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We study the unpolarized and the helicity-dependent generalized parton distributions (GPDs) for the
valence quarks of the proton in both momentum space and position space within the basis light-front
quantization (BLFQ) framework. The GPDs for the valence quarks are computed from the eigenvectors of a
light-front effective Hamiltonian in the valence Fock sector consisting of a three-dimensional confinement
potential and a one-gluon exchange interaction with fixed coupling. Employing these GPDs, we obtain the
spatial distributions of quark angular momentum inside the proton. In our BLFQ approach, we explore
various definitions of angular momentum density and illustrate the differences between them arising from
terms that integrate to zero. We also discuss the flavor contributions to the quark angular momentum
densities.
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I. INTRODUCTION

The origin of nucleon spin is one of the major puzzles in
modern particle physics. The well-known European Muon
Collaboration experiment [1,2] has triggered interest in
understanding the nucleon spin from the contributions of
the spin and the orbital angular momentum (OAM) of each
of its constituents. In this context, how the total angular
momentum (TAM) is split into separate quark and gluon
(partons) contributions is intrinsically debatable due to
quark-gluon couplings and the nonuniqueness of the
decomposition [3–5]. Meanwhile, it has become clear that
the generalized parton distributions (GPDs) [6–8], appear-
ing in the description of hard exclusive reactions, like
deeply virtual Compton scattering or deeply virtual meson
production, provide us with essential information about the
spatial distributions and orbital motion of partons inside the

nucleon and allow us to draw three-dimensional pictures of
the nucleon. For more than two decades, the GPDs have
been attracting numerous dedicated experimental and
theoretical efforts as many observables can be connected
to them. The GPDs are functions of three variables, namely,
longitudinal momentum fraction (x) of the constituent, the
skewness (ζ) or the longitudinal momentum transferred,
and the square of the total momentum transferred (t). Their
first moments are linked to the electromagnetic form factors,
whereas they reduce to the ordinary parton distributions in
the forward limit (t ¼ 0). The second moments of the GPDs
correspond to the gravitational form factors, which are linked
to matrix elements of the energy-momentum tensor (EMT).
Being off-forward matrix elements, the GPDs do not have
probabilistic interpretations. Meanwhile, for zero skewness
the Fourier transform (FT) of the GPDs with respect to the
momentum transfer in the transverse direction provides the
impact-parameter-dependent GPDs that do have a probabi-
listic interpretation [9,10]. The impact-parameter-dependent
GPDs encode the correlations in spatial and momentum
distributions of partons in the nucleon. They contain the
information about partonic distributions in the transverse
position space for a given longitudinal momentum fraction
carried by the constituent.
Ji has shown that the partonic contribution to the total

angular momentum of the nucleon can be calculated using
the second moment of the GPDs [11]. Since the GPDs
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provide the spatial distribution of the constituents inside the
nucleon, it is therefore credible that the GPDs carry also
the knowledge about the spatial distribution of angular
momentum [12–15]. The angular momentum distribution
in three-dimensional coordinate space was first introduced
in Ref. [13]. However, there is an issue of relativistic cor-
rections for the three-dimensional distribution, while this
ambiguity can be avoided by defining the two-dimensional
distribution in the infinite momentum frame [3,14].
Different techniques to calculate the angular momentum
distributions in the transverse plane have been prescribed in
Ref. [14] and it was concluded that none of them agrees at
the density level. Meanwhile, a more detailed discussion on
the various definitions of angular momentum has been
reported in Ref. [12] and the authors have identified all the
missing terms, which hinder the proper comparison. They
have illustrated explicitly using a scalar diquark model that
there is no discrepancy between the different definitions of
angular momentum densities. Later, the distributions of
quark angular momentum in a light-front quark-diquark
model (with both scalar and axial vector diquark) motivated
by soft wall anti–de Sitter/QCD have been investigated
in Ref. [15].
In this paper, we investigate the spatial distributions of

