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Event geometry and initial state correlations have been invoked as possible explanations of long-range
azimuthal correlations observed in high-multiplicity pþ p and pþ Pb collisions. We study the rapidity
dependence of initial state momentum correlations and event-by-event geometry in

ffiffiffi
s

p ¼ 5.02 TeV pþ Pb
collisions within the 3þ 1D IP-Glasma model [B. Schenke and S. Schlichting, Phys. Rev. C 94, 044907
(2016)], where the longitudinal structure is governed by Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner rapidity evolution of the incoming nuclear gluon distributions. We find that the event
geometry is correlated across large rapidity intervals whereas initial state momentum correlations are
relatively short-range in rapidity. Based on our results, we discuss implications for the relevance of both
effects in explaining the origin of collective phenomena in small systems.

DOI: 10.1103/PhysRevD.105.094023

I. INTRODUCTION

The collective behavior observed in heavy ion collisions
has led to the discovery of quark gluon plasma (QGP) and
established the behavior of QGP as a nearly perfect fluid.
The main observables associated with this collectivity are
the anisotropic flow coefficients vn, which characterize the
anisotropies in the transverse momentum distributions of
produced particles. Experimental measurements of these
coefficients can be described extremely well using relativ-
istic hydrodynamic simulations of heavy ion collisions [1–
5]. Within the hydrodynamic picture, the final state
momentum distributions are explained entirely via the
response to the initial state geometry in the transverse
(to the beam line) plane. Gradients of the pressure drive the
directionally dependent expansion of the system, thus
leaving an imprint of the initial shape of the fireball in
the final particle spectra.
More recently, signals similar to those in heavy colli-

sions have been found in the produced particle spectra of
small collision systems, including p=d=3Heþ A and even
pþ p [6–11] and ultraperipheral Pbþ Pb [12] collisions.
Such findings have led to increased research regarding the
question of how hydrodynamics could possibly be appli-
cable in very small systems that produce only on the order
of ten charged hadrons per unit rapidity (see [13] for a
review), as well as on the exploration of alternative
mechanisms that could generate the observed anisotropies

without requiring the creation of a nearly perfect fluid.
Examples of the latter include kinetic theory [14–22], as
well as the correlated (multi)particle production in the color
glass condensate framework [23–40], where anisotropic
momentum distributions result from correlations in the
gluon distributions of the incoming nuclei.
While calculations involving final state effects (e.g., in

the hydrodynamic framework) have been rather successful
in describing the main features of the momentum anisot-
ropies observed in small collision systems at RHIC and
LHC [41–55], purely initial state descriptions have thus far
struggled to fully reproduce quantitative and qualitative
features of the data [38,39]. Some have, potentially
prematurely, “ruled out” initial-stage Glasma correlations
[56]; however, they should be present and can in principle
affect observables, even when geometry driven final state
effects dominate.
In the IP-GlasmaþMUSICþ UrQMD model [55],

initial state anisotropies from both the Glasma and the
final state response to the geometry are present. Their
relative contributions were analyzed as functions of multi-
plicity in [10], and an observable that should be able to
distinguish them as sources of the observed anisotropies—
namely, the correlation of the elliptic anisotropy with the
mean transverse momentum—was analyzed in [57]. The
results in these works indicate that, while the initial state
anisotropy has a non-negligible contribution over a wide
range of multiplicities, it starts to be the dominant con-
tribution only for dNch=dη≲ 5–10, approximately inde-
pendent of the collision system or energy.*prasingh@jyu.fi
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Thus far, many calculations for proton-nucleus colli-
sions, including the aforementioned ones, have been
performed under the assumption of boost invariance, which
means that correlations of both the transverse geometry and
the initial momentum anisotropy extend over arbitrarily
large separations in rapidity. In this work we relax the
assumption of boost invariance and set out to explore the
longitudinal dependence of both the initial state geometry
and initial state momentum space correlations. This will
provide important input to experimentally distinguish the
two types of signals from each other and from short-range
“nonflow” contributions that result, e.g., from minijets or
resonance decays.
This paper is organized as follows. We start with a brief

description of the 3D IP-Glasma model in Sec. II and
subsequently discuss some global event properties in
5.02 TeV pþ Pb collisions in Sec. III. Our main results
regarding the longitudinal dependence of the initial state
geometry and initial state momentum space correlations are
presented in Sec. IV. We conclude and present an outlook
in Sec. V.

II. THE 3D IP-GLASMA MODEL

We follow the description of [58], which is built on the
high-energy factorization of the expectation values of
sufficiently inclusive quantities [59,60]. Based on the color
glass condensate effective field theory of high-energy QCD
[61], observables OðyobsÞ at a rapidity yobs can be calcu-
lated on an event-by-event basis

OðyobsÞ ¼ OclðVp
x⊥ðþyobsÞ; VPb

x⊥ð−yobsÞÞ; ð1Þ

as a functional of the lightlike Wilson lines Vp
x⊥ðþyobsÞ and

VPb
x⊥ð−yobsÞ of the projectile (p) and target (Pb), by solving

the classical Yang-Mills (CYM) equations. Starting from
the initial conditions Vp=Pb

x⊥ ð−YmaxÞ determined by the IP-
Glasma model [62,63] at the maximal observed rapidity
Ymax, the rapidity evolution of the lightlike Wilson lines
Vp=Pb
x⊥ ðYÞ is calculated using the Jalilian-Marian-Iancu-

McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution
equation [64–68]. Based on Eq. (1), the observables at each
rapidity are computed from the solutions to the classical
field equations, while the longitudinal (rapidity) structure is
governed by the small-x evolution of the Wilson lines.
While such factorization, as in Eq. (1), has been proven
only for inclusive quantities which encompass measure-
ments at a single rapidity [59,60], we will use the same
prescription to calculate unequal rapidity correlations on an
event-by-event basis. We refer to [58] for additional
discussions of the associated caveats and provide details
of the implementation of the 3D-Glasma model below.

A. IP-Glasma initial condition

Within the color glass condensate the small-x gluon
fields of the incoming nuclei are generated by the moving
valence charges according to the Yang-Mills equations

½Dμ; Fμν� ¼ Jν; ð2Þ

where Dμ ¼ ∂μ − igAμ is the gauge covariant derivative
and Fμν ¼ i

g ½Dμ; Dν� ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν� is the

field strength tensor, with the gluon fields Aμ ¼ Aμ
ata.

