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We systematically investigate the speed of sound in QCD matter under different conditions in the grand
canonical ensemble within the Polyakov loop improved Nambu–Jona-Lasinio (PNJL) model. The
numerical results indicate that the dependence of speed of sound on parameters like temperature and
chemical potential can be indicative of QCD phase transition. Some new features of speed of sound are
discovered, for instance, the hierarchy of sound velocity for uðdÞ and s quark at low temperature with the
increasing chemical potential and the squared sound velocity approaching to almost zero in the critical
region. We also formulate the relations between differently defined sound velocity using the fundamental
thermodynamic relations. Some conclusions derived are useful for hydrodynamics simulation and
calculation of transport coefficient of bulk viscosity.
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I. INTRODUCTION

Heavy-ion collisions at relativistic energies can create
strongly interacting hot and/or dense matter. The explora-
tion of QCD phase structure and search for phase transition
signatures are significant goals in both theory and heavy-
ion collision experiments. The calculations from first
principle lattice QCD (LQCD) indicate that the trans-
formation from quark-gluon plasma (QGP) to hadrons is
a smooth crossover [1–8] at high temperature and small
baryon chemical potential. A first-order phase transition,
with a critical endpoint (CEP) connecting with a crossover
transformation, is predicted at large chemical potential by
quark models which share the symmetry properties of
QCD, Dyson-Schwinger equation (DSE) and functional
renormalization group (FRG) approaches (e.g., [9–20]).
Some possible phase transition signals for such a phase

structure were proposed based on the ratios of net-baryon
number cumulants [21]. The cumulants of net proton
(proxy for baryon) have been measured in the Beam
Energy Scan (BES-I) experiments at RHIC STAR, and a
non-monotonic energy dependence of the net-proton num-
ber kurtosis κσ2 was discovered [22–25]. It possibly hints
that the STAR experiments with smaller colliding energy

pass through the QCD critical region. More accurate
measurement on BES-II and the relevant experimental
projects at NICA/FAIR/J-PARC/HIAF in the near future
will provide us more information about the QCD phase
diagram.
The hydrodynamics simulation provides another scheme

to explore the QCD phase transition. The space-time
evolution of QCD matter can be successfully described
using the relativistic dissipative hydrodynamics [26–28].
One of the most important quantities in hydrodynamics is
the speed of sound cs and its dependence on environment
(temperature, density, chemical potential, etc.) [29]. In
heavy-ion collision experiments, the sound velocity is a
thermodynamic observable and carries important informa-
tion in describing the evolution of the fireball. The study in
[30–33] shows that c2s as a function of charged particle
multiplicity hdNch=dηi can reveal the dynamics of heavy-
ion collision. Recently, in [34] the authors estimate cs as a
function of the logarithmic derivative with respect to the
baryon density of QCD matter, and try to build a con-
nection with the baryon number cumulants to aid in
detecting the QCD critical endpoint.
Besides heavy-ion collision experiments, the speed of

sound is of particular interest to neutron star research (e.g.,
[35–37]). The behavior of cs as a function of density
influences the mass-radius relation, the tidal deformability,
and provides a sensitive probe of the equation of state
(EOS) of neutron star matter. To obtain neutron stars with
masses above two solar masses, several studies find that it
is essential for the nuclear EOS to have a region in which
the EOS is very stiff, where the sound velocity square is
significantly larger than 1=3 [38–44]. The study in [45] also
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indicates that the speed of sound is crucial for the
gravitational wave frequencies induced by the g-mode
oscillation of a neutron star.
It is also an interesting topic to study cs during the QCD

phase transition in the early universe by observing the
induced gravitational wave. Although the propagation of
gravitational wave is insensitive to cs, the sound speed
value affects the dynamics of primordial density perturba-
tions, and the induced gravitational waves by their horizon
reentry can then be an indirect probe on both the EOS and
sound velocity, which can provide useful knowledge of the
evolution in the era of QCD phase transition [46].
It can be seen from the above the speed of sound is a