quark angular momentum inside the proton from its valence
light-front wave functions (LFWFs) that feature all three
active quarks spin, flavor, and three-dimensional spatial
information on the same footing. Our theoretical frame-
work to explore the nucleon structure is rooted in basis
light-front quantization (BLFQ) [16], which provides a
computational framework for solving the relativistic many-
body bound state problem in quantum field theories
[16–32]. We evaluate the valence quark GPDs of the
proton in both momentum space and position space using
the LFWFs based on the BLFQ with only the valence Fock
sector of the proton considered. The BLFQ provides for a
Hamiltonian formalism that incorporates the advantages of
the light-front dynamics [33]. Our effective Hamiltonian
includes a three-dimensional confinement potential con-
sisting of the light-front holography in the transverse
direction [34], a longitudinal confinement [20], and a
one-gluon exchange (OGE) interaction with fixed coupling
to account for the spin structure [31]. The nonperturbative
solutions for the three-body LFWFs are given by the recent
BLFQ study of the nucleon [31]. These LFWFs have been
applied successfully to predict the electromagnetic and
axial form factors, radii, parton distribution functions
(PDFs), and many other quantities of the nucleon
[31,32,35]. Here, we extend those investigations to study
the proton GPDs and their application for the description of
angular momentum distributions.
The paper is organized as follows. We briefly summarize

the BLFQ formalism for the nucleon in Sec. II. We then
present a detailed description of the angular momentum and
the associated GPDs in Sec. III. Section IV details our
numerical results for the GPDs and different angular

momentum densities. At the end, we provide a brief
summary and conclusions in Sec. V.

II. LIGHT-FRONT EFFECTIVE HAMILTONIAN
FOR THE PROTON

The LFWFs that encode the structure of hadronic bound
states are obtained as the eigenfunctions of the eigenvalue
equation of the Hamiltonian:HLFjΨi ¼ M2

hjΨi, whereHLF

represents the light-front Hamiltonian of the hadron with
the mass squared (M2

h) eigenvalue. With quarks being the
only explicit degree of freedom, the effective Hamiltonian
we employ for the proton includes the two-dimensional
harmonic oscillator (“2D-HO”) transverse confining poten-
tial along with a longitudinal confinement and an effective
one-gluon exchange interaction [31]

Heff ¼
X
a

k⃗2⊥a þm2
a

xa

þ 1

2

X
a≠b

κ4
�
xaxbðr⃗⊥a − r⃗⊥bÞ2 −

∂xaðxaxb∂xbÞ
ðma þmbÞ2

�

þ 1

2

X
a≠b

FC4παs
Q2

ab

ūðk0a; s0aÞγμuðka; saÞūðk0b; s0bÞ

× γνuðkb; sbÞgμν; ð1Þ

where xa and k⃗⊥a represent the longitudinal momentum
fraction and the relative transverse momentum carried by
quark a. ma is the mass of the quark a, and κ defines the
strength of the confinement. The variable r⃗⊥ ¼ r⃗⊥a − r⃗⊥b
is the transverse separation between two quarks. The last
term in the effective Hamiltonian corresponds to the
OGE interaction where Q2

ab ¼ −q2 ¼ −ð1=2Þðk0a − kaÞ2 −
ð1=2Þðk0b − kbÞ2 is the average momentum transfer squared,
FC ¼ −2=3 is the color factor, αs is the coupling constant,
and gμν is the metric tensor. uðka; saÞ represents the spinor
with momentum ka and spin sa.
For the BLFQ basis representation, the 2D-HO function

is adopted for the transverse direction, while we employ the
discretized plane-wave basis in the longitudinal direction
[16,17]. Diagonalizing the Hamiltonian (1) in our chosen
basis space gives the eigenvalues as squares of the bound
state eigenmasses and the eigenstates which specify the
LFWFs. The lowest eigenstate is naturally identified as the
nucleon state, denoted as jP;Λi, with P and Λ being
the momentum and the helicity of the state. In terms of the
basis function the LFWFs of the nucleon are expressed as

