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We determine the chiral phase structure of (2þ 1)-flavor QCD in dependence of temperature and the
light flavor quark mass with Dyson-Schwinger equations. Specifically, we compute the renormalized chiral
condensate and its susceptibility. The latter is used to determine the (pseudo)critical temperature for general
light current quark masses. In the chiral limit we obtain a critical temperature of about 141 MeV. This result
is in quantitative agreement with recent functional renormalization group results in QCD and is compatible
with the respective lattice results. We also compute the order parameter potential of the light chiral
condensate, map out the regime in the phase diagram which exhibits quasi-massless modes, and discuss the
respective chiral dynamics.
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I. INTRODUCTION

The dynamics of QCD matter in heavy ion collisions
(HIC) depends crucially on the chiral properties of QCD
at finite temperature and density. For physical quark
masses, QCD exhibits a smooth chiral crossover behavior
from the perturbative high temperature region of gluons
and nearly massless light quarks to the hadronic phase
with a sizable spontaneous chiral symmetry breaking (for
reviews see [1–10]).
Naturally, the small current quark mass of the light up

and down quarks begs the question, whether QCD under
the extreme conditions of a HIC is close to the chiral limit.
A positive answer allows and supports the phenomeno-
logical access to the dynamics in HICs via systematic chiral
expansions, similar to the extremely successful chiral
perturbation theory (χPT) in the vacuum. The latter is
based on an expansion in the pion mass that works in the
regime with quasi-massless pions. Consequently for the
answer to the above phenomenologically important ques-
tion we have to map out the regime with quasi-massless
modes in the phase diagram of QCD.
Moreover, in the chiral limit QCD is expected to exhibit

a second order phase transition, and the value Tc0 of the
critical temperature, the respective universality class, as
well as the size of the critical regime may lead to constraints
on the location of the potential critical end point (CEP) at

finite density. This has led to detailed studies of the current
quark mass dependence of the chiral crossover, the mag-
netic equation of state of QCD; for recent works with
functional QCD and lattice QCD, see [11–13]. While not
being fully conclusive, functional studies in low energy
effective theories of QCD suggest that the critical regime is
rather small and is restricted to pion masses lower than
mπ ∼ 1–10 MeV (see e.g., [14–16], and for a recent review
[17]). Given that the respective low energy effective
theories encode the full chiral dynamics of QCD, it is
unlikely that the inclusion of gluonic fluctuations lead to an
increase of the scaling window, and this is corroborated by
a recent study in functional renormalization group (fRG)
study in first principle QCD [12].
In the present work we access the magnetic equation of

state within a generalized functional approach that com-
bines Dyson-Schwinger equations (DSE) and the fRG. This
approach was set up and used in [18–20] for the phase
structure of QCD as well as quantitative computations of
QCD correlation functions in the vacuum. It extends and
utilizes previous computations in first principles QCD with
functional approaches; for fRG works see e.g., [21–35] and
for DSE works see e.g., [8,9,36–53]. For related lattice
studies see e.g., [11,54–64].
Specifically, we compute the quark and gluon propa-

gators and the quark-gluon vertex at finite temperature. The
quark propagator is then utilized to compute the renormal-
ized light chiral condensate, whose thermal susceptibility
defines the chiral crossover temperature. With these observ-
ables we discuss the magnetic equation of state in com-
parison to other functional and lattice results, and deduce
the respective chiral transition temperature in dependence
of the light current quark mass. We also compute the order
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parameter potential of the light chiral condensate, and we
discuss the regime in the phase diagram of QCD which
exhibits quasi-massless modes.
In Sec. II we briefly review the functional approach used

here. The definition of the chiral condensate and the
determination of the current quark mass parameters at
the physical point are discussed in Sec. III. There, we also
evaluate the systematic error of the setup. In Sec. IV we
compute the magnetic equation of state as well as the mass
dependence of the transition temperature. These results are
compared to other functional QCD results as well as lattice
results, also leading to an estimate for the critical temper-
ature in the chiral limit with a combined systematic error
estimate. In Sec. V we derive a formula for the order
parameter of the light chiral condensate, and compute it
together with simple polynomial fits. Moreover, we also
parametrize the current quark mass dependence of the light
chiral condensate, and we use these results in combination
to estimate the validity regime of chiral expansion schemes.
In Sec. VI we summarize our findings.

II. fRG-ASSISTED DYSON-SCHWINGER
EQUATIONS

In this Section we review the functional QCD approach
used here and put forward in [18–20]. In this approach the
DSEs at finite temperature and density have been expanded
about QCD within another parameter set (e.g., flavor,
temperature, density). In [18,19], the correlation functions
of two-flavor QCD in the vacuum have been used as input,
obtained in the fRG approach [31]. In the present work we
also utilize (2þ 1)-flavor data from [19] and the recent
(2þ 1)-flavor vacuum QCD precision data from [20]. The
latter data are in particular used as benchmark tests.
Specifically we use 2- and (2þ 1)-flavor vacuum data of

the gluon propagator and the quark-gluon vertex. This input
enables us to compute the quark propagator in the vacuum
from its gap equation (see Fig. 1). The quantitative
accuracy of this result is an important self-consistency
check of the approach. Then the gap equation is solved at
finite temperature for different current quark masses. This
requires the gluon propagator and quark-gluon vertex at
finite temperature, and we expand the respective DSEs
about two-flavor QCD, hence only solving for the quark
mass and temperature dependence (see Figs. 2 and 3).
In the following we briefly recapitulate our setup, and

more details can be found in [18–20].

A. Quark gap equation and chiral phase transition

The quark gap equation relates the inverse quark

propagator Γð2Þ
qq̄ to its classical counterpart Sð2Þqq̄ , to the

quark and gluon propagators, and to the classical and full
quark-gluon vertex (see Fig. 1). In the vacuum we write

Γð2Þ
qq̄ ðpÞ ¼ Zqðp2Þ½i=pþMqðpÞ�; ð1Þ

where

ΓðnÞ
Φi1

���Φin
ðp1;…; pnÞ ¼

δΓ½Φ�
δΦi1ðp1Þ � � � δΦinðpnÞ

ð2Þ

denotes the 1PI correlation functions of QCD, with ϕ ¼
ðAμ; c; c̄; q; q̄Þ; for more details see e.g., [18–20,30,33].
At finite temperature the rest frame singles out the

temporal direction, and we write

Γð2Þ
qq̄ ðpÞ ¼ Zk

qðpÞ½iγ0p0 þMqðpÞ� þ ZqðpÞiγ⃗p⃗; ð3Þ

where p0 are now thermal Matsubara frequencies ωn,

Aμ; c; c̄∶ωn ¼ 2πTn; q; q̄∶ωn ¼ 2πT

�
nþ 1

2

�
: ð4Þ

In Eq. (3), Zk
q is the wave function renormalization for

the mode parallel to the rest frame, and Zq ¼ Z⊥
q is the

wave function renormalization for the transverse modes
perpendicular to the rest frame. With the parametrization
Eq. (3), MqðpÞ is defined as the pole mass. The transverse
modes carry more weight in the DSE loop integrals, and we

shall use the approximation Zk
q=Zq ≈ 1 in the vertices. In

this approximation the difference between the longitudinal
color-electric and transverse color-magnetic dressings is
ignored. In Sec. III C the respective systematic error is
discussed in detail.
Within this approximation the quark DSE at finite

temperature reads

Γð2Þ
qq̄ ðp̃Þ − Sð2Þqq̄ ðp̃Þ ¼

XZ dq0
2π

Z
d3q
ð2πÞ3

�
GAA

ab
μνðqþ pÞ

×
λa

2
ð−igγμÞGqq̄ðqÞ½Γð3Þ

qq̄A�bνðq;−pÞ
�
:

ð5Þ

In Eq. (5), Sð2Þqq̄ is the inverse of the classical quark propagator,

and the full quark propagator Gqq̄ ¼ ð1=Γð2ÞÞqq̄ reads

Gqq̄ðqÞ ¼ −
Zk
qðpÞ½iγ0p0 −MqðpÞ� þ ZqðpÞiγ⃗p⃗
½Zk

qðpÞ�2½p2
0 þM2

qðpÞ� þ Z2
qðpÞp⃗2

: ð6Þ
FIG. 1. Quark gap equation. Lines with a blob are full
propagators, and that without is the classical quark propagator.
The vertex with a blob is the full quark-gluon vertex, and that
without is the classical one.
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Finally, the gluon propagator is defined by GAA ¼
ð1=Γð2ÞÞAA, and is detailed below [see Eqs. (8) and (9)].
All momenta are counted as incoming.
Equation (5) can be solved with the knowledge of the

gluon propagator GAA and the quark-gluon vertex Γð3Þ
qq̄A. In

Secs. II B and II C we detail how these correlation functions
at finite temperature are computed on the basis of the
vacuum two flavor fRG data from [30].

B. DSE for the gluon propagator

The DSE for the inverse gluon propagator for general
flavors Nf at finite temperature is expanded about that in
the vacuum for two-flavor QCD. Schematically this reads

Γð2Þ
AAðpÞjT;Nf

¼ Γð2Þ
AAðpÞj0;2 þ ΔΓð2Þ

AAðpÞ; ð7Þ

and leaves us with a DSE for the difference ΔΓð2Þ
AA between

the full inverse gluon propagator and that of vacuum
2-flavor QCD, depicted in Fig. 2.
At finite temperature, the gluon two-point function has

color-electric and color-magnetic components,

Γð2Þ
AAðpÞ¼p2½ZM

A ðpÞΠM
μνðpÞþZE

AðpÞΠE
μνðpÞ�þ

pμpν

ξ
; ð8Þ

with the color-magnetic dressing ZM
A and the color-electric

one ZE
A. In the present work we use the Landau gauge,

ξ → 0. The projection operators onto the color-electric and
color-magnetic directions in Eq. (8) read

ΠM
μνðpÞ ¼ ð1 − δ0μÞð1 − δ0νÞ

�
δμν −

pμpν

p⃗2

�
;

ΠE
μνðpÞ ¼ δμν −

pμpν

p2
− ΠM

μνðpÞ: ð9Þ

As discussed in detail in [18,19], such difference DSEs
are very stable and converge very quickly in an iterative
procedure about the initial value ΔΓðnÞ ¼ 0. This can be
traced back to the relatively small size of the thermal
correction of the gluon propagator and quark-gluon
vertex for the temperatures of interest (see e.g.,
[9,12,18,19,33,44]). The small size of the corrections also
supports a further approximation of the difference DSE for
the gluon propagator with

T
X
ωn

loopTðq; pÞ −
Z

dω
2π

loopvacðq; pÞ

¼
�
T
X
ωn

loopvacðq; pÞ −
Z

dω
2π

loopvacðq; pÞ
�

þ T
X
ωn

½loopTðq; pÞ − loopvacðq; pÞ�

≈
�
T
X
ωn

loopvacðq; pÞ −
Z

dω
2π

loopvacðq; pÞ
�
; ð10Þ

with q0 ¼ ωn at T ≠ 0 and q0 ¼ ω at T ¼ 0, and
loopðq; pÞ stands for the loops in the second line of

Fig. 2. The third line vanishes for ΔΓð2Þ
AA ¼ 0, and is

negligible for small ΔΓð2Þ
AA. Accordingly we have dropped

it, but we have monitored its irrelevance in our explicit
computation. The results for the gluon propagator in this
approximation agree well with respective finite temperature
results (see [18,20,33]), and for more details we refer to
these works.
Moreover, as in [18,19] we drop the difference between

color-magnetic and color-electric dressings: only the color-
magnetic dressing ZE

AðpÞ is computed, and the color-
electric one is approximated as ZE

AðpÞ ≈ ZM
A ðpÞ. This is

the same approximation also used for the quark propagator,
and the respective systematic error or rather its smallness is
discussed in Sec. III C.

