D̄Λ − D̄Σ − D̄�Λ − D̄�Σ, we further investigate
the resonances below the thresholds of channels D̄Σ and
D̄�Σ, and evaluate their partial decay widths.
For the coupled-channel potential matrix Vjk, the radial

Schrödinger equation can be written as

�
−

ℏ2

2μj

d2

dr2
þ ℏ2ljðlj þ 1Þ

2μjr2
þWj

�
uj þ

X
k

Vjkuk ¼ Euj;

ð26Þ

where j is the channel index; uj is defined by ujðrÞ ¼
rRjðrÞ with the radial wave function RjðrÞ for the jth
channel; μj andWj are the corresponding reduced mass and
threshold; and E is the total energy of the system. The
momentum for channel j is given as

qjðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðE −WjÞ

q
: ð27Þ

By solving Eq. (26), we obtain the wave function which is
normalized to satisfy the incoming boundary condition for
the jth channel given as [73]

uðkÞj ðrÞ !r→∞
δjke−iqjr − SjkðEÞeiqjr; ð28Þ

where SjkðEÞ is the scattering matrix component. In a
multichannel problem, there is a sequence of thresholds
W1 < W2 < � � �, and the scattering matrix element SjkðEÞ
is an analytic function of E except at the branch points of
E ¼ Wj and poles. Bound states and resonances are
represented as the poles at Epole of the SjkðEÞ in the
complex energy plane [73].
The characterization of these poles requires to analyti-

cally continue the S matrix to the complex energy plane,
and the poles should be searched on the correct Riemann
sheet. Note that channel momentum qj is a multivalued
function of energy E; there are two Riemann sheets in the
complex energy plane for each channel: one is called
the first or physical sheet, while the other one is called the
second or unphysical sheet. In the physical sheet, complex
energy E maps to the upper-half plane (Im½qj� ≥ 0) of the
channel momentum qj. In the multichannel case with
different thresholds, bound states can emerge as poles on
the real energy axis of the physical sheet at the energy

region below the lowest threshold W1. The binding energy
labeled as B in our notation can be evaluated as

B ¼ Epole −W1; ð29Þ

where Epole is the position of the pole. In the unphysical
sheet, complex energy E maps to the lower-half plane
(Im½qj� < 0) of the channel momentum qj. Poles may
appear in this sheet, and those poles correspond to
resonances if their real parts are larger than the thresholds
of some channels (these channels are called open channels).
Any of the resonance poles has its conjugate pole E�

pole.
Among them, the one with a negative imaginary part which
is closer to the real energy axis of the physical sheet than
the other one has a significant impact on the scattering
amplitude (see the review section in [62]). The real and
imaginary parts of the pole Epole, may be parametrized as
the mass and the half-width of the resonance [74], such as

Epole ¼ M − iΓ=2: ð30Þ

Resonance poles that are located on the unphysical sheet
closest to the physical sheet are the ones that, together with
bound states, are much likely to generate structures in the
scattering amplitude.

A. Bound states

We start by discussing the bound states in D̄Σ and D̄�Σ
systems within the OBE framework. Bound state energy is
obtained by solving the Schrödinger equation in Eq. (26),
and S −D wave mixing effects are considered. The
parameter a is added to adjust the short-range contribution
from δðrÞ in the OBE model. On the other hand, the
parameter a also plays a similar role as the phenomeno-
logical contact term which is used to determine the short-
range dynamics of the hadron interaction [37]. Bound state
energy of the D̄Σ and D̄�Σ molecular isodoublet systems
with spin parity JP ¼ 1=2− and JP ¼ 3=2− is evaluated by
varying the cutoff Λ after several values for a are taken.
Table IV shows the behavior of the bound state energies

within the cutoff range 1–1.8 GeV, in which the binding
energies of corresponding single channel systems (given in
the parentheses) are listed at the columns labeled with B.
Here, we list the results for four different δðrÞ term
contributions, a ¼ 0, 0.58, 0.78 and a ¼ 1. The δðrÞ term
is included in the OBE potentials by setting a ¼ 0 and it is
fully excluded by taking a ¼ 1. The case with a ¼ 0.58 or
a ¼ 0.78 corresponds to that δðrÞ term in whole OBE
potentials reduced by 58% or 78%, respectively. The two
parameters are constrained in the our previous work in
Ref. [38] to simultaneously reproduce the masses of the
Pcð4440Þ and Pcð4457Þ with the same cutoff in the single
channel D̄�Σc. The binding energy of the D̄Σ bound state
with JP ¼ 1=2− is independent of the δðrÞ term, because
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the OBE potential of this system is free from the δðrÞ term.
For the two bound states in the D̄�Σ system with spin
parities JP ¼ 1=2− and Jp ¼ 3=2−, the different reduction
of the δðrÞ term has a large effect on the binding energy.
The binding energy is heavily dependent on the cutoff Λ
when the δðrÞ term is fully included in the OBE potentials.
As the value of a increases, 1=2−ðD̄�ΣÞ state tends to be a
shallow bound state, while the 3=2−ðD̄�ΣÞ state, by
contrast, tends to be deep bound state. The reason is that,
for the D̄�Σ system, the total potential with JP ¼ 1=2− gets
shallower as the parameter a increases, which leads to
smaller binding energy, while the situation is reversed for
the potential with JP ¼ 3=2−. Furthermore, three bound
states, 1=2−ðD̄ΣÞ, 1=2−ðD̄�ΣÞ, and 3=2−ðD̄�ΣÞ are simul-
taneously bound with the cutoff 1.5 GeV with either
a ¼ 0.58 or a ¼ 0.78. In addition, the S −D wave mixing
effects on the JP ¼ 3=2−ðD̄�ΣÞ state are relatively larger
than that on JP ¼ 1=2−ðD̄�ΣÞ state.
The masses of the Pc states observed in the experiment