ΨΛ
fxi;k⃗i⊥;λig

¼
X

fni;mig
ψΛ
fxi;ni;mi;λig

Y
i

ϕni;mi
ðk⃗i⊥;bÞ; ð2Þ

where ψΛ
fxi;ni;mi;λig ¼ hP;Λjfxi; ni; mi; λigi is the LFWF

in the BLFQ basis obtained by diagonalizing Eq. (1)
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numerically. The 2D-HO function we adopt as the trans-
verse basis function is

ϕn;mðk⃗⊥; bÞ ¼
ffiffiffi
2

p

bð2πÞ32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ jmjÞ!

s
e−k⃗

2⊥=ð2b2Þ
�jk⃗⊥j

b

�jmj

× Ljmj
n

�
k⃗2⊥
b2

�
eimθ; ð3Þ

with b as its scale parameter; n and m are the principal and

orbital quantum numbers, respectively, and Ljmj
n is the

associated Laguerre polynomial. In the discretized plane-
wave basis, the longitudinal momentum fraction x is
defined as xi ¼ pþ

i =P
þ ¼ ki=K, where the dimensionless

quantity signifying the choice of antiperiodic boundary
conditions is k ¼ 1

2
; 3
2
; 5
2
;… andK ¼ P

i ki. The multibody
basis states have selected values of the total angular
momentum projectionMJ ¼

P
i ðmi þ λiÞ, where λ is used

to label the quark helicity. The transverse basis truncation is
specified by the dimensionless parameters Nmax, such thatP

ið2ni þ jmij þ 1Þ ≤ Nmax. The basis cutoff Nmax acts
implicitly as the ultraviolet (UV) and infrared (IR) regu-
lators for the LFWFs in the transverse direction, with a UV
cutoff ΛUV ≈ b

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and an IR cutoff ΛIR ≈ b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
.

The longitudinal basis cutoff K controls the numerical
resolution and regulates the longitudinal direction.
Parameters in the model Hamiltonian are fixed to

reproduce the ground state mass of the nucleon and to
fit the Dirac flavor form factors [32]. The LFWFs in this
model have been successfully applied to compute a wide
class of different and related nucleon observables, e.g., the
electromagnetic and axial form factors, radii, PDFs, helicity
asymmetries, transverse momentum-dependent parton dis-
tribution functions, etc., with remarkable overall success
[31,32,35].

III. ANGULAR MOMENTUM
DISTRIBUTIONS

In this section, we introduce our notation and briefly
review the derivation of angular momentum distribution
following Ref. [12]. In field theory, the generalized angular
momentum tensor operator is written as follows:

Jαβ ¼
Z

d3yJ0αβðyÞ ¼
Z

d3y½L0αβðyÞ þ S0αβðyÞ�: ð4Þ

Both of the contributions are antisymmetric under α ↔ β.
When α, β are spatial components, LμαβðyÞ and SμαβðyÞ
are identified with the OAM and spin operators, respec-
tively. The first contribution can be expressed in terms of
the EMT as

LμαβðyÞ ¼ yαTμβðyÞ − yβTμαðyÞ: ð5Þ

Note that Tμν is referred to the canonical EMT and it is, in
general, neither gauge invariant nor symmetric. Meanwhile,
the TAM can also be expressed in a pure orbital form,

JαβBel ¼
Z

d3yJ0αβBel ðyÞ ¼
Z

d3y½yαTμβ
BelðyÞ− yβTμα

BelðyÞ�; ð6Þ

using the Belinfante-improved EMT [36–38], which is
defined by adding a term to the definition of Tμν as