C. Quark-gluon vertex at finite T

The DSE for the quark-gluon vertex for (2þ 1)-flavor
QCD at finite temperature is expanded about its 2- or
(2þ 1)-flavor counterpart in the vacuum, computed
in [30] (2-flavor) and [18–20,33] [(2þ 1)-flavor] (see also
[51,53,65,66]). We have checked that the results of expan-
sions about the 2- and (2þ 1)-flavor vacuum results agree
quantitatively. The expansion about (2þ 1)-flavor vacuum
QCD reads

Γð3Þ
qq̄Aðp1; p2ÞjT;Nf

¼ Γð3Þ
qq̄Aðp1; p2Þj0;Nf

þ ΔΓð3Þ
qq̄Aðp1; p2Þ

ð11Þ

for the light quarks, q ¼ l, and the strange quark, q ¼ s.

FIG. 2. Gluon DSE for the difference ΔΓð2Þ
AA between the full

gluon propagator and the vacuum (2þ 1)-flavor gluon propaga-
tor. Lines and vertices with black blobs are full Nf ¼ 2þ 1

propagators and vertices at finite temperature. Lines and vertices
with gray blobs are full vacuum propagators and vertices for
Nf ¼ 2. The square bracket contains the temperature fluctuations
and does not require renormalization. We have dropped the part
of the classical gluon propagator that carries the renormalization
of the strange loop.
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At finite temperature the vertex has color-electric and
color-magnetic components. We identify them within our
Oð4Þ-symmetric approximation, as the splitting is weak
and we only keep the vacuum tensor structures. A complete
basis in the vacuum with 12 basis elements is given by the
eight transverse and four longitudinal projections of the
Lorentz tensors

½T ð1Þ
qq̄A�μðp;qÞ¼−iγμ; ½T ð5Þ

qq̄A�μðp;qÞ¼ i=kþkμ−;

½T ð2Þ
qq̄A�μðp;qÞ¼kμ−; ½T ð6Þ

qq̄A�μðp;qÞ¼ i=k−kμ−;

½T ð3Þ
qq̄A�μðp;qÞ¼=k−γμ; ½T ð7Þ

qq̄A�μðp;qÞ¼ i
2
½=p;=q�γμ;

½T ð4Þ
qq̄A�μðp;qÞ¼=kþγμ; ½T ð8Þ

qq̄A�μðp;qÞ¼−1
2
½=p;=q�kμ−; ð12Þ

multiplied by the Gell-Mann matrices λa (see e.g., [18,30]).
The transverse projection operator is denoted by Π⊥

μνðkÞ ¼
δμν − kμkν=k2, and the longitudinal one is given by
Πk ¼ 1 − Π⊥. In the Landau gauge only the transverse
part of the vertex enters the (transverse) DSEs, and hence
suffices to access the full dynamics of QCD. With Eq. (12)
the full transverse quark-gluon vertex is given by

½Γð3Þ
qq̄A�aμðp; qÞ ¼

λa

2

X8
i¼1

λðiÞqq̄Aðp; qÞΠ⊥
μνðkþÞ½T ðiÞ

qq̄A�νðp; qÞ:

ð13Þ

Equation (11) leaves us with the task of solving the
Dyson-Schwinger equation for the difference. In the
present work we take into account all tensor structures
in the diagrams in the DSE for the quark-gluon vertex.
We derive the DSE by considering the functional DSE
for δΓ=δAμ and then taking q; q̄-derivatives. Within this
hierarchy we have only considered the diagrams that have a
perturbative one-loop counterpart, and the resulting DSE is
depicted in Fig. 3. The diagrams dropped can be partly
understood or taken into account as vertex dressings of the
bare vertices in Fig. 3.
In our opinion, the most prominent omission in the

present approximation is the one-loop diagram with a four-
quark vertex that carries (off-shell) two-quark resonances
such as mesons and diquarks. Note that this omission
only concerns the thermal part of the vertex, in the fRG
computation underlying the input data in 2-flavor vacuum
QCD [30], and the Fierz-complete four-quark interaction
vertex has been taken into account. In any case, the
omission of the thermal correction of the dominant sca-
lar-pseudoscalar channel (σ-pion) potentially leads to an
underestimation of the infrared dynamics of QCD, and in a
linear estimate it enhances chiral symmetry breaking and
hence the critical temperatures. Moreover, these contribu-
tions are relevant for the emergence of critical scaling
including the values of the critical exponents in the chiral

limit; see in particular [38]. Their inclusion is the subject of
ongoing work.

III. PHYSICAL POINT AND ERROR ESTIMATES

In Sec. III A we define our order parameter for the chiral
phase transition, the renormalized chiral condensate. We use
the physical point in the vacuum for setting our scales (see
Sec. III B), and discuss estimates of the systematic error of
the magnetic equation of state and deduced observables such
as the chiral transition temperature in Sec. III C.

A. Chiral transition temperature and the
renormalized chiral condensate

The chiral transition temperature is determined by the
peak of the susceptibility of the renormalized light chiral
condensate Δl;R, with l ¼ u, d in the present isospin-
symmetric approximation, defined by the thermal part of
the light chiral condensate Δl,

Δl;R ¼ 1

N R
½ΔlðTÞ − Δlð0; 0Þ�; ð14aÞ

with

Δl ≃ −
1

2
T
X
n∈Z

Z
d3q
ð2πÞ3 trGll̄ðqÞ; ð14bÞ

where the factor 1=2 in Eq. (14b) cancels that from the sum
over the light flavors and Gll̄ is the light quark propagator
[see Eq. (6)]. We remark that the definition of the chiral
condensate in Eq. (14b) lacks the further factor ml used in
[12]. While such a definition ensures RG invariance of the
condensate, the present definition is that used also in chiral
perturbation theory. Moreover, Eq. (14b) has to be renor-
malized; for a respective detailed discussion within the

FIG. 3. Quark-gluon DSE for the difference ΔΓð3Þ
qq̄A between

the full quark-gluon vertex (with black blob) and the vacuum
(2þ 1)-flavor quark-gluon vertex (with gray blob). The temper-
ature fluctuations in the square bracket do not require renorm-
alization, as in the gluon DSE Fig. 2.
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present approximation see [20]. For the present work the
details of the renormalization are not relevant: it drops out
in Eq. (14a) due to the subtraction, which renders Δl;R

finite. The factor N R in Eq. (14a) is a convenient
normalization which leaves Δl;R dimensionless, and we
choose N R ¼ m4

π .

B. Physical point

In [20] it has been shown that the current approximation
leads to a chiral condensate in quantitative agreement with
recent lattice estimates (see e.g., the recent FLAG review
[67]). We expect that this accuracy propagates to the
renormalized chiral condensate, built on the same approxi-
mation scheme. Note, however, that the difference defi-
nition eliminates the explicit dependence of Δl;R on the
vacuum condensate.
For the estimate of the pion mass we apply the one-loop

formula from χPT [68] (valid in 2-flavor QCD),

m2
π ¼ M2

�
1 −

x
2
Log

Λ2
3

M2
þOðx2Þ

�
;

fπ ¼ fπ;χ

�
1þ xLog

Λ2
4

M2
þOðx2Þ

�
; ð15aÞ

with the expansion parameter x that depends on the mass
parameter M. The latter is the tree-level value of the pion
mass, given by the Gell-Mann–Oakes–Renner (GMOR)
relation (see e.g., [69,70], and for reviews see [71–73]).
We have

M2 ¼ 2Δl;χ

f2π;χ
ml; x ¼ M2

ð4πfπ;χÞ2
: ð15bÞ

Equation (15a) also depends on the low energy constants

Λ3 ¼ 640ð19Þ MeV; Λ4 ¼ 1030ð21Þ MeV; ð15cÞ

which can be computed in a Bethe-Salpeter–DSE
approach. Here we simply use the recent FLAG estimates
in [67] for a discussion of the dependence on the RG
scheme (see [20]). There, the Λn follow from l̄n ¼
logΛn=mπ;phys and l̄3 ¼ 3.07ð64Þ, and l̄4 ¼ 4.02ð45Þ for
(2þ 1)-flavor QCD. For sufficiently light quark masses ml

considered here theOðm3
l Þ is known to be small both on the

lattice [67] and in quantitative Bethe-Salpeter computations
(see e.g., [73,74]). For the decay constant, we utilize the
FLAG results in [67] for the pion decay constants in the
chiral limit,

fπ;χ ¼ 86.7 MeV; ð15dÞ

in the isospin symmetric limit. The vacuum quark con-
densate Δl;χ can be extracted from the UV behavior of the
corresponding constituent quark mass (see [20]). In the

vacuum, the current approximation reduces to the same
quantitatively reliable approximation used in [20].
However, in the present work we expand the system of
equations about the fRG vacuum solution for 2-flavor
QCD, while in [20] the DSE for the quark-gluon vertex was
solved. Accordingly, the present benchmark results in the
vacuum are in quantitative agreement with that in [20],
but not identical. Note that this remarkable agreement is
yet another self-consistency check of functional methods.
In the chiral limit we find

Δl;χðμÞ ¼ ð308.9ð8Þ MeVÞ3; ð16Þ

in quantitative agreement with the lattice estimate
Δl;χðμÞ ¼ ð315ð6Þ MeVÞ3 and the DSE results in [20].
The above relations allow us to fix the physical point:
the current quark masses mqðμÞ with an RG scale of
μ ¼ 40 GeV are fixed such that we have in the isospin
symmetric limit with ml ¼ mu ¼ md

mπ;phys ¼ 138 MeV;
ms;phys

ml;phys
¼ 27: ð17aÞ

This leads us to

ml;physðμÞ¼2.49MeV; ms;physðμÞ¼66.7MeV; ð17bÞ

with the prediction

fπ;phys ¼ 92.4 MeV; ð17cÞ

in line with the physical value and the lattice estimate
in [67]. We emphasize that this perfect agreement origi-
nates in the quantitative agreement of the chiral condensate
in the chiral limit, Δl;χðμÞ in Eq. (16), from the present DSE
computation with the respective lattice estimate. As dis-
cussed in [20], Δl;χðμÞ is the benchmark observable in the
vacuum which shows the quantitative reliability of the
present approximation of the DSE and fRG in [30].
Additionally, the correct value for fπ;phys is a test of the
2-flavor approximations used in Eq. (15a).