The ta are the generators of SUðNcÞ (for the number of
colors Nc ¼ 3) in the fundamental representation. The
index a is the color index and runs from 1 to
ðN2

c − 1Þ ¼ 8. The eikonal currents Jν on the right-hand
side of Eq. (2) are given by the sum of the color currents of
the two nuclei (the moving large-x degrees of freedom),

Jν ¼ δνþρPbðx⊥Þδðx−Þ þ δν−ρpðx⊥ÞδðxþÞ: ð3Þ

We will use the IP-Glasma model to determine the color
charge densities ρp=Pbðx⊥Þ and associated Wilson lines at
the initial rapidities (the largest x values). Wilson lines at
smaller x then follow from JIMWLK evolution, as dis-
cussed in the next subsection.
In IP-Glasma the color charges ρPbðx⊥Þ and ρpðx⊥Þ are

sampled on an event-by-event basis, assuming local
Gaussian correlations as in the McLerran-Venugopalan
(MV) model [69,70]. In practice, one determines the
Wilson lines Vx⊥ for each nucleus numerically, approxi-
mating the path ordered exponential with the product [71],

VPb=p
x⊥ ¼

YNy

k¼1

exp

�
−ig

ρkPb=pðx⊥Þ
∇2 − m̃2

�
; ð4Þ

where m̃ ¼ 0.2 GeV (or 0.8 GeV as indicated) is an
infrared regulator that is used to avoid unphysical
Coulomb tails, Ny ¼ 50 is the number of slices in the
longitudinal direction, and, as in the MV model, ρkPb and ρ

k
p

have zero mean and their two-point functions satisfy
(suppressing the subscripts Pb and p for clarity)

hρai ðb⊥Þρbj ðx⊥Þi ¼
g2μ2ðx;b⊥Þ

Ny
δabδijδð2Þðb⊥ − x⊥Þ: ð5Þ

Spatially ðb⊥Þ dependent color charge densities,
g2μPb=pðx;b⊥Þ ¼ cQs

QPb=p
s ðx; Tðb⊥ÞÞ,1 are determined

using the IPSat model [72,73], which provides the satu-
ration scale Qsðx; Tðb⊥ÞÞ as a function of the nuclear
thickness Tðb⊥Þ at a given Bjorken x. The nuclear thick-
ness functions Tðb⊥Þ, which provide the b⊥ dependence,

1We employ cQs
¼ 1.25 for m̃ ¼ 0.2 GeV and cQs

¼ 1.82 for
m̃ ¼ 0.8 GeV.
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are determined as in [55] by sampling the position of
individual nucleons from aWoods-Saxon distribution in the
case of the Pb nucleus. Subsequently, the position of
Nq ¼ 3 hot spots per nucleon is assigned according to a
two-dimensional Gaussian distribution with width Bp, and
each hot spot is assigned a two-dimensional Gaussian
thickness profile of width Bq. The parameters Bp ¼
4 GeV−2 and Bq ¼ 0.3 GeV−2 of the model are con-
strained using deeply inelastic scattering data on protons
from HERA [74]. Once the nuclear thickness Tðb⊥Þ is
determined, we self-consistently determine Qsðx;b⊥Þ by
iteratively solving for

x ¼ xðb⊥Þ ¼
Qsðx; Tðb⊥ÞÞffiffiffiffiffiffiffiffi

sNN
p e−Y; ð6Þ

where
ffiffiffiffiffiffiffiffi
sNN

p
is the center of mass energy of the collision.

We note that the public IP-Glasma code employed in this
study can be found at [75], and we refer the reader to [55]
for a detailed description of the implementation used in
this work.
Based on the above procedure,wegenerate a total ofNp ¼

32 and NPb ¼ 8 configurations of the Wilson lines
Vp=Pb
x⊥ ð−YmaxÞ of the protons and lead nuclei at the largest

x value, corresponding to the initial rapidity Y ¼
−Ymax ¼ −2.4, with transverse coordinates (x⊥) discretized
on an Ns × Ns lattice with Ns ¼ 1024 sites and lattice
spacing as ¼ 0.02 fm.

B. JIMWLK evolution

Starting from the IP-Glasma initial conditions for the
Wilson lines Vp=Pb

x⊥ ð−YmaxÞ, we perform the JIMWLK [64–
68] evolution from Y ¼ −2.4 to Y ¼ þ2.4 for each
configuration of the proton and the lead nucleus. We store
the configurations for various slices in rapidity in steps
of Y ¼ 0.2.
The implementation of the JIMWLK solver is equal to

that discussed in [58]. Specifically, we express the
JIMWLK hierarchy in terms of a functional Langevin
equation for the Wilson lines [76,77]. Each Langevin step
can be written as [78]

Vx⊥ðYþdYÞ ¼ exp

�
−i

ffiffiffiffiffiffiffiffiffiffi
αsdY

p
π

Z
z⊥
Kx⊥−z⊥ · ðVz⊥ξz⊥V

†
z⊥Þ

�

×Vx⊥ðYÞexp
�
i

ffiffiffiffiffiffiffiffiffiffi
αsdY

p
π

Z
z⊥
Kx⊥−z⊥ · ξz⊥

�
;

ð7Þ
with Gaussian white noise ξz⊥ ¼ ðξaz⊥;1ta; ξaz⊥;2taÞ that is
local in transverse coordinate, color, and rapidity, i.e.,
hξbz⊥;iðYÞi ¼ 0 and

hξax⊥;iðYÞξby⊥;jðY 0Þi ¼ δabδijδð2Þx⊥y⊥δðY − Y 0Þ: ð8Þ

Since we are particularly interested in the impact parameter
dependence, we follow [79] and employ a regularized
JIMWLK kernel

Kx⊥−z⊥ ¼ mjx⊥ − z⊥jK1ðmjx⊥ − z⊥jÞ
x⊥ − z⊥

ðx⊥ − z⊥Þ2
; ð9Þ

which suppresses emission at large distance scales and
limits growth in impact parameter space. The modified
Bessel function of the second kind K1ðxÞ behaves as
xK1ðxÞ ¼ 1þOðx2Þ for small arguments x, leaving the
kernel unmodified at short distance scales. Conversely, for
large arguments K1ðxÞ ¼

ffiffiffiffi
π
2x

p
e−x decays exponentially,

suppressing gluon emissions at large distance scales.
This regularization also prevents the unphysical exponen-
tial growth of the cross section, which would violate
unitarity [80].
We note that the only free parameters controlling the

JIMWLK evolution in Eq. (7) are the (fixed) coupling
constantαs and the infrared regulatorm, andwewill consider
variations of both parameters to assess the sensitivity of our
results. We illustrate the JIMWLK evolution of the spatial
configuration of three sample protons inFig. 1,wherewe plot
the trace of the Wilson lines, 1 − Re½trðVx⊥Þ�=Nc, for five
different rapidities. Going left to right, x decreases for the left
moving proton. One can see that the average size of the
proton grows with the evolution and that shorter scale
structures emerge as Qs grows with decreasing x. This is
expected, as the correlation length in the transverse plane
behaves as ∼1=Qs. Similar features can be observed for the
evolution of the lead nuclei, shown in Fig. 2, where for the
right moving nucleus x decreases going from right to left; in
addition, the impact parameters of the protons, for events
within a given centrality class (seeSec. II D), aremarkedwith
different colored circles.