Tμν
BelðyÞ ¼ TμνðyÞ þ ∂λGλμνðyÞ; ð7Þ

where Gλμν is given by

GλμνðyÞ ¼ 1

2
½SλμνðyÞþSμνλðyÞþSνμλðyÞ� ¼−GμλνðyÞ: ð8Þ

The additional term revises the definition of the local
density without changing the TAM. The Belinfante-
improved tensor Tμν

Bel is conserved, symmetric, and gauge
invariant. The Belinfante-improved tensors can be seen as
effective densities, where the effects of spin are imitated by
a superpotential contribution to the angular momentum.
The Belinfante TAM can then be rewritten as

JαβBel ¼ Jαβ þ
Z

d3y∂λðyαGλ0βðyÞ − yβGλ0αðyÞÞ: ð9Þ

Alternatively, Ji [11] proposed to use in the context of
QCD the kinetic EMT

Tμν
kinðyÞ ¼ Tμν

kin;qðyÞ þ Tμν
kin;gðyÞ; ð10Þ

where the gauge-invariant quark and gluon contributions to
the EMT are given by [3,39]

Tμν
kin;qðyÞ ¼

1

2
ψ̄ðyÞγμiD↔ νψðyÞ; ð11Þ

Tμν
kin;gðyÞ ¼ −2Tr½GμλðyÞGν

λðyÞ� þ
1

2
gμνTr½GρσðyÞGρσðyÞ�;

ð12Þ

with ψðyÞ and ψ̄ðyÞ being the quark fields and the
gluon field-strength tensor GμνðyÞ ¼ ∂μAνðyÞ − ∂νAμðyÞ−
ig½AμðyÞ; AνðyÞ�, D

↔
μ ¼ ∂↔ μ − igAμ, and ∂↔ μ ¼ ∂⃗ μ − ∂⃖ μ.

The kinetic generalized angular momentum tensor is
expressed as

Jαβkin ¼
Z

d3yJ0αβkin ðyÞ

¼
Z

d3y½L0αβ
kin;qðyÞ þ S0αβq ðyÞ þ J0αβkin;gðyÞ�; ð13Þ

where
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Lμαβ
kin;qðyÞ ¼ yαTμβ

kin;qðyÞ − yβTμα
kin;qðyÞ; ð14Þ

Sμαβq ðyÞ ¼ 1

2
εμαβλψ̄ðyÞγλγ5ψðyÞ; ð15Þ

Jμαβkin;gðyÞ ¼ yαTμβ
kin;gðyÞ − yβTμα

kin;gðyÞ; ð16Þ

and the convention ε0123 ¼ þ1. In contrast to the quark
TAM, the gluon TAM cannot be separated into orbital and
spin contributions. The Belinfante-improved and the
kinetic tensors for the quark differ by superpotential terms
and they are related as follows:

Tμν
kin;qðyÞ ¼ Tμν

Bel;qðyÞ −
1

2
∂λS

λμν
q ðyÞ; ð17Þ

Lμαβ
kin;qðyÞþSμαβq ðyÞ¼JμαβBel;qðyÞ−

1

2
∂λ½yαSλμβq ðyÞ−yβSλμαq ðyÞ�:

ð18Þ

Meanwhile, the gluon contributions being the same in both
cases, Tμν

kin;gðyÞ ¼ Tμν
Bel;gðyÞ and Jμαβkin;gðyÞ ¼ JμαβBel;gðyÞ.