are close to the thresholds of the D̄Σc and D̄�Σc channels.
In the OBE framework, these two channels support three
bound states which can reproduce the masses of the three
Pc states, Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ with proper
values of cutoff [37,38,42–44]. It indicates that, the
existence of the bound states formed by the single channel
interaction may be a hint for experimental observation.
Compared to the bound states found in the single channel
D̄Σc and D̄�Σc systems in Ref. [38], the discussed three

bound states in the single channel D̄Σ and D̄�Σ systems
have similar formation mechanism, and support the exist-
ence of the anticharmed strange pentaquarks proposed in
Refs. [39,40]. In addition, a bound state which is 220 MeV
below the D−

s N threshold has been found after considering
the coupled-channel dynamics of D−

s N − D̄Λ − D̄Σ in
Ref. [41], and which state is strongly coupled to the D̄Σ
channel compared to the other two channels. It indicates
that the D̄Σ channel provides a more attractive force than
others. Thus, a loose bound state below the D̄Σ threshold,
which is different from the one found in Ref. [41] based on
the assumption of the SUð4Þ symmetry, may be bound first
in the single channel D̄Σ interaction.

B. Resonances

With the coupled-channel potentials of the system
D−

s N − D̄Λ − D̄Σ − D̄�Λ − D̄�Σ obtained in Eq. (22),
we solve the Schrödinger equation in Eq. (26), and
the energy dependent SðEÞ matrix is extracted from the
asymptotic wave function in Eq. (28) (see Refs. [73,75]). It
is seen that the poles of the SðEÞ matrix on the physical
sheet correspond to bound states. Now, we go to the
unphysical sheets to search for the poles by analytic
continuation of the SðEÞ matrix, and then evaluate their
partial decay widths. In the coupled-channel system
D−

s N − D̄Λ − D̄Σ − D̄�Λ − D̄�Σ, the poles are searched
for around the thresholds of D̄Σ and D̄�Σ channels. Those
bound states of these two channels as listed in Table IV turn
out to be resonances when subthreshold coupled channels
are taken into account. These resonances are easily found
near the two thresholds. For the n channels system, there
are 2n Riemann sheets in the complex energy plane, which
can be defined by the imaginary part of the momentum
qjðEÞ of the jth channel (see chapter 20 of Ref. [73] for
more details). In our case of the five channels system, there
are 25 Riemann sheets, and we focus on the two of them;
one is called the physical sheet of the D̄Σ channel
(Im½q1� < 0, Im½q2� < 0, Im½q3� ≥ 0, Im½q4� ≥ 0,
Im½q5� ≥ 0), and the another one is called the physical
sheet of the D̄�Σ channel (Im½q1� < 0, Im½q2� < 0,
Im½q3� < 0, Im½q4� < 0, Im½q5� ≥ 0). These two sheets
are also close to the real energy axis of the physical sheet
(imaginary parts of the momenta for all channels are
positive). The poles below the D̄Σ threshold are searched
in the physical sheet of the D̄Σ channel, while the poles
below the D̄�Σ threshold are searched in the physical sheet
of the D̄�Σ channel.
To evaluate the partial widths of the poles decaying to

open channels, first, we calculate the residues of the poles
of amplitude TðEÞ. The SðEÞ matrix has the relation with
TðEÞ [74,76],

SjkðEÞ ¼ 1þ i
ffiffiffiffiffiffiffi
2ρj

p
TjkðEÞ

ffiffiffiffiffiffiffi
2ρk

p
; ð31Þ

TABLE IV. Binding energy (B) of the bound states in the single
channel D̄Σ and D̄�Σ systems with isospin I ¼ 1=2 as a function
of cutoff Λ after fixing the value for a. Each entry with a “� � �”
means that the potentials are not strong enough to form a bound
state. The values of cutoff and binding energy are in units of GeV
and MeV, respectively.

