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We use a continuum quark + diquark approach to the nucleon bound-state problem in relativistic
quantum field theory to deliver parameter-free predictions for the nucleon axial and induced pseudoscalar
form factors, G4 and Gp, and unify them with the pseudoscalar form factor G5 or, equivalently, the pion-
nucleon form factor G,yy. We explain how partial conservation of the axial-vector current and the
associated Goldberger-Treiman relation are satisfied once all necessary couplings of the external current to
the building blocks of the nucleon are constructed consistently; in particular, we fully resolve the seagull
couplings to the diquark-quark vertices associated with the axial-vector and pseudoscalar currents. Among
the results we describe, the following are worth highlighting. A dipole form factor defined by an axial
charge g4 = G4(0) = 1.25(3) and a mass scale M, = 1.23(3)my, where my is the nucleon mass, can
accurately describe the pointwise behavior of G,. Concerning Gp, we obtain the pseudoscalar charge
g, = 8.80(23), and find that the pion pole dominance approach delivers a reliable estimate of the directly
computed result. Our computed value of the pion-nucleon coupling constant, g,yy/my = 14.02(33)/GeV

is consistent with recent precision determinations.

DOI: 10.1103/PhysRevD.105.094022

I. INTRODUCTION

The properties of the proton and neutron (nucleons) are
determined by the strong interaction, and a central aim of on-
going experimental and theoretical efforts is to understand
their structure as composite objects made of three valence
light quarks [1]. Electron 4 nucleon scattering is a well-
developed experimental technique in such studies and it has
delivered, for instance, precise measurements of nucleon
electromagnetic form factors [2—-8]. While they are relatively
well determined, less constrained are the axial and induced-
pseudoscalar form factors derived from the isovector axial-
vector current that describes the neutrino-nucleon scattering
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process. These nucleon axial form factors are important
quantities for the understanding of weak interactions, neu-
trino-nucleus scattering and parity violation experiments.

The axial form factor, G,(Q?), is experimentally deter-
mined from neutrino + proton scattering, v, + p — ut+
n [9-12], while the induced pseudoscalar form factor,
Gp(Q?), can be extracted from the longitudinal cross
section in pion electroproduction [13—15] or, potentially,
from single-spin asymmetries in v(D) charged-current
quasielastic scattering on free nucleons [16]. At zero
momentum transfer the axial form factor gives the axial
charge g4 :== G,(0), measured with high precision from
p-decay experiments [17-20]. The induced pseudoscalar
coupling gp can be determined via the muon capture
process u~ + p = n+v, from the singlet state of the
muonic hydrogen atom at the muon capture point, Q% =
0.88m [21-25], where m,, is the muon mass.

On the theory side, reliable extractions of the axial form
factors can only be made within nonperturbative quantum
chromodynamics (QCD). Prime contenders in this respect
are lattice QCD (IQCD) and nonperturbative functional
methods, like the Dyson-Schwinger equations (DSEs).

Published by the American Physical Society
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1QCD has made important progress in the past years. For
example, several groups have computed the axial form
factors [26-34], some of them using simulations generated
directly at the physical pion mass and with large volumes.
The problem of excited state contamination [35] has also
been analyzed in detail with chiral perturbation theory
methods [36-38] and a variety of lattice improvements have
been implemented [32,33,39—41]. The continuum limit and
the physical pion mass are mandatory in IQCD if one wants to
check important low-energy QCD relations, such as the
partially conserved axial-vector current (PCAC) which, atthe
form factor level, connects G,(Q?) and Gp(Q?) with the
pseudoscalar form factor, Gs(Q?). Another important feature
is that, at low Q2 assuming pion pole dominance (PPD),
GA(0?) and Gp(Q?) are directly connected, leading to the
Goldberger-Treiman relation.

These observables can also be studied using the DSEs;
see, e.g., Refs. [42-49]. This theoretical framework ranges
among different levels of complexity, from symmetry-
preserving QCD-kindred model studies [50-54] to system-
atic analyses using a truncation derived from n-particle-
irreducible effective interactions [55-60].

The three-valence-body problem in relativistic quantum
field theory is a challenge, only solved in Refs. [61-65].
Fortunately, the quark + diquark approximation [66,67]
has delivered comparable results for baryon properties
[47,68,69]. This is because any interaction capable of
creating pseudo-Nambu-Goldstone modes as bound states
of a light dressed quark and antiquark, and reproducing the
measured values of their leptonic decay constants, must
also generate strong color-antitriplet correlations between
any two dressed quarks contained within a hadron. This
assertion is supported by evidence accumulated over two
decades of studying two- and three-body bound-state
problems in hadron physics (e.g., Refs. [47,66,67,70—
75]). No realistic counterexamples are known, and the
existence of such diquark correlations is also supported by
simulations of 1QCD [69].

In connection with the form factors of the nucleon axial
current, Ref. [76] reported their consistent calculation using
the Poincaré-covariant three-valence-body rainbow-ladder
truncation [77,78]. However, the study underestimates the
experimental value of the axial charge by 20-25% and
algorithmic inadequacies prevented computation of the
axial form factors beyond Q% ~2 GeV?. The quark +
diquark approximation can be used, inter alia, to reach
higher transferred momenta.

In the first computation within the quark + diquark
picture, the interaction between the axial current and the
bystander quark [79] was the only one considered.
Subsequently, Refs. [80-82] included the contributions
from the interaction with diquarks and also from the so-
called exchange-quark diagram. However, they still
neglected the “seagull terms,” which are essential in order
to maintain, for instance, PCAC relations.

Herein, we construct all elements necessary for the
calculation of the nucleon’s axial-vector current; in par-
ticular, we determine, for the first time, the seagull
contributions. We choose to approach the problem using
the Poincaré-covariant quark 4 diquark QCD-kindred
framework, which has successfully been employed in the
description and unification of an array of properties of the
nucleon, A baryon, and their low-lying excitations [50—
54,83-85]. With its inputs tuned elsewhere via comparisons
with different observables, many aspects of emergent
hadron mass are implicitly expressed in the formulation.
First results for the axial and induced pseudoscalar form
factors were reported in Ref. [86]. This study expands
significantly upon that analysis, including all mathematical
details involved in proving PCAC on an analytic level, the
quantification of the range over which PCAC holds numeri-
cally, and a concise discussion of numerical results for the
pion-nucleon form factor.

Section II is devoted to the description of the matrix
elements of the nucleon axial-vector and pseudoscalar
currents, and their associated form factors. In Sec. III,
we briefly survey our theoretical framework, introducing
the elements necessary for a practical calculation of the
axial and induced pseudoscalar form factors. Section IV
discusses our numerical results and associated comparisons
with available experimental data and results from 1QCD.
Section V supplies a summary and perspective.

II. NUCLEON AXIAL AND PSEUDOSCALAR
CURRENTS

The axial form factor, G4(Q?), and the induced-pseu-
doscalar form factor, Gp(Q?), are defined via the nucleon
matrix element

JL(K.Q) = (N(P)) |7}, (0)IN(P))) (1a)

J
176402 + 260 | u(py).

—a(P
alPr)5 2my

(1b)

where P; and P; are, respectively, the initial and final
momenta of the nucleon, defined such that the on-shell
condition is fulfilled, P} f= —m%,, where my is the nucleon
mass and u(P) is the associated Euclidean spinor (here
we have suppressed the spin label; see Appendix B of
Ref. [83] for details). Furthermore, we denote by K =
(P;+ Pf)/2 the average momentum of the system and
O = P; — P; the transferred momentum between initial
and final states. Throughout this paper we work in the
Euclidean space and use the SU(2) isospin limit m, =
mg =:m,. The flavor structure is given by the Pauli matrices
{Tj |/ =1,2,3}, where 3 represents the neutral current and
71#2 .= (¢! 4 iz?)/2 the charged currents. Moreover,
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) =5t v=(1) @

is the isovector axial current operator.

Similarly, the pseudoscalar form factor Gs(Q?) is
defined by the kindred pseudoscalar current

T{(K. Q) = (N(P;)| Z5(0)|N(P))) (3a)

1(P) 5 15G5(@)u(P). (3b)

where

A =vw 5w v=(4). @

is the isovector pseudoscalar current operator.

The form factors G4, Gp and G5 can be obtained directly
from these currents using any set of sensible projection
operators. For example, with

JL(K.Q) = > uP)I(K.QaP;)  (5)

spins(i,f)

and obvious analogues, then

Gy = —4<1 3 trp [Js,¥s75 ) (6a)
G ! ¢ [J ] (6b)
=- - T
P= imog D s5ul5] |
G ! trp (/575 (6¢)
= ——1Ir C
5 2 D/575]s

where the trace is over spinor indices; v = Q?/4m3;
yI=v,-(r 0)0,/0% Js, and Js represent the Dirac
parts of the corresponding currents, viz. Jéﬂ = (1//2)Js,
and J{=:(¢//2)Js; and the flavor matrix #//2 must be
projected onto the isospinors of the proton, p = (1,0)7, or
neutron, n = (0, 1), where “T” denotes matrix transpose.

A detailed analysis of the consequences of PCAC within
functional methods can be found in Ref. [76]. We briefly
recall them here. By using standard Ward-Green-Takahashi
identities one can immediately infer the PCAC relation
between the current operators:

0, %, (x) + 2m, P4(x) = 0. (7)
Using the nucleon matrix element expression of the identity

above, one then obtains the PCAC relation at the nucleon
level

0,J1,(K. Q) + 2im Ji(K.Q) =0, (8)
and this entails

2 m
GA(0%) — o Gol0) = MG5(0%). (9)

It should be pointed out that PCAC is an operator relation
and thus any realistic results for G4, Gp and G5 should
precisely satisfy Eq. (9).

At the pion mass pole, Q? = —m?2, the residue of Gs is
the pion-nucleon coupling constant g,yy. Thus, one defines
the pion-nucleon form factor G,yy(Q?) via

2
Gs(Q?) = ﬁf;—q G (02, (10)

where G,yy(—m2) = g,yy and f, is the pion’s leptonic
decay constant. Since Gp(Q?) is analytic at Q%> =0,
contraction of Eq. (1) with Q, and using Eq. (10) together
with the PCAC relation (9) leads to the original
Goldberger-Treiman relation,

GA(0) =£—;Gﬂw<o>. (11)

This relation is valid for all current-quark masses.

III. THEORETICAL FRAMEWORK

A. Diquark correlations

The bulk of QCD’s particular features and nonperturba-
tive phenomena can be traced to the evolution of the strong
running coupling. Its unique characteristics are primarily
determined by the three-gluon vertex: the four-gluon vertex
does not contribute dynamically at leading order in per-
turbative analyses of matrix elements, and nonperturbative
continuum analyses of QCD’s gauge sector indicate that
satisfactory agreement with gluon propagator results from
1QCD simulations is typically obtained without reference to
dynamical contributions from the four-gluon vertex (e.g.,
Refs. [60,87-96]).

Analyses of the three valence-quark scattering problem
reveal that the binding energy contribution of the diagram
in which each leg of the three-gluon vertex is attached to
one quark vanishes when projected onto the baryon’s color-
singlet wave function, i.e.,

Ef 1 fafs ® (fabc[ﬂa]flil Mb]fziz [)’C]fﬂ;) ® Eiliriy = 0. (12)

Here ¢, ;,;, and &g 7 . are the Levi-Civita tensors repre-
senting the color structure of initial and final baryon states,
{24} are SU(3), Gell-Mann matrices and f9° is the
structure tensor of SU(3)...
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Consequently, the three-gluon vertex is the primary
factor in generating the class of renormalization-group-
invariant running interactions [97] that produce strong
attraction between two quarks, creating tight diquark
correlations in analyses of the three-valence-quark scatter-
ing problem.

Further details on diquark physics can be found else-
where [69]; however, some technical details are needed
here. The quark + quark correlation can be described by
the four-point Green function

G(x1, %25 y1,¥2) = (O] T{y (x1)w (x2) (y1)w (y2) }0)

= (Hy )y ()w)w(2)).  (13)
and its Fourier transformation, G(k;, k», ¢;, ¢,), defined in
momentum space is

(27)*6% (ky + ky + q1 + 42)G (k1. k2, 41, 42)
= /d4x1d4x2d4y1d4yze‘ikl"l e hkaX2 p=iq1Y1 p=iq2y2

X (T{y (e )y (o) (v (2) 1) (14)
One can study the phenomenological consequences of

having diquark correlations inside baryons using the

following Ansatz (depicted in Fig. 1):

Glhikaqra) = Y A'(kK)A(K)A (¢:=K),

JP=0"1"...