For a spin-1
2
target, the matrix elements of the quark

kinetic Tμν
kin;q, which is gauge invariant but asymmetric,

are parametrized in terms of several gravitational form
factors [3],

hP0;Λ0jTμν
kin;qð0ÞjP;Λi

¼ ūðP0;Λ0Þ
�
P̄μP̄ν

M
AqðtÞ þ

P̄μiσνλΔλ

4M
ðAq þ Bq þDqÞðtÞ

þ ΔμΔν − gμνΔ2

M
CqðtÞ þMgμνC̄qðtÞ

þ P̄νiσμλΔλ

4M
ðAq þ Bq −DqÞðtÞ

�
uðP;ΛÞ; ð19Þ

where P̄ ¼ 1
2
ðP0 þ PÞ, Δ ¼ P0 − P, t ¼ Δ2, M is the

system mass, the three-vector ΛðΛ0Þ denotes the rest-frame
polarization of the initial (final) state, and uðP;ΛÞ is the
spinor. The gravitational form factors AqðtÞ, BqðtÞ, and
CqðtÞ can be related to leading-twist quark GPDs, which
are accessible in exclusive processes [40]. Meanwhile, the
form factor C̄qðtÞ, obtainable from the trace of the energy-
momentum tensor, is related to the σπN and σs terms
extracted from pion-nucleon scattering amplitudes [41,42].
On the other hand, the matrix elements of the quark spin

operator, Eq. (15), are parametrized as

hP0;Λ0jSμαβq ð0ÞjP;Λi

¼ 1

2
εμαβλūðP0;Λ0Þ

�
γλγ5G

q
AðtÞ þ

Δλγ5
2M

Gq
PðtÞ

�
uðP;ΛÞ;

ð20Þ

where Gq
AðtÞ and Gq

PðtÞ are the axial vector and pseudo-
scalar form factors, respectively. According to Refs. [3,43],
the axial form factor is connected to the gravitational form
factor associated with the antisymmetric part of the quark
EMT,DqðtÞ ¼ −Gq

AðtÞ. The axial form factor is measurable
from quasielastic neutrino scattering and pion electro-
production processes [44]. The different angular momen-
tum distributions can thus be defined through the
combination of the gravitational form factors and the axial
form factor.

A. Distributions in the transverse plane
on the light front

In the light-front formalism, the impact-parameter dis-
tributions of kinetic OAM and spin in the Drell-Yan (DY)
frame are given by [12]

hLziðb⊥Þ ¼ −iε3jk
Z

d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥∂hTþki
∂Δj

⊥

����
DY

¼ Λz

Z
d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥
�
LðtÞ þ t

dLðtÞ
dt

�
t¼−Δ⃗2⊥

;

ð21Þ

hSziðb⊥Þ ¼
1

2
ε3jk

Z
d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥hSþjkijDY

¼ Λz

2

Z
d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥GAð−Δ⃗2⊥Þ; ð22Þ

respectively, where 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0þPþp

hTμνi≡ hP0; SjTμνð0ÞjP; Si
and LðtÞ is the combination of energy-momentum form
factors and the axial form factor,

LðtÞ ¼ 1

2
½AðtÞ þ BðtÞ þDðtÞ� ¼ 1

2
½AðtÞ þ BðtÞ −GAðtÞ�:

ð23Þ

The variable b⃗⊥ is the Fourier conjugate to the transverse
momentum transfer Δ⃗⊥. The impact parameter b⊥ corre-
sponds to the transverse displacement of the active quark
from the center of momentum of the nucleon. Meanwhile,
the Belinfante-improved TAM and the total divergence in
the impact parameter are defined as [12]

hJzBeliðb⊥Þ ¼ −iε3jk
Z

d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥∂hTþk
Beli

∂Δj
⊥

����
DY

¼ Λz

Z
d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥
�
JðtÞ þ t

dJðtÞ
dt

�
t¼−Δ⃗2⊥

;