C. Systematic error estimate

The present functional approach, or rather the approxi-
mation level of the systematic vertex expansion used here,
has passed successfully numerous benchmark compari-
sons, a systematic comparison can be found in [20], and a
discussion of the systematic error estimate is done in
Sec. III C. Apart from the impressive quantitative agree-
ment of benchmark observables such as the chiral con-
densate, results of different functional approaches that
constitute different resummation schemes also agree quan-
titatively. In conclusion, we consider the approximation
level used here as sufficiently converged in the vacuum.
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In turn, at finite temperature we use additional approx-
imations. In the following we discuss the ensuing system-
atic error of the present approximation level. The most
relevant sources for the systematic error are the following:

(i) No feedback of the order parameter potential:
feeding back the order parameter potential into
the diagrams encodes the critical dynamics beyond
mean field, and we expect deviations from the full
result in the scaling regime for ml → 0.

(ii) No thermal splits in the vertices, most prominently
in the quark-gluon vertex: we identify electric and
magnetic dressings and compute this uniform dress-
ing by magnetic projections.

Let us first discuss the impact of (i): The quantitative access
to the critical dynamics for ml → 0, and hence mπ → 0,
requires the inclusion of a dynamical order parameter
potential. Heuristically speaking the latter takes into
account the multiquark scatterings of the resonant pion
channel that become relevant in the limit of infinite
correlation length. This approximation is well-tested in
the vacuum, and the neglection of the chiral dynamics
encoded in the higher multiquark scattering vertices is
negligible there. In the quantitative fRG studies [24,30],
the higher-order scatterings have been taken into account
systematically via dynamical hadronization in terms of the
scattering of the respective resonant interaction channels
(for a recent review see [75]). This allows a quantitative
access to the critical chiral dynamics, and the effects on
vertices and propagators are very small: The respective
changes are well within the systematic error estimates for the
given approximations. Moreover, the results for quark and
gluon propagators as well as the quark-gluon vertex with the
full order parameter potential are in quantitative agreement
with that of the DSE approach used here (see [20]). In the
context of the present work this is most impressively
confirmed by the chiral condensate in the chiral limit,
Δl;χ in Eq. (16), which is in quantitative agreement with
other benchmark computations. In conclusion, the critical
dynamics does not affect the results in the vacuum, and the
scaling regime for ml → 0 is very small.
At finite temperature these findings strongly suggest that

the higher order multiquark scatterings only play a rôle in
the critical scaling regime for temperatures T close to the
chiral phase transition temperature Tc0 in the chiral limit
and small light current quark masses ml → 0. These higher
scattering processes have been taken into account in [12]
for pion masses mπ ≥ 30 MeV without any sign of criti-
cality. Taking also into account the small difference
between mean-field scaling and full Oð4Þ or Oð2Þ scaling,
we estimate that the systematic error of neglecting the
higher order multiquark scatterings is negligible also for
mπ < 30 MeV. Note that this estimate applies to the
absolute value of observables such as Tc as a function
of the light quark mass. As already emphasized at the end
of Sec. II C, the approximation (i) has to be improved for

the access to critical scaling, and in particular for a
computation of the critical exponents (see [38]). This is
the subject of ongoing work.
In summary, we are led to a systematic error estimate for

(i), which is subleading for the observables studied here and
is dominated by other approximation effects.
We proceed with the evaluation of (ii), the missing

thermal splits in propagators and vertices. This affects the
contribution of the zeroth Matsubara frequency ω0 that is
either ω0 ¼ 0 for the gluons and ghost or ω0 ¼ πT for
the quarks. There, the spatial momentum dependence is
changed for q⃗2 ≲ ð2πTÞ2. In turn, the thermal effects for
higher Matsubara frequencies are negligible. Within dia-
grams, this thermal change of correlation functions is
suppressed with the measure factor q⃗2 of the spatial
momentum integration. This combination of the decay of
thermal contributions for q⃗2 → ∞ and its phase space
suppression for q⃗2 → 0 suggests the feasibility of Oð4Þ-
symmetric approximations. Here, Oð4Þ refers to the
Euclidean spacetime symmetry in the vacuum. In the
present work we implement this idea with using projections
on the magnetic (spatial) dressings of propagators and
vertices. Then, the electric dressing is identified with the
magnetic one. The above line of reasoning has been
checked within different theories within the functional
renormalization group approach [75], including Yang-
Mills theory at finite temperature [31]. Finally, we have
extended the approximation used in the present work
with the thermal splits for vertices and propagators, which
will be discussed in detail in a forthcoming work. The
respective results corroborate the arguments above and
lead to negligible modifications of the observables includ-
ing the chiral condensate. Moreover, the crossover tem-
perature (for physical quark masses) only increases by less
than 3 MeV [76].
Finally, we discuss the systematic error estimate for

such an approximation. To begin with, the above sup-
pression of thermal contributions for q⃗2 ≲ ð2πTÞ2 is
undone for correlation functions, whose functional rela-
tions (fRG or DSEs) have sizable infrared contributions
for q⃗2=m2

gap → 0. Here, m2
gap is the characteristic mass

scale of QCD: below this mass scale, momentum fluctua-
tions do not contribute significantly to the physics. This
entails thatm2

gap is triggered by the gluon mass gap as well
as the constituent quark mass. Note, however, that such a
survey also has to take into account effective degrees of
freedom, and in particular the pion. It is here where
(i) comes into play. Again, from detailed studies in the
vacuum we know that the characteristic scale for fluctua-
tions for the quark mass function and consequently chiral
condensate is mgap ≈ 1 GeV. This structural analysis is
well confirmed within fRG studies, where momentum
fluctuations are resolved iteratively momentum shell by
momentum shell for q⃗2 ≈ k2, the latter being the infrared
cutoff scale: the infrared decay of momentum fluctuations
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is clearly visible. The above argument also entails, that a
phenomenological infrared enhancement of vertices, as
often used in functional studies, has to be taken with a
grain of salt as it may overenhance thermal (and chemical
potential) effects.
Apart from these structural arguments the present setup

offers several simple self-consistency checks: First, instead
of using the magnetic projection for the computation of the
Oð4Þ-symmetric dressing, either we can average over all
Euclidean directions or we can even take the electric
projection. We have checked that this only leads to
variations of the chiral transition temperature of a few
mega-electron volts, indeed safely below 5 MeV. Second,
the slope or curvature of the chiral transition temperature
TcðμBÞ at the vanishing baryon chemical potential, μB ¼ 0,
is a direct check of the correct infrared dynamics at finite
temperature and density: despite the differences, i.e., the
lack of direct density contributions to gluons and further
correlations with the vanishing baryon number, thermal
and density effects share the same tendencies. In particular,
increasing the infrared vertex strength of the quark-gluon
vertex increases the size of thermal and chemical potential
effects. Within the present approximation level of the DSE
approach to QCD that underlies the current study, it is
quantitatively agreeing with the lattice prediction [18,19].
This also holds true for the related fRG study in [33],
which underlies the investigation of the magnetic equation
of state in [12].
In summary, the Euclidean Oð4Þ-symmetric approxima-

tion used here is sound, and the systematic error estimate is
achieved by applying an artificial infrared enhancement
to the quark-gluon vertex that leads to a variation of the
chiral transition temperature Tc at physical quark masses of
5 MeV. The respective systematic error band is then shown
in our depiction of the results for the chiral transition
temperature (see Figs. 5 and 6).

IV. MAGNETIC EQUATION OF STATE

The first main result is given by the chiral transition
temperature TcðmlÞ in dependence of the ratioH ¼ ml=ms
of current quark masses that can be derived from the
magnetic equation of state: the transition temperature
is obtained from the peak of the susceptibility of the
renormalized light chiral condensate defined in
Sec. III A. The results are discussed in Sec. IVA, includ-
ing a comparison with the respective lattice results
[11,77–80], as well as the functional QCD study (fRG)
in [12]. For the comparison with the latter results we also
present TcðmπÞ. This requires mπðmlÞ, for which we use
Eq. (15a), valid at one-loop up to Oðx3Þ. The latter higher
order terms are known to be small for the pion masses
mπ ≤ 140 MeV considered in [12]. In Sec. IV B we
discuss constraints on the equation of states as well as
the merits of future combined studies, utilizing both
functional results and lattice simulations.

A. Transition temperature and transition line

The chiral transition temperature is computed from the

peak of the renormalized light quark susceptibility χðl;RÞM ,
given by

χM ¼ χðl;RÞM ¼ −
∂Δl;R

∂ml
: ð18Þ

With Eq. (18) we define the chiral transition temperature as

the peak position of χðl;RÞM ,

Tc ¼ Tðl;RÞ
c ¼ Tpeak;

∂χðl;RÞM

∂T
����
T¼Tpeak

¼ 0: ð19Þ

In [12], the magnetic susceptibilities for the light chiral

condensate χðlÞM and the reduced chiral condensate χðl;sÞM
have also been considered. There, it has been shown that

the respective transition temperatures TðiÞ
c with ðiÞ ¼

ðlÞ; ðl; RÞ; ðl; sÞ agree well in the crossover regime.