(15)

where {A’"} ({A’"}) is the (charge-conjugated) Bethe-
Salpeter (BS) wave function describing the diquark corre-
lation characterized by the quantum numbers J. The
diquark propagator is A’ (K) and K is the total momentum
of the quark + quark pair. Furthermore, ¢ = (¢, — ¢»)/2
and k = (k; —k,)/2 are the relative momenta between
quarks in the initial and final diquark states.

It is worth remarking here that in a dynamical theory
based on SU(2) color, diquarks are color singlets. They
would thus exist as asymptotic states and form mass-
degenerate multiplets with mesons composed from like-
flavored quarks. (These properties are a manifestation of
Pauli-Giirsey symmetry [98,99].) Consequently, the iso-
scalar-scalar, [ud],r_,+, diquark would be massless in the
presence of dynamical chiral symmetry breaking (DCSB),

kq —q1
—— |——
G =
kZ(— —-:-g 2 JP
FIG. 1. Diquark Ansatz for the four-point Green function of the

quark + quark correlations.

matching the pion, and the isovector-pseudovector, {ud}+,
diquark would be degenerate with the theory’s p meson.
Such identities are lost in changing the gauge group to
SU(3) color, but clear and instructive similarities between
mesons and diquarks nevertheless remain: (i) isoscalar-
scalar and isovector-pseudovector diquark correlations are
the strongest, but others could appear inside a hadron as
long as their quantum numbers are allowed by Fermi-Dirac
statistics; (i) the associated diquark mass scales express the
strength and range of the correlation and are each bounded
below by the partnered meson’s mass; and (iii) realistic
diquark correlations are soft, i.e., they possess an electro-
magnetic size that is bounded below by that of the
analogous mesonic system.

B. Faddeev quark +diquark amplitude

The existence of tight diquark correlations simplifies
analyses of the three-valence-quark scattering problem, and
hence, baryon bound states, because it reduces that task to
solving a Poincaré-covariant Faddeev equation [71,100—
102], depicted in Fig. 2.

In the quark + diquark picture, the binding of a nucleon
(and kindred baryons) has two contributions. One part is
expressed in the formation of tight (but not pointlike)
diquark correlations. That is augmented, however, by the
attraction between the quark and diquark generated through
the quark exchange depicted in the shaded area of Fig. 2.
This exchange ensures that diquark correlations within the
baryon are fully dynamical: no quark holds a special place
because each one participates in all diquarks to the fullest
extent allowed by its quantum numbers. The continual
rearrangement of the quarks guarantees, amongst other
things, that the nucleon’s dressed-quark wave function
complies with Pauli statistics.

We now specify the elements of the Faddeev equation
kernel: the dressed-quark propagator S(p); and the diquark

Pa

Pq

FIG. 2. Quark + diquark Faddeev equation, a linear integral
equation for the Poincaré-covariant matrix-valued function ¥, the
Faddeev amplitude for a nucleon with total momentum
P=p,+py=ky+kq ¥ describes the relative momentum
correlation between the dressed quarks and diquarks. rectangle:
Faddeev kernel; single line: dressed-quark propagator; I': diquark
correlation amplitude; and double line: diquark propagator.
Ground-state nucleons (n—neutron, p—proton) contain both iso-
scalar-scalar diquarks, [ud] € (n, p), and isovector-axial-vector
diquarks {dd} € n, {ud} € (n,p), {uu} € p. Other possible
correlations play no measurable role in nucleons [69].
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masses, propagators A’ (P) and BS wave functions
A (p;P). It is convenient to define the diquark BS

amplitudes I'V"(p; P) by amputating the external quark
legs from their BS wave functions:

" (p;P) =S~ (p )N (p; P)(S™)T(-p_).  (16)

where p, = p £ P/2.

In working towards realistic QCD-connected predic-
tions, one can adapt the pattern used for mesons, viz.
solve the DSE for the dressed-quark propagator and BS
equations for the diquark correlation amplitudes, and
therewith, build the Faddeev kernel and determine baryon
masses and corresponding Faddeev amplitudes. This ab ini-
tio approach has delivered many successful results, but it is
computationally intensive and limited in application by
existing algorithms. An alternative [80,102,103] is to
construct a QCD-kindred framework, in which all elements
of the Faddeev kernel and interaction currents are momen-
tum dependent, and consistent with QCD scaling laws.

A QCD-kindred framework has recently provided
a large range of predictions for various baryons,
including their spectrum [50,52] and form factors
[51,53,54,67,83,104,105]. This approach uses an effica-
cious algebraic parametrization for the dressed light-quark
propagator which is consistent with contemporary numeri-
cal results [50], expresses confinement and dynamical
chiral symmetry breaking, retains the leading diquark
amplitudes and describes diquark propagation in a manner
consistent with color confinement and asymptotic freedom.

Our QCD-kindred framework is sketched in Appendix A.
Here, we just mention some key points. Accounting for
Fermi-Dirac statistics, five types of diquark correlations are
possible in a J = 1/2 bound-state: isoscalar-scalar, isovec-
tor-pseudovector, isoscalar-pseudoscalar, isoscalar-vector,
and isovector-vector. However, only the first two are quanti-
tatively important in ground-state positive-parity systems
[69]; thus, they are the only ones considered herein. For the
scalar and axial-vector diquark masses we use the values
= 0.80 GeV, (17a)

m[”d](ﬁr

m{uu}ﬁ = m{ud}1+ = m{dd}l+ =0.89 GCV, (17b)
which are drawn from Refs. [83,104]. Together with a
Euclidean constituent mass M~ = 0.33 GeV for light
quarks, they provide a good description of many dynamical
properties of the nucleon, A baryon and Roper resonance.

By solving the nucleon’s Faddeev equation, we obtain
the mass my = 1.18 GeV. This value is intentionally large
because Fig. 2 describes the so-called nucleon’s dressed-
quark core. The complete nucleon is obtained by including
resonant (meson-cloud) contributions to the Faddeev ker-
nel. Such effects are known to produce a reduction of about
0.2 GeV in the physical nucleon mass [63,103]. For this

reason, G, and Gp shall be expressed in terms of
x = Q%/m%. In addition, since the computation of Gs
explicitly involves the current-quark mass m,, Egs. (9) and
(30), it is appropriate to study the normalized combina-

tion (m,/my)Gs(Q?).

C. Microscopic calculation of axial
and pseudoscalar currents

1. General decompositions

Within the quark + diquark picture of the nucleon, the
axial and pseudoscalar currents, Egs. (1) and (3), can both
be decomposed into a sum of six terms, depicted in Fig. 3.
One can see therein that the current interacts with the
quarks and diquarks in various ways. In order to perform
practical computations, we need to specify three more
building blocks, viz. the coupling of the external current to
the quark lines, the diquark lines, and the diquark-quark
wave functions, i.e., the seagull terms.

2. Axial-vector and pseudoscalar vertices
We begin with the dressed-quarks’ axial-vector vertex,
'y, (ki k_), and the pseudoscalar vertex, ['§(k,., k_). They

are related by the axial-vector Ward-Takahashi identity
(AXWTI)

Q, Ik, (ky ko) + 2im UL (ky k)
oo

1 I
=S (k+)l7’55+_l}’55 (k) (18)

2

i

P, Py ' " " ' P,

FIG. 3. Axial or pseudoscalar currents that ensure PCAC for
on-shell baryons that are described by the Faddeev amplitudes
produced by the equation depicted in Fig. 2. Single line: dressed-
quark propagator; undulating line: the axial or pseudoscalar
current; I': diquark correlation amplitude; double line: diquark
propagator; and y: seagull terms. Diagram 1 is the top-left image,
the top-right is Diagram 2, and so on, with Diagram 6 being the
bottom-right image.
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where Q is the incoming momentum of the weak boson,
and k_ and k, are the quark’s incoming and outgoing
momenta, k., = k+ Q/2.

The general expressions for I'y, (k,, k_) and I'§ (k. , k_)
can be found in Ref. [106] and are given by

. Tj
03, (ke k) = 575 [y Fr(k. Q) +v - kk,Gg(k,Q)

ok Hy(k, Q)] +T%, (k. )
+ Q{”Q" I (k, Q). (19)
and
. J
(ke ko) = 5 vsliER (k. Q) +7 - QFF (k. Q)
Q2 Fé(k Q). (20)

respectively, where Fg, Gg, Hg, E%, Fk, Gk, H; and f“éﬂ

— —m2, with Q[ (k. Q) ~
0O(Q?), and the residue rp at the pion pole is given by
rp = f,,m,zr/2mq. The pion mass and decay constant are
given by m,; = 0.14 GeV and f, = 0.092 GeV [80].

The Bethe-Salpeter amplitude of the pion, I';, has the
general form [106]

Tk, Q) = v/ys[iEs (k. Q) +7 - QF (k. Q)
+7r- kk - QGﬂ(k’ Q) + Gﬂl/kﬂQbHﬂ(k’ Q)]
(21)

are regular functions when Q2

Substituting Egs. (19)—(21) into Eq. (18), and equating
both sides, one obtains

Sl - O(Fa(k Q) +2m,FE(k, Q)
+7'kk'Q(GR(/< Q) + 2m,Gg(k. Q))
0ukyQ,(Hp(k, Q) + 2m Hy (k. Q))
; zzqu,ka, Q)] + £,T4(k. 0)
= %7/5[7- O (K2, k2) + 2y - kk - QA4 (K3, K2)
+ 20z (K2, K2)], (22)

where

THAR) =3 FE) +FE). (03

F(£1) - F(£3)

Ap(3.03) = —L—22,
A

(23b)

with F € {A, B}, where A and B are the dressing functions
of the quark propagator [see Eq. (A1) in Appendix A].

For the BS amplitude of the pion, I’ 7, we use the
following Ansatz [79,80,82]:

Bk Q) =5~ (B&) + B2) (24
= fi”zg(ki, k), (24b)

and
Fulk0) = Golk.Q) = Ho(k.0) =0.  (25)

This retains the leading tensor component of the pion. The
subleading components typically provide corrections at the
level of 10% in pion-related observables. We then obtain

Eb(k. Q) = 0, (26a)

Fr(k. Q) +2m,Fi(k, Q) = Z,(k.K2).  (26b)
Grlk. Q) +2m,GE(k. Q) = 28,(2.J2),  (26c)
Hg(k, Q) + 2m HE(k, Q) = 0. (26d)

Considering now that F, G, Hg, F&, Gk and H% are

functions which do not depend explicitly on m,, the set of
equations is solved by
Fr(k.Q) =Z,(K.k2), (27a)
Gr(k, Q) =2A, (k%2 k%), (27b)
Hg(k,Q) =0, (27¢)
and
EL=Fb = GE = HE = 0. (28)

Therefore, we finally arrive at

. T./
I5, (ki ko) = 75 1 Za (R K2) + 27 - Kk, A4 (K2, K2)
2i Q” (k2 k2 29
=+ lm s(ki,k2) |, (29)
and
ik k) == e rig g)
1 5 4+ K = 5 5 /4 9
Q% + m22m,
_7 m,z, 1

=5 Qz 17523(k+vk ), (30)
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as the expressions for the axial-vector and pseudoscalar
vertices, which are completely determined by the dressed-
quark propagator.

Note that, in the chiral limit, Eq. (29) becomes

m, Tj
0k ko) =G a8 2) 4 27 42,2

9,
Q2
which is precisely the solution of the chiral-limit AXWTTI,

+2i—L ZB(ki,k%)], (31)

J J
Ty (k). (32)

j,m,=0
0,1 (k. k) L

= S~(ky)irs
Equation (31) has been employed previously [79,80,82].