BðD̄ΣÞ BðD̄�ΣÞ
S-wave S-wave S −D wave mixing

a Λ JP ¼ 1=2− 1=2− 3=2− 1=2− 3=2−

0.0 1.0 � � � −7.35 � � � −8.96 � � �
1.25 � � � −125.5 � � � −129.23 � � �
1.5 −0.66 < −500 � � � < −500 � � �
1.8 −11.11 < −500 � � � � � � −1.22

0.58 1.0 � � � � � � � � � � � � � � �
1.25 � � � −0.11 � � � −1.1 � � �
1.5 −0.66 −26.3 −0.18 −32.06 −5.02
1.8 −11.11 −130.7 −5.57 −140.55 −19.07

0.78 1.0 � � � � � � � � � � � � � � �
1.25 � � � � � � � � � � � � −0.68
1.5 −0.66 � � � −3.33 −0.05 −12.17
1.8 −11.11 −6.37 −18.31 −12.58 −37.14

1.0 1.0 � � � � � � � � � � � � � � �
1.25 � � � � � � −0.2 � � � −3.56
1.5 −0.66 � � � −13.42 � � � −26.17
1.8 −11.11 � � � −48.0 � � � −71.73
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where j and k are channel indices. In nonrelativistic
approximation, two body phase space factor ρj for channel
j can be written as a function of channel momentum qjðEÞ
in Eq. (27) as

ρj ¼
qjðEÞ
8πE

: ð32Þ

The residue matrix Rjk of the pole Epole can be extracted as

Rjk ¼ lim
E→Epole

ðE2 − E2
poleÞTjkðEÞ ¼ gjgk; ð33Þ

where gj is a pole coupling of the jth channel. The partial
decay widths of the open channels can be calculated
as [74,77]

Γj ¼
qjðMÞ
8πM2

jgjj2; ð34Þ

where M is the real part of the pole.
The positions of the poles and partial decay widths as the

function of cutoff Λ are shown in Tables Vand VI, in which
we fix the values of the parameter a to 0.58 for Table Vand
0.78 for Table VI. These two values for the parameter a are
also used in Ref. [38] to simultaneously reproducing the
Pcð4400Þ and Pcð4457Þ pentaquark masses. Among
these poles, the first pole with JP ¼ 1=2− below the D̄Σ
threshold is found in the physical sheet of D̄Σ channel,
while the second and third poles with spin parity
JP ¼ 1=2− and JP ¼ 3=2− are found in the physical
sheet of the D̄�Σ channel. The pole positions and partial
decay widths of the first, second, and third poles are given
in the multicolumns labeled as JP ¼ 1=2−ðD̄ΣÞ,
JP ¼ 1=2−ðD̄�ΣÞ, and JP ¼ 3=2−ðD̄�ΣÞ, respectively.
The dominant channel, which couples with poles stronger
than other channels, is given in the parentheses. In the case
with a ¼ 0.58, with cutoff Λ ¼ 1.2 GeV, the first pole is
located at 3060.3 − i0.3, while the second and third poles

are located at 3197.3 − i3.9 and 3201.2 − i2.8 respectively.
For the first pole, there are two S-wave open channels,
which are D−

s N and D̄Λ channels. Among these channels,
the first pole prefers to decay into the D−

s N channel
as shown in Table V. For the second pole, five channels
(four S-wave channels D−

s N, D̄Λ, D̄Σ, and D̄�Λ, and one
D-wave channel D̄�Λ) are opened. For the third pole, there
are six open channels (D−

s N, D̄Λ, D̄Σ in D-wave, one S-
wave and two D-wave D̄�Λ). It is also seen from the results
in Table V that the S-wave D̄Σ channel is a dominant decay
channel for both the second and third poles, and the
dominant decay channel remains the same as the cutoff
increases except that it changes from a D̄Σ to a D̄�Λ
channel in the S-wave for the third pole when cutoff is up
to 1.4 GeV.
The three poles have a similar behavior that they tend to

move away from the thresholds of their dominant chan-
nels in the complex energy plane as the cutoff increases.
In other words, the masses of the poles decrease and
their half widths increase as the cutoff increases. The
reason is that, these poles are associated with the bound
states given in Table IV which is inferred from their
dominant channels, and the pole masses (M) behave
similar as the bound state masses (BþW, where W is
the threshold of the channel for the bound state in the
single channel interaction discussed in Sec. III A). The
partial widths of the poles decaying to open channels,
which are calculated with Eq. (34), imply that the half
widths of the poles are proportional to the pole couplings
gj. For the results presented in Table IV, the magnitude of
the pole couplings for the open channels which provide
large contributions to their widths, increases together with
the cutoff, so the half widths also increase. At the energy
region much above the thresholds of open channels, the
impact of the phase space factor is not significant. A
similar phenomenon can be seen in Ref. [45], which is
governed by the complicated structure of the coupled-
channel potential matrix.