C. Event generation and classical Yang-Mills evolution

Having determinedNp proton configurations andNPb lead
configurations over the entire range of rapidities
−2.4 ≤ Y ≤ 2.4, we proceed to generate events where, for
each of the Np × NPb combinations of protons and lead
nuclei, we perform Nb⊥ ¼ 16 collisions with different
impact parameters b⊥, sampled according to a two-
dimensional uniform distribution with the restriction
0 < jb⊥j < 8 fm.2 Based on the JIMWLK evolved
Wilson lines, the initial conditions for the nonvanishing
components of the gauge fields Ai

x⊥ðτ ¼ 0þÞ; Eη
x⊥ðτ ¼ 0þÞ

in the forward light cone at a given rapidity yobs are then
given by

2Note that in order to avoid interpolation of the SUðNcÞ
matrices, we round the impact parameter b⊥ to the next lattice
site.
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Ai
x⊥ðτ ¼ 0þ; yobsÞ ¼

i
g
½ðVp

x⊥ðþyobsÞ∂iVp†
x⊥ðþyobsÞÞ

þðVPb
x⊥þb⊥ð−yobsÞ∂iVPb†

x⊥þb⊥ð−yobsÞÞ�;
ð10Þ

Eη
x⊥ðτ ¼ 0þ; yobsÞ ¼

i
g
½ðVp

x⊥ðþyobsÞ∂iVp†
x⊥ðþyobsÞÞ;

ðVPb
x⊥þb⊥ð−yobsÞ∂iVPb†

x⊥þb⊥ð−yobsÞÞ�:
ð11Þ

Starting from the lattice discretized version of the initial
conditions in Eqs. (10) and (11) [81], we solve the lattice
discretized CYM equations of motion up to time
τ ¼ 0.2 fm=c, atwhichwedetermine the energy-momentum
tensor Tμν (see, e.g., [55] for how we compute Tμν on the

lattice), gluon spectra dNg

d2p⊥dy
, and gluon multiplicity

dNg=dy ¼ R
d2p⊥

dNg

d2p⊥dy
. The gluon spectra at a particular

time τ are obtained by projecting the gauge fixed equal time
correlation functions onto transversely polarized gluon
modes, as described in [33]:

FIG. 2. View of the transverse plane for a particular configuration of a right moving lead nucleus at three different rapidities. Circles
indicate the collision point of the proton with this lead nucleus for a selection of events. The color coding indicates the centrality class of
the event: red (0–5)%, blue (40–50)%, green (60–70)%, and orange (80–90)% (for the definition of centrality, see Sec. II D).

FIG. 1. JIMWLK evolution of the gluon fields in three different configurations of the proton form ¼ 0.2 GeV and αs ¼ 0.3. The trace
of Wilson lines 1 − Re½trðVx⊥Þ�=Nc is shown in the transverse plane for different rapidities (Y) to illustrate the emergence of finer
structure and growth of the proton with increasing rapidity.
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dN
d2p⊥dy

¼ 1

ð2πÞ2
X
λ;a

jτgμνðξλ;p⊥
μ ðτÞ∂τAa

νðτ;p⊥ÞÞj2; ð12Þ

where gμνð1;−1;−1;−τ−2Þ denotes the Bjorken metric and
λ ¼ 1, 2 labels the two transverse polarizations. The mode
function takes the following form in the Coulomb gauge:

ξ1;p⊥
μ ðτÞ ¼

ffiffiffi
π

p
2jp⊥j

0
B@

−py

px

0

1
CAHð2Þ

0 ðjp⊥jτÞ; ð13Þ

ξ2;p⊥
μ ðτÞ ¼

ffiffiffi
π

p
2jp⊥j

0
B@

0

0

p⊥τ

1
CAHð2Þ

1 ðjp⊥jτÞ; ð14Þ

where Hð2Þ
p are the Hankel functions of the second kind and

order p.
Based on the factorization formula in Eq. (1), the rapidity

yobs dependence of these observables in each event is then
calculated as in [58] from a series of independent 2þ 1D
CYM simulations, which according to Eqs. (10) and (11)
start from the same Wilson lines Vp

x⊥ and VPb
x⊥ evolved up to

different rapidities Y ¼ �yobs. We will consider a rapidity
range yobs ∈ ½−2.4;þ2.4�, where yobs ¼ −2.4ðþ2.4Þ corre-
sponds to no JIMWLKevolution in the proton (leadnucleus),
and calculate observables in intervals of Δy ¼ 0.4.

D. Gluon multiplicity and centrality selection

Based on the above procedure, we obtain a total of
Nevents ¼ Nb⊥ × Np × NPb ¼ 4096 events, which we fur-
ther classify into centrality classes according to their gluon
multiplicity g2dNg=dyjyobs¼0 at midrapidity yobs ¼ 0. Since
we do not invoke any collision criteria (e.g., Ncoll ≥ 1), we
first disregard events with g2dNg=dyjyobs¼0 < 4 from our
event selection and subsequently perform the usual
binning.
We present the gluon multiplicity distribution at mid-

rapidity (y ¼ 0) in Fig. 3, where we have scaled the
distribution by the mean multiplicity in order to compare
it to experimental data on the uncorrected reconstructed
primary tracks from the CMS Collaboration [82]. Different
curves in Fig. 3 show the results for two different sets of
parameters, namely, m ¼ m̃ ¼ 0.2 GeV with cQs

¼ 1.25
and m ¼ m̃ ¼ 0.8 GeV with cQs

¼ 1.82, which we will
continue to investigate in the following. While in both cases
the width of the gluon multiplicity distribution agrees well
with that of the experimental data on reconstructed tracks,
we find that for m ¼ m̃ ¼ 0.2 GeV the computed gluon
distribution has some peak and dip structures at small
multiplicities, which can be attributed to very peripheral
events and is not seen in the experimental data.
Nevertheless, even in this case, for larger multiplicities

(equal or greater than the mean) the data are well described.
Figure 3 also indicates the centrality classes as obtained
from the gluon distribution.