Evidently, TðlÞ
c ¼ Tðl;RÞ

c . The second approximate relation

Tðl;sÞ
c ≈ Tðl;RÞ

c follows from the fact that the transition
temperatures only vary within the width of the crossover
in the first place, and the thermal dependence of the strange
quark condensate is far reduced. Moreover, all transition
temperatures agree trivially in the second order regime.
We have benchmarked our scales in the vacuum with

the physical point with an isospin-symmetric pion mass,
mπ;phys ¼ 138 MeV [see Eq. (17)]. The chiral transition
temperature at the physical point now follows as

Tc ¼ 154.7þ5
−5 MeV; ð20Þ

with the systematic error estimate (ii) discussed in
Sec. III C. It encodes the systematic error of the strength
of the quark-gluon coupling. The latter has been varied
such that Tcðmπ;physÞ for physical pion masses with
�5 MeV.
In Fig. 4 we depict the chiral susceptibilities for

mπ ¼ 30, 55, 80, 140 MeV in comparison to the fRG
results in [12]. The respective transition temperatures are
depicted in Fig. 5 as a function of H ¼ ml=ms. One clearly
sees the

ffiffiffiffi
H

p
behavior. Note that different definitions of the

transition temperature lead to minor changes of the location
of phase transition in the crossover regime, but they all
agree in the second order regime in the chiral limit. We also
depict the pion mass, obtained in the approximation
Eq. (15a), as a function of the current quark mass in Fig. 5.
In the present approximation to theml-dependence of the

pion mass, Eq. (15a), evidently mπ ∝
ffiffiffiffi
H

p
holds close to

the chiral limit. In turn, a linear dependence mπ ∝ H
emerges for asymptotically large light current quark
masses. Together with the approximate, but quantitative,
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ffiffiffiffi
H

p
behavior of the chiral transition temperature, this leads

us to the linear dependence Tc ∝ mπ close to the chiral
limit. The linear dependence is clearly visible in Fig. 6 and
holds true even up to H ¼ 1, that is, ml ¼ ms.
In the scaling regime of QCD close to the chiral limit, the

chiral phase transition temperature should show critical
scaling with Tc ∼H1=ðβδÞ. Here, the critical exponents β, δ
determine the universality class of QCD in the chiral limit:
ms fixed, H → 0.
A detailed discussion in view of the universality class of

QCD in the chiral limit of the functional QCD results in the

present work and in [12], as well as the lattice results of
[11,80], is given in Sec. V. For the time being, we just
remark that the approximation to functional QCD with the
fRG in [12] incorporates criticality in terms of the dynamics
of the order parameter and the order parameter potential.
This has been tested both in generic low energy effective
theories and in QCD (see [75]). Consequently, if critical
scaling is present in QCD, it is well-captured within the
approximation to QCD used in [12], leading to nontrivial β,
δ’s. Note also that the extraction of nontrivial scaling is
technically not challenging in the fRG approach. In short,
nontrivial scaling including subleading contributions can
hardly be overlooked in fRG computations.
In [12] it has been shown that critical scaling is absent (in

the approximation used there) at least for pion masses
mπ ≳ 30 MeV. Hence, the results in [12] do not suggest a
large scaling regime. This corroborates previous detailed
scaling analyses including the study of finite volume
scaling in advanced low energy effective theories of
QCD within the past two decades (see in particular [16]
and the review [17]).
In conclusion, the above-mentioned intricacy of the

determination of the universality class is of subleading
importance for the extraction of the chiral transition temper-
ature in the chiral limit. Owing to the small critical regime
and the proximity of the critical scaling to the mean-field
one, we arrive at a critical temperature in the chiral limit of

Tc0 ¼ 141.3þ3.0
−3.3 MeV: ð21Þ

The error estimate in Eq. (21) is derived from the systematic
error estimate (ii), leading to an error of �5 MeV for the
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FIG. 5. Chiral transition temperature for Nf ¼ 2þ 1 flavors as
a function of H ¼ ml=ms in comparison to the fRG results from
[12]. For the definition of Tc see Eq. (19). Both results are well
approximated by c

ffiffiffiffi
H

p
for H ≲ 0.25: the inset shows Tc from the

present work as a function of
ffiffiffiffi
H

p
, and cDSE

ffiffiffiffi
H

p
with

cDSE ¼ 72 MeV. The blue error band is a systematic error
estimate on the DSE results: it is obtained by varying the overall
strength of the quark-gluon coupling such that TcðmπÞ changes in
a range of Tc ¼ 155� 5 MeV.
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FIG. 4. Temperature dependence of the renormalized magnetic
susceptibility χðl;RÞM , Eq. (18), for various pion masses. The results
are compared to the respective fRG results [12].
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FIG. 6. Chiral transition temperature for Nf ¼ 2þ 1 flavors as
a function of the pion mass in comparison to the fRG results from
[12]. Tc ∝ mπ is a very good approximation for H ≲ 0.25. The
inset shows the pion mass as a function of H ¼ ml=ms within
χPT [see Eq. (15)]. The blue error band is a systematic error
estimate on the DSE results: it is obtained by varying the overall
strength of the quark-gluon coupling such that TcðmπÞ changes in
a range of Tc ¼ 155� 5 MeV.
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physical point [see Eq. (20)]. The critical temperature in
the chiral limit, Eq. (21), agrees quantitatively with the
fRG estimate in [12], while it is consistent with the lattice
estimates in [11] with Tc0 ¼ 132þ3

−6 MeV and in [80] with
Tc0 ¼ 134þ6

−4 MeV.Weemphasize that the coincidenceof the
chiral transition temperature in the chiral limit as well as
for all light current quarkmasses investigatedwith the fRG
results is rather nontrivial in view of the different approx-
imations involved: while the present work includes, in
contradistinction to [12], the full quark-gluonvertex for all
temperatures, the fRG computation in [12] includes multi-
scattering vertices of the scalar-pseudoscalar four-quark
channel (σ and pion). The latter allows for a quantitative
access to criticality and the size of the scaling regime,
which is missing in the present work. In combination, a
consistent picture emerges: the scaling regime is rather
small, and the largest systematic error left within func-
tional approaches concerns the slope of the chiral tran-
sition temperature TcðHÞ.

B. Combined error estimate
for the chiral transition temperature

This situation calls for a combined functional-lattice
study: the chiral limit (and the continuum limit) are difficult
to access within lattice computations, while functional
computations are well-controlled in the chiral limit.
However, lattice computations provide benchmark results
for current quark masses, where the continuum extrapola-
tion can safely be done. Given the simple dependence
of Tc on the current quark mass, as predicted by functional
approaches, a specifically important benchmark result is
that of the slope of TcðHÞ in this regime. This goes beyond
the scope of the present work, and here we only present a
preliminary discussion on the basis of the existing func-
tional and lattice data.
To begin with, we list the data of the current computation

in comparison with the fRG results [12] and lattice results
[11,80] in Table I. Given the long regime with linear
dependence of TcðmπÞ on the pion mass (or a square root
dependence on the light current quark mass) discussed in
the last section, we consider

DðmπÞ ¼
TcðmπÞ − Tc0

Tc0
; ð22Þ

the weighted difference of the transition temperatures in the
chiral limit and at the physical point. In Eq. (22) the errors
stem from the systematic error estimate related to (ii) dis-
cussed in Sec. III C. For the sake of a direct comparison to
the fRG and lattice results we should use the transition
temperature for mπ ¼ 140 MeV. In the present work, the
respective critical temperature is given by

Tcðmπ ¼ 140 MeVÞ ¼ 155.4þ5.1
−5.5 MeV ð23Þ

(see also Table I). The error estimate in Eq. (23) is derived
from the systematic error estimate (ii), leading to an error
of �5 MeV for the physical point [see Eq. (20)]. With
Eqs. (23) and (21) we get

Dðmπ ¼ 140 MeVÞ ¼ 0.101þ0.013
−0.018 ; ð24Þ

where the error estimate derives from that of Tc0 in
Eqs. (21) and (23). Note also that the ratio grows with
the increasing coupling strength of the quark-gluon vertex.
The result Eq. (24), obtained in the present DSE

approach, has to be compared with the respective predic-
tions from the fRG approach in [12] and lattice predictions
[11,80] in Table I. While the functional results are in
quantitative agreement, the lattice results and functional
results are still compatible, if one takes into account an
enlarged systematic error for the continuum and infinite
volume extrapolation on the lattice as that indicated in
Table I. In our opinion, such an enlarged systematic error
follows straightforwardly from the very thorough studies of
the finite volume extrapolation in low energy effective
theories in [16,17,81]. Interestingly, these works indicate a
rather strong flattening of the ratio DðmπÞ, Eq. (22), in the
infinite volume limit. Moreover, whether such a strong
effect is also present in the continuum limit is difficult to
assess, leading to a conservative extension of the systematic
error in comparison to that shown in Table I
However, as discussed before, the large systematic error

can be crunched down in the combined analysis with

TABLE I. Crossover temperatures Tc, defined as the peak position of the reduced susceptibility, Eq. (19) with χðl;sÞM , for various pion
masses from the present computation (fRG-DSE) in comparison with results from [12] (fRG) and recent lattice QCD studies: Ref. [11]
(hotQCD) with Nτ ¼ 8, 12 and Ref. [80] (KLT) with a fixed scaled approach. These results are also depicted in Fig. 7.

DðπÞ mπ [MeV]

0 30 40 55 70 80 100 110 120 140 210 370

Tc[MeV] fRG-DSE 0.101 141.3 144.2 145.3 146.5 148.3 149.1 151.3 152.1 153.2 155.4 161.4 177.4
fRG 0.10 � � � 145.3 146.4 148.0 149.6 150.5 152.7 153.6 154.8 156.3 � � � � � �
hotQCD: Nτ ¼ 8 0.106 � � � � � � � � � 150.9(4) � � � 153.9(3) � � � 157.9(3) � � � 161.0(1) � � � � � �
hotQCD: Nτ ¼ 12 � � � � � � � � � � � � � � � � � � 149.7(3) � � � 155.6(6) � � � 158.2(5) � � � � � �
hotQCD: Cont. Ex. 0.189 132 � � � � � � � � � � � � 145.6(4) � � � 151.1(6) � � � 157(2) � � � � � �
KLT: fixed scale 0.143 � � � � � � � � � � � � � � � � � � � � � � � � � � � 157.8(7) 172(3) 197(2)
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functional approaches and lattice simulations: The situa-
tions suggest a precise lattice determination of the slope
within a current quark mass regime, in which the con-
tinuum limit can be taken safely. Moreover, this regime
should be within the regime of validity of the square root
dependence TcðmlÞ ∝

ffiffiffiffi
H

p
. For these current quark masses

chiral expansions such as chiral perturbation theory hold,
which is discussed in the next section.