TABLE V. Pole positions (M − iΓ=2) and partial decay widths Γi for each of the open channels in the isodoublet system with spin
parity JP by varying cutoff Λ when a ¼ 0.58 is taken. The channel given in the parentheses correspond to the dominant channel.
The partial decay widths for the partial wave channels in the same hadron pair are given separately. From left to right in
each multicolumn Γi, the partial decay widths correspond to the channels fD−

s Nð2S1=2Þ; D̄Λð2S1=2Þg for the first pole
JP ¼ 1=2−ðD̄ΣÞ, fD−

s Nð2S1=2Þ; D̄Λð2S1=2Þ; D̄Σð2S1=2Þ; D̄�Λð2S1=2Þ; D̄�Λð4D1=2Þg for the second pole JP ¼ 1=2−ðD̄�ΣÞ, and
fD−

s Nð4D3=2Þ; D̄Λð4D3=2Þ; D̄Σð4D3=2Þ; D̄�Λð4S3=2Þ; D̄�Λð2D3=2Þ; D̄�Λð4D3=2Þg for the third pole JP ¼ 3=2−ðD̄�ΣÞ. Mass and width
are in units of MeV.

JP ¼ 1=2−ðD̄ΣÞ JP ¼ 1=2−ðD̄�ΣÞ JP ¼ 3=2−ðD̄�ΣÞ
Λ[GeV] M − iΓ=2 Γi M − iΓ=2 Γi M − iΓ=2 Γi

1.2 3060.3 − i0.3 0.6 0.1 3197.3 − i3.9 0.3 0.7 6.1 0.7 0.6 3201.2 − i2.8 0.0 1.9 2.3 1.2 0.2 1.4
1.25 3059.0 − i1.2 2.3 0.3 3190.2 − i7.1 0.7 1.1 11.3 1.2 0.5 3199.3 − i3.7 0.0 2.2 2.7 1.7 0.2 1.5
1.3 3055.8 − i3.0 5.7 0.7 3179.0 − i12.1 1.5 1.8 18.8 2.1 0.3 3196.9 − i4.5 0.0 2.5 3.0 2.3 0.2 1.5
1.35 3049.6 − i6.2 11.5 1.4 3162.0 − i20.1 3.5 3.1 29.1 3.5 0.1 3194.0 − i5.1 0.0 2.7 3.2 2.9 0.2 1.5
1.4 3036.8 − i10.6 18.9 2.5 3136.1 − i32.1 7.8 5.5 38.7 3.8 0.2 3190.6 − i5.6 0.0 2.9 3.4 3.5 0.1 1.4
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The results corresponding to a ¼ 0.78 are shown in
Table VI. This value for a is also taken in Ref. [38] to
simultaneously reproduce the mass spectra of the three
observed Pc states [18], Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ with the same cutoff, and it is mentioned that
a larger value for a is favorable after their widths are taken
into account. It is seen from the results in Table VI that, the
first pole is not sensitive to the parameter a compared to the
results in Table V due to the independence behavior of
the dominant channel potential on a shown in the first
column of Fig. 3, and the minor changes can be understood
as the coupled-channel effect. For second and third poles,
the mass ordering is reversed compared to the results
in Table V due to the similar mechanism explained in
Sec. III A. A similar phenomenon can be found in Ref. [38]
that, among the two poles near ΣcD̄� threshold, the
pole with JP ¼ 1=2 is higher than the poles with
JP ¼ 3=2− for large a while the situation is reversed with
small a. Besides, the results in Table VI also indicate that
the S wave D̄�Λ channel is the dominant decay channel for
the second and third poles while the D−

s N channel is the
dominant decay channel for the first pole.
Basically, in our calculation, we can determine neither

the cutoff Λ nor the reduction parameter a, because there is
no experimental data for anticharmed strange pentaquarks.
But the cutoff ranges taken in our work are somehow
reasonable, as the LHCb Pc pentaquakrs [18] are repro-
duced with Λ ¼ 1.4 GeV in Ref. [38], with Λ ¼ 1.04 and
Λ ¼ 1.32 in Ref. [43]. In Ref. [7], it is mentioned that in
nucleon-nucleon interactions values for Λ between 0.8 and
1.5 GeV have been used depending on the model and
application, and the larger values (Λ > 1.5 GeV) are also
required for nucleon-nucleon phase shifts. For the param-
eter a, we simply follow the suggestion in Ref. [38], and it
is also noted that small variation of the parameter a can
change the results presented in the present work by a few
percent. Besides, the D−

s N channel is the lowest channel
which the anticharmed strange pentaquarks can strongly
decay to. The first pole dominantly decays to the D−

s N
channel, and it implies that the production rate of this
channel is larger than the other channel, and may be easily
detected. For the second and third poles, partial decay
widths of the D−

s N channel are tiny, but this channel stands

out as a sharp peak and can be easily distinguished from the
background signal in the experiment with high luminosity.