III. GLOBAL EVENT STRUCTURE AND NATURE
OF HIGH-MULTIPLICITY EVENTS

Before we discuss the event-by-event geometry and
azimuthal correlations, it will be insightful to briefly
comment on the general features of low- and high-multi-
plicity events in high-energy pþ Pb collisions. We first
study the rapidity dependence of the multiplicity dNg=dy
and transverse energy dE⊥=dy.3 The various panels in
Fig. 4 show the rapidity dependence of dNg=dy and
dE⊥=dy normalized to their value at midrapidity
dNg=dyjy¼0 for different centrality classes (0–5)%, (40–
50)%, (60–70)%, and (80–90)% for the two different sets of
parameters m ¼ m̃ ¼ 0.2 GeV with cQs

¼ 1.25 and m ¼
m̃ ¼ 0.8 GeV with cQs

¼ 1.82. Absolute values of the
multiplicities and transverse energy per unit rapidity at
midrapidity are provided in Table I.
Generally, one can see that the rapidity dependence of

both the multiplicity dNg=dy and the transverse energy
dE⊥=dy flattens as one approaches more peripheral events;
however, a comparison of the left and right panels indicates
that the magnitude of the forward-backward asymmetry in
more central events is actually quite sensitive to the value of

FIG. 3. Histogram for the gluon multiplicity distribution
g2dNg=dy normalized by its expectation value hg2dNg=dyi at
midrapidity (y ¼ 0). Simulations are done for two different sets
of parameters, m ¼ m̃ ¼ 0.2 GeV with cQs

¼ 1.25 and m ¼
m̃ ¼ 0.8 GeV with cQs

¼ 1.82, along with αs ¼ 0.15. Crosses
represent experimental charged hadron distribution data dNch=dy
for raw reconstructed primary tracks in

ffiffiffi
s

p ¼ 5.02 TeV pþ Pb
collisions from the CMS Collaboration [82]. Centrality classes
are indicated by the vertical lines.

3We assume that space-time rapidity is equal to the momentum
rapidity, ηs ¼ y, which holds for a system, where the phase-space
density of gluons is proportional to δðηs − yÞ [15]. For this
reason, we will be using ηs and y interchangeably.
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the infrared regulators m and m̃. Evidently, it would be
instructive to compare the results in Fig. 4 to experimental
measurements; however, we are not aware of measurements
of dN=dy of identified hadrons in pþ Pb collisions.
Nevertheless, when comparing our results for the gluon
rapidity distribution to dNch=dη of unidentified charged
hadrons, we find that the gluon distribution for m ¼ m̃ ¼
0.2 GeV generally shows a steeper rapidity dependence
than the experimental data from the ALICE Collaboration
[83], which is essentially symmetric in the (80–100)% bin

and appears to be more in line with the behavior observed
for m ¼ m̃ ¼ 0.8 GeV.
By comparing the left and right panels of Fig. 4, one

finds a 20%–30% difference when varying the infrared
regulators m and m̄ by a factor of 4, which provides an
estimate of the systematic uncertainty of the calculation.
While the self-normalized quantities in Fig. 4 emphasize

the rapidity dependence, we note that, for both parameter
sets, the centrality dependence of the absolute yield at
midrapidity up to 60%–70% is approximately in line with
that of the experimentally determined charged hadron yield,
as can be seen in Table I.
When comparing the top and bottom panels of Fig. 4, one

observes that the transverse energy shows a slightly weaker
centrality dependence relative to the gluon multiplicity. This
is likely a consequence of the transverse energy being more
sensitive to the larger of the two saturation scales Qs, as
parametrically one has dNg=dy ∼Q2

s<S⊥, while dE⊥=dy ∼
Qs>Q2

s<S⊥ [84,85], where S⊥ is the transverse area and
Qs;>=< denotes the larger/smaller of the two saturation
scales.
Next, in order to obtain further insight into the properties

of low- and high-multiplicity events, we will extract the
average Pb and p saturation scales QsðyÞ and determine a
measure of the system size S⊥ðyÞ for the different centrality
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FIG. 4. Gluon multiplicity dNg=dy (top panels) and transverse energy per unit rapidity dE⊥=dy ∝ τεðτ ¼ 0.2 fmÞ (bottom panels)
relative to their values at midrapidity for different centrality classes. The simulation parameters are αs ¼ 0.15, m̃ ¼ m ¼ 0.2 GeV (left
panels), and m̃ ¼ m ¼ 0.8 GeV (right panels).

TABLE I. Values for gluon multiplicity g2dN=dy and trans-
verse energy per unit rapidity g2dE⊥=dy at y ¼ 0 for αs ¼ 0.15
together with the ALICE data [83] for dNch=dη. Simulation
results are obtained for two different setups, m̃ ¼ m ¼ 0.2 GeV
with cQs

¼ 1.25, and m̃ ¼ m ¼ 0.8 GeV with cQs
¼ 1.82.

g2dNg=dy 0%–5% 40%–50% 60%–70% 80%–90%

m ¼ 0.2 GeV 141.1 52.9 29.2 9.2
m ¼ 0.8 GeV 152.3 51.2 33.2 16.6
ALICEdNch=dη 42.6 16.1 9.6 4.3

g2dE⊥=dy (GeV)
m ¼ 0.2 GeV 457.1 162.6 80.1 20.1
m ¼ 0.8 GeV 697.1 214.4 136.7 66.2
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classes. Specifically, the saturation scale QsðyÞ is extracted
from the dipole scattering amplitude

Dðr⊥;d⊥Þ ¼
1

Nc
tr ½Vd⊥þr⊥=2V

†
d⊥−r⊥=2�; ð15Þ

averaged over (dipole) impact parameters jd⊥j < 0.2Rp

from the collision point4 (see the Appendix for details). By
following previous works [79], we extract the distance
jr⊥jc, where the dipole amplitude exceeds a value of c, i.e.,