fundamental property of strongly interacting matter. Some
calculations of sound velocity in QCD matter have
been performed in LQCD [1,5,7,8,47], (P)NJL model
[28,48–52], quark-meson coupling model [15,53], hadron
resonance gas (HRG) model [54,55], field correlator
method (FCM) [56,57] and quasiparticle model [58]. By
far, the main focus is put on the region of high temperature
and zero or small chemical potential. There is a crucial lack
of cs in the full phase diagram and its relation with QCD
phase transitions, including both the chiral and deconfine-
ment transition. On the other hand, different definitions or
even different statistical ensembles are taken to calculate
the speed of sound in literature (e.g., [8,28,49–53]). Some
issues with respect to thermodynamic relations need to be
clarified.
In this work, we give an intensive study on the sound

velocity in QCD matter in the full phase diagram with
different definitions of cs in the grand canonical ensemble.
The numerical results indicate that the dependence of cs on
the system parameters like temperature and/or chemical
potential can be indicative of QCD phase transition. Some
new features of speed of sound are also discovered for the
first time, for example, the hierarchy phenomenon of sound
velocity for uðdÞ and s quark at low temperature with the
increasing chemical potential and the squared sound
velocity at the CEP approaching to almost zero. We also
formulate the relations between differently defined cs using
the fundamental thermodynamic relations, and derive some
conclusions useful for hydrodynamics simulation.
The paper is organized as follows. In Sec. II, we

introduce the thermodynamic relations about the speed of
sound for a thermal system, and then give a brief intro-
duction to the 2þ 1 flavor PNJL quark model. In Sec. III,
we show the numerical results of speed of sound, and
discuss the relations under different definitions, as well as
the indicative signals of QCD phase transition. A summary
is finally given in Sec. IV.

II. SPEED OF SOUND AND THE PNJL
QUARK MODEL

The speed of sound is a fundamental properties of any
substance. The definition of speed of sound requires

specifying a quantity constant during the propagation of
the compression wave through a medium. The square of
speed of sound is usually defined as

c2x ¼
�∂p
∂ϵ

�
x
; ð1Þ

where p and ϵ are pressure and energy density, respectively,
and x denotes the parameter fixed in the calculation of the
sound velocity.
For a fireball created in relativistic heavy-ion collisions,

it evolves with constant entropy density per baryon s=ρB in
the ideal fluid, where s is the entropy density and ρB is the
baryon number density. This conclusion can be derived in
hydrodynamics due to the conservations of energy and
baryon number, therefore it is meaningful to calculate the
sound velocity along the isentropic curve

c2s=ρB ¼
�∂p
∂ϵ

�
s=ρB

: ð2Þ

The dependence of c2s=ρB on parameters like temperature
and chemical potential can indicate the change of sound
velocity during the evolution and provide important infor-
mation of interaction and the equation of state of medium.
There are also two other definitions of speed of sound

with constant entropy density or baryon number density
usually used in the intermediate process of hydrodynamic
evolution [28],

c2s ¼
�∂p
∂ϵ

�
s

and c2ρB ¼
�∂p
∂ϵ

�
ρB

: ð3Þ

To calculate the square of speed of sound under different
definitions, it is necessary to derive the corresponding
formulas as functions of T and μB from the fundamental
thermodynamic relations. We give here the formulas
derived in the grand canonical ensemble. First of all, the
entropy density and baryon number density can be simply
derived with

s ¼ −
�∂p
∂T

�
μB

and ρB ¼ −
� ∂p
∂μB

�
T
: ð4Þ

The c2x for different parameter x can be derived using
Jacobian methods and thermodynamic relations in the
grand canonical ensemble as

c2ρB ¼ ∂ðp; ρBÞ
∂ðϵ; ρBÞ ¼ sχμμ − ρBχμT

TðχTTχμμ − χ2μTÞ
; ð5Þ

c2s ¼
∂ðp; sÞ
∂ðϵ; sÞ ¼ ρBχTT − sχμT

μBðχTTχμμ − χ2μTÞ
; ð6Þ
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and

c2s=ρB ¼ ∂ðp; s=ρBÞ
∂ðϵ; s=ρBÞ ¼ c2ρBTsþ c2sμBρB

Tsþ μBρB
: ð7Þ

In the above equations, the second-order susceptibility χx;y
is defined as χx;y ¼ ∂2p=∂x∂y.
Besides, it is also convenient to calculate the square of

the speed of sound with a constant temperature or chemical
potential with

c2T ¼
�∂p
∂ϵ

�
T
; c2μB ¼

�∂p
∂ϵ

�
μB

; ð8Þ

In the calculation, we take the popular 2þ 1 flavor PNJL
quark model. The Lagrangian density in this model is
given by