IV. CONCLUSION

Stimulated by the experiment evidence of the LHCb
hidden-charm pentaquarks, we investigate the molecular
structure of the Pc̄s pentaquarks from the OBE model. The
potentials for the systems of D̄ð�ÞΣ, D̄ð�ÞΛ, and D−

s N are
constructedwith an effective Lagrangian taking into account
HQSS, SU (3) flavor symmetry, and all possible light meson
exchange dynamics. The dipole form factor as a function of
the phenomenological parameter Λ is used to regularize the
potentials. The short-range contribution from the δðrÞ term is
parametrizedwith a parameter a, and it canmimic the role of
the contact term used in effective field theory. The possible
bound states in the single channels (D̄Σ and D̄�Σ) are
searched for with various cutoff Λ and parameter a. The
resonance parameters associated with those bound states are
calculated after taking into account the coupled-channel
system D−

s N − D̄Λ − D̄Σ − D̄�Λ − D̄�Σ.
There are three bound states found in the D̄Σ and D̄�Σ

systems with isospin I ¼ 1=2. Among them, one is
identified with the spin parity JP ¼ 1=2− below D̄Σ
threshold, and the other two are identified with JP ¼
f1=2−; 3=2−g below the D̄�Σ threshold. The JP ¼ 1=2−

bound state below the D̄Σ threshold can be bound when the
cutoff Λ is above 1.5 GeV, and its binding energy is
independent of the parameter a. The binding energies
of the two bound states, JP ¼ 1=2− and JP ¼ 3=2− below
D̄�Σ threshold, depend on the parameter a, because the
potentials of the D̄�Σ system have contribution of the δðrÞ
term. In this system, when the δðrÞ term is fully kept with
a ¼ 0, the binding energy of the JP ¼ 1=2− state is heavily
depending on the cutoff Λ while the state with JP ¼ 3=2−

cannot be bound until the cutoff increases up to 1.8 GeV. As
the value of a increases, the JP ¼ 1=2− bound state tends to
be shallower and the JP ¼ 3=2− bound state tends to be
deeper. It is caused by the sign difference of the δðrÞ term
between the potentials corresponding to the JP ¼ 1=2− and
JP ¼ 3=2− systems. Until now, there has been no exper-
imental data for any Pc̄s pentaquarks; therefore, we simply
take a ¼ 0.58 and a ¼ 0.78 by following the argument in

TABLE VI. Similar table as Table V while a ¼ 0.78 is taken. Each entry with a “� � �”means that the pole goes to other Riemann sheet
far away from the physical sheet.

JP ¼ 1=2−ðD̄ΣÞ JP ¼ 1=2−ðD̄�ΣÞ JP ¼ 3=2−ðD̄�ΣÞ
Λ[GeV] M − iΓ=2 Γi M − iΓ=2 Γi M − iΓ=2 Γi

1.2 3060.4 − i0.1 0.2 0.0 � � � � � � � � � � � � � � � � � � 3199.0 − i4.9 0.0 2.4 2.6 4.4 0.2 1.6
1.3 3058.5 − i1.3 2.4 0.3 � � � � � � � � � � � � � � � � � � 3191.8 − i7.5 0.0 2.9 3.0 7.9 0.2 1.5
1.4 3053.9 − i4.2 7.8 1.0 � � � � � � � � � � � � � � � � � � 3181.5 − i9.6 0.0 3.2 3.2 11.6 0.1 1.2
1.55 3044.6 − i13.4 23.7 4.2 3200.6 − i21.1 0.3 23.6 1.6 30.1 0.6 3160.9 − i11.2 0.1 3.1 3.2 14.9 0.0 0.5
1.6 3041.9 − i17.7 30.6 6.2 3193.6 − i26.5 0.1 28.9 2.0 32.2 0.5 3152.5 − i11.2 0.1 3.0 3.4 14.7 0.0 0.3
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Ref. [38], in which the masses of the Pcð4440Þ and
Pcð4457Þ pentaquarks are simultaneously reproduced with
the same cutoff in the D̄�Σ single channel system. As a
result, the three states above begin to be bound with
cutoff Λ ¼ 1.5 GeV.
The decay widths of the resonances associated with

those bound states are evaluated considering the coupled-
channel system D−

s N − D̄Λ − D̄Σ − D̄�Λ − D̄�Σ. With
values of a ¼ 0.58 or a ¼ 0.78, widths of these resonances
emerged as the poles of the S matrix are calculated by
varying the cutoff Λ. The first pole with JP ¼ 1=2− below
D̄Σ threshold decay dominantly to theD−

s N channel. It may
be easily detected in the process B̄0

s → n̄D−
s p. For

the second pole with JP ¼ 1=2− and the third pole with
JP ¼ 3=2− below the D̄�Σ threshold, partial decay widths
of D−

s N channel are small. Detecting them in this channel
may require much higher statistics. In addition, the mass
ordering of the second and third poles is interchanged in the
cases with these two values of a. The predicted masses and
decay widths of those three states may provide valuable
information for discovering the Pc̄s pentaquarks in future
experiments.
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APPENDIX A: EXPLICIT FORM OF THE OCTET
LAGRANGIAN