It is worth emphasizing here that Egs. (29) and (30) are
minimal Ansdtze, deliberately constructed to be consistent
with all other elements in our QCD-kindred framework.
Since there are no associated parameters, these Ansdtze
could lead to poor results for the form factors considered
herein. As will become evident, they do not. On the
contrary, they yield sound predictions for the entire array
of studied form factors. If one were to add additional terms,
then other elements of the framework would require
compensating modifications. That would serve no useful
purpose herein. We therefore leave such considerations to
the future when ab initio treatments are available for every
Schwinger function needed to deliver predictions for all
nucleon form factors in the entire domain of empirically
accessible Q2.

3. Seagull terms

Since diquark correlations are nonpointlike, any consid-
ered current must couple to the diquark BS amplitudes,
leading to the seagull terms. Within the nucleon’s quark +
diquark picture, the seagull diagrams for the electromag-
netic current were first derived in Ref. [102]; they are
essential to guarantee current conservation in any realistic
study. However, the contribution coming from the seagull
diagrams when considering the axial and pseudoscalar
currents has eluded understanding for more than 20 years,
partly because there is no trivial relation between the
vertices and propagators of the diquarks for these currents.

We derive the axial-vector and pseudoscalar seagull
terms here by using a strategy similar to the one followed
in Ref. [102]. First, the equal-time commutators of the axial
current operator can be calculated straightforwardly from

Eq. (2):

[ () w (3], = %JVS‘I’(x)(S(“)(x— y), (33a)
[}, () T ey, = lZf(X)y%é(‘” (x—y). (33b)

Second, we define the five-point Schwinger function Gé .

as the coupling of the quark + quark scattering kernel with
the axial current,

(27)*6W (ky + ky + g1 + g2 — Q)Géﬂ(k, K';q.K)

— / d4x1 d4x2d4y1d4y2d4ze—ik]x] e—ikZXZe—iqul e—iqzyz
X eiQZ<T{V/(X1)ll/(xz)ll_/(%)1/7()’2)524,4(2)}), (34)

and, correspondingly, Gé is the coupling of the same
quark + quark scattering kernel with the pseudoscalar
current,

(27)*6W (ky + ky + g1 + g2 — Q)GL(k, K'; ¢, K)

— / d4x] d4x2d4yld4y2d4ze—ik]xl e—ikzxze—i111YI e—iqzyz

x €1 (T{yr (x1 ) (3w (1) (32) 2L (2)}), (35)

where k= (k; —k,)/2, q = (q
—ql—qzzKandK/:K+Q.

Now, taking the partial derivative of the five-point
correlation function (T{y (x) )y (x2) (y1)i (y2) 75, (2) }).
and using the PCAC relation, Eq. (7), we get

—q2)/2, ki +ky =

a% (T ey ) () (02, (2)})
+ 2m (T{y () )y (x2) (1) (v2) P4 (2) 1)

:5(4)(Z—x1)<T E}’s‘l’(xl))l//( )y }>
F 6 (=) (T w(m)(%j?s‘//(xz) }>
#00})
Bl
(36)

Performing a Fourier transform of both sides and intro-
ducing a compact notation for the sum over diquark
contributions in the resulting Fourier amplitudes, where
J expresses the evident isospin structure,

ZG

> GL (kK q.K).
JP

GJ (k,K';q,K) = (k,K';q,K), (37a)

Gi(k.K':q.K) = (37b)

one can use Eqs. (15), (34), and (35) to arrive at the
momentum space form of Eq. (36), viz.
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0,GL,(k.K':q.K) + 2im G (k. K'; q. K)

=3 (0,6 +2im,GL") (k. K’ 4. K) (38a)
jP
4
= ZZ "(k.K';q.K) (38b)
JP =1
4
=:ZZ G]J ) + 2im, Gy )(k K';q,K).  (38¢c)

Jr =1

Here, the identification of terms is straightforward: the
first sum is over the separate diquark contributions; the
second sum expresses that over the Fourier amplitudes of
the four terms on the right-hand side of Eq. (36); and
Eq. (38c) serves as a formal expedient for subsequent use.

In Eq. (38b), writing diquark wave functions as A’ "

~ i JP

J —p
Gl =S irsh (k= 0/ K)N (K)A (¢:-K). (3%)

(1)

~i P NT ~ 7P
Gl = N (k4 02K (irs ) 7 (OR (i -K).

(39b)

~ TP P P JN\T _ »
Gl = & (ks (8) (irs5 ) W'l - 012K,
(39¢)

i P , . j
G = N (KA (KA (g + /2:=K') S irs.

(39d)

Continuing toward expressions for the one-particle-
irreducible four-point seagull couplings of the axial-vector
and pseudoscalar currents to the quarks and the diquarks,

we exploit Eq. (38c) and define ;(gyﬂ()l) and ;(é{; via

(S(ki)z o (ke o, K)ST(k)) A" (K)

- (27 [ GG Kig RF (@). (@0)

and
<s<k1>;/5';{,.’;<k1,kz,msT(kz))Af”(K)

o (2IPV-1 d 1 G
= (2" / SokG

Here

LK g KT (g:K). (41)

4
= :/(CZZTC)IWCDF[/_\’P((J;—K)F’P(q;K)], (42)

and the trace is over color, flavor and Dirac matrices. Then,
Eq. (39a) entails

( ( ){QFXSM (kl’kZ’ )

+21mq)(§', (ko K)}ST (k) A7 (K)

, d'q -
—(2”")" / Gl (k. K's 0. KT (g5 K)
= (27! (—wA’”(k 0/2; K))

x A" (K)trCDF[A “(q: =K (¢: K)]

= %jiyszv”(k - 0/2;K)A”" (K), (43)

and using the AXWTI, Eq. (18), we arrive at

Qurkl 1 (ki ka. K) + 2im gk, (k. ky. K)
= (QuI%, (ki ky = Q) + 2im UL (ki ky — Q)
x S(ky — )" (k= Q/2:K) — %inFJP(k - 0/2:K).

(44)
Proceeding similarly, we arrive at
Qurk oy (ky ey, K) + 2myrlly (ki k. K)
=T (k+ Q/2:K)S"(ky — 0)(Q, T, (k2. ky — Q)
2,k ko = O =1 (+ 0/2:8) (1755 )
(45)

for the second contribution, Eq. (39b). Besides, the third
and fourth contributions are

(S(k{Qurlt ) (k1. Ko K)
+ 2imgrl Ty (ki ko K)}ST (k) A7 (K)

= (2/")! / éﬂ‘)f A (k; KA (K)

xtrCDFK(%E) N (qg-0/2; K’))F’P(Q;K)],
(46)

for Eq. (39¢), and
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kl7k2’

k{0
+ 21mq)(5( )(kl, ks, )}ST(/(Z))AJP (K)

= (/") / (;lﬂc)z A (k; KA (K)

X rcpr K/_\Jp(q +0/2; _K/)%Jih)rﬂ(q; K)] . (47)

for Eq. (39d), respectively.

Let us first study the third and fourth contributions in
more detail. Their flavor structure involves four different
diquark configurations: a scalar diquark, [ud],:, and axial-
vector diquarks, {ud},-, {uu};+, {dd},~. When the
correlations [ud|y,- and {ud},. are involved, we obtain
trivial zeros because the traces of the flavor parts vanish
(the diquarks’ flavor matrices are listed in Appendix A 2):

e 6 (5) ] e[ (3) @ @] 0. a9
we 7 (5) ] = (5) @] 0. a9

However, when the correlations {uu},+ and {dd},+ are
involved, the flavor traces are not zero and thus we need to
investigate them more closely. For {uu},+ we have

klﬂkZ’ )

{Qﬂxgya
+ 2imq;(5”a’(3)(k1, k. K)}ST(k2)) A5 (K)
= (Z]5)7' A (6 KA, (K)

4 \T + +
x /%UCDF [(i}’s 3]) Ay (g —0/2;-K)Ty (q)
= (2)5)7'Ay (ks KN AL(K') X gt X 83
4
< [ G (0= /20 ) F k)
x 4oy ((q — K/2 - 0)*)oy((q + K/2)?)
X [epaﬂ}/qp<Ka + Qa) - €paﬂyQpKo'/2]’ (50)

where oy is a quark-propagator dressing function,
Eq. (Ala), and

4
2l = / %trCDF[A;*<q;—K>F§<q>J. (51)

In this derivation, we used the explicit form of the axial-
vector BS amplitude, Eq. (A6b), which only depends on the
relative momentum. Similarly, we obtain

{Q,J(é,“, (k1. ks, K)
—|—2zmq)(ga (ki k. K)}ST(ky))Als (K)
= (2)5)7' Ay (s KNAL(K') x gt X 83
dq 2712 N G2 )2
« [ Gk P a+ 0127 o) (e

x (=4)ov((q + K/2+ 0)*)ov((q - K/2)?)
[ paﬂyQp<K + Qa) + epaﬂ}/QpKa/z]‘ (52)

Obviously, neither Eq. (50) nor Eq. (52) vanishes if
Jj = 3. Nevertheless, if we add them together and sub-
sequently take the limit Q — 0, we find

0= 0, {5 (ki ko K) + 2

+21mq{)(5 (kl’kz» )+)(5

(kla k2’ K)}
o (ki ke, K)}. (53)

The same result can be shown for {dd}-.

Therefore, for all kinds of diquark correlations we can
write a unified result'

Qﬂxgl;j (k1. Ky, K) + 2imgpl” (ky, Ky, K)

- Z Q!Xgﬂ

~ (Q,I%, +2im IS (ky - Q)Ffp(k -0/2)
+ TV (k + 0/2)S" (ky — Q)(Q,IY, + 2im,T'})T

(ky, ko, )+21mq)(5( (ki,ky, K)

S (k= 0/2) =1 (k4 0/2) (Ws 5]) - (54)

In arriving at Eq. (54), we used Eq. (53) and supposed it to
be valid outside the neighborhood Q% ~ 0.

The approximation expressed in Eq. (54) is kindred to
that employed in deriving the seagull terms for the
electromagnetic current [102]; nevertheless, one might
ask after its accuracy. That is best judged by explicitly
computing the impact of the neglected terms, viz. the sum
of Egs. (50) and (52), on the form factors calculated herein.

In view of this aim, we first observe that the axial form
factor, Gy, is determined by the Q-transverse piece of the
nucleon axial current; see Eq. (6a). Hence, G4 receives no
contribution from any part of the seagull construction,
which leaves only Gp, Gs.

The complete nucleon axial current, Fig. 3, contains the
seagull contribution expressed in the sum of diagrams (5)
and (6). Considering this part, using the approximation in

'Here the diquark amplitudes are assumed to depend only on
the relative momenta. Since the derivation for {uu},+ or {dd},+
depends on the explicit forms of the amplitudes, the result may be
more complicated for more general representations.
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Eq. (54), one is required to evaluate an eight-dimensional
(two-loop) integral. However, with the inclusion of
Egs. (50) and (52), the additional contribution is seemingly
a l6-dimensional (four-loop) integral. Fortunately, using
the Faddeev equation, it can be reduced to a three-loop
calculation. All such multiloop integrals must be evaluated
using Monte Carlo techniques.

Following this procedure, we compare the results
obtained for Gp, G5 by first neglecting Egs. (50) and
(52) and then after their inclusion. In both cases, the
approximation and the complete calculation produce results
that are indistinguishable within the linewidth of any
legible curves. Stated quantitatively: when evaluated on
the physically relevant domain, the relative ., difference
between comparable curves is <1%.

Evidently, then, Eq. (54) is a sound approximation. Its
merits are amplified by the fact that it enables us to both
avoid the need for calculation of three-loop diagrams and,
as we shall subsequently see, obtain closed algebraic
expressions for the seagull terms and diquark vertices.