L¼ q̄ðiγμDμ þ γ0μ̂− m̂0ÞqþG
X8
k¼0

½ðq̄λkqÞ2 þ ðq̄iγ5λkqÞ2�

−K½detfðq̄ð1þ γ5ÞqÞ þ detfðq̄ð1− γ5ÞqÞ�
−UðΦ½A�; Φ̄½A�; TÞ; ð9Þ

where q denotes the quark fields with three flavors, u, d,
and s; m̂0 ¼ diagðmu;md;msÞ in flavor space; G and K are
the four-point and six-point interacting constants, respec-
tively. The μ̂ ¼ diagðμu; μd; μsÞ are the quark chemical
potentials.
The covariant derivative in the Lagrangian is defined as

Dμ ¼ ∂μ − iAμ. The gluon background field Aμ ¼ δ0μA0 is
supposed to be homogeneous and static, with A0 ¼ gAα

0
λα

2
,

where λα

2
is SUð3Þ color generators. The effective potential

UðΦ½A�; Φ̄½A�; TÞ is expressed with the traced Polyakov
loop Φ ¼ ðTrcLÞ=NC and its conjugate Φ̄ ¼ ðTrcL†Þ=NC.
The Polyakov loop L is a matrix in color space

Lðx⃗Þ ¼ P exp

�
i
Z

β

0

dτA4ðx⃗; τÞ
�
; ð10Þ

where β ¼ 1=T is the inverse of temperature and A4 ¼ iA0.
The Polyakov-loop effective potential is

UðΦ; Φ̄; TÞ
T4

¼ −
aðTÞ
2

Φ̄Φþ bðTÞ ln½1 − 6Φ̄Φ

þ 4ðΦ̄3 þΦ3Þ − 3ðΦ̄ΦÞ2�; ð11Þ

where

aðTÞ¼ a0þa1

�
T0

T

�
þa2

�
T0

T

�
2

and bðTÞ¼ b3

�
T0

T

�
3

:

ð12Þ

The parameters ai, bi listed in Table I are fitted according to
the lattice simulation of QCD thermodynamics in the pure
gauge sector. The T0 ¼ 210 MeV is implemented in the
calculation.
The constituent quark mass in the mean field approxi-

mation can be derived as

Mi ¼ mi − 4Gϕi þ 2Kϕjϕk ði ≠ j ≠ kÞ; ð13Þ

where ϕi stands for quark condensate of the flavor i.
The thermodynamical potential of bulk quark matter is

derived as

Ω ¼ UðΦ̄;Φ; TÞ þ 2Gðϕu
2 þ ϕd

2 þ ϕs
2Þ − 4Kϕuϕdϕs

− 2

Z
Λ

d3p
ð2πÞ3 3ðEu þ Ed þ EsÞ

− 2T
X

i¼u;d;s

Z
d3p
ð2πÞ3 ðQ1 þQ2Þ; ð14Þ

where Q1 ¼ lnð1 þ 3Φe−ðEi−μiÞ=T þ 3Φ̄e−2ðEi−μiÞ=T þ
e−3ðEi−μiÞ=TÞ, Q2¼ lnð1þ3Φ̄e−ðEiþμiÞ=Tþ3Φe−2ðEiþμiÞ=T þ
e−3ðEiþμiÞ=TÞ, and Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

i

p
is the dispersion rela-

tion. μi ¼ μB=3 is taken for u, d, s quark flavors. The
pressure and energy density can be derived using the
thermodynamic relations in the grand canonical ensemble as

p ¼ −Ω; ϵ ¼ −pþ Tsþ μBρB ð15Þ

In the numerical calculation, a cutoff Λ is implemented
in 3-momentum space for divergent integrations.
We take the model parameters obtained in [60]: Λ ¼
602.3 MeV, GΛ2¼1.835, KΛ5¼12.36, mu;d¼5.5 and
ms ¼ 140.7 MeV, determined by fitting fπ ¼ 92.4 MeV,
Mπ ¼135.0MeV,mK¼497.7MeV andmη ¼ 957.8 MeV.