Following Refs. [56,69], we show the explicit form of
the Lagrangian in Eqs. (5) and (6) below. For the SU(3)
octet baryon and pseudoscalar scalar meson interaction, the
effective Lagrangian can be written as

LBBP¼−
ffiffiffi
2

p
D

mP
hB̄γ5γμ½∂μP;B�þi−

ffiffiffi
2

p
F

mP
hB̄γ5γμ½∂μP;B�−i;

ðA1Þ

where the symbol h� � �i denotes trace of SU(3) matrices,
and ½A; B�� ¼ AB� BA. SU(3) matrices for the octet
baryon and pseudoscalar meson are [62,78,79]

B ¼

0
BBBBB@

Σ0ffiffi
2

p þ Λffiffi
6

p Σþ p

Σ− − Σ0ffiffi
2

p þ Λffiffi
6

p n

Ξ− Ξ0 −
ffiffi
2
3

q
Λ

1
CCCCCA
; ðA2Þ

P ¼

0
BBBBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCCCA
; ðA3Þ

where we identify the η with the octet η8 and assume the
singlet coupling to be zero. The D and F couplings
appearing in the Lagrangian in Eq. (A1) have relation with
two independent couplings g1 and g2 defined in Ref. [56],
such as

D ¼
ffiffiffiffiffi
30

p

40
g1; F ¼

ffiffiffi
6

p

24
g2; ðA4Þ

and these can be expressed with another two independent
parameters, i.e., the nucleon-nucleon-pion coupling
gNNπ ¼ Dþ F and mixing parameter αP ¼ F=ðDþ FÞ
[αP connects the gNNπ to other couplings], where we adopt
the notations used in Ref. [56]. With the Lagrangian in
Eq. (A1), we can reproduce the relation of relevant
coupling constants given in Refs. [56,69]. Similarly, the
Lagrangian for tje octet baryon and nonet vector meson
interaction takes the form

LBBV¼−
ffiffiffi
2

p
D0hB̄γμ½Ṽμ

1;B�þi−
ffiffiffi
2

p
F0hB̄γμ½Ṽμ

1;B�−i

þ
ffiffiffi
2

p
D00

2mB
hB̄σμν∂ν½Ṽμ

2;B�þiþ
ffiffiffi
2

p
F00

2mB
hB̄σμν∂ν½Ṽμ

2;B�−i;

ðA5Þ

where Ṽ i is the nonet vector meson matrix, in which octet
ω8 and singlet ω1 states are not mixed and D0ðD00Þ and
F0ðF00Þ are the two independent coupling for vector (tensor)
currents. The matrix form of Ṽ i is

Ṽ i ¼

0
BBBBB@

ρ0ffiffi
2

p þ ω8ffiffi
6

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ω8ffiffi
6

p K�0

K�− K̄�0 −
ffiffi
2
3

q
ω8

1
CCCCCA

þ g0i

0
B@

ω1 0 0

0 ω1 0

0 0 ω1

1
CA; ðA6Þ

where i ¼ 1, 2, g01, and g02 describe the couplings of the
singlet vector meson ω1 via vector and tensor currents. The
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couplings of the physical ω and ϕ are obtained by assuming
ideal mixing of ω8 and ω1 [62]

�
ω8

ω1

�
¼

0
BB@

ffiffi
1
3

q ffiffi
2
3

q
ffiffi
2
3

q
−

ffiffi
1
3

q
1
CCA
�
ω

ϕ

�
: ðA7Þ

Furthermore, we assume that the ϕ meson does not couple
to the nucleon (Okubo-Zweig-Iizuka rule) to fix the singlet
coupling constants to be g01 ¼ ð3F0 −D0Þ=ð2 ffiffiffi

3
p

D0Þ and
g02 ¼ ð3F00 −D00Þ=ð2 ffiffiffi

3
p

D00Þ. The vertex of nucleon-
nucleon-ρ meson interaction is [69]

LNNρ ¼ −gNNρψ̄N

�
γμ −

κNNρ

2mN
σμν∂ν

�
τ⃗ · ρ⃗μψN: ðA8Þ

After expending the Lagrangian in Eq. (A5), couplings of
vector and tensor currents (gNNρ and fNNρ ¼ gNNρκNNρ) are
expressed in terms of D0, F0, D00, and F00, such as

gNNρ ¼ D0 þ F0; fNNρ ¼ D00 þ F00: ðA9Þ

For the nonet vector meson, we have two mixing param-
eters, αV ¼ F0=ðF0 þD0Þ and α0V ¼ F00=ðF00 þD00Þ ¼ 1=4,
and the value of the later one is fixed from the hypothesis
fNNω ¼ 0 [69]. With the knowledge above, we can also
reproduce the relation of couplings relevant to octet baryon
and vector meson interaction in Ref. [69], and expressing
the couplings for other octet baryon (Λ and Σ) in terms of
nucleons as the manner in Table I is obvious.