. . jJP j.JP
As in the electromagnetic case [102], 5 " and y1” can

both be separated into two parts

)(éﬂ )(éy [legs] Xgﬂ [se’
)(] )(é [legs] +X§ [sg]’

(55a)
(55b)

where )(g llegs] and )(é‘fligs] describe the coupling of the
axial and pseudoscalar currents to the amputated quark

legs separately, and ;(5 [ and ;(5[ . describe the axial-

sg]
vector and pseudoscalar one-particle-irreducible seagull

couplings.
The “legs” and “sg” terms separately satisfy the Ward-
Green-Takahashi identities

Ol egs) (K1 Koy K) 4 2im et (ky Ko, K)
= (Q,I, +2im,T)S(k; — Q)1 (k- 0/2)
+T7" (k+ 0/2)ST (ky = Q)(Q, T, + 2im,T)T,  (56)

0,y (k. Q) + 2im s (K, Q)
7 . » T
= =5 irst (k= 0/2) =" (k+0/2) <i75 2> . (57)

whereby Eq. (54) is saturated. It is worth highlighting that
Egs. (56) and (57) are complete because axial-vector/
pseudoscalar probes do not couple to scalar targets and
the axial-vector diquark propagator is symmetric. Hence, in
contrast to the electromagnetic case, the seagull identity,
Eq. (57), does not have a diquark part. As a consequence,
AXWTIs of the relevant current-diquark vertices are both
equal to zero; see Sec. III C 4.

In this work, we therefore employ the following Ansditze:

o
Aol 0) = = 2 [t (- 012)

Tkt 0/2) (Ws 5) T] , (58)
and
i (k) = - ’"'Zf Z iyl (k= 0/2)
5[]\ Tom, 0+ m2 277
ST (k4 0/2) <1y5 ;)T] (59)

In a similar way, we can obtain the seagulls’ charge
conjugations:

7L (k. 0) = QQ+ %{F”’<k+Q/2)—w5
+ (3 ) (- 0/2). (60)
and
7y (k. Q) = 2,1% sz—z [F”’(k + Q/2> Zirs
+ (iy5 Z) f’F(k—Q/Z)]. (61)

Equations (58)-(61) are novel and the most important
results in this section.

The axial-vector Ward-Takahashi identity in Eq. (57),
cannot completely determine the seagull terms, e.g., their
transverse parts are neglected herein. It is possible to use
more complicated Ansdtze; however, Eqgs. (58)—(61) are
simple expressions which ensure that the computed G4, Gp
and G5 form factors satisfy the PCAC and Goldberger-
Treiman relations.

It should also be stressed that the starting point for the
construction of the electromagnetic seagull terms was to
keep them regular [102], which is not a suitable strategy
here. The axial-vector and pseudoscalar seagulls could be
singular, just like the analogous quark vertices. Conse-
quently, Egs. (5§8)—(61) have a pole at the pion mass.

With the dressed quark vertices and the seagull terms in
hand, we can construct the remaining elements: the axial-
vector and pseudoscalar current-diquark vertices. Here, we
use the same strategy as in Ref. [81]. In short, we focus on
the dominant tensor structure and compute its strength in
the on-shell nucleon by inserting Fig. 4 into diagrams (2)
and (3) of Fig. 3, evaluating the result in each case, and
then equating the values with those obtained by compu-
ting the original one-loop diagrams from Fig. 3 with the
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o :
— — = I /it + I ot
Pa kq g
+ [/s" X1 + X5 /s
FIG. 4. Interaction vertex for the J f' - ng diquark transition

(pq = kg + Q). Single line: quark propagator; undulating line:
the axial or pseudoscalar current; I': diquark correlation ampli-
tude; double line: diquark propagator; and y: seagull interaction.

probe-diquark vertex written as the appropriate coupling
times the dominant associated tensor structure. Plainly, each
current-diquark vertex receives four contributions, viz. those
depicted in Fig. 4. Two of them are generated by the coupling
of the current to the upper and lower quark lines of the
resolved diquark. The other two are the current couplings to
the diquark amplitudes, which are again seagull terms. In
Ref. [81], the authors only took into account the first two
contributions; all four are included in this work.

4. Current-diquark vertices

Furthermore, we need to study the flavor structures of the
currents and diquark correlations. Given that the scalar
diquark is also isoscalar, associated with 72, then there is no
[ud)y+ — [ud]y- contribution. On the other hand, transi-
tions between scalar and axial-vector diquarks are possible
in the form of charged currents ({dd}+ — [ud], and
{uu},+ — [ud],+) and neutral currents ({ud}+ — [ud]y+).
Note too that, in the isospin limit, the coupling strengths are
identical in magnitude. Moreover, the constructed vertices
must properly express the momentum dependence of the
diquark amplitudes, which is a natural consequence of the
nonpointlike character of diquark correlations.

Taking the above arguments into account, we obtain the
following expressions.

(i) {qq},+—pseudoscalar-current vertex:

1 m?

I's%s(paska) = _Z—mqm

ME
X [KSS“ m_fleaﬁyé(pd +kq),05|d(z%).

(62)
(i) {qq}+—axial-current vertex:
Traa | kax o,
sy 5(Pa-ka) = {7 €uap(Pa+ka), + Ot

E

M
X Kpg rxﬁy&(pd+kd) Qs|d(z*).

(63)

(iii) Pseudoscalar-current-induced 0" <> 17 transition

vertex:

1 m2

5% (pa.ka) = 2m ol

[2ZKWMEQ/;] (z%9).
(64)

(iv) Axial-current-induced 0T <> 17 transition vertex:

% s(Pa-ka) = |myKiidy,
Q sapAfE sa
Q2 ( =20 i My Q) | d(7*?).
(65)
For the 17 <> 07 transition, we have gy =-I% and
15, 5 = -1, 5. In the expressions above, k,; and p, are the

diquark’s incoming and outgoing momenta, with p,—
k; = 0O; ME 0.33 GeV is the Euclidean constituent-
quark mass, defined as the solution of p> = M?(p?) (see
Appendix A1); 74 =Q%/[4m3.], 3¢ =Q%/[4mgim;+];
and k&, k4, k3t and k3¢ are the computed Q* = 0 values
of these couplings. Further, emulating the electromagnetic
current construction [107], d(x) = 1/(1 + x) is introduced
to express diquark compositeness via form factor suppres-
sion on Q% > 0. It is noteworthy that using dipole sup-
pression instead, viz. d(x)?, no prediction in any image
drawn herein changes by more than the linewidth because,
in all cases, diagram (1) in Fig. 3 is both dominant and hard,
whereas all weak-boson—diquark interactions are soft and
subdominant.

On the other hand, using Egs. (18) and (57), we can get
the AXWTIs of the current-diquark vertices:

0= OIS, 4y(Pas ka) + 2im 50, (pas ka),  (66a)

0= Q,I5, s(pa- ka) + 2im,IS%(pa. ka). (66b)

It should be emphasized that Egs. (66) are independent
of the explicit forms of the current-diquark vertices
involved; hence, they can be used as constraints for the
vertices’ algebraic forms. It is easy to see that Eqgs. (62)—
(65) satisfy the above AXWTIs precisely, from which we
can get

mpy
xia — "N aa (67a)
P 2M§ a
K54 — my K54 (67b)

Kps = 2ME Kax -
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We verified these constraints numerically

Kaa = 0.73, (68a)
K = 131, (68b)
K = 0.75, (68c)
K8 = 1.34, (68d)

from the direct computation of the four diagrams in Fig. 4.

As anticipated following Eq. (57), Egs. (66) both equate
to zero because, unlike the electromagnetic case, the
corresponding seagull terms have no contribution from
the diquarks’ leg.

We have now specified all the necessary building blocks
to construct the diagrams for Jéﬂ(K, Q) and Ji(K,Q)
drawn in Fig. 3, with the corresponding expressions given
in Appendix B. We are therefore in a position to analyti-
cally verify the PCAC relation, Eq. (8). This is completed in
Appendix D.

IV. NUMERICAL RESULTS

Our predictions for the nucleon’s axial and induced
pseudoscalar form factors were sketched elsewhere [86].
Herein, so as to provide a complete, self-contained report,
we recapitulate those results. We subsequently describe
predictions for the pseudoscalar (pion-nucleon) form factor
and quantify the domain on which PCAC is satisfied.

The axial form factor, G, (Q?), can be expanded at small
momenta as

(ra)

GA<Q2>—9A<1—%Q2+...), (69)

where g4 := G4(0) is the nucleon axial charge, and (r3)!/?
is the axial mean square radius with

=55 (%)

Sometimes, when comparing with other theoretical esti-
mations, it is convenient to use a dipole Ansatz for the axial
form factor:

(70)

0*=0

ga (71)

OO gy

where m, is the so-called axial mass. It should be stressed
that we use Eq. (71) to interpolate the global Q* behavior of

Gy, instead of relating it to (r3) via my = \/12/(r3).

A. The axial and induced pseudoscalar form factors

Our Faddeev equation result for G4(x)/g, is depicted in
Fig. 5, together with results from IQCD [32,33]. The lighter
blue band expresses the impact of 5% variations in our
diquark masses. Notably, scalar and axial-vector diquark
variations interfere destructively, e.g., reducing my,q
increases g4, whereas g, decreases with the same change
in the axial-vector mass. It is clear from Fig. 5 that our
prediction agrees with the IQCD results in Refs. [32] and is
similar to that in Ref. [33] obtained from z expansion. We
will return to this point when we discuss PCAC below.
The extracted values for gy, the charge radius and the axial
mass are

ga = 1.25(3), (72a)
<r§>1/2mN =3.25(4), (72b)
my/my = 1.23(3). (72¢)
A T
1.0y — herein
« Jangetal [32] -
S
x
< 06
o
0.2}, ) ) ) ) ) ) ) )
0 0.4 0.8 1.2 1.6
2, 2
x=Q°/my
B
100 — herein
= Baliy et al. [33]
S Bali, et al. [33] |
<
< 067
O
0.2, ) ) ) ) ) ) ) )
0 0.4 0.8 1.2 1.6
27,2
x=Q/my,
FIG.5. Panel A: G4(x)/g,4 calculated herein (blue curve within

lighter blue uncertainty band) compared with IQCD results from
Ref. [32] (green diamonds). With respect to our central results,
this comparison may be quantified by reporting the mean-y>
value, which is 0.27. Panel B: G4(x)/g4 calculated herein (blue
curve within lighter blue uncertainty band) compared with 1QCD
results from Ref. [33] (purple boxes [dipole] and golden triangles
[z expansion]). The mean-y> values are 10.86 [dipole] and 1.88
[z expansion].
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TABLE I. Referring to Fig. 3, separation of G,(0), Gp(0) and
Gs(0) into contributions from various diagrams, listed as a
fraction of the total Q> =0 value. Diagram (1): (/)5 (weak
boson strikes dressed quark with scalar diquark spectator) and
(J >ﬁ|‘ (weak boson strikes dressed quark with axial-vector diquark
spectator). Diagram (2): (J){]‘é“ (weak boson interacts strikes
axial-vector diquark with dressed-quark spectator). Diagram (3):
(J)g(’]”AS (weak boson mediates transition between scalar and
axial-vector diquarks, with dressed-quark spectator). Diagram
(4): (J) (weak boson strikes dressed quark “in-flight” between
one diquark correlation and another). Diagrams (5) and (6): (J >Sg
(weak boson couples inside the diquark correlation amplitude).
The listed uncertainty in these results reflects the impact

of £5% variations in the diquark masses in Eq. (17), e.g.,
0.714_ = 0.71 F 0.04.

Dy Uy D

q a W Da™ e U

GA(0) 071, 0064, 00255, 0.3, 00725, 0
Gp(0) 074, 00705, 0.0255, 0.13, 022, =0.19,
Gs(0) 074, 00695, 0.0255, 0.3, 022, =019,

As signaled above, the listed uncertainties in our values
express the impact of varying the diquark masses.

In Table I, referring to Fig. 3, we list the relative strengths
of each diagram’s contribution to the nucleon’s axial
charge. Diagram (1), with the weak boson striking the
dressed quark in association with a spectator scalar diquark,
is dominant. On the other hand, the contributions from
diagrams (5) and (6) are zero in this case because the
seagull terms, Egs. (58) and (60), are proportional to Q,
and thus they do not contribute to G,, which is determined
by the Q-transverse piece of the nucleon axial current; see
G,’s projection, Eq. (6a). (The impacts on all form factors
of the pion pole terms in our current construction are
detailed in Appendix E.)

In Fig. 6 we depict our prediction for the induced
pseudoscalar form factor Gp(x), as well as corresponding
1QCD results. The model-uncertainty band surrounding this
curve cannot be distinguished when using the scale
necessary to draw the figure.