III. NUMERICAL RESULTS AND DISCUSSIONS

First, we demonstrate in Fig. 1 the isentropic curves with
s=ρB ¼ 100, 50, 20, 10, 4, 1 in the T − μB plane to indicate
the paths of fireball evolution for different collision
energies. For s=ρB ¼ 4 and 1, the traces in metastable
and unstable region (dashed parts) are also plotted in Fig. 1
to present the full configuration. We also plot the chiral and
deconfinement phase transition lines in the PNJL quark
model for the convenience of latter discussion. We should
note that the smooth crossover transformations take place
in a wide range of temperature at small chemical potential.

TABLE I. Parameters in the Polyakov-loop potential [59].

a0 a1 a2 b3

3.51 −2.47 15.2 −1.75
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For more details of the phase transition, one can refer
to [61].

A. Speed of sound at constant s=ρB
The value of c2s=ρB at constant s=ρB can reveal the speed

of sound in the ideal hydrodynamic evolution. In Fig. 2, we
plot the curves of c2s=ρB as functions of temperature along
the paths with s=ρB ¼ 100, 50, 20, 10, as shown in Fig. 1.
It shows that, at the high-temperature side, c2s=ρB approaches

to 1=3, the value of ideal gas. The c2s=ρB decreases in the
evolution with the decrease of temperature. A rapid
decrease occurs in the chiral crossover region, and there
exists a minimum for each s=ρB.

To indicate the relation between the speed of sound and
the chiral and deconfinement phase transitions, we plot in
Fig. 3 the values of c2s=ρB , the scaled chiral condensate ϕ=ϕ0

of uðdÞ quark, and Φ as functions of temperature with four
given baryon chemical potentials μB ¼ 0, 300, 600,
900 MeV. We also present in Fig. 4 the full contour
map of c2s=ρB in the T − μB plane.
Figures 3 and 4 indicate that c2s=ρB decreases rapidly in

the crossover region with the increase of chiral condensate
(dynamical quark mass). It means that the masses of
quasiparticles play a crucial role on the speed of sound
in QCD matter. A minimum of c2s=ρB appears in the low-
temperature side of the chiral crossover transformation,
which happens to coincide with the deconfinement phase
transition. Some similar features were discussed in [48].
The dip structure shown in Fig. 2 and Fig. 4 was also
discovered in the LQCD simulation at zero chemical

FIG. 1. QCD phase diagram and the isentropic curves with
s=ρB ¼ 100, 50, 20, 10, 4, 1 in T − μB plane.

FIG. 2. Squared speed of sound as functions of temperature at
constant entropy density per baryon with s=ρB ¼ 100, 50, 20, 10,
respectively.

FIG. 3. Values of c2s=ρB (solid curves), scaled chiral condensate
ϕ=ϕ0 (dashed lines) and Φ (short dash dotted lines) as functions
of temperature for μB ¼ 0, 300, 600, 900 MeV with red, green,
blue and magenta color, respectively.

FIG. 4. Contour map of c2s=ρB in the T − μB plane. The same as
in Fig. 1, the curves with s=ρB ¼ 100, 50, 20, 10 denote the paths
of ideal hydrodynamic evolution in T − μB plane
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potential [1,5,7,8,47]. However, such a feature does not
appear in the NJL model which lacks the confinement, at
least not obvious [28,49–51]. It hints that the deconfine-
ment transformation involved simultaneously also plays a
vital role in the evolution.
In Fig. 5, we present the value of c2s=ρB along the chiral

phase transition line. It indicates that c2s=ρB decreases along
the chiral crossover transition line from zero chemical
potential to the CEP. A noticeable feature is that c2s=ρB
approaches to almost zero at the CEP. This is consistent
with the critical slowing down, since in the critical region a
small perturbation can induce drastic density fluctuation, to
the disadvantage of the spread of wave. There are two
branches of c2s=ρB for the first-order phase transition. One
branch is for the chiral restored phase, the other one is for
the chiral breaking phase. It is obvious that c2s=ρB in the
chiral restored phase is much larger than that in the chiral
breaking phase. This reflects again that the dynamical
quark mass affects greatly on the EOS of quark matter.
Figure 4 also shows that there exist an area in the

quarkyonic phase where c2s=ρB has relatively larger values. It
is not difficult to understand such a result from the
restoration of chiral phase transition of u, d quark.
However, the strange quark still has a larger mass. With
the increase of chemical potential, the value of c2s=ρB
decreases again before the occurrence of the first-order
phase transition of the strange quark. At extreme high
baryon chemical potential, c2s=ρB increases again after the

chiral restoration of strange quark. It means that c2s=ρB at low
temperature has a hierarchy along the chemical potential
since the chiral phase transitions for uðdÞ quark and s quark
take place in sequence.