APPENDIX B: RELATIVE SIGN OF THE
COUPLING CONSTANTS

The sign of the coupling constants can be fixed by the
quark model. The procedure is to calculate the effective
vertices twice at quark level and at hadronic level, and to
equate them (only a rough estimation can be made on the
strength of the couplings, it does however determine their
signs) [80]. The effective Lagrangian depicting the inter-
actions of the light constituent u, d quark fields ψq with π,
ρ, and σ mesons can be written as

Lq ¼ −
gqqπ
mπ

ψ̄qγ
5γμð∂μτ⃗ · π⃗Þψq

− gqqρψ̄q

�
γμ −

κqqρ
2mq

σμν∂ν

�
τ⃗ · ρ⃗μψq

− gqqσψ̄qσψq; ðB1Þ

where τ⃗ is the Pauli matrix, representing the isospin. For
convenience, the currents in Eq. (B1) can be written as

jμ;aqqπ ¼ −
gqqπ
mπ

ψ̄qγ
5γμτaψq; ðB2Þ

jμ;aqqρ ¼ −gqqρψ̄qγ
μτaψq; ðB3Þ

tμν;aqqρ ¼ gqqρκqqρ
2mq

ψ̄qσ
μντaψq; ðB4Þ

jqqσ ¼ −gqqσψ̄qψq; ðB5Þ

where jμ;aqqπ, j
μ;a
qqρ, t

μν;a
qqρ , jqqσ couple with ∂μπ

a, ρaμ, ∂νρ
a
μ, and

σ, respectively. The spin-flavor wave functions of the
proton and D̄�0 meson with sz (third component of the
spin) can be written as

jp; szi ¼
�
1ffiffiffi
2

p C1;sz121
2
;sz1;

1
2
;sz2

C
1
2
;sz
1;sz12;

1
2
;sz3

C1;Iz121
2
;Iz1;

1
2
;Iz2

C
1
2
;1
2

1;Iz12;
1
2
;Iz3

þ 1ffiffiffi
2

p C0;01
2
;sz1;

1
2
;sz2

C0;01
2
;Iz1;

1
2
;Iz2

δsz;sz3δ1
2
;Iz3

�

× jsz1; sz2; sz3ijIz1; Iz2; Iz3i; ðB6Þ

jD̄�0; szi ¼ C1;sz1
2
;sz1;

1
2
;sz2

δ1
2
;Iz1δIz2;0jsz1; sz2ijIz1; Iz2i; ðB7Þ

where sziðIziÞ is the third component of the spin(isospin)
for the ith quark, CC;cA;a;B;b represents the Clebsch-Gordan
coefficient, δa;b is a Kronecker delta function, and the
quantum numbers [sz1, sz2, sz12, sz3, Iz1, Iz2, Iz12, Iz3]
should be summed. With the proton wave function above,
we can calculate the matrix elements of the currents in
Eqs. (B2)–(B5) for a proton with spin up,

	
p;

1

2






X3
q¼1

j3;3qqπ





p; 12
�

¼ 5

3

gqqπ
mπ

; ðB8aÞ

	
p;

1

2






X3
q¼1

j0;3qqρ





p; 12
�

¼ −gqqρ; ðB8bÞ

	
p;

1

2






X3
q¼1

t21;3qqρ





p; 12
�

¼ −
5

6

gqqρκqqρ
mq

; ðB8cÞ

	
p;

1

2






X3
q¼1

jqqσ





p; 12
�

¼ −3gqqσ; ðB8dÞ

where
P

3
q¼1 represents the sum over the three quarks in the

proton. Similarly, for the D̄�0 meson with sz ¼ 1, the matrix
elements of the currents in Eqs. (B2)–(B5) are

hD̄�0; 1jj3;3qqπjD̄�0; 1i ¼ gqqπ
mπ

; ðB9aÞ

hD̄�0; 1jj0;3qqρjD̄�0; 1i ¼ −gqqρ; ðB9bÞ
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hD̄�0; 1jt21;3qqρ jD̄�0; 1i ¼ −
gqqρκqqρ
2mq

; ðB9cÞ

hD̄�0; 1jjqqσjD̄�0; 1i ¼ −gqqσ: ðB9dÞ

Now, we calculate the same currents at hadronic level.
Considering the isospin parts in the Lagrangian in Eqs (4)–
(6), the effective vertices for the interaction of nucleon with
π, ρ, and σ mesons can be written as