Muon capture experiments (¢ + p — v, + n) determine
the induced pseudoscalar charge

m
gy = ﬁG,,(Q = 0.88m2). (73)

We obtain gi, = 8.80(23), which is slightly larger than the
recent MuCap Collaboration value, gj, = 8.06(55) [24,25],
but agrees with the world average value g;, = 8.79(1.92) [36].

In Table I, referring to Fig. 3, we list again the relative
strengths of each diagram’s contribution to Gp(0). Once
again, diagram (1), with the weak boson striking the
dressed quark in association with a spectator scalar diquark,
is overwhelmingly dominant. In this case, however, there is

A s0f
r — herein
40+ :
r + Jangetal [32] f
X 301 1
T L
O 90t
10t
0 [ ) ) ) ) ) ) ) "
0 0.4 0.8 1.2 1.6
2,2
x=Q°/my
B soF
r — herein
40 I = Baligetal [33] |
8 30} A Baliz et al. [33] ]
= L
O 20t
10+
0 [ ) ) ) ) ) ) ) N
0 04 0.8 1.2 1.6

x=Q%/m3,

FIG. 6. Panel A: result for Gp(x) calculated herein (blue curve
within lighter blue model-uncertainty band) compared with
1QCD results from Ref. [32] (green diamonds). With respect
to our central results, this comparison may be quantified by
reporting the mean-y? value, which is 1.04. Panel B: similar
comparison with 1QCD results from Ref. [33] (purple boxes
[dipole] and golden triangles [z expansion]). The mean-y? values
are 15.14 [dipole] and 3.84 [z expansion].

an active cancellation between the contributions from
diagrams (4), (5) and (6).

We find g4 /g% = —0.16(2) at the hadronic scale. This is
a significant suppression of the magnitude of the d-quark
component relative to that found in quark models, ¢4 /g% =
—0.25 [108], and 1QCD analyses, g4 /g4 = —0.40(2) [109]
and g4/g4 = —0.58(3) [110]. Notably, while g, is a
conserved charge, invariant under QCD evolution, the
separation into component contributions from different
quark flavors is not. This effect can potentially reconcile
our flavor separation results with the IQCD predictions: our
Faddeev wave function is defined at the hadronic scale,
{y ~0.33 GeV [111,112], whereas the 1QCD values are
renormalized at { ~ 2 GeV. The size reduction shown in
our framework owes to the presence of strong diquark
correlations in our nucleon wave function, with the
calculated value reflecting the relative strength of scalar
and axial-vector diquarks: the isoscalar-scalar correlations
are dominant, but the isovector—axial-vector diquarks have
a measurable influence.
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FIG.7. Solid (blue) curve: our computed 1/Gp in the spacelike

region; dashed (blue) curve: extrapolated 1/Gp into the timelike

region; (red) star: pion mass Q> = —m?>.

It is also interesting to find the pole position of Gp.
Although we are not readily able to compute form factors in
the timelike region, we can perform an extrapolation since
the pion mass pole is very close to the origin. To do this, we
use 1/Gp, instead of Gp, and extrapolate to the region of
small negative momentum. The result is depicted in Fig. 7:
1/Gp has a zero at Q> = —m?2, verifying that Gp has a pole
at this position.

The low-momentum behavior of the induced pseudo-
scalar form factor can be well approximated by using the
PPD assumption, which relates Gp, at low momenta, to the
axial form factor G,:

4m12\,GA

Gp—"".
PTor - ml

(74)

PPD is not an exact relation but there is every reason to
expect that it is satisfied to a high level of precision; see
Eq. (E3) and the associated discussion. Moreover, recent
1QCD analyses [32,33] find that PPD is satisfied with a
discrepancy <5%.

We have computed the PPD ratio

4m3,G
R :=+A, 75
N (T 7

and depict it in Fig. 8: Rppp is very close to one; however, a
deviation of about 1% is found at x ~ 0, which becomes
smaller as x gets larger. This situation is genuine and can be
explained within the quark + diquark picture. First, we
define a PCAC ratio according to Eq. (9)

4m12VGA
QZGP + 4mquG5 ’

Rpcac = (76)

In the chiral limit m, = m, = 0 GeV, Rpcac and Rppp are
equivalent, and they should precisely be equal to 1:

1.01F
1.0f
a
i
c
0.99f
0.98L. . . . . . . . &
0.0 0.4 0.8 1.2 1.6
x = Q%/mg,
FIG. 8. Solid (black) curve: Rppp € [0.98, 1.01]; dashed (blue)

line: the linear fit of Rppp. Small oscillations are due to the
numerical precision.

=0
m,=0 m,=0 4m? qu
Rpiac = Rppp = 4Q Z{VGmfizo =1. (77)
P

Second, focusing on the axial current, the singular parts
of the dressed-quark vertex, Eq. (29), seagull term,
Eq. (58), and diquark vertices, Eqgs. (63) and (65), do
not contribute to G4, and their contributing regular parts do
not explicitly depend on the current-quark mass m,. Thus,
the chiral limit and the m/-dependent expressions will

generate the same axial form factor, i.e., Gf:":o =Gy,
provided that their parameters are the same.’

Third, regular and singular parts contribute to the
induced pseudoscalar form factor, so one may write

GP = GP,regular + GP,singular' (78)

It is obvious that

m,=0
GP.qregular - GP,regulan (793)
m,=0
QZGP;ingular = (Q2 + mgr)GP.singular; (79b)
hence, Eq. (75) becomes
4 2 qu:()
Rppp = pe :?N . (80a)
Q2 GPq + m72rGP,regula.r
4 2 quZO
A (80b)

m,=0
P regular

0G4 mG

’In reality, the parameters should vary with the current-quark
mass, and therefore, produce different G.
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Using Eq. (77), one can find that the small deviation
comes from the term m,zsz,regular, which approximately
produces a 1% contribution at Q> ~ 0 GeV?, and it is also
clear that Rppp, tends gradually to 1 as Q? grows.

B. The pseudoscalar form factor,
Goldberger-Treiman relation and PCAC

The pseudoscalar form factor Gs, or equivalently the
pion-nucleon form factor, G,yy, cannot be measured
directly except at the pion mass point Q> = —m2, where
we can obtain the pion-nucleon coupling constant g,y -
Our prediction for (m,/my)Gs(Q?) is depicted in Fig. 9
and compared with recent IQCD results [32,33]. We have
also extrapolated the function 1/Gs from the spacelike
region onto a small domain of timelike momenta in order to
determine its zero at Q> = —m2 and thus confirm that Gs
has a pole at this point; see Fig. 10.

One cannot claim a reliable calculation of the axial
and pseudoscalar form factors if they do not satisfy the

>

04}
— herein
c:‘g + Jangetal [32]
o
= 027
S
o
S
0 E, N N N N n =
0 0.4 0.8 1.2
Q? [GeV?]
B T
04¢t
— herein
ng = Baliy etal. [33] {
= 4+ Bali, etal [33]
O
= 021
S
o
S
0 0.4 0.8 1.2

Q? [GeV?]

FIG. 9. Panel A: result for (m,/my)Gs(Q?) calculated herein
(blue curve within lighter blue model-uncertainty band) com-
pared with 1QCD results from Ref. [32] (green diamonds). With
respect to our central results, this comparison may be quantified
by reporting the mean-y? value, which is 5.37. Panel B: similar
comparison with 1QCD results in Ref. [33] (purple boxes [dipole]
and golden triangles [z expansion]). Here, the large 1QCD
uncertainties prevent a meaningful y> comparison with our
prediction.

0.005¢

—

1/Gs

R
P
-
-

0.0 K

/”
-
-

-0.01 0.0 0.01

FIG. 10. Solid (blue) curve: our calculated 1/Gs5 in the space-
like region; dashed (blue) curve: extrapolated 1/Gs into the

timelike region; (red) star: pion mass Q% = —m2.

Goldberger-Treiman relation at the form factor level,
Eq. (11). We obtain

fe

= Gann(0) = 1.25(3) = G(0). (81)

(Recall, that the theoretical uncertainty expresses the impact
of 5% variations in the diquark masses. Clearly, our results
satisfy the Goldberger-Treiman relation precisely.)

In Table [, referring to Fig. 3, we list the relative strengths
of each diagram’s contribution to G5(0), i.e., G,yy(0). The
results for G5(0) are almost identical to those for G (0).
This can be understood in the following way: according to
our argument regarding PPD, we know that the singular
part of the axial current provides almost the total contri-
bution (Z99%) to the induced pseudoscalar form factor Gp
at Q?~0 GeV?, and thus we can safely focus on the
singular part of Js5,. Next, considering Gp’s projection,
Eq. (6), we immediately find that G, does not contribute
because of its transverse nature. Meanwhile, if one takes
into account the detailed structure of the building blocks
and currents, and compares Eq. (6b) with Gs’s projection,
Eq. (6¢), one arrives at

Gr = L teplrgrs) x i, (82a)
Gs = %UD [Jsys] x ¢, (82b)
O /
z7trD[J5My5] X ¢ (82¢)
~Gp x (c3/c1), (82d)

when Q2 ~0 GeV?, where ¢, ¢, and ) are constants.
Since we want to compute the relative strengths, the values
of ¢y, ¢, and ¢}, do not contribute.

Regarding the pion-nucleon coupling, we predict
g,,NN/mN :(;ﬂ]\][\/(Q2 = —m,zr)/mN = 1402(33)/GCV This

094022-15



CHEN, FISCHER, ROBERTS, and SEGOVIA

PHYS. REV. D 105, 094022 (2022)

value overlaps with that extracted from pion-nucleon
scattering [113] [gyn/my = 13.97(10)/GeV], and com-
pares well with a determination based on the Granada
2013 np and pp scattering database [114] [g,yn/my =
14.11(3)/GeV] and a recent analysis of nucleon-nucleon
scattering using effective field theory and related tools
[115] [gzyn/my = 14.09(4)/GeV]. The 1QCD study in
Ref. [33] produces g,yn/my = 13.77(85)/GeV (dipole)
and g,yn/my = 15.74(1.93)/GeV (z expansion). All these
comparisons are drawn in Fig. 11A.

It is also worth noting that for —m2 < Q? < 2m3,
a good interpolation of our central result is provided by

(x = Q*/m3):

B (13.52 = 2.291x)my
1 4+2.383x + 0.5563x% + 1.434x3°

Govn (%) (83)

For comparison with meson-exchange models of the
nucleon-nucleon interaction, a fair approximation to
Eq. (83) is obtained with the dipole form

(@)

hereinp
Barur
Navarrof
Reinertf

Baliy —

Bali, —_—

12 14 16 18
grn/my [GeV™']

(b)

herein »

expt. -

Baliy} =—————

Bali,
-0.02 0 0.02 0.04 0.06 0.08 0.10 0.12
Agt
FIG. 11. Panel A: comparison of our prediction for g,yy/my

(blue asterisk) with values extracted from pion-nucleon scattering
[113] (purple diamond), the Granada 2013 np and pp scattering
database [114] (green square), and nucleon-nucleon scattering
[115] (black circle), and 1QCD results [33] (cyan crosses). Panel
B: comparison of our prediction for Agy (blue asterisk) with the
estimate in Ref. [116] (purple circle) and IQCD results [33] (cyan
crosses). (In both panels, the vertical grey band marks the
estimated uncertainty in our prediction.).

13.47my

Gﬁzwv(x) = m (84)

which corresponds to a zNN dipole scale A yy =
0.845my = 0.79 GeV, viz. a soft form factor. (A similar
value was obtained previously in a rudimentary quark+
scalar-diquark model [80].) Our prediction is ~20% larger
than, and hence qualitatively equivalent to, the zZNN dipole
mass inferred from a dynamical coupled-channels analysis
of zN, yN interactions [117]. Future such studies may
profit by implementing couplings and range parameters
determined in analyses like ours.

We can now compute the so-called Goldberger-Treiman
discrepancy,

G4(0
AGT =1- fﬂf‘% (858)
m_NGn:NN(_mfr)
=1 —7G”NN(0)2 : (85b)
Gony(—mz)

which measures the difference of G,yy values at Q> =0
and the pion’s on-shell mass, for a given current-quark
mass, and thereby the distance from the chiral limit. We
predict Agr = 0.030(1), which is loosely consistent with
the estimate in Ref. [116], viz. 0.023(5), and matches,
within errors, the 1QCD results in Ref. [33]. These
comparisons are drawn in Fig 11B.