V. QUASI-MASSLESS MODES AND CHIRAL
EXPANSIONS

The results for the magnetic equation of state and the
deduced chiral phase structure presented in the last section
and depicted in Figs. 5 and 6 await an explanation of the
underlying dynamics. In particular, we expect the occur-
rence of quasi-massless modes as well as (partial) chiral
symmetry [e.g., Oð4Þ or Oð2Þ] close to the chiral transition
line for sufficiently low current quark masses. The presence
of the latter is relevant for the reliability of chiral models
used for heavy ion phenomenology, and in particular for
chiral transport, e.g., [82–85]. Trivially, massless modes
and chiral symmetry are present in the critical scaling
regime close to the chiral limit. This has spurred many
studies of the size of the critical region, and we discuss our
present findings in Sec. VA in comparison to that in the
literature. In short, the present work is compatible with the
findings in previous functional studies that hint at a very
small critical region. However, we emphasize that the
validity of these chiral transport models or chiral fluid
dynamics is not restricted to the critical region, they simply
require quasi-massless modes and (partial) chiral sym-
metry. These properties may be present even far outside
the critical region and are tied to the chiral dynamics.
The details of the chiral dynamics are conveniently

accessed with the order parameter potential, VeffðΔlÞ.
Higher order terms corresponded to multiquark scattering
processes in the scalar interaction channel (see in particular
[33]). In Sec. V B we derive the order parameter potential in
the DSE approach for the first time, and we discuss the
relation of these processes for the scaling of the chiral
condensate as well as that of the transition temperature with
the light current quark mass. In Sec. V C the potential
different scaling regimes are then derived from the quark
gap equation as well as the magnetic susceptibility.
Finally, in Sec. V Dwe use our results on the temperature

and current quark mass dependence of the chiral conden-
sate as well as that on the effective order parameter
potential to estimate the size of the chiral regime with
quasi-massless modes and the subregimes with different
chiral dynamics.

A. Critical scaling and the size of the critical region

The size of the regime with critical scaling and the
respective universality class have been discussed at length

in the literature (see e.g., [11,12,80]). In particular, it has
been argued in [12] that the scaling window formπ → 0 in
(2þ 1)-flavor QCD is very small and critical scaling is
not visible for mπ ≳ 30 MeV. This finding in functional
QCD is supported by respective findings in low energy
effective theories; see e.g., [14–16] and the review [17].
In the latter works it is also shown that apparent critical
scaling can be found in regimes far away from the scaling
window: These regimes do not show critical scaling, but
it may require a high accuracy of the numerical data for
extracting its absence.
While this intricate situation has only been demonstrated

explicitly for low energy effective theories, the respective
theories carry the dynamics of the critical modes in QCD.
In terms of scaling, QCD should be seen as a driven model
where the driving terms are provided by the glue dynamics.
The latter dynamics does not trigger chiral criticality as it
carries no chiral symmetry. Typically, the scaling windows
of driven models with a noncritical driving force shrink
in comparison to the model in the absence of driving forces.
In conclusion, the above findings strongly suggest a
very small scaling window in QCD for pion masses
mπ ≪ mπ;phys.
The present DSE study cannot add much to this specific

question as the current approximation does not include the
full dynamics of the chiral critical modes in contradistinc-
tion to the fRG study in [12]. However, as shown in
Secs. IVA and IV B, the present results agree quantitatively
with that of [12], which corroborates the irrelevance of
critical scaling for the magnetic equation of state (EoS), the
transition temperature TcðHÞ, and in particular for Tc0.
Explicitly, we consider the finite volume expansion in the
three-dimensional (3D)Oð4Þ universality class as used e.g.,
in [11],

TpðH;LÞ ¼ Tc0

�
1þ zXðzLÞ

z0
H

1
βδ

�
þ cXH

1−1
δþ 1

βδ; ð25Þ

where L is the size of the system and L → ∞ in the
continuum limit. Equation (25) also holds for other
universality classes, and it requires the computation of
the two critical exponents β and δ. The former one can be
derived from the temperature dependence of the chiral
condensate in the chiral limit in the critical region with
T → Tc0 from below,

Δl;χðTÞ ∝
�
Tc0 − T
Tc0

�
β

; β ¼ 1

2
νðd − 2þ ηΔÞ; ð26Þ

with the spatial dimension d. The critical exponent δ
describes the scaling with the light current quark mass
in the critical region with H → 0 and T ¼ Tc0,

ΔlðTc0; HÞ ∝ H
1
δ; δ ¼ 2þ d − ηΔ

d − 2þ ηΔ
: ð27Þ
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In Sec. V C we will derive (noncritical) scaling laws for the
chiral condensates in order to determine the size of the
regime with massless modes rather than that with critical
scaling. In any case, for the present purpose of critical
scaling the asymptotic cases are the following:
(1) Asymptotically large critical region: Then all rel-

evant pion masses are covered by the scaling regime,
and we can globally use Eq. (25). In the case of 3D
Oð4Þ scaling, the scaling exponents are given by
β ¼ 0.379, δ ¼ 4.820, and 1=ðβδÞ ¼ 0.547. For
comparison, the 3D Oð2Þ scaling exponents are
given by β¼0.349, δ¼4.780, and 1=ðβδÞ¼0.599,
and the 3D Zð2Þ scaling exponents of a potential
CEP are given by β ¼ 0.326, δ ¼ 4.805, and
1=ðβδÞ ¼ 0.638.

(2) Asymptotically small critical regime with 3D Oð4Þ
scaling: This implies that the order parameter po-
tential has a polynomial expansion for most param-
eter values. We shall see that

TpðH;LÞ ¼ Tc0ð1þ aðLÞH1
2 þ bðLÞHÞ ð28Þ

fits the data well even in the chiral limit ml ¼ 0
with mπ ¼ 0. The H-scaling of Tp is linked to that
of Δl in the presence of quasi-massless modes,
which is discussed in detail in the next sections,
Secs. V B and V C.

Now we use our data to extrapolate to Tc0 assuming either
case (1) with 3D Oð4Þ scaling or case (2). We found that
both extrapolations lead to Tc0 ≈ 141 MeV. Similar results
are achieved for Oð2Þ or Zð2Þ critical exponents. Indeed,
our data are matched best with Eq. (28), and the lattice data
are also well compatible with this trivial relation that
follows from a simple chiral expansion. We also note that
a possible volume dependence of cX and further volume
dependences largely add to a systematic error estimate, as
discussed at the end of Sec. IV B (see also Fig. 7). This
leads us to a conservative combined estimate for Tc0,

132 MeV≲ Tc0 ≲ 141 MeV; ð29Þ

where the range is solely due to the combined systematic
error estimate based on functional results from the
present DSE approach and from the fRG computation
in [12], as well as lattice results from [11,80]. While the
two approaches also allow for smaller (lattice QCD) or
larger (functional QCD) temperatures within the respec-
tive error estimates, in combination these temperatures
are disfavored.
In summary, this situation calls for a combined study

with functional and lattice approaches for crunching
down the relatively large systematic error in Eq. (29),
exploiting the respective strengths. This task is left to
future work.

B. Order parameter potential

All scalings, and in particular the critical scaling dis-
cussed in the last section, can be conveniently extracted
from the temperature-dependent order parameter potential
VeffðΔl; mlÞ at fixed ms. It also offers a more direct access
to the related physics: The effective potential of the
order parameter Δl can be derived from the effective action
Γ½A; c; c̄; q; q̄;Δl; ml� at fixed ms, where we have intro-
duced a current for Δl and applied a respective Legendre
transform. In the fRG approach this is done with dynamical
hadronization; more details in the present context can be
found in [12,33,75]. Then, the order parameter potential is
given by a convex function VeffðΔl; mlÞ ¼ Γ½0;Δl; ml�=
ðvolumeÞ. Moreover, it can be shown that the only term
with the light current quark mass is linear in ml. For a
recent detailed discussion of this fact see [33]. We have

VeffðΔl; mlÞ ¼ VχðΔlÞ − cΔmlΔl; ð30Þ

with a dimensionless constant cΔ. While such a split very
much resembles chiral expansions, it is important to note
that Eq. (30) is valid for all masses. The temperature and
current-quark mass dependent expectation value of the
condensate is determined by the solution of the equation of
motion (EoM) ΔEoM,

∂VχðΔlÞ
∂Δl

����
Δl¼Δl;EoMðT;mlÞ

¼ cΔml: ð31Þ

Hence, Eq. (30) carries the thermal and current mass
dependence of the chiral condensate, and can be used to
extract the transition temperature. The potential V̄χ gives us
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FIG. 7. Linear extrapolation of Tc as a function of Mπ with the
lattice data from [11] (hotQCD) and [80] (Kotov et al.) and the
present functional results and that of [12] (fRG: Braun et al.).
The red area indicates extrapolations of the Nτ ¼ 12 results with
or without the data point at mπ ¼ 80 MeV.
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easy access to the scaling behavior of the pion mass. On the
EoM for Δl we have

m2
π ∝

∂VχðΔlÞ
∂Δ2

l

¼ cΔml

2Δl;EoMðT;mlÞ
; ð32Þ

which also allows us to recover χPT in the vacuum;
for a detailed discussion see e.g., [33]. The effective
potential also carries the (quark) pressure with
VχðΔEoMÞ − cΔmlΔEoM, which has been used in [86] for
a determination of the EoS. The temperature-independent
normalization cΔ can be conveniently fixed at large temper-
atures, where the pressure resumes the Stefan-Boltzmann
limit. However, in the present work we are not interested in
the latter, and for the sake of simplicity of the following
considerations we normalize Eq. (30) with cΔ,

V̄effðΔl; mlÞ ¼ V̄χðΔlÞ −mlΔl; ð33Þ

where V̄χðΔlÞ ¼ VχðΔlÞ=cΔ is the potential in the
chiral limit, divided by the dimensionless constant cΔ.
Formulated in terms of V̄χ , the EoM in Eq. (31) turns into

∂V̄χðΔlÞ
∂Δl

¼ mlðΔlÞ: ð34Þ

Equation (34) has already been adapted to our present
results: we have computed ΔlðT;mlÞ for a given H ¼ ml,
which provides us with pairs of ðΔlðTÞ; mlðTÞÞ for all
temperatures. Accordingly, the chiral effective potential
VχðΔl; TÞ for ΔlðTÞ > Δl;χðTÞ can be represented as