Dðjr⊥jc; jd⊥j < 0.2RpÞ ¼ c; ð16Þ

and calculate Qs ¼ 2=jr⊥jc log1=2ð1=cÞ according to the
parametrization Dðr⊥Þ ¼ expð−Q2

sr⊥2=4Þ. We employ
c ¼ 0.8 and 0.9 to estimate the uncertainty of this pro-
cedure. While the saturation scale Qs is a property of the
projectile and target, the centrality dependence stems
simply from the fact that larger values of Qp=Pb

s give rise
to a larger multiplicity, corresponding to lower centrality,
and we determineQp=Pb

s separately for each centrality class.
The system size S⊥ is determined from the energy-

momentum tensor Tμν as

S⊥ ¼
R
d2x⊥x2⊥Tττðx⊥ÞR
d2x⊥Tττðx⊥Þ

; ð17Þ

which we evaluate at τ ¼ 0.2 fm=c after the collision of the
proton and the lead nucleus.
We will focus on the case m ¼ m̃ ¼ 0.2 GeV, which

exhibits a stronger rapidity and centrality dependence of
dN=dy and dE⊥=dy. For this case our results for Qp=Pb

s ðyÞ
and S⊥ðyÞ are compactly summarized in Fig. 5. With
decreasing x, which corresponds to an increasing rapidity y
for the left moving proton and a decreasing rapidity y for
the right moving lead nucleus, both saturation scales Qs
increase due to the JIMWLK evolution. The proton
saturation scale Qp

s is similar in the three more peripheral
events, while the nucleus’ QPb

s depends more strongly on
centrality, indicating that in mid-central and peripheral
events the multiplicity is determined by the impact param-
eter, i.e., the position in the lead nucleus where the proton
hits, as well as fluctuations in the lead nucleus. In contrast,
the proton saturation scale in the most central bin is
significantly larger than for the other centralities, while
there is little difference between the lead saturation scale in
the 40%–50% and 0%–5% centrality classes. This means

that the highest multiplicities are reached by upward
fluctuations of the proton’s gluon density quantified by Qp

s.
The size of the interaction region increases approxi-

mately linearly (for the three most central centralities
studied), which is driven by the growth of the proton size
with rapidity [79,80] (see the Appendix). The most
peripheral events show a significantly larger area, which
may appear counterintuitive at first sight. However, given
the definition of the area measure in Eq. (17), an overall
very small but spread out energy density can lead to a large
area, which seems to be the dominant structure of the most
peripheral events that we studied. For all other centralities,
the area is approximately the same, and the difference in
multiplicity is driven almost entirely by changes in the Qs
values.

IV. EVENT GEOMETRY AND INITIAL STATE
MOMENTUM CORRELATIONS

Having established the basic features of the events in
different centrality classes, we continue by investigating the
longitudinal structure of the event geometry and the initial
state momentum anisotropy. We follow standard procedure
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FIG. 5. Top panel: saturation scale QsðyÞ as a function of
rapidity y for proton (p) and lead (Pb) nucleus for different
centrality classes. Bottom panel: rapidity dependence of the
system size S⊥ for various centrality classes. Results are for αs ¼
0.15 and m ¼ 0.2 GeV.

4By the collision point we mean the transverse position where
the center of mass of the proton hits the lead nucleus. Hence, for
the proton the dipole amplitude is extracted around its center of
mass, while, according to Eqs. (10) and (11) for the lead nucleus,
the collision point is offset from the center of the nucleus and the
dipole amplitude is thus measured around the impact parameter
b⊥ of the pþ Pb collision.
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and characterize the event geometry in terms of the
eccentricities

εnðyÞ ¼
R
d2r⊥Tττðy; r⊥Þjr⊥jneinϕr⊥R

d2r⊥Tττðy; r⊥Þjr⊥jn
; ð18Þ

where the integer n indicates the harmonic. We will study
the cases n ¼ 2 and n ¼ 3.
Similarly, following [10,57], the initial state momentum

anisotropy can be characterized in terms of the anisotropic
energy flow

εpðyÞ ¼
R
d2r⊥Txxðy; r⊥Þ − Tyyðy; r⊥Þ þ 2iTxyðy; r⊥ÞR

d2r⊥Txxðy; r⊥Þ þ Tyyðy; r⊥Þ
ð19Þ

or, alternatively, as in [33] in terms of the azimuthal
anisotropy vg2 of the produced gluons5

vg2ðyÞ ¼
R
d2k⊥jk⊥j dNg

dyd2k⊥
ðyÞe2iϕk⊥R

d2k⊥jk⊥j dN
dyd2k⊥

ðyÞ : ð20Þ

We evaluate the expressions in Eqs. (18)–(20) at τ ¼
0.2 fm=c to calculate εn, εp, and v

g
2 as functions of rapidity

y on an event-by-event basis. Subsequently, to quantify the

overall rapidity dependence we compute the correlation
functions

COðy1; y2Þ ¼ hReðOðy1ÞO�ðy2ÞÞi; ð21Þ

where h·i denotes an event average and O is any of the
above observables. The correlation function CO contains
information about both the magnitude and the rapidity
dependence of the correlation function. To focus on the
rapidity decorrelation of the transverse geometry and initial
state momentum correlations, we will also show results for
the normalized rapidity correlation function

CN
Oðy1; y2Þ ¼

COðy1; y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjOðy1Þj2ihjOðy2Þj2i

p : ð22Þ

A. Rapidity dependence of event geometry and
momentum anisotropy

In Fig. 6 (top row) we show the rapidity dependence of
eccentricities ε2f2gðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjε2ðyÞj2i

p
and ε3f2gðyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjε3ðyÞj2i
p

for different parameters and centrality classes.
In most cases ε2 decreases with increasing rapidity, and
does so more rapidly for larger αs and smaller m, as
expected because of how these parameters affect the
JIMWLK evolution speed. For our standard parameters
of m̃ ¼ m ¼ 0.2 GeV and αs ¼ 0.15, the rapidity depend-
ence is rather weak. For the most peripheral bin, ε2 has a
shallow minimum as a function of rapidity. The triangu-
larity ε3 has an even weaker rapidity dependence than ε2 in
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FIG. 6. Geometric eccentricities εnf2g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjεnðyÞj2i

p
(top row) and initial momentum anisotropies εpf2g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjεpðyÞj2i

q
together

with azimuthal anisotropy vg2f2g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjvg2ðyÞj2i

p
(bottom row) for different centrality classes 0%–5% (left panels), 40%–50% (center

panels), and 80%–90% (right panels) as a function of rapidity.