Finally, we check whether our computed G,(Q?),
Gp(Q?) and Gs(Q?) form factors satisfy the PCAC
relation, Eq. (9). Figure 12 displays the PCAC ratio,
defined in Eq. (76); one observes that the computed
Rpcac is practically indistinguishable from unity for the
whole range of momentum-transfer depicted. Therefore,
we have shown analytically but also numerically that our
theoretical approach is consistent with fundamental sym-
metry requirements. It is worth emphasizing here that this
result does not rely on any fine-tuned set of parameters;

1.01
1.005¢
2
S 1.0
o
0.995¢
099 ——— ———
0.0 0.4 0.8 1.2 1.6
x = Q°/m,

FIG. 12. Solid curve: computed result from Eq. (76); Rpcac €
[0.995,1.005] on the entire domain. (Fluctuations reflect the
numerical precision of our calculation.).
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instead, it is automatically satisfied owing to our careful
construction of the currents, as discussed above.

V. SUMMARY

Using a Poincaré-covariant quark + diquark Faddeev
equation treatment of the nucleon and weak interaction
currents that ensure consistency with relevant Ward-Green-
Takahashi identities, we delivered a unified set of predic-
tions for the nucleon’s axial, induced pseudoscalar, and
explicit pseudoscalar form factors. The presentation
included a detailed discussion of partial conservation of
the nucleon axial current and associated Goldberger-
Treiman relations, and all technical details relating to
current constructions in the quark + diquark approach,
including the seagull terms.

Concerning the axial form factor, G,, we found that it
can be reliably represented by a dipole form factor,
normalized by the axial charge g4, = 1.25(3) and charac-
terized by a mass scale M, = 1.23(3)my, where my is the
nucleon mass. Moreover, the Q2 behavior of G, is in good
agreement with recent 1QCD results [32].

Regarding the induced pseudoscalar form factor, we
found that Gp depends on the transferred momentum in
such a way that it agrees favorably with data obtained from
low-energy pion electroproduction [13] and also the IQCD
results in Ref. [32]. Moreover, the pion pole dominance
Ansatz provides a sound estimate of the directly com-
puted result. Additionally, the induced pseudoscalar charge
gy is consistent with the value determined from a recent
u-capture experiment [24].

With respect to Gs, recent 1QCD computations [32]
agree with our theoretical result in the whole range of Q?
studied. Furthermore, our prediction for the pion-nucleon
coupling constant gyy/my = Gy (Q* = —m2)/my =
14.02(33)/GeV agrees with a recent effective field theory
analysis [115].

We proved that our nucleon’s axial, induced-pseudosca-
lar and pseudoscalar form factors analytically satisfy the
PCAC relation and verified this numerically, establishing
thereby that our theoretical approach is consistent with key
symmetries in nature.

It is here worth highlighting that we found ¢4/g% =
—0.16(2) at the hadronic scale. This is a significant
suppression of the magnitude of the d-quark component
relative to that found in nonrelativistic quark models. The
size reduction owes to the presence of strong diquark
correlations in our nucleon wave function, with the
calculated value reflecting the relative strength of scalar
and axial-vector diquarks: the isoscalar-scalar correlations
are dominant, but the isovector—axial-vector diquarks have
a measurable influence.

Finally, as noted elsewhere [86], a natural next step is to
improve upon the quark + diquark approximation and use
the more fundamental three-quark Faddeev equation

approach to the nucleon bound-state problem, extending
the analysis in Ref. [76]. In finding and implementing an
approach to improving the expressions of emergent had-
ronic mass in both the Faddeev kernel and interaction
current, one could deliver continuum predictions for all
nucleon form factors that posses tighter links to QCD’s
Schwinger functions.
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APPENDIX A: THE QCD-KINDRED
FRAMEWORK

The QCD-kindred model for mesons and baryons that
we exploit herein was introduced in Refs. [118—120] and
refined in a series of subsequent analyses that may be traced
from Refs. [83,107]. Consistency between the various
Schwinger function elements is guaranteed through their
mutual interplay in the description and prediction of hadron
observables. Combined with the material above, the infor-
mation in this Appendix is sufficient for an interested
practitioner to implement the framework for themselves.

1. Dressed-quark propagator
The dressed-quark propagator is

S(p) = —iy - poy(p?) + os5(p?) (Ala)

= 1/lir- pA(p*) + B(p?)].  (Alb)
Regarding light quarks in QCD, the wave function renorm-
alization and dressed-quark mass

Z(p*) = 1/A(p*).,  M(p*) = B(p*)/A(p?). (A2)
respectively, receive significant momentum-dependent cor-
rections at infrared momenta [121-124]: Z(p?) is sup-
pressed and M(p?) is enhanced. These features are an
expression of emergent hadronic mass [125].

An efficacious parametrization of S(p), which exhibits
the features described above, has been used extensively in
hadron studies [50-54]. It is defined via
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5s(x) = 2mF (2(x + m?))

+ F(byx)F (bsx)[bg + by F (ex)], (A3a)

Fy(x) =~ +1m2 1= F2(x + m2))], (A3D)
with x = p?/A%, in = m/J,

Fy =1 (A4

s(x) = dog(p?) and 6y (x) = 2oy (p?). The mass scale,

o
A =0.566 GeV, and parameter values

n by b, by, by
0.00897 0.131 290 0.603 0.185°

(AS)

associated with Egs. (A3a)-(A3b) were fixed in analyses of
light-meson observables [119,126]. [e = 10~ in Eq. (A3)
acts solely to decouple the large- and intermediate-p?>
domains. |

The dimensionless # = d current mass in Eq. (A5)
corresponds to m, = 5.08 MeV and the propagator
yields the following Euclidean constituent-quark mass,
defined by solving p? = M?(p?): ME =0.33 GeV. The
ratio Mg /m, = 65 is one expression of DCSB, a corollary
of emergent hadronic mass, in the parametrization of S(p).
It highlights the infrared enhancement of the dressed-quark
mass function.

The dressed-quark mass function generated by
Eqgs. (A3)-(AS) is drawn in Fig. 13. Although simple
and introduced long beforehand, the parametrization is
evidently a sound representation of contemporary numeri-
cal results. [The numerical solutions drawn in Fig. 13 were
obtained in the chiral limit, which is why the (green) band
falls below the parametrization at larger p.]

M(p) / GeV

FIG. 13. Solid curve (blue): quark mass function obtained from
the dressed-quark propagator specified by Egs. (A3)—(AS5); band
(green): exemplary range of numerical results obtained by
solving the gap equation with the modern kernels [127,128].

As with the diquark propagators in Eq. (A9), the
expressions in Egs. (A3a) and (A3b) ensure dressed-quark
confinement via the violation of reflection positivity (see,
e.g., Sec. 3 of Ref. [129]).

2. Correlation amplitudes

As mentioned in Sec. III B, for the nucleon we only need
to include the two positive-parity diquark correlations: the
isoscalar-scalar (0%) and isovector-pseudovector (1)
diquarks. Their dominant structures are

I (k:K) = gorysCtOH F (K /o). (A6a)
T (kK) = igy+y,CTH F(K2]0?.),  (A6b)

where K is the total momentum of the correlation, & is a two-
body relative momentum, .% is the function in Eq. (A4), @ »
is a size parameter, and g;» is a coupling into the channel
(which is fixed by normalization), C = y,y, is the charge-
conjugation matrix, 1 and 7= (¢',72,#%) are the flavor
matrices,

0 __ I 2

tf_%f . (A7a)
h=Ll@g ) (ATb)
j =7 +7),

gL (AT¢)
f \/2 ’

p=le (A7d)
F=5@=7)

¥ = diag[1, 1], {#/, j = 1,2, 3} are the Pauli matrices, and
ﬁc = {iAl, =2, i22} (with {2k, k=1,...,8} being Gell-
Mann matrices in color space) expresses the diquarks’ color
antitriplet character.

The amplitudes in Egs. (A6) are canonically normalized:

2K, = - 11(k: 0) = (A8a)
00, 0=K
11K: 0) = reor | %m; “K)S(k + 0/2)
x T(k: K)ST(—k + 0/2), (A8b)

where T'(k;K) = C'T'(—k; K)C. When the amplitudes
involved carry Lorentz indices y, v, the left-hand side of
Eq. (A8b) also includes a factor §,,. Plainly, the coupling
strength in each channel, g;» in Egs. (A6), is fixed by the
associated value of w,»r.
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3. Diquark propagators and couplings

A propagator is associated with each quark + quark
correlation in Fig. 2. We use [83]

N 1
AV (K) =—

F (K /a?.), (A9)

mg,

- KK,
A;w(K) = 5;w+ m

] m12 F(2/at).  (A)
1+

1+

These forms ensure that the diquarks are confined within
the baryons: while the propagators are free-particle-like at
spacelike momenta, they are pole-free on the timelike axis.
This is enough to ensure confinement via the violation of
reflection positivity (see, e.g., Sec. 3 of Ref. [129]).

The diquark masses and widths are related via [83]

2

m,,:2a)

2 (A10)

This correspondence accentuates the diquarks’ free-particle-
like propagation characteristics within the baryon.
Using Eq. (17) and Egs. (A6), (A8), one finds
go- = 14.8, g+ = 12.7. (A11)
Since it is the coupling squared which appears in the
Faddeev kernels, 0" diquarks will dominate the Faddeev
amplitudes of J = 1/2 baryons, but 1™ diquarks must also
play a measurable role because g7. /g3 ~0.7.

4. Faddeev amplitudes

Solving the Faddeev equation, Fig. 2, yields both the
mass squared and bound-state amplitude of all baryons
with a given value of J¥. The form of the Faddeev
amplitude fixes the channel. A baryon is described by

P =yt +yl (A12)
where the subscript identifies the bystander quark, viz. the
quark that is not participating in a diquark correlation. l//’f’2
are obtained from y% =:y® by cyclic permutations of all

quark labels.
For the nucleon (B = N),

v (piaior) = [0 (K)]G@ A% (K)[P (43 P)u(P)]s)
+ [0 (kK)asAL (KW (5 P)u(P)3,
(A13)

where (p;,0;, ;) are the momentum, spin and isospin
labels of the quarks comprising the bound state, P = p; +
P2+ P3 = pg+ p, is the baryon’s total momentum,

k=(pi—p2)/2, K=pi+pr=ps £ =(-K+2p;)/3,
and u(P) is a Euclidean spinor (see Appendix B of

Ref. [83] for details). The remaining terms in Eq. (A13)
are the following matrix-valued functions:

2 0
. 20
WO (£ P) =Y 82 - P).SHE, P)Ts?, (Al4a)
k=1
6 /10
WL (& P) =) an(£. ¢ Plys/i(¢;P) =5, (A14b)
k=1 \/g
where
A =1y, S=iy-£-¢ Plp,
A=y -t+P,  Al=-iP ]y, A=y 0rCL
dt=it y,  dy=yi-of3,  AS=ipky-t -,
(A15)
are the Dirac basis matrices, with 2= 1, pP? = -1,

/- =¢,+¢ PP, and y- =y, +y-PP,, 12//3 is the
color matrix with A9 = diag][1, 1, 1], and sjoc and 5, are the
flavor matrices of the quark + diquark amplitudes, which
are obtained by removing the diquarks’ flavor matrices
(A7) from the nucleon’s full amplitude,

sy =1, (Al6a)

s} = \}6(11 —it?) (A16b)
52 = —%13, (Al6c)

53 = —ﬁ (7! + i7?). (Al6d)

5. Faddeev wave functions

The (unamputated) Faddeev wave function @’ " can be
computed from Egs. (A13)-(A16) by simply attaching the
appropriate dressed-quark and diquark propagators. It may
also be written in the form of Eqs. (A14), with different
scalar functions 8, and d,:

@' (£;P) = S(¢ 4+ nP)A" (#P — £)¥°" (¢; P)
2 ) Ao
— > 8.(c2. ¢ P).I*¢; P)\/_ % (Al7a)
L (£, P) = S(£ +nP)AL (/P — ¢)P)" (¢; P)

6 70
;&k(oﬂ £ P)ysel (¢ )\—}

where 1,7 € [0,1] and n+ 7 = 1
Both the Faddeev amplitude and wave function are
Poincaré covariant: each of the scalar functions that appears

5:. (Al17b)
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is frame independent, but the chosen frame determines just
how the elements should be combined. Hence, the manner
by which the dressed quarks’ orbital angular momentum L
and spin S add to form a particular J* combination is
frame dependent: L and S are not independently Poincaré
invariant.