V̄χðΔl; TÞ ¼
Z

Δl

ΔχðTÞ
dΔmlðΔ; TÞ: ð35aÞ

For Δl < Δi;χ we have V̄effðΔl; TÞ ¼ V̄effðΔl;χ ; TÞ due to
the convexity of Vχ . The Δ-integral in Eq. (35a) can be
turned into an H-integral with the help of the chiral
susceptibility Eq. (18),

V̄χðΔl; TÞ ¼ −
1

2

Z
m2

l ðΔlÞ

0

dm2
l χ

ðlÞðml; TÞ; ð35bÞ

for Δl > 0. In the presence of a first order phase transition,
Eq. (35) has to be slightly modified, but a similar
expression still holds true. We also note that the potential
is even in Δl → −Δl which reflects the symmetry under
ml → −ml.
This leaves us with the following task: For a given

temperature T we compute numerically the ml- or
H-dependence of the light chiral condensate Δl, leading
to a fit of ΔlðT;HÞ. The integral representation Eq. (35)
of the chiral effective potential requires mlðT;ΔlÞ or
HðT;ΔlÞ, which is extracted by numerically inverting this
relation. The result is depicted in Fig. 8. The flat region for

Δl ≤ Δl;χðTÞ shrinks with temperature and vanishes for
T ≥ Tc0. Moreover, we clearly see the flattening of the
potential in the vicinity of Tc for Δl > Δl;χðTÞ, indicating
the emergence of quasi-massless modes.
We also can provide simple polynomial fits for the

effective potential shown in Fig. 8: In the broken regime we
consider a polynomial potential

VχðΔlÞ ¼
λ4
8
ðΔ2

l − Δ2
l;χÞ2 þ

λ6
24

ðΔ2
l − Δ2

l;χÞ3; ð36Þ

where light chiral condensate in the chiral limit, Δl;χ ≥ 0,
minimizes the potential. Equation (36) is the potential of
the scalar (σ-)mode, and the respective “mass” in the
broken regime is

m2
Δl

¼ ∂2
Δl
VχðΔl ¼ Δl;χÞ ¼ λ4Δ2

l;χ : ð37Þ

Hence, Eq. (36) provides a three-parameter fit to the
potential in the broken regime in an expansion about the
minimum Δl;χ > 0. The parameters are Δl;χ ; λ4;Λ6, and
the mass at the minimum is a derived quantity. However,
with Eq. (37) we can also use m2

Δl
as a parameter instead

of Δ2
l;χ ¼ m2

Δl
=λ4, leaving us with the three parameters

m2
Δl
, λ4, Λ6.

In the symmetric regime we have the fixed expansion
point Δl;χ ¼ 0, and the expansion point parameter is in any
case traded for the explicit mass parameter. Again this
leaves us with the three parameters, m2

Δl
, λ4, Λ6, and the

potential is given by

5.780×10-4

5.202×10-4

4.624×10-4
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1.156 ×10-4

5.780×10-5

0.000

FIG. 8. Chiral effective potential VχðΔlÞ as a function of the
chiral condensate Δl and temperature T. The boundary of the flat
regime is the solution of the EoM in the chiral limit. VχðΔlÞ is fit
well with the polynomial potential Eq. (36) (broken regime) and
Eq. (38) (symmetric regime), and the respective couplings are
depicted in Fig. 9.
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VχðΔlÞ ¼
m2

Δl

2
Δ2

l þ
λ4
8
Δ4

l þ
λ6
24

Δ6
l : ð38Þ

Both in the broken and in the symmetric regimes we have a
Gaussian mass term and a standardΔ4

l interaction term with
the interaction strength λ4. TheΔ6

l -term carries higher order
interactions of the scalar interaction channel of quark-
antiquark scatterings. The parameters are now obtained in a
fit regime about the respective minimum Δl;χ , which is one
of the parameters in the broken regime. We use a χ2-fit in a
fit regime

Δl ∈ ½Δl;χðTÞ;ΔmaxðTÞ�: ð39Þ

In Eq. (39), Δmax is the maximal Δl, for which the fit
parameters as well as the χ2 is stable. In the vicinity of Tc0
the respective Δmax is shrinking, and we also use additional
polynomial fits in the regime ∈ ½Δmax;Δch� for an estimate
of the regime dominated by the Δ4

l term. It is suggestive to
speculate that chiral expansions work in the combination of
these regimes, that is the regime

Δl ∈ ½Δl;χðTÞ;ΔchðTÞ�: ð40Þ

Note, however, that the regime Eq. (40) does not sustain a
global fit as close to Tc0 the potential is dominated by a
higher order polynomial.
The temperature dependence of the three parameters,

normalized by their value at vanishing temperature, is
depicted in Fig. 9. The steep drop of both m2

Δl
ðTÞ=m2

Δl
ð0Þ

and λ4ðTÞ=λ4ð0Þ for T → Tc0 from below signals the

approach to the chiral phase transition. The drop of λ4
entails that the λ6-term dominates, leading to an H1=5

scaling, as discussed below. Note, however, that this does
not necessarily entail critical scaling in this regime. In
Fig. 10 we show the full potential at the chiral transition
temperature in the chiral limit, Tc0 (red squares), together
with the monomial fit with Δ6

l in the regime Eq. (39) with
ΔmaxðTc0Þ ¼ 0.017 GeV3 as well as a polynomial fit in the
regime Δl ∈ ½Δmax;Δch� with Δch ¼ 0.026 GeV3. For chi-
ral condensates larger than Δch we approach the regime of
asymptotically large current quark masses.
We proceed with discussing different regimes in the T,

H-plane with different chiral or nonchiral dynamics. This
dynamics is carried by the interaction terms in the effective
potential VχðΔlÞ. We note that for (fractional) monomial
scaling of Δl with H the respective term in the effective
action can be deduced analytically. This gives us an
analytic understanding of the H-scaling of ΔL and the
underlying QCD dynamics. For example, monomial poten-
tials lead to specific monomial H-scalings,

VnðΔlÞ ≈
λn
n!

ðΔ2
l − Δ2

l;χÞ
n
2 → ΔlðHÞ ∝ H

1
n−1; ð41Þ

for large H. Equation (41) provides the link of the H-
dependence of the condensate for different temperatures
with the dynamics of the chiral condensate as Δn

l terms in
the effective potential simply entail the multiscattering of
scalar quark-antiquark channels. This relation is directly
seen within dynamical hadronization (see e.g., [12,33]).
The inversion property Δn → H1=ðn−1Þ displayed in

Eq. (41) entails that higher order terms in the potential
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FIG. 9. Temperature dependence of the mass and coupling
parameters in the polynomial potentials Eq. (36) with Eqs. (37)
(broken regime) and (38) (symmetric regime). The couplings
have been normalized by their values at T ¼ 0. At vanishing
temperature, T ¼ 0, we have m2

Δ ¼ 0.24 GeV2, λ4 ¼ 3.3 × 103,
and λ6 ¼ 3 × 106 GeV−2.

0.00 0.01 0.02 0.03
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.001 0.01

1×10-4

1×10-5

1×10-6

1×10-7

1×10-8

1×10-9

1×10-10

V
χ[

G
eV

4 ]

Δl[GeV3]

V
χ[

G
eV

4 ]

Δl[GeV3]

FIG. 10. Order parameter potential VχðΔlÞ (red squares) for
the chiral phase transition temperature in the chiral limit, Tc0.
The potential is shown for the regime Eq. (40) with Δch ¼
0.026 GeV3. We also display the fits computed from the regime
Eq. (39) with Δmax ¼ 0.017 GeV3 (dashed curve), as well as
that computed from the regime Δl ∈ ½Δmax;Δch� (solid curve).
Outside the regime Eq. (40) the latter fit fails.
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lead to terms that dominate an expansion of the chiral
condensate for small H. Consequently, one can hope for
accurate global fits ΔlðHÞ in the potential validity regime
Eq. (40) of chiral expansions. This property will be used in
Sec. V D.
Moreover, we emphasize that specifically for n ¼ 4, 6

the scaling in Eq. (41) is the 3D mean-field scaling,
δ ¼ 3, and 3D dimensional scaling, δ ¼ 5, respectively.
The latter is derived from Eq. (27) with a vanishing
anomalous dimension, ηΔ ¼ 0. Given the small anomalous
dimensions for 3DOð4Þ, 3DOð2Þ (and 3D Z2) universality
classes, the dimensional scaling is very close to the full
universal scalings, and in particular to the Oð4Þ-scaling. In
the present DSE approach a nonvanishing anomalous
dimension ηΔ requires a full resolution of the (scalar-
pseudoscalar) four-quark interaction, typically included via
pion contributions. We have not taken into account (the
thermal part) of the resonant scalar-pseudoscalar four-
quark interaction leading to ηΔ ¼ 0. Note, however, that
this has been done in [12] formπ ≥ 30 MeVwith no sign of
criticality. Still, as mentioned before, the present work does
not add much to the intricate question of the size of the
critical regime. Note also that in the vacuum we expect an
H1=3-scaling for large, but not asymptotically large H,
which we call trivial scaling as it is far away from criticality
(at asymptotically largeH we expect anH3 scaling fixed by
dimensionality). We emphasize that this makes it extremely
difficult to disentangle trivial scaling regimes from critical
scaling regimes. This entails that both the proof of the
presence as well as that of the absence of critical scaling
requires data with exceedingly small statistical errors. This
has been studied in detail in [14,15,17], advocating both a
small critical regime and the necessity for exceedingly
small statistical errors.
Indeed, the worst case in this respect is a trivial scaling

regime close to Tc0 that exhibits anH1=5-scaling, stemming
from a Δ6

l -potential. As the quadratic term vanishes at Tc0,
λ2ðT → Tc0Þ → 0, the presence of this scenario is linked
to the fate of λ4ðT → Tc0Þ. We shall see that also
λ4ðT → Tc0Þ → 0, and we may be left with a trivial
H1=5-scaling that turns into a critical one with H1=ðδβÞ-
scaling in the critical regime. To distinguish this scenario
from the one with a large regime with critical scaling, a
more refined analysis is required. This analysis is deferred
to a forthcoming publication [87].
While this intricacy makes it difficult to disentangle

critical from trivial scaling, it is very good news for chiral
expansions and extrapolations. In summary, the present
analysis gives full access to the phenomenologically
relevant validity regime of chiral expansions with quasi-
massless modes. It also corroborates the point of view that
for phenomenological applications and experimental sig-
natures in heavy ion collisions the search for critical scaling
and its signatures is rather a red herring than a property to
look for.