5We note that the additional jk⊥j weight is chosen such that in
the quasiparticle picture the definitions of εp and vg2 agree with
each other.
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the two more central bins and increases with increasing
rapidity in the most peripheral bin. Given the comparable
size of ε2 and ε3 in this bin, one might expect the observed
anticorrelation between the two quantities, as it is difficult
geometrically to generate a large ε2 and ε3 at the same time.
(This can be seen most easily when one arranges just three
hot spots. A maximal triangularity goes along with a
reduced ellipticity, and vice versa.)
The bottom panel in Fig. 6 shows the rapidity depend-

ence of the initial state anisotropy εpf2gðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjεpðyÞj2i

q
and the gluon elliptic momentum anisotropy vg2f2gðyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjvg2ðyÞj2i

p
for the same centrality classes and parameter

sets as in the eccentricities above. First, it is clear to see that
both quantities follow each other closely. The anisotropy of
the energy-momentum tensor is thus a good predictor of the
gluon momentum anisotropy in the situation in which
strong final state interactions are not included. Comparing
the three panels, we can see that the initial momentum
anisotropy increases with decreasing gluon multiplicity.
The rapidity dependence of εp and vg2 is negligible in most
cases, with the case using αs ¼ 0.3 (shown only for the
most central bin) showing the strongest decrease with
increasing rapidity. In the most peripheral bin the two
quantities show a minimum around y ¼ 1, which is where
the transverse energy is maximal.
In Fig. 7 we focus on the centrality dependence of the

rapidity dependent ε2, ε3, and vg2 and compare results for
the two different parameter sets m ¼ m̃ ¼ 0.2 GeV and
m ¼ m̃ ¼ 0.8 GeV with αs ¼ 0.15 in both cases.6

Generally, the sharper profiles for m ¼ m̃ ¼ 0.8 GeV lead
to larger geometric eccentricities ε2 and ε3 across all
rapidities and centrality classes, as pointed out previously
in [86]. While form ¼ m̃ ¼ 0.8 GeV both ε2 and ε3 exhibit
a monotonic behavior as a function of centrality, we find
that, for smaller values of the infrared regulator
m ¼ m̃ ¼ 0.2 GeV, the eccentricity ε2 is maximal for
40%–50% central collisions and minimal in the most
peripheral bin, and ε3 increases monotonically toward
more peripheral events and shows the strongest centrality
dependence on the lead-going side.
On the other hand, the magnitude and centrality depend-

ence of the gluon momentum anisotropy vg2 is rather
insensitive to the infrared regulator and only very weakly
dependent on the rapidity. However, as has been observed
previously [10,33], the initial momentum anisotropy driven
vg2 increases monotonically with decreasing multiplicity
(toward more peripheral events). We show here that this is
true for all studied rapidities. Furthermore, the value of vg2 is
largely independent of rapidity in all centrality bins, which
is also a new result.

B. Decorrelation of event geometry
and momentum anisotropy

Now that we have established the overall rapidity
dependence of the initial state geometry and momentum
anisotropy, we will investigate the correlation across differ-
ent rapidities, as quantified by the correlation functions
Cε2ðy1; y2Þ and Cεpðy1; y2Þ shown in Fig. 8. The top panels
show results for (0–5)% central collisions, the bottom
panels for (60–70)% central collisions. The overall magni-
tude of this correlator is related to the size of ε2 and εp, as
Cε2ðy; yÞ ¼ ðε2f2gðyÞÞ2, and one proceeds similarly for
Cεp . We see that Cε2ðy1; y2Þ is maximal for both rapidities
being most negative, where the ε2 is largest. Fixing one
rapidity, we can see the decorrelation when varying the
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FIG. 7. Comparison of the rapidity dependence of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjε2ðyÞj2i

p
(top panel),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjε3ðyÞj2i

p
(middle panel), and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjvg2ðyÞj2i

p
(bot-

tom panel) for different centrality classes for αs ¼ 0.15 and
distinct IR regulators such that m ¼ m̃.

6Since εp and vg2 are essentially identical, we show only the
centrality dependence of vg2.
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other rapidity. Cεpðy1; y2Þ is maximal for y1 ¼ y2 and does
not vary much along this diagonal, as εp (or vg2) is
approximately constant as a function of rapidity.
However, when comparing the results for ε2 and εp, we
can already see that the decorrelation of the initial state
momentum anisotropy inCεpðy1; y2Þ is much faster than the
decorrelation of the event geometry in Cε2ðy1; y2Þ. One also
observes that Cε2ðy1; y2Þ is only weakly dependent on
centrality, while Cεpðy1; y2Þ shows some increase when
going to more peripheral events, related to the increase of
the initial state momentum anisotropy (vg2) for lower
multiplicity.
In Fig. 9, we show the normalized correlation functions

CN
εnðαsΔyÞ for n ¼ 2, 3, and CN

v2ðαsΔyÞ as functions of the
scaled rapidity difference αsΔy. They are obtained

from Eq. (22) as CN
OðΔyÞ¼ 1

2ymax−Δy

Rþymax−jΔyj=2
−ymaxþjΔyj=2 dYC

N
OðYþ

Δy=2;Y−Δy=2Þ. For the geometric correlators we find that
the decorrelation with rapidity is stronger for n ¼ 3 than for
n ¼ 2. This is consistent with experimental observations in
heavy ion collisions [87,88]. The decorrelation scales only
approximately with αs, as we see small differences between
the αs ¼ 0.15 and αs ¼ 0.3 cases. As expected, smaller m
leads to a faster decorrelation. The centrality dependence
shown in the three top panels demonstrates how the rapidity
decorrelation becomes faster toward more peripheral
events.

In the bottom row of Fig. 9, we present the correlator for
the gluon momentum anisotropyCN

v2ðαsΔyÞ, which shows a
much more rapid decorrelation than the geometric quan-
tities but the opposite centrality dependence, with the most
peripheral bin showing the broadest correlation in rapidity.
The scaling with αs works more accurately in this case, and
smaller m leads only to a slightly faster decorrelation. The
quick decorrelation in the initial momentum anisotropy
with JIMWLK evolution compared to the geometric case
can be expected based on the fact that every gluon emission
in the evolution leads to a color decorrelation, quickly
scrambling information of color domains at the initial
rapidity. Conversely, the larger scale geometric structures
are much more robust to the evolution, as they are not
sensitive to the color structure.
The centrality dependence of these results is highlighted

again in Fig. 10. For the geometric quantities, the width of
the correlation function decreases with increasing central-
ity, while it increases for the initial momentum anisotropy.
This can be understood as follows: The geometry of the
more dilute peripheral events can be changed more easily
by additional gluon emissions in the evolution (predomi-
nantly via the modification of the proton’s shape). Denser
protons are more robust to changes of the geometry by the
same amount of emissions. Regarding the momentum
anisotropy, it is maximal in the most peripheral bins.
Consequently it takes more evolution to destroy it.
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We find that in the most peripheral events, where the initial
momentum anisotropy can potentially dominate the
observed charged hadron anisotropy [57], the correlation
drops by 50% within approximately one unit of rapidity (for
the preferred JIMWLK evolution speed with αs ¼ 0.15).
The two columns of Fig. 10 show the results for different