The Dirac tensors of different J* are

2. P o2, (3 + ), (Al8a)
2p. 2 o) (o + ), (A18b)
4p: (2474 — o19)/3, (A18¢)
“p: (293 - of3)/3, (A18d)

viz. the scalar functions associated with these Dirac matrix
combinations in a Faddeev wave function possess the
indicated angular momentum correlation between the quark
and diquark. Those functions are

251 3,45, (a; + 2d5)/3, (A19a)
2P: 3,.4,. (a8, + 2dg)/3, (A19b)
P (d, — dg), (A19c)
“D: (@ — as) (A19d)

APPENDIX B: CURRENT DIAGRAMS

To compute the form factors, one must specify how the
probe couples to the constituents of the composite hadrons.
Herein, this amounts to specifying the couplings of the
axial (5u) or pseudoscalar (5) current to the dressed quarks
and diquarks.

In Fig. 3, we have separated the different contributions to
the currents into six terms. N.B. Diagrams 1, 2 and 3
represent the impulse approximation; they are one-loop
integrals, which we evaluate by Gaussian quadrature.
The remainder, Diagrams 4, 5 and 6, describe the probe’s
coupling to the Faddeev kernel; they are two-loop diagrams,
whose evaluation requires the use of Monte Carlo methods.
For explicit calculations, we work in a Breit frame: P; =

K—Q/2,P;=P+Q/2andK = (0,0,0,i\/m3, + Q*/4).

1. Diagram 1
Probe coupling directly to the bystander quark:

i (K. Q) = J30 (K, 0) + J%, (K. Q),  (BI)

with

Jgi?t)(K’ Q) = /li‘m(l’};_Pf)S(PzH)F S(u )(Pq+qu )
P

X S(pg-) A" (pa)¥° (Pl Py). (B2)

and
Iy (8.Q) = [ B (5} =Py )W P )
4

X S(pg-) ALy (P)W} (Pl Py),

where Fg is the dressed-quark’s pseudoscalar (axial-
vector) vertex, Egs. (30) or (29); and, with the loop
momentum p,

(B3)

pi=p-10/2, (B4a)
Py =p+n0/2, (B4b)
Pg- = Pi+nP; (B4c)
Pgr = P + 1Py, (B4d)
pa =P = p; (Bde)
=Py - ply. (B4f)

2. Diagram 2

Probe coupling to an axial-vector diquark correlation’:
dq,aa 1+ +
1 K.0) = | B (=P )AL (s
x50, p,,(Pd+, Pd—)A(ly/;(Pd—)

X S(py) ¥} (p}; Py).

where I'¢? is the axial-vector diquark correlation’s
pseudoscaYar (axial-vector) vertex, Eqgs. (62) or (63), and
the momenta are

(B5)

pi =p+nQ/2, (B6a)
pi=p-n0/2, (Béb)
Pa- =P = pi, (Béc)
Pa+ = Pp — P;’ (Béd)
Pq = P! +nP; (Bée)
= plj +nP;. (B6f)

3Owing to their flavor structures, neither the axial-vector
nor the pseudoscalar probe couples to the scalar diquark; see
Sec. I C4.
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3. Diagram 3

Probe-induced transition between scalar and axial-vector
diquarks. It is the sum of the following transitions: charged
currents ({dd},+ <> [ud|y+, {uu},;+ <> [ud|y+) and neutral
currents ({ud}+ <> [ud|,-) where

SEK.0) = [ (5P A (pa)
P

X F%),g(PdJr, Pd—)Ally/; (Pa-)

x S(py)¥} (Pl P;). (B7)
and
S5 (K. 0) = [ (=P Al par)
P
x T8 (ParsPa)A” (pa)
X S(p, ¥ (pls P;), (B8)

where Fg‘gﬂ)ﬁ and Fgfm‘p are the probe-induced transition
vertices in Egs. (64) and (65).

4. Diagram 4

Probe coupling to the quark that is exchanged as one
diquark breaks up and another is formed:

x g
Jg(ﬂ)(K, Q)= Z /plq)f2 /v (k,)

Py P
JyI2=01 1

< {S(@)T (@ 3)S@)} T ()0
(B9)

The process of quark exchange provides the attraction
required in the Faddeev equation to bind the nucleon. It also
ensures that the Faddeev amplitude has the correct anti-
symmetry under the exchange of any two dressed quarks.
These essential features are absent in models with elemen-
tary (noncomposite) diquarks. The comglete contribution is
obtained by summing over Jf‘ and J,*, which can each
take the values 01, 17.

5. Diagrams S and 6

Two-loop seagull diagrams appearing as partners to
Diagram 4:

J;g(#) (K.Q) =

=I5
D3 /p/(q)f Zs(y) 1 (K1 ©)
AW EEI N

P P
x TP (pl))" (B10)

i ’

for Diagram 5, and

K= >,

Py oyPy
JNI, =0",1"

/ /k & T ()57 (3)
P

_jat g

X)(5(,,),[Sg](k2v Q)®;' . (B11)
for Diagram 6; the momenta are

Py = k+nP;, (B12a)
Pg+ =P +nPy, (B12b)

=~
ky =P — 4 (B12c)

2

ky = p"_z_ 1, (B12d)

P P
and, again, J|' and J,* are summed.

APPENDIX C: COLOR AND FLAVOR
COEFFICIENTS

The nucleon’s Faddeev equation and the current dia-
grams of Appendix B need to be augmented with appro-
priate color and flavor coefficients. Using the color and
flavor matrices of the diquark amplitudes, Egs. (A6), and
the quark + diquark amplitudes, Eqs. (A14), and projecting
them onto the isospinors of the proton p = (1,0)T or the
neutron n = (0, 1)T, we can write the nucleon’s Faddeev
equation, pictured in Fig. 2:

‘I‘}lf(p;P) k (_3)<%/2¢+0+ (%)%}Jﬁ

2
" (k; P
( B )>, 1)
@) (k; P)
where —1, ‘/7§, 73, 1 are the associated color-flavor coef-
ficients,

AN = N (pok, P)

=2 (k)ST (0 (p), (C2)
with the momenta
Py =p+nP. (C3a)
k,=k+nP, (C3b)
Py =—p+qP, (C3¢)
kg =~k + P, (C3d)
q=pa—ky, (C3e)
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(C3f)

(C3g)

For the form-factor diagrams of Fig. 3, their flavor
factors are obtained by using Eqgs. (A7) and (A16). We have

3 sy (5)n)

m,n=0

(C4)

for the probe-quark diagram (Diagram 1),
- m\t/(n m\t(n Tj f
Z ()" (s)2tre | ()" (1) 5 . (C5)
m,n=0
for the probe-diquark diagram (Diagram 2 and 3), and

5 sprp(3) ).

m,n=0

(Co)

for the exchange diagram (Diagram 4).

The seagull case is a little more complicated: we need to
treat the bystander and exchange quarks’ legs separately.
From the seagull diagram (Diagram 5) we have

Z [<s5«">“'<r’;> (%j)T<r;">*<s;>], ()
for the exchange leg, and
)3 [w(;) <r;><z;ﬂ>*<sf>] (cs)

m,n=0

for the bystander leg. From the diagram of the seagull’s
conjugation (Diagram 6), we have

Z wprep(3) wrep] ©)
for the exchange leg, and
5 [<sf;’>*<r;><z¢>f(§) <s;>], (©10)

m,n=0

for the bystander leg.

At last, again, we need to project these matrices,
Egs. (C4)—(C10), onto the isospinors of the proton p =
(1,0)T or the neutron n = (0,1)T to obtain the flavor
coefficients.

The color factors of these diagrams are the same as the
electromagnetic case: for the impulse-approximation dia-
grams (Diagrams 1-3), their color coefficients are “1,” and
for the exchange or seagull diagrams (Diagrams 4-6), their
color coefficients are “—1.”

APPENDIX D: PROOF OF PCAC

We verify here that the interaction current we have
constructed is sufficient to ensure the identity in Eq. (8) is
preserved. Observe first that J2 (K, Q) and J(K, Q) are
both sums of six terms (drawn 1n Fig. 3),

719
=I5

ex Sg sg
50 50 T 5w

7

dq,aa dq,sa dq,as
5 500 T sy T J50)

5(m)
(D1)

each one of which must be considered. Note, too, that we
will consider either the neutral (z*) or the charged (z'*%2)
currents. In the isospin-symmetry limit, their flavor coef-
ficients are the same.

1. Diagram 1: Current coupling to quark line

For Diagram 1 in Fig. 3, contracting Eq. (B2) with Q,
and using Eq. (18), we obtain®

+ . +
0,18 (K. Q) + 2im,J¢° (K. Q)

U
—E/TO (pf;—Pf)S(pq+)[QﬂF5ﬂ(pq+,pq_)
P

+2imTs(pys. Pg-)1S(Pg-)AY (pa) ¥ (Pl P;)

/li} (Pf’_Pf)WSq)O (pn l)

1 -
+3 | 8 =P (i) (D2)
P

where [, = [d*p/ (2z)* and 1/2 is the color-flavor
coefficient computed via Eq. (C4). The Dirac parts of
the dressed-quark’s axial-vector and pseudoscalar vertices
(19) and (20) are denoted by I's, and T's: Fgﬂ = (t//2)T’s,
and T =: (¢/ /2)Ts.

Next, using the nucleon’s Faddeev equation, Eq. (C1), to
substitute lI‘(ﬁ(p};—Pf) and W' (p/; P,) into Eq. (D2),
some algebra leads to

*For the sake of completeness, we will write out all the color-
flavor factors explicitly.
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0% (K.Q) +2im, 2" (K. Q)

:<_l)/ q)O*l"O+
4) Jp Jx

1 =0t . + 7 ~N\T0" (5 *
+(=3) [ [ & mr @s@r g
p

( >/17A b T (k)ST (T (P )irs®)
< >/ [ 8 inry @sT@)r (o),

where we use the abbreviations d_DJ{.P E@’P(p;—Pf),
o/ =o' (K, P,), ‘i‘;PE‘i’JP(p;—Pf) and ¥/'=

¥/ (k; P;), and the momenta are

ST(@)I0" (,)irs @Y

(D3)

G =5 (k+AQ) +2p + (n=1)P).  (Dda)
Pr= 3 (p+ 20k +70) + (1= 1P,). (D4
G=—p—(k+iQ)+(1-2)P;.  (Dio)
K=k -0, (D4d)
By =p, - 0. (Dde)
7=aq+0. (D4)

. . . . + + .
Similarly, for the axial-vector part, i.e., J (51;!1 and J ‘51’1 in

Eq. (B3), we obtain

0,J ‘“*(K 0) +2im, J¥" (K, Q)

~(-2) [ [oyri Gasm@r gy,

+< ) / / B iy (K)ST(@)0 ()00
#(=55) [ [ oy @sT@ry (i,
#(=55) [ @iy @sTars (e

Adding together Egs. (D3) and (DS5), and taking into
account Eq. (B1), we find

(D5)

0,J3,(K.Q) +2im, Ji(K. Q)

>

Py Py 4
JN =071

Py 4Py
(@AM 4 2im ), (De)

where

0 J“"O+0+ +2im, g0
n

//CDWK__)F(M( ST (@I (p,)irs

+ (-3t @5 @ 7)ot (D7)
0,/° Jq.0+1+ + 2im ! Ja01t

-/ cpm{(——) O (k)ST@T (5,)irs

+<?)iysr;;<%;>sw>f°*< )@k (DS)
0% " +2im, 8"

/ [, [( )rO*(k»ST( L (5,)irs

" (—9 s @S (|er . (09)
and
QMJq’ﬁﬁJrZim Jq.1+1+

- [ [ (-5 @@ e

# (-5t @sT@r el @10

2. Diagrams 2 and 3: Current coupling
to diquark line

For diagram 2, using Eq. (B5) and the corresponding
AXWTI (66a), we have

Q”ng,(i,aa + 2iqugq~aa
2 plt * aa
- (5) [ =P AL a O G )
+2im T4 (pars pa-) ALy (pas)S(pg) Wy (P P))

=0. (D11)

Similarly, using Eqgs. (B7) and (B8) and the corresponding
AXWTI, Eq. (66b), the 0t — 17 transition of diagram 3 is
expressed by
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QI8 4 2im  J 3

\/§ _ .