C. Quasi-massless modes

With these preparations we now can tackle the phenom-
enologically important question after the regime with
quasi-massless modes close to the transition line, already
mentioned in the introduction of Sec. V. Chiral transport
models or chiral fluid dynamics both rely on the existence
of quasi-massless modes such as the pion or the sigma
mode close to the potential critical end point in the QCD
phase structure. Certainly critical modes are quasi-massless
in the critical regime, but this property is more generally
connected to the validity regime of chiral expansions.
The most prominent chiral expansion is χPT, an expan-

sion about QCD in the chiral limit in the vacuum. It is a low
energy effective theory of QCD, and the expansion coef-
ficients or low energy constants are either determined from
first principles QCD computation in the chiral limit or are
fixed by experimental data. We have already used χPT
results for the determination of the pion mass in the present
approach [see Eq. (15a) and below]. The χPT is impres-
sively successful in the vacuum as well as small enough
temperatures and densities. In χPT, the chiral condensate
has a chiral expansion similar to that in Eq. (15a) for the
pion mass and pion decay constant. We parametrize

ΔlðT;HÞ ¼ Δl;χðTÞ½1þ ðc1 þ clog logHÞH þOðH2Þ�;
ð42aÞ

with temperature-dependent coefficients clogðTÞ and c1ðTÞ.
The estimate Eq. (42a) can only hold for temperatures
below Tc0, so at most T < Tc0.
Note also that Eq. (42a) can be reformulated as a chiral

expansion such as Eq. (15a) with the expansion parameter
Eq. (15b). The logarithm in Eq. (42a) originates in massless
pion loops in the vacuum within the expansion about
H ¼ 0 with mπ ¼ 0. There are higher order logarithms
well-known in chiral perturbation theory, which we discard
for the present estimate. Moreover, at sufficiently large
temperature we do not expect a logarithmic scaling any
more, as the infrared singularities at finite temperature are
3D ones and have a rational scaling. Indeed, we shall see
that Eq. (42a) does not work for T ≳ 50 MeV (see Fig. 13).
Finally, for asymptotically large quark masses the

current quark mass dominates the constituent quark mass
and hence the condensate. There we expect a trivial linear
ml-scaling of the renormalized condensate. Whether this
transition already takes place for H ≤ 1 is a dynamical
question, which also depends on the size of the strange
quark mass.
In summary, we infer from this discussion that an

H-expansion of the chiral condensate for small H and
small temperature at least has to incorporate the logarithm
and polynomial terms known from χPT. In turn, for larger
H and temperatures the logarithm is absent.

FEI GAO and JAN M. PAWLOWSKI PHYS. REV. D 105, 094020 (2022)

094020-14



Hence, for sufficiently large temperatures we use a
rational expansion without logarithm, as the latter is absent
in a three-dimensional chiral expansion,

ΔðχEPÞ
l ðT;HÞ ≈ Δl;χð0Þðc0 þ cr1H

r1 þ cr2H
r2 þ c1HÞ;

ð42bÞ

for the extension of the χPT regime to a chiral expansion
regime (χEP) at larger temperatures and small current quark
masses. Here, Hr1 is the leading scaling for H → 0, and
hence r1 < r2. As in the vacuum, we expect a linear
H-scaling of the chiral condensate for sufficiently large
current quark masses. Then, the explicit chiral symmetry
breaking via H dominates over the spontaneous one. This
linear regime is expected to set in at smaller current quark
masses for larger temperatures, as the chiral condensate in
the chiral limit, which measures the amount of spontaneous
chiral symmetry breaking, reduces with the temperature.
Hence, Eq. (42b) may also allow for good global fits, in
contradistinction to χPT, where the logarithmic small
H-term would also dominate the large H-regime.
We proceed by discussing the different H-scalings we

expect to see from general diagrammatic arguments as well
as within the present approximation.
To begin with, for constant vertices the gap equation

allows for a simple extraction of mean-field scaling for
Δl → 0. We shall use that for the purpose of a leading order

scaling analysis that the wave functions ZqðpÞ and Zk
qðpÞ

of the quark propagator in Eq. (6) only show a mild
momentum dependence (see e.g., the recent DSE review
[9], and [18–20]), where the DSE framework used in the
present work is put forward. Hence, for the present scaling
analysis the quark propagator is well approximated by

Mq − i=p

p2 þM2
q
; ð43Þ

where Mq ¼ Mqðp ¼ 0Þ is the infrared value of the
constituent quark mass. Within this approximation the quark
gap equation is an integral equation forMq, and its resolution
with a gapped gluon propagator readily leads to

MqðHÞ ∝ H
1
3 þOðHÞ; ð44Þ

in the limitH → 0. With Δl ∝ Ml this entails the mean-field
scaling for the chiral condensate. It is well-known that
the behavior Eq. (44) is already seen with the crude
approximation GAAðpÞ ≈ δðp2 −m2

gapÞ with H ≪ mgap.
Note, however, that this scaling follows as trivial scaling
from a polynomial order parameter potential Vχ with a
(Gaussian) mass term proportional to Δ2

l and a Δ4
l -term

(Ginzburg-Landau potential).
For the full scaling the DSE requires a nontrivial quark-

gluon vertex with a full back coupling of fluctuations;

including the critical ones, we expect the full H-scaling to
be present in the gap equation. The scaling analysis of this
case is conveniently done with the chiral susceptibility: As
a current quark mass derivative of the chiral condensate, it
is an integrated four-quark correlation function. It has a
diagrammatic representation in terms of its DSE of the fRG
equation, which already diagrammatically includes part of
the backreaction required for the full scaling. Its chiral
limit, H → 0, is governed by the most divergent diagram
for H → 0. In the present DSE approach this analysis is
best done after introducing effective degrees of freedom
for the resonant scalar-pseudoscalar interaction four-quark
channels, as done in the fRG approach with dynamical
hadronization (in the present context see [12,33]).
Alternatively one may employ the respective resumma-
tions. In the first case this leads us to a quark-pion box
diagram, and in the latter case to a fish diagram with two
dressed four-quark vertices (see Fig. 11).
For the sake of a scaling analysis the pseudoscalar

resonant four-quark interaction channels (or pion propa-
gators) may be approximated by 1=ðp2 þm2

πÞ away from
the critical scaling regime, and the light and strange quark
propagators may still be approximated by Eq. (43).
Naturally, the analysis of both diagrams leads to the

same chiral scaling, and in the vacuum it leads to the well-
known results in chiral perturbation theory (see e.g.,
[67,68,88]). At sufficiently large temperatures the scaling
analysis leads to

∂Δl

∂H ∝
Ml

mπðmπ þMlÞ3
: ð45Þ

Equation (45) originates from the 3D spatial momentum
integral of the zeroth Matsubara mode.
In a regime with ΔlðH → 0Þ → 0, we can substitute the

derivative with respect to H in Eq. (45) by 1=H. From
the integral representation of the (renormalized) chiral
condensate (see e.g., [18–20]), we can safely assume that
Mq ∝ Δl, which also follows straightforwardly within
dynamical hadronization (see [33]). We also use the
relation between chiral condensate and pion mass,

FIG. 11. Leading diagram in the chiral limit, mπ → 0 in the
diagrammatic representation of the magnetic susceptibility. The
left diagram is the (resummed) fish diagram with two dressed four
quark vertices, and the right diagram shows the dominant scalar-
pseudoscalar ðσ; π⃗Þ-channel in the chiral limit. The pions and the
σ mode are depicted by a quark double line, indicating its ll̄
content.
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Eq. (32). Note that the latter already implies in the limit
H → 0 that Δl ∝ Hr1 with r1 < 1. This follows from
m2

π ∝ H=Δl → 0.
With the relations discussed above, Eq. (45) turns into

Δl ∝ H
1
2

Δ3
l

ðcH1=2 þ Δ3=2
l Þ3

ð46Þ

for Δl → 0. The constant c in Eq. (46) is irrelevant for the
following discussion of the leading scaling behavior.
We now proceed with a detailed analysis of the conse-

quences of Eq. (45) for the H-scaling of the chiral
condensate for small H → 0:
Mq;χ > 0: This condition is tantamount to large sponta-

neous symmetry breaking, and hence also a large chiral
condensate. This situation holds true for temperatures
smaller and sufficiently far from the chiral transition
temperature. There, the constituent quark mass Mq as well
as the chiral condensateΔl have a sizable nonvanishing part
for H → 0. Then, Eq. (45) reduces to

∂Δl

∂H ∝
1

mπ
: ð47Þ

Moreover, the pion mass is proportional to H1=2 as in the
vacuum [see Eqs. (15) and (32)]. This leads us to

Δl ∝ c0 þ c1
2
H

1
2; ð48Þ

that is, r1 ¼ 1=2. This scaling is the analog of the H logH
scaling in the vacuum, the difference coming from the
dimensional reduction 4D → 3D present in the Matsubara
zero mode. Clearly, in this regime quasi-massless modes
are present, as it solely originates in the small pion mass in
comparison to other mass scales. We close the discussion of
this regime with the remark that in this limit we also expect
a chiral scaling of the vertices in the diagrams for the chiral
susceptibility with powers or inverse powers of m2

π. This
originates in the infrared singularities similar to those
leading to the 1=mπ scaling in Eq. (47). This may change
the scaling Eq. (48). Indeed, the latter naively relates to a
Δ3

l term in Veff , which is at odds with the symmetry of the
effective potential under Δl → −Δl.
Mq;χ ≈ 0: Sufficiently close to the chiral phase transition,

both the constituent quark mass Mq as well as the chiral
condensate melt away. For r1 ≤ 1=3, which potentially
includes the mean-field scaling, we have cH

1
2 þ Δ2

l ∝ Δ2
l in

the limit H → 0. Then, Eq. (46) leads to

Δl ∝ H
1
5: ð49Þ

Equation (49) comprises the consistent dimensional scaling
for small spontaneous chiral symmetry breaking scales at
finite temperature. In terms of the order parameter potential

it relates to a monomial Δ6
l potential [see Eq. (41)], and

hence higher order scatterings of the scalar-pseudoscalar
channel. Note that this scaling is also the critical one in
approximations with vanishing anomalous dimension (of
the pion), η ¼ 0 [see Eq. (27)].
In summary, the scalings Eqs. (44), (48), and (49)

indicate the presence of quasi-massless modes. Finally,
in the critical region, r1 ¼ 1=δ and r2 is the subleading
scaling coefficient The critical regime has already been
discussed in detail in Sec. VA and we refer the reader to
this section. Naturally, quasi-massless modes are present in
the critical regime.
This concludes our analysis of the potential scalings

of the chiral condensate with the light current quark mass:
In regimes with the scalings Eqs. (44), (48), (49), and the
critical scaling Eq. (27) quasi-massless modes are present,
admitting chiral expansion schemes. This supports the
construction of phenomenological chiral models in this
regime.