choices of m ¼ m̃. While we do see variations of the
decorrelation speed with the choice of infrared regulator,
particularly for the spatial anisotropy, our main conclusion
that the initial momentum anisotropy decorrelates signifi-
cantly more quickly than the geometry is robust.
In order to better understand the decorrelation that is

observed in the event averaged quantities, we study both
the real and imaginary parts of the spatial and momentum
anisotropies for three individual events in Fig. 11. In the top
row, we show the real and imaginary parts of εn as
functions of rapidity. As expected from the slow decorre-
lation observed above, the plotted quantities vary smoothly
and weakly with rapidity.
In the bottom row of Fig. 11, we show the real and

imaginary parts of εp and v
g
2 as functions of rapidity. For all

events (the columns), we observe rather quick variations of
the preferred direction of anisotropy with rapidity even
though the magnitude of anisotropy given by the absolute
value does not change too rapidly, even in a single event.
These rapid variations explain the quick decrease of the
correlator with rapidity, with the main driver being fluc-
tuations in the angle. We note that, even in a single event, εp
closely resembles vg2.

C. Estimators for the correlation between mean
transverse momentum and elliptic anisotropy

Finally, we consider estimators for the correlation of
mean transverse momentum and the elliptic anisotropy,
which has been suggested as an observable to distinguish
between geometry and initial momentum anisotropy as the
origin of the observed anisotropy [57]. The relevant
correlator studied experimentally is defined as

ρ̂ðv22; ½pT �Þ ¼
hδ̂v22 ˆδ½pT �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðδ̂v22Þ2ihð ˆδ½pT �Þ2i
q ; ð23Þ

where v2 is the measured elliptic anisotropy and ½pT � is the
mean transverse momentum in a given event, and the event-
by-event deviation for the observable O at fixed multiplic-
ity is defined as [89]

δ̂O≡ δO −
hδOδNi

σ2N
δN; ð24Þ

where δO ¼ O − hOi, N is the multiplicity, and σN is the
variance of N in a given centrality bin.
Because we are considering initial state quantities in this

work, we compute estimators for ρ̂ by replacing v2 with ε2
(or εp) and replacing ½pT � with the average entropy density
½s� ¼ ½e3=4�, where e is the energy density, approximated as
Tττ. The average [f] is computed as
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½f� ¼
R
d2x⊥eðx⊥Þfðx⊥ÞR

d2x⊥eðx⊥Þ
: ð25Þ

The estimator using the ellipticity ε2, ρ̂estðε22; ½s�Þ, is shown
as a function of centrality in the top panel of Fig. 12 for two
different ways of choosing the rapidity bins where the
different components of ρ̂ are computed. One takes all
quantities at rapidity zero (y ¼ 0), while the other uses
three different rapidity bins (the ABC regions) for the
different components of ρ̂, following the prescription used
by the ATLAS Collaboration [90]. We find that for the
larger m ¼ m̃ the geometry estimator is always negative, as

can be expected from geometric considerations [57]. Since
the infrared regulators m; m̃ have a strong effect on the
event geometry, this also affects the ρ̂ estimator. When
considering the smaller m ¼ m̃, we even find positive
values for most central and most peripheral events.
While this is at odds with calculations of this estimator
in the IP-Glasma model without JIMWLK evolution [57], it
is conceivable that the JIMWLK evolution, which has
greater effects on the geometry for smaller m, causes this
difference in the most central and most peripheral events.
The appearance of positive values for smaller m, which
leads to larger systems, is in line with findings in a previous
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work, where the geometric ρ̂ correlator turned positive
when increasing the system size [91].
Most importantly, for the geometric estimator, we do not

see a large dependence on the choice of rapidity bins, which
is related to the weak decorrelation of the geometry
observed. Hence, our results justify the use of the boost-
invariant approximation to compute the correlator in
geometry driven models [57,91].
When replacing ϵ2 by the initial state momentum

anisotropy εp, we observe a positive correlation in the
ρ̂estðε2p; ½s�Þ estimator while considering both quantities at
midrapidity, which again is in line with the findings in [57].
However, owing to the rapid decorrelation of εp in rapidity,
this signal does not appear to survive the rapidity gap, as the
correlator ρ̂estðε2p; ½s�Þ is consistent with zero when one
considers the selection in different rapidity intervals (ABC).

V. CONCLUSIONS AND OUTLOOK

We presented results for rapidity dependent quantities in
pþ Pb collisions, computed within the color glass con-
densate framework, which involves the calculation of
classical gluon fields in the proton and lead nucleus in
IP-Glasma, their leading quantum corrections via JIMWLK
evolution of the corresponding Wilson lines, and compu-
tation of production and time evolution of the gluon fields
generated by the collision at different rapidities. We showed
results for the rapidity dependence of gluon production
dNg=dy and the transverse energy dE⊥=dy for different
centralities, and we analyzed the role of the saturation scale
Qs in the proton and nucleus, as well as that of the
overlapping area for gluon production as a function of
centrality.
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We studied the transverse geometry, quantified by the
eccentricities ε2 and ε3 as a function of centrality and
rapidity, finding rather mild dependencies. The initial
momentum anisotropy, quantified by either the anisotropy
of the energy-momentum tensor εp or that of the gluon
distribution vg2, showed a weak rapidity dependence for all
centralities and increased when centrality from central to
peripheral events increased.
We computed the unequal rapidity correlations of both

the geometric and initial momentum anisotropy vectors and
observed very different behavior between the two. The
geometry decorrelates much more slowly as a function of
the rapidity difference than in the initial momentum
anisotropy. In the latter, the correlation is widest in the
most peripheral centrality bin but still drops to about half its
maximal value for a rapidity difference Δy ¼ 1. This result
implies that, when using large rapidity gaps to measure
flow harmonics or the ρ̂ correlator experimentally, the
initial momentum anisotropy may play a smaller role than
previously assumed. In order to access this contribution,
smaller rapidity gaps need to be employed, which will
make the separation from other nonflow effects difficult.
Regarding the geometry, we find a faster decorrelation