ð24Þ
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hMziðb⊥Þ ¼
1

2
ε3jk

Z
d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥Δl⊥
∂hSlþki
∂Δj

⊥

����
DY

¼−
Λz

2

Z
d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥
�
t
dGAðtÞ
dt

�
t¼−Δ⃗2⊥

; ð25Þ

respectively, where

JðtÞ ¼ 1

2
½AðtÞ þ BðtÞ�: ð26Þ

Using the two-dimensional Fourier transform of the form
factors defined as

F̃ðb⊥Þ ¼
Z

d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥Fð−Δ⃗2⊥Þ; ð27Þ

Eqs. (21)–(25) can be rewritten as

hLziðb⊥Þ ¼ −
Λz

2
b⊥

dL̃ðb⊥Þ
db⊥

; ð28Þ

hSziðb⊥Þ ¼
Λz

2
G̃Aðb⊥Þ; ð29Þ

hJzBeliðb⊥Þ ¼ −
Λz

2
b⊥

dJ̃ðb⊥Þ
db⊥

; ð30Þ

hMziðb⊥Þ ¼
Λz

2

�
G̃Aðb⊥Þ þ

1

2
b⊥

dG̃Aðb⊥Þ
db⊥

�
: ð31Þ

The total angular momentum density hJziðb⊥Þ is then
given by

hJziðb⊥Þ¼hLziðb⊥ÞþhSziðb⊥Þ¼hJzBeliðb⊥ÞþhMziðb⊥Þ;
ð32Þ

which is different form the “naive” density, which is
defined by the two-dimensional Fourier transform of JðtÞ,

hJznaiveiðb⊥Þ ¼ ΛzJ̃ðb⊥Þ; ð33Þ

by a correction term

hJzcorriðb⊥Þ ¼ −Λz

�
L̃ðb⊥Þ þ

1

2
b⊥

dL̃ðb⊥Þ
db⊥

�
: ð34Þ

Beside the densities mentioned above, the Belinfante-
improved TAM can also be formulated as the sum of
monopole and quadrupole contributions [12]

hJzðmonoÞ
Bel iðb⊥Þ ¼

Λz

3

�
J̃ðb⊥Þ − b⊥

dJ̃ðb⊥Þ
db⊥

�
; ð35Þ

hJzðquadÞBel iðb⊥Þ ¼ −
Λz

3

�
J̃ðb⊥Þ þ

1

2
b⊥

dJ̃ðb⊥Þ
db⊥

�
: ð36Þ

The monopole contribution (35) is the projection of the
expression used by Polyakov and co-workers [13,45] onto
the transverse plane. This has later been studied as the
Polyakov-Goeke distribution in Ref. [14]. The quadrupole
contribution (36) is also the 2D projection of the 3D
quadrupole contribution to the Belinfante-improved TAM
[12], which arises from the breaking of spherical symmetry
down to axial symmetry due to the polarization of the state.
Note that the total divergence [Eq. (31)], the correction

[Eq. (34)], and the quadrupole [Eq. (36)] terms vanish when
they are integrated over b⃗⊥. This clarifies how different
definitions lead to the same integrated total angular
momentum though they are distinct from each other at
the density level [12,14,15].

B. Generalized parton distributions

In general, the GPDs are defined through the off-forward
matrix elements of the bilocal operators between hadronic
states. The unpolarized and helicity-dependent quark GPDs
for the nucleon are parametrized as [46]

Z
dy−

8π
eixP

þy−=2hP0;Λ0jψ̄ð0ÞγþψðyÞjP;Λijyþ¼y⃗⊥¼0

¼ 1

2P̄þ ūðP0;Λ0Þ
�
Hqðx; ζ; tÞγþ þ Eqðx; ζ; tÞ iσ

þjΔj

2M

�
× uðP;ΛÞ; ð37Þ

Z
dy−

8π
eixP

þy−=2hP0;Λ0jψ̄ð0Þγþγ5ψðyÞjP;Λijyþ¼y⃗⊥¼0

¼ 1

2P̄þ ūðP0;Λ0Þ
�
H̃qðx; ζ; tÞγþγ5 þ Ẽqðx; ζ; tÞ γ5Δ

þ

2M

�
× uðP;ΛÞ: ð38Þ

Here H and E are the unpolarized quark GPDs, whereas H̃
and Ẽ represent the helicity-dependent GPDs. The kin-
ematical variables are P̄ ¼ ðP0 þ PÞ=2, Δ ¼ P0 − P,
ζ ¼ −Δþ=2P̄þ, and t ¼ Δ2. For ζ ¼ 0, t ¼ −Δ⃗2⊥. We
consider the light cone gauge Aþ ¼ 0, which indicates
that the gauge link between the quark fields in Eqs. (37) and
(38) is unity. In this paper, we concentrate only on the
GPDs relevant to the angular momentum densities, i.e., H,
E, and H̃ at the zero skewness limit. Note that one has to
consider nonzero skewness to compute GPD Ẽ, which is
not needed for this work.
Substituting the nucleon states within the valence Fock