D. Validity regime of chiral expansions

In summary, we are led to a global fit for the chiral
condensate ΔlðT;HÞ in the validity range of chiral expan-
sions, excluding the χPT region. In this regime Eq. (42b)
with r1 ¼ 1=5 and r2 ¼ 1=3 is valid, as already argued in
Sec. V C. This reads

ΔlðT;HÞ ≈ Δl;χð0Þðc0 þ c1
5
H

1
5 þ c1

3
H

1
3 þ c1HÞ; ð50Þ

and the temperature-dependent coefficients ciðTÞ with
i ¼ 0; 1=3; 1=5, 1 are depicted in Fig. 12. The different
terms follow from a polynomial potential: the linearH term
from Δ2

l , the H1=3 term from Δ4
l , and the H1=5 term from

Δ6
l ; in combination this leads us to the potential Eq. (36)

already discussed.
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The highest order term Δ6
l in this potential relates to a

stronger chiral dynamics including multiscatterings. This
term dominates for small spontaneous symmetry breaking
close to the chiral transition temperature Tc0 and can be
inferred from the scaling analysis of the susceptibility [see
also the discussion about Eq. (49)]. In conclusion, as
already discussed below Eq. (41), we expect the higher
order terms in the potential to be relevant for small Δl and
hence small H. Therefore, global fits to ΔlðT;HÞ may
work well.
The above analytic analysis is confirmed within a

numerical leading order analysis for smaller quark masses
and close to the chiral transition temperature. The scaling
coefficient r1 as well as β have been determined from our
numerical data as

β ¼ 0.400ð9Þ; r1 ¼ 0.200ð6Þ; ð51Þ

with β being extracted from c0ðTÞ, as Δl;χðTÞ ¼ Δl;χð0Þc0
for T ≤ Tc0. In this regime the coefficient c1ðTÞ of the
linearH term decreases toward the chiral transition temper-
ature Tc0, where it vanishes (see Fig. 12). We emphasize
that the scaling Eq. (51) in this regime with r ¼ 0.2 is close
to, but distinct from, the critical scaling, rOð4Þ ≈ 0.207 for
Oð4Þ-scaling and rOð2Þ ≈ 0.209 for Oð2Þ-scaling. This can
be inferred from the respective χ2. We rush to add that
within the present approximation we do not expect full
critical scaling in the critical regime, as discussed before.
However, in the corresponding fRG analysis in [12] even
a polynomial scaling with r ¼ 1=5 can be distinguished
from the critical scaling with either rOð4Þ or rOð2Þ. For the
meson masses considered there (mπ ≳ 30 MeV, that is,
ml ≳ 0.1 MeV), no critical scaling but polynomial scaling
has been found.
The coefficients in Eq. (50) are now obtained fromH-fits

in regimes 0 ≤ H ≤ Hmax for ΔlðT;HÞ for a given temper-
ature T. Here, Hmax is the maximal H for which the
coefficients as well as the χ2 error is stable. In turn, the
complementary regime (for H ≤ 1) with Hmax < H ≤ 1
has a linear H scaling and does not admit a chiral
expansion. The fit Eq. (50) with the temperature dependent
coefficients depicted in Fig. 12 allows us to provide a more
detailed depiction of all the different regimes. For the
present qualitative analysis we define subregimes in the
validity regime of chiral expansions with the relative
dominance of the respective criH

ri term over the other
term: criH

ri ≥ crjH
rj for all j ¼ 1=3; 1=5, 1: The respec-

tive regimes are indicated as green (H1=5), blue (H1=3), and
yellow (vacuum χPT) in Fig. 13. The regime with large
light current quark masses is indicated with gray, and the
chiral transition line is depicted as a black line. Note that
the different regimes are defined by the relative dominance
of one of the terms, and hence the transitions between the
regimes are smooth. This is indicated with the overlap

regime between the gray and blue regimes, and respective
overlaps also exist between the other regimes.
Specifically, we find a large regime with dominant H1=3-

scaling. As discussed before, this behavior originates from
an order parameter potential with a Δ4

l interaction term.
A subleading Gaussian Δ2

l -term leads to an additional
linear term in H. The absence of higher order terms with
Δ2n

l with n ≥ 3 in the full effective potential Veff indicates a
weak chiral dynamics. Hence, while such a scaling resem-
bles (critical) mean-field scaling, we rather interpret this as
trivial chiral scaling, related to a weak chiral dynamics.
Evidently, the latter works in favor of the convergence of
the expansion.
Most importantly, in our opinion, the presence or

absence of critical scaling in a small critical regime is
not relevant for the phenomenological application of chiral
transport models or chiral fluid dynamics; however, the
presence of quasi-massless modes is clearly in the regime
with H1=5-scaling (green in Fig. 13), and quasi-massless
modes are present (λ2 ≈ 0) and dominate the dynamics.
Naturally, this regime is centered about the transition
temperature in the chiral limit, Tc0, where it also has its
by far largest extend in H with Hmax ≈ 0.1: the quasi-
massless behavior at Tc0 is most persistent. This behavior is
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H=ml/ms

FIG. 13. Validity range of chiral expansions in the current quark
mass and temperature plane: black line (chiral transition line),
yellow (vacuum χPT), blue (dominatingH1=3-scaling), and green
(dominating H1=5-scaling). The transition between the different
regimes is smooth, explicitly indicated for the gray and blue
regimes as an overlap; for the definition of the dominating scaling
see Sec. V D. The gray area indicates the linear H-scaling for
large ml (no chiral expansion). The green bullet indicates the
intersection point ðT;HÞ≈ð152MeV; 0.023Þwithmπ≈110MeV
of the green regime with the black chiral transition line. The blue
bullet indicates the intersection point ðT;HÞ ≈ ð166 MeV; 0.14Þ
with mπ ≈ 270 MeV of the blue regime with the black chiral
transition line. We have also included an estimate of the small
critical scaling regime [red area, discussed above Eq. (25)]. The
vertical line indicates QCD with physical current quark masses,
that is, H ¼ ml=ms ¼ 1=27.
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also interesting in view of the critical end point in the phase
diagram of QCD and its potential observation in the
experiment: while the theoretical evidence of a small
critical scaling regime is accumulating (for a recent work
see [89]), the regime with quasi-massless modes may be far
bigger, potentially leaving traces in heavy ion observables
such as fluctuations of conserved charges [90]. This
analysis within functional QCD and QCD-assisted trans-
port [82] is work in progress, and the current results, in
particular those for the effective potential of the order
parameter, are important input.
A detailed analysis of the respective order parameter

potential at Tc0 has already been provided in Sec. V B (see
in particular Fig. 10 and the related discussion). In
particular, in this regime the lowest order scattering of
the scalar interaction channel is absent and the dynamics is
only carried by the Δ6-term. This suggests to study the
impact of this dynamics on QCD transport.

VI. SUMMARY

In this work we have studied the magnetic equation of
2- and (2þ 1)-flavor QCD, mostly concentrating on the
latter physical case. This has been done in a generalized
functional first principles approach to QCD, set up in
[18–20]. There it has been used for the phase structure of
QCD as well as precision computations in the vacuum.
Importantly, in this approach no phenomenological param-
eters have to be included.
We have computed the quark condensate and chiral

susceptibility for general light current quark masses,
while keeping the strange quark mass fixed in (2þ 1)-
flavor QCD. The magnetic equation of state and the light
current quark mass dependence of the chiral transition
temperature is in quantitative agreement with that from
the recent functional renormalization group study [12]
(see in particular Figs. 4–6). Moreover, the critical
temperature in the chiral limit is given by
Tc0 ¼ 141 MeV. We also discussed a combined system-
atic error estimate from the present functional results and
the present work, as well as lattice results from [11,80],
leading to a range 132 MeV≲ Tc0 ≲ 141 MeV [see
Eq. (29)]. We stress that this estimate could be much
reduced in a combined study with functional and lattice
approaches, exploiting the respective strengths.
So far, functional computations suggest a very small

scaling window with critical scaling from low energy
effective theories [14–17], as well as functional QCD
[12] (see Sec. V). The present approximation does not
incorporate the full back coupling of the chiral dynamics,
and hence cannot add to this intricate question. However, it
is an interesting observation that the magnetic equation of
state from the present DSE computation without the
inclusion of the potential critical dynamics agrees quanti-
tatively with that in [12], where the potential critical

dynamics is taken care of for mπ ≳ 30 MeV. This hints
at the quantitative irrelevance of the critical dynamics for a
large range of pion masses.
More importantly, we have argued that for phenomeno-

logical applications to heavy ion physics in the vicinity of
the chiral phase transitions the presence or absence of a
large critical regime is not important. Instead, it is the
presence of quasi-massless modes which allows for the use
of chiral transport models or chiral fluid dynamics, e.g.,
[82–85]. These transport models require QCD input, most
prominently in terms of the full dispersion; see [82] for the
first steps in this direction and the full interaction. In this
paper we have contributed to the computation of the latter
in computing the full chiral order parameter potential for
the first time to our knowledge within the DSE approach
(see Sec. V B, and in particular Figs. 8 and 9). This
computation utilizes the light current quark mass depend-
ence of the chiral condensate, whose knowledge also
allows us to estimate the size of the regime with quasi-
massless modes in Sec. V (see in particular Fig. 13 and the
respective discussion). Importantly, we find a large regime
with quasi-massless modes. In particular, we can identify
the validity regime of vacuum χPT (red regime in Fig. 13)
and a regime about the phase transition temperature in the
chiral limit, Tc0 (green regime in Fig. 13, and the respective
potential is shown in Fig. 10), which allow for a direct
expansion about the chiral limit. Finally, we can identify a
large regime with a Ginzburg-Landau type order parameter
potential (blue regime in Fig. 13), which also should allow
for chiral expansions. The asymptotic regime with large
current quark masses is indicated with the gray regime
in Fig. 13.
The present results provide highly welcome support for

the current use of chiral transport models and chiral fluid
dynamics in heavy ion collisions at small densities.
Currently, we refine the present qualitative analysis, as
well as extend it to the high density regime including the
potential CEP. We hope to report on the respective results in
the near future.
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