for ε3 than for ε2, which is in line with observations in
heavy ion collisions [87,88]. The fast decorrelation of ε3
can play an important role in the difference between
different v3 measurements in small asymmetric systems
at RHIC [56,92–94].
For all these observables, we studied in detail the

dependence on the infrared regulators employed in the
calculation, as well as that on the strong coupling constant
αs, which controls the evolution speed of the JIMWLK
equations. We assumed a fixed coupling constant. Running
coupling effects have been included in leading logarithmic
JIMWLK evolution calculations [78,95,96]. Generally,
their inclusion should lead to a faster rapidity evolution
of the long-range geometric structures, and a slower
evolution of short-range momentum correlations in the
transverse plane.
Finally, we computed an initial state estimator for the

correlation between the elliptic anisotropy and the average
transverse momentum at fixed multiplicity. For the larger
infrared regulator, this quantity is always negative, which is
in line with previous findings using the IP-Glasma model
(without JIMWLK evolution) [57]. For the smaller regu-
lator, positive values are found in the most central and most
peripheral bins, which could be attributed to effects from
the JIMWLK evolution on the details of the geometry at
large length scales.
We conclude that even at collision energies available at the

LHC, for small systems the rapidity dependence is not to be
neglected. When rapidity gaps are employed experimentally,
the theoretical description will not get away with the
assumption of boost invariance in most cases. Rapidity
dependent calculations are required and the experimental

procedures should bematched as closely as possible. Even the
centrality selection is already affected by the rapidity depend-
ence, and we recommend that—for the purpose of an easier
comparison to theoretical calculations—future experimental
studies perform their centrality selection aroundmid-rapidity.
We note that, from a theoretical point of view, our

description calculates mean-field type correlations and
propagates them using JIMWLK evolution. The subleading
correction to the limit of a large number of small-x
constituents includes the absence of particles that had
already scattered and conditional constraints on the
small-x evolution. We are not aware of how to include
these effects in dense-dense calculations, and their potential
effects on the observables studied are unclear. However, by
considering the dilute limit of the projectile, Iancu and
Triantafyllopoulos [97,98] developed a framework to study
multiparticle production with rapidity correlations, which
may provide a way to assess these effects in future studies.
In the future, it will also be interesting to couple the

computed rapidity dependent initial state to hydrodynam-
ics, possibly via an intermediate kinetic theory stage
[99,100]. Also, a construction of a fully three-dimensional
Wilson line configuration followed by 3þ 1D Yang-Mills
evolution, as explored in [101–103], will be desirable.
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APPENDIX: DIPOLE AMPLITUDE
AND SATURATION SCALE

In order to characterize the gluon distribution of the proton
and the Pb nucleus, we use the dipole scattering amplitude,
Eq. (15), where d⊥ ¼ ðx⊥ þ y⊥Þ=2 is the impact parameter
and r⊥ ¼ x⊥ − y⊥ is the size of a color singlet dipole with
color charges at positions x⊥ and y⊥. We show the dipole
scattering amplitude 1 −Dðr⊥; jd⊥j < 0.2RpÞ for the Pb
nucleus (top row) and proton (bottom row) as a function of
dipole size r⊥ ¼ jr⊥j for a fixed range of impact parameter
jd⊥j < 0.2Rp measured at three different rapidities
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y ¼ −2.4; 0;þ2, 4 in various centrality classes in Fig. 13.
This choice of d⊥ is based on [79], where the dominant
support of Dðjd⊥j; jr⊥jÞ dwells in the region of the small
impact parameter.
Owing to the color transparency the dipole scattering

amplitude 1 −D vanishes at r⊥ ¼ 0 and then gradually
rises and reaches a maximum at r⊥=Rp ∼ 1. For the Pb
nucleus we observe that the scattering amplitude saturates
for the (0–5)% and (40–50)% centrality classes, while the
other two centrality classes are dilute even for Y ¼ −2.4,
which corresponds to the smallest x. For proton (bottom
row of Fig. 13), the dipole amplitude is significantly below
the saturation level, even after a full rapidity evolution
(Y ¼ 2.4), and starts to fall when the separation between
the dipole exceeds the size of the proton (r⊥ ≫ Rp) because
the dipole no longer hits the target, as previously observed
in [79]. We also note that for protons the shape of the dipole
amplitude as a function of r⊥ does not change much with
centrality, particularly for the three more peripheral bins.
In order to investigate the system size, we use the

Weizsäcker-Williams fields E−
μ , which are represented by

lightlike Wilson lines Vp=Pb on a two-dimensional lattice
with transverse coordinates as

E−
j;x ¼ i

4
½V†

xþjVx þ V†
xVx−j − V†

xVxþj − V†
x−jVx�

−
i

4Nc
Tr½V†

xþjVx þ V†
xVx−j − V†

xVxþj − V†
x−jVx�:

ðA1Þ

The mean radius squared is then determined from
E2ðx⊥Þ ¼ Tr½E−

x ðx⊥ÞE−
x ðx⊥Þ þ E−

y ðx⊥ÞE−
y ðx⊥Þ� as

hr2⊥ðyÞi ¼
R
d2r⊥r2⊥E2ðr⊥; yÞR
d2r⊥E2ðr⊥; yÞ

; ðA2Þ

Similarly, the transverse area S⊥ is obtained as

S⊥ ¼
Z

ΘðE2ðx⊥Þ − Λ2Þd2x⊥; ðA3Þ

where the Heaviside function implies that only regions with
field strength E2ðx⊥Þ larger than the cutoff scale Λ2 ¼
0.02 GeV=fm3 contribute to the integral. The results for
hr2⊥i and S⊥ as a function of rapidity for different centrality
classes for proton (left panels) and Pb nucleus (right panels)
are summarized in Fig. 14. We find that, as in Fig. 5, the
mean radius squared grows almost linearly in the direction
of increasing (decreasing) rapidity for the proton (Pb
nucleus) and is considerably independent of centrality,
except for the most central bin being different from the
other three.
We observe that for the left moving proton the transverse

area S⊥ grows quadratically with decreasing x, which is in
agreement with the observation made in [79], where the
similarly defined proton radius grows linearly with the
rapidity evolution. Since the transverse size S⊥ of the Pb
nucleus is significantly larger to begin with, the effect of
Gribov diffusion on the Pb nucleus is smaller, leading to a
slower increase of the area with decreasing x (decreasing
rapidity). With regard to the centrality dependence, one
finds that due to the larger overall field strength the
transverse area S⊥ of protons is somewhat larger for the
most central events, while for the Pb nucleus no significant
centrality dependence is observed.
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