B. Speed of sound at constant baryon density
and entropy density

In the following we study the squared speed of sound at
constant baryon density and constant entropy density. The
two definitions of sound velocity are usually used in the
intermediate description of hydrodynamic evolution. For
example, the temporal derivatives of temperature and
chemical potential are functions of c2s and c2ρB , as

∂0T ¼ −c2ρBT∇ · u; ð16Þ

and

∂0μB ¼ −c2sμB∇ · u; ð17Þ

where u denotes the space component of four-velocity.
In Fig. 6, we show the contour map of c2ρB in the T − μB

plane. To demonstrate the path of constant baryon density,
four curves with ρB ¼ 0.1; 1; 5; 10ρ0 (ρ0 is the saturation
density of nuclear matter) are plotted. The contour plot
shows that the squared speed of sound c2ρB also approaches
to 1=3 at high temperature. Similar to the behavior of c2s=ρB ,

a minimum of c2ρB appears along the deconfinement phase
transition in the crossover region.
However, the deference between c2ρB and c2s=ρB grows

with the decrease of temperature. The paths of constant ρB
in T − μB plane are almost perpendicular with those of
constant s=ρB in a wide area. It just indicates the sensitivity
of the change of interaction to temperature and chemical
potential. It is interesting that there exists an area of
negative c2ρB in the quarkyonic phase. In this region, with
the increase of energy density, the pressure decreases along
the path of a constant density.
We present the contour map of c2s in Fig. 7. Similar

to Figs. 4 and 6, we plot four curves with s ¼ 0.01;
1; 5; 10fm−3 to show the relation between entropy density

FIG. 5. Values of c2s=ρB along the chiral phase transition line.
The dashed line is the result of chiral crossover transition. There
are two branches for the first-order transition. One (red line) is for
the chiral restored phase, the other one (blue line) is for the chiral
breaking phase.

FIG. 6. Contour map of c2ρB in the T − μB plane. Four curves
with ρB ¼ 0.1; 1; 5; 10ρ0 are also plotted to show the relations
between baryon density and ðT; μBÞ.
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and ðT; μBÞ. The numerical result also shows that c2s is close
to 1=3 at high temperature. Besides, there is a large area
where the value of c2s is negative at the lower left in Fig. 7.
The other negative area is in a narrow range near the chiral
crossover phase transition not far from the CEP.
As shown in Figs. 6 and 7, the negative values appear for

both c2ρB and c2s . More accurately, the partial derivative of
ð∂p∂ϵÞρB or ð∂p∂ϵÞs is negative in some regions. It is not
worrying about the negative values, because c2s=ρB , rather

than c2ρB and c2s , is the sound velocity under the adiabatic
condition in the hydrodynamic evolution. Nevertheless, it is
very significative to find the underlying reason to explain
the behaviors of c2ρB and c2s in the full phase diagram.
Applying the thermodynamic relation

�∂μB
∂T

�
s=ρB

·

� ∂T
∂ðs=ρBÞ

�
μB

·

�∂ðs=ρBÞ
∂μB

�
T
¼ −1; ð18Þ

and the formulas of Eqs. (5) and (6), we can obtain

�∂μB
∂T

�
s=ρB

¼ μB
T

c2s
c2ρB

¼ μB
T

ð∂p∂ϵÞs
ð∂p∂ϵÞρB

: ð19Þ

This equation indicates clearly that ð∂p∂ϵÞs and ð∂p∂ϵÞρB have
opposite sign for the case of ð∂μB∂T Þs=ρB < 0.
As shown by the isentropic curves in Fig. 1, such a

situation does exist at the lower left of the T − μB phase
diagram and a small neighboring area of chiral-crossover
transformation near the CEP, as well as a part of the
quarkyonic phase. The contour maps in Figs. 6 and 7
precisely proves this conclusion. It is instructive to take this
result in hydrodynamics simulation when the critical region
and low-temperature region is involved.
In the following, we try to explore the physical meaning

of the negative values of ð∂p∂ϵÞρB or ð∂p∂ϵÞs in quark matter.