LNNπ ¼ −
gNNπ

mπ
ψ̄Nγ

5γμð∂μτ⃗ · π⃗ÞψN; ðB10Þ

LNNρ ¼ −gNNρψ̄N

�
γμ −

κNNρ

2mN
σμν∂ν

�
τ⃗ · ρ⃗μψN; ðB11Þ

LNNσ ¼ −gNNσψ̄NσψN: ðB12Þ

We can also define similar currents for nucleon
vertices,

jμ;aNNπ ¼ −
gNNπ

mπ
ψ̄Nγ

5γμτaψN; ðB13Þ

jμ;aNNρ ¼ −gNNρψ̄Nγ
μτaψN; ðB14Þ

tμν;aNNρ ¼
gNNρκNNρ

2mN
ψ̄Nσ

μντaψN; ðB15Þ

jNNσ ¼ −gNNσψ̄NψN: ðB16Þ

For the proton with spin up, the matrix elements of them
calculated at hadronic level are

	
p;

1

2





j3;3NNπ





p; 12
�

¼ gNNπ

mπ
; ðB17aÞ

	
p;

1

2





j0;3NNρ





p; 12
�

¼ gNNρ; ðB17bÞ

	
p;

1

2





t21;3NNρ





p; 12
�

¼ −
gNNρκNNρ

2mN
; ðB17cÞ

	
p;

1

2





jNNσ





p; 12
�

¼ −gNNσ: ðB17dÞ

After expanding the Lagrangian in Eqs. (1)–(3) in flavor
space, interaction vertices of the D̄� meson with the π, ρ,
and σ mesons are

LD̄�D̄�π ¼ i
2gffiffiffi
2

p
fπ

εαμνκvκD̄
�†
μ ð∂ατ⃗ · π⃗ÞD̄�

ν; ðB18Þ

LD̄�D̄�ρ ¼ −βgVD̄
�†
μ vατ⃗ · ρ⃗αD̄�μ

− i2λgVD̄�μ†ð∂μτ⃗ · ρ⃗ν − ∂ντ⃗ · ρ⃗μÞD̄�ν; ðB19Þ

LD̄�D̄�σ ¼ 2gSD̄
�†
μ σD̄�μ; ðB20Þ

where D̄� is a scaled filed satisfying h0jD̄�
μjc̄qð1−Þi ¼

ϵμ
ffiffiffiffiffiffiffiffiffi
MD̄�

p
as P� field, and it is written in the isospin space as

D̄� ¼ ðD̄�0; D�−ÞT . The similar currents for π, ρ, and σ
mesons can be written as

jα;aD̄�D̄�π ¼ i
2gffiffiffi
2

p
fπ

εαμνκvκD̄
�†
μ τaD̄�

ν; ðB21Þ

jα;aD̄�D̄�ρ ¼ −βgVD̄
�†
μ vαD̄�μ; ðB22Þ

tμν;aD̄�D̄�ρ ¼ i2λgVðD̄�μ†τaD̄�ν − D̄�ν†τaD̄�μÞ; ðB23Þ

jD̄�D̄�σ ¼ 2gSD̄
�†
μ D̄�μ: ðB24Þ

For a D̄�0 meson with sz ¼ 1, the matrix elements of these
currents at hadronic level are

hD̄�0; 1jj3;3D̄�D̄�πjD̄�0; 1i ¼ −
ffiffiffi
2

p
mD̄�g
fπ

; ðB25aÞ

hD̄�0; 1jj0;3D̄�D̄�ρjD̄�0; 1i ¼ mD̄�βgV; ðB25bÞ

hD̄�0; 1jt21;3D̄�D̄�ρjD̄�0; 1i ¼ −2mD̄�λgV; ðB25cÞ

hD̄�0; 1jjD̄�D̄�σjD̄�0; 1i ¼ −2mD̄�gS: ðB25dÞ

With the assumption that the currents calculated at the
quark level [Eqs. (B8) and (B9)] and hadronic level
[Eqs. (B17) and (B25)] are consistent in sign, we can
determine the relative sign between gNNπ and g, gNNρ and β,
κNNρ and λ, gNNσ and gS. For instance, the relative sign
between the currents in Eqs. (B8a) and (B17a) which
couple to the π3 with k3 (third component of the π3

momentum) requires that gqqπ and gNNπ have the same
sign, while the relative sign between the currents in
Eqs. (B9a) and (B25a) indicates that the signs of gqqπ
and g are opposite. Thus, we can determine the relative sign
between gNNπ and g, and they are opposite to each other. In
this way, we can determine the relative sign between gNNρ

and β, κNNρ and λ, gNNσ and gS, that is, both of them have
the same sign (positive or negative). Also, the signs of other
octet baryon couplings gBBV and gBBP are fixed with
respect to that of nucleons in the SU(3) flavor symmetry.
For the scalar couplings, we assume that the signs of gΣΣσ
and gΛΛσ are the same as gNNσ.
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