- (T) /TE‘) (P?;—Pf)AO (pd+)[Qur§Z,a<Pd+,pd_)
P

+ 2im T8 (pas. pa- )ALy (pa=)S(pg) WS (Pl Py)
=0, (D12)
and
QIS + 2im  J$+

3 plt (4 + as
= (%) [ A (a0 ()

+2im T (pas pa-)]AY (pa2)S(pg) ¥ (P Py)
=0. (D13)

The factors 2/3, v/3/3 and v/3/3 are combined color/
flavor coefficients computed via Eq. (C5).

3. Diagram 4: Current coupling to exchange quark

For the quark exchange diagram 4, using Eq. (B9) and
AXWTI, Eq. (18), we obtain

0,72 (K. Q) +2im I (K. Q)

exJ 1y ex.J| 1J
— Z (Quls," ™2 4 2imyJs ), (D14)
TP =0" 1%
where
Q"d‘](ﬂ(,(ﬁ’()Jr + zlm Jex,0+0+
= [ [ar|(G)r @srare @)
1 + 7 +
+(G)r @@ gler. ois)
QI+ 2im g0
=0t \/g TN N
= [ [or (35 dsTar o
p Jk
3 4,
+ (D)t ws@it golen. o
Q”Jex,1+0++2im ‘](‘)X,]JFOJr
- [ [ o[ (B dmsars o
3 -7 =1+ +
+(B) d@s@irt goler. o

and

+1+ . +1+
QﬂJCX,l 1 +21m Jex,l 1

/ [ [(—) “E)iIST(@)FL (7))
+<%>F}f(7<r) ()WSF”(pr)]q’}ﬁ- (D18)

The flavor coefficients are calculated via Eq. (C6).

4. Diagram 5: First seagull contribution

For the seagull diagram 5, using Eq. (B10) and the
seagull’s AXWTI, Eq. (57), we get

Qﬂ (K Q)+ 2im,J g(K 0)
Py Py
= Y @I vam ). (D19)
VAW EEI U
where
03" +2im I
+ 1 . + ~ + s~
= [ oy |(3)mr @si@r
P
+ (-3 s @ poler. o)

0,7 ng It +2im JSgO 1"

+<_£>r1*(7<> SIS (G0 (5 )}q% (D21)

12

0,/2 JEIO o Jsg1+o+
-/ ész[(f)wsrm(k;)ﬂ( OFL ()

+ (=) s @ Ghfor. o2
and
Q" +2im "

[ [a 7| (35t st @ry o)

+ <— %)Fb"(ﬁ)wsST(q )1“”(%)}@?l+ (D23)
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The color/flavor coefficients in the first lines of
Egs. (D20)—(D23) are calculated via Eq. (C8), i.e., the
bystander legs of the seagulls, and the coefficients in the
second lines are calculated via Eq. (C7), the exchange legs
of the seagulls.

5. Diagram 6: Second seagull contribution

For the conjugated seagull contribution, diagram 6, using
Eq. (B11) and the AXWTI of the seagulls’ conjugations,
one finds

0,75 (K Q) +2im, Jsg(K Q)
= X @A raim E,

I =01t

(D24)

where

Q ﬂgOO +2im ng 0"

M/ fo |G )Fw (&)S™ @1 (p,)irs

+ (— %) I (k,)ST(q)iriTO"( 13',)} @0, (D25)

Q ng 1t +2im §g0 1t

/ / o K 12>F1+(’~€r)ST(51>f°+ (Br)irs

V3

+(-32)rp s @it phop. 20

Qﬂ sgl() +2im JSg10+

- [ au](-D) ®as@r i

V3

+ (-5 ) @@t goler. o)

and

0,7 qgll +2im JsgllJr

ﬂ / o5 (35)r @S @ry i

+ (-2 @st@idry ghfop.  o2s)

The color/flavor coefficients in the first lines of
Eqgs. (D25)-(D28) are calculated via Eq. (C10), i.e., the
bystander legs of the seagulls’ conjugations, and the
coefficients in the second lines are calculated via Eq. (C9),
the exchange legs.

6. Sum of all contributions

Using Egs. (D1), (D6), (D11)-(D14), (D19) and (D24),
it is straightforward to obtain their sum:

0,1, (K. Q)+ 2im, Ji(K.Q)

- ¥

Jog . Jhgk
(0I5, (K, Q) +2imJ5" = (K, Q))

et
QI (K, 0) + 2im s (K. 0)
F(QJIE (K, Q) + 2im, g2 (K. 0)
T (QIE (K. Q) +2im JEE (K. 0))

=0, (D29)

where j = 3 for the neutral current, or j = 1 £ i2 for the
charged currents.

There are interesting features behind the details of this
proof. First, Eqs. (D11)-(D13) explicitly show that the
three processes of diagrams 2 and 3 satisfy PCAC sepa-
rately. This is natural, and expected, since the axial-vector
and pseudoscalar seagull terms do not involve a diquark
part, in contrast to their electromagnetic counterparts.
Second, the contributions from the coupling to the
quark leg are canceled by the contributions from the
bystander legs of the seagull terms, and their conjugations.
Furthermore, the contributions of the quark-exchange
diagrams are canceled by those from the exchange legs
of the seagulls, and their conjugations. This is analogous to
the electromagnetic case [102]. Third, in an analysis of
Nambu-Jona-Lasinio-like models, it was found that PCAC
can be ensured by including an isoscalar-vector diquark
correlation in the nucleon in addition to scalar and axial-
vector diquarks [130]. Our analysis has shown that while
this may be useful in some cases, it is not necessary.

APPENDIX E: IMPACTS OF PION POLE TERMS

Regarding G, (Q?), consider Eq. (6a). Evidently, G, (Q?)
only receives contributions from axial-vector Q-transverse
pieces of the nucleon current. Reviewing our construction,
the axial-vector terms are Eqgs. (29), (58), (60), (63), and (65).
Each of the associated pion-pole parts is Q longitudinal.
Thus, G4(Q?) is unaffected by the pion-pole terms in our
current construction. It is completely determined by the
regular parts alone. This is apparent in Fig. 5.

We turn now to Eq. (9), an identity valid V Q2. In the
chiral limit, it entails

4m? 4my
Q2

This is an exact statement of chiral symmetry and the
pattern by which it is broken at the level of the nucleon. It is

Gp(Q%) =7 Ga(Q). (E1)
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true when using any and all symmetry-consistent current
constructions; conseqgently, true in our formulation.

Equation (E1) states that G4 and Gp are not independent
functions in the chiral limit. Instead, the behavior of G4 is
completely determined by that of Q?Gp(Q?) and vice
versa. This can be understood at a deeper level by
recognizing that Eq. (E1) is equivalent to the symmetry
constraint

trpQ,75J/5,(Q) = 0. (E2)
In words, this means that the current, Js,(Q), may contain
both regular and Q,/ Q? pole terms, but when contracted
with Q,, the resulting regular and pole pieces combine to
cancel exactly. An analogous process takes place at the
dressed-quark level in QCD, as shown for the dressed-
quark + axial-vector vertex in Egs. (10)—(13) of Ref. [106].

Consequently, in the chiral limit, J5,(Q) is purely Q
transverse. Further, the 1/0Q? in Eq. (El) is completely
absorbed into the transverse projection operator in Eq. (6a).
One may interpret this as follows: in the chiral limit, the
pion pole contributions to the nucleon axial-vector current
serve to cancel any and all longitudinal axial-vector
couplings of the nucleon, ensuring that only Q-transverse
interactions survive. In this sense, the essentially dynamical
chiral-limit Q? dependence of Gp(Q?) is also completely
determined by the regular parts of our current construction,
with the 1/Q? in Eq. (E1) expressing what is effectively a
kinematic factor.

At physical values of the light-quark current masses,
Eq. (E1) returns to the identity in Eq. (9). In consequence,
the nucleon axial-vector current is no longer purely Q
transverse. It possesses a Q divergence that is measured by
2m,Gs(Q?). This means that, at physical current-quark
masses, the pion pole contribution to the nucleon axial-
vector current is insufficient to completely cancel all
longitudinal axial-vector couplings of the nucleon, and
the surviving longitudinal components are measured by the
pseudoscalar form factor, Gs(Q?).

Focusing now on m,Gs(Q?%), which is obtained using
Eq. (6¢), one notes that every term which can contribute to
the J5(Q) current includes an overall multiplicative factor
of m2/[Q? + m2]. The associated (pole) pieces are repre-
sented in Egs. (30), (59), (61), (62), and (64). The form of
Eq. (30) is fixed by DCSB at the dressed-quark level. The
forms of Egs. (59), (61), (62), and (64) are determined by
the axial-vector Ward-Green-Takahashi identity at the
nucleon level, compliance with which is itself driven by
the dressed-quark-level expression of DCSB. Of these five
terms, Eq. (30), which generates the diagram 1 part in
Fig. 3, produces the dominant contribution at all values of
Q?. All other contributions are soft, providing symmetry-
constrained contributions for Q2 ~ 0, but dropping away
more rapidly than the Eq. (30) contributions as Q2

increases. Thus, ratios of the type |column 7n/column 1],
n=2,...,6, formed from the entries in row 3 of Table I,
provide upper bounds on the magnitudes of every such
Gs(Q?)-related diagram contribution ratio V¥ Q% > 0.
Equation (9) also explains the success of the PPD Ansatz
[Eq. (74)] for Gp(Q?) on Q? > 0. In fact, by using Eq. (10)
and the Goldberger-Treiman relation [Eq. (11)], whose
accuracy is displayed in Fig. 11B, Eq. (9) entails

2
Gp(Q?) = 45? Ga(0Y)
m;2z GnNN(Qz)/GnNN(O)
T A O

These identities are to be compared with the PPD
assumption, Eq. (74):

4 2
GHQ") = g7 2 GalQ) (E4a)
4 2 2
- %GA(QZ) {1 _szTﬂm}j . (E4b)

Forming the ratio of these two expressions, one finds

86,(0?) = giggzg -1 (E5a)
_ m_zzr _ GﬂNN(QZ)/GﬂNN(O)
~ 0 [l GA(0%)/GA (0) ] (ESb)
Now,
b (2 0) = cm2li -~ (E6)

where 7,yy, 74, are the associated form factor radii.
Inserting typical values for these quantities,

|66,(0* ~0)| < 0.01. (E7)
Furthermore, using the fact that both G,(Q?) and
G,yn(0Q?) possess the same power-law behavior at large

Q?, and approximating each by a dipole function [Egs. (70)
and (84)], then

m/@=omyz [ A
56, (02)"'2 —[1— o (E8)

0 My |

Hence, the ratio very rapidly approaches unity as Q2
increases. Additional details are presented in connection
with Eq. (75).

Collecting these remarks, one arrives at the following
observations. (a) G,(Q?) is regular on Q? > —m2 and
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receives no contributions from any term of the form
0,/ [@% + m2] in general and using our current construc-
tion. (b) The product Q>Gp(Q?) is directly proportional to
G4 (Q?) in the chiral limit, and hence, likewise, receives no
pion pole contributions. At the physical current-quark
mass, Q°Gp(Q?) retains its regular part but receives, in
addition, the same pion pole contributions as Gs(Q?): these

corrections vanish as m2/[Q* + m2]. (c) The pion pole
pieces of our current construction are largely lodged in
Gs(Q?). The feed-in to Gp(Q?), required by Eq. (9), is
indicated by Table I. Given that diagram 1 in Fig. 3 is
always dominant, the Table I ratios |column n/column 1],
n=72,...,6, are upper bounds on the magnitude of the
given ratio V Q% > 0.
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