Usually, a disturbance travels through matter with the
sound velocity since it obeys the propagation equation
of sound wave. To build the sound wave equation,
ð∂p∂ϵÞx > 0 is required to make sure that the disturbance
(pressure gradient) can propagate in waves. However, the
nonperturbative interaction of QCD is much more com-
plicated than ordinary matter, and there exists some regions
where c2s ¼ ð∂p∂ϵÞs < 0 or c2ρB ¼ ð∂p∂ϵÞρB < 0 under the con-

dition of ð∂μB∂T Þs=ρB < 0. In this case, the wave equation at
constant s or ρB will be broken, and turns into another
equation whose solution is a decay function. It means the
disturbance at constant s or ρB will not propagate in the
form of sound wave, but decay soon. The main reason is
that the increase of pressure is associated with the decrease
of energy density, contrary to the sound wave propagation
condition. Therefore, the negative values of c2s ¼ ð∂p∂ϵÞs or
c2ρB ¼ ð∂p∂ϵÞρB in Figs. 6 and 7 indicate the region where the
pressure gradient cannot be spread out in waves but decay
under the condition of constant s or ρB, respectively.
Correspondingly, cs and cρB in such a situation are no
longer the real sound velocities in the conventional sense.
We should also note that, for the adiabatic sound

velocity, c2s=ρB ¼ ð∂p∂ϵÞs=ρB is always positive in the stable
phase, but negative values possibly appear in the unstable
or metastable phase when the spinodal structure of the first-
order phase transition is included (It is outside the scope of
this work). A further study including the metastable and
unstable phase associated with the first-order phase tran-
sition will be done in the future to provide more insights on
sound velocity in QCD matter.

C. Speed of sound at constant temperature
and chemical potential

The contour maps of c2T at constant temperature and c2μB at
constant chemical potential are demonstrated in Fig. 8 and
Fig. 9, respectively. The two figures show that the squared

FIG. 7. Contour map of c2s in the T − μB plane. Four curves
with s ¼ 0.01; 1; 5; 10 fm−3 to show the relation between en-
tropy density and ðT; μBÞ.

FIG. 8. Contour map of c2T in the T − μB plane.
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speeds of sound c2T and c2μB are both close to 1=3 at high
temperature. The contour of c2μB at smaller chemical potential
is similar to c2s=ρB since the paths of constant s=ρB are nearly
parallel to the temperature axis.Correspondingly, the contour
of c2T at larger chemical potential and low temperature is
similar to that of c2s=ρB , because the curves of constant s=ρB in
this region are almost parallel to the chemical potential axis.

IV. SUMMARY

In this work, we studied the squared speed of sound in
QCD matter under five different definitions in the PNJL
model using the grand canonical ensemble. The different
definitions of speed of sound mean that the derivative of p
respect to ϵ are taken along different orientations, which
can indicate important properties of the equation of state.
The squared speed of sound under five definitions are all

approaching to 1=3, the Stefan-Boltzmann limit, at high
temperature. It indicates that the speed of sound of quark-
gluon plasma at high temperature is not sensitive to the path
of taking the derivative of p respect to ϵ. It is just the feature
of the chiral restored and deconfined phase.
The situations become complicated at finite temperature

and chemical potential due to the nonperturbative interaction
and (T, μB) dependent phase transition. we analyzed the
relations between the squared speed of sound and the phase
transitions. From the perspective of fluid evolution, the value
of c2s=ρB has a rapid decrease in the chiral crossover region
from higher temperature to lower temperature. A minimum
appears at the low-temperature side of the chiral crossover
transformation, which coincides with the deconfinement
phase transition in the PNJL model. The value of c2s=ρB
approaches to almost zero at the CEP. There also exists a
hierarchical behavior of c2s=ρB between uðdÞ and s quark at
low temperature with the increasing chemical potential.
We also discussed the relations of squared speed of

sound under different definitions, in particular the corre-
lation between c2s and c2ρB . We found ð∂p∂ϵÞρB and ð∂p∂ϵÞs take
opposite sign for the case of ð∂μB∂T Þs=ρB < 0. Such a situation
indeed exists in the QCD phase diagram. For the case of
ð∂p∂ϵÞs < 0 or ð∂p∂ϵÞρB < 0, cs and cρB in such a situation are
no longer the real sound velocities. Attention should be
paid when the corresponding speed of sound is taken in
hydrodynamics simulation in the critical region and the
low-temperature region involved.
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