sector
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jP;Λi ¼
Z Y3

i¼1

�
dxid2k⃗i⊥ffiffiffiffi
xi

p
16π3

�
16π3δ

�
1−

X3
i¼1

xi

�
δ2
�X3

i¼1

k⃗i⊥
�

×ΨΛ
fxi;k⃗i⊥;λig

jfxiPþ; k⃗i⊥ þ xiP⃗⊥; λigi ð39Þ

and the quark field operators in Eqs. (37) and (38) leads to
the GPDs in terms of the overlap of the LFWFs,

Hqðx;0; tÞ ¼
X
fλig

Z
½dXdP⊥�Ψ↑�

fx0i;k⃗0i⊥;λig
Ψ↑

fxi;k⃗i⊥;λig
δðx− x1Þ;

ð40Þ

Eqðx; 0; tÞ ¼ −
2M

ðq1 − iq2Þ
X
fλig

Z
½dXdP⊥�

×Ψ↑�
fx0i;k⃗0i⊥;λig

Ψ↓

fxi;k⃗i⊥;λig
δðx − x1Þ; ð41Þ

H̃qðx; 0; tÞ ¼
X
fλig

Z
½dXdP⊥�λ1Ψ↑�

fx0i;k⃗0i⊥;λig
Ψ↑

fxi;k⃗i⊥;λig

× δðx − x1Þ; ð42Þ

where

½dXdP⊥�¼
Y3
i¼1

�
dxid2k⃗i⊥
16π3

�
16π3δ

�
1−

X3
i¼1

xi

�
δ2
�X3

i¼1

k⃗i⊥
�
;

ð43Þ

and the light-front momenta are x01 ¼ x1; k⃗01⊥ ¼ k⃗1⊥þ
ð1 − x1ÞΔ⃗⊥ for the struck quark (i ¼ 1) and x0i ¼ xi; k⃗

0
i⊥ ¼

k⃗i⊥ − xiΔ⃗⊥ for the spectators (i ≠ 1), and λ1 ¼ 1ð−1Þ for
the struck quark helicity. The proton light-front helicity is
designated by Λ ¼↑ ð↓Þ, where ↑ and ↓ correspond to þ1
and −1, respectively.
Integrating the nonlocal matrix element that parame-

trized the GPDs over x leads to the local matrix elements
yielding the form factors. In the Drell-Yan frame, the
expressions for the form factors are very similar to the
expressions for GPDs, except that the longitudinal momen-
tum fraction x of the struck quark is not integrated out in the
GPDs’ expressions. Thus, GPDs defined in Eqs. (40)–(42)
are also known as momentum-dissected form factors and
measure the contribution of the struck quark with momen-
tum fraction x to the corresponding form factors. The
electromagnetic form factors are related to the first
moments of the unpolarized GPDs for the nucleon by
the sum rules on the light front as

Fq
1ðtÞ ¼

Z
dxHqðx; 0; tÞ; Fq

2ðtÞ ¼
Z

dxEqðx; 0; tÞ;

ð44Þ

where Fq
1ðtÞ and Fq

2ðtÞ are the Dirac (charge) and the Pauli
(magnetic) form factors, respectively, whereas the axial
form factor is connected to the helicity-dependent GPD as

Gq
AðtÞ ¼

Z
dxH̃qðx; 0; tÞ: ð45Þ

Meanwhile, the gravitational form factors which are para-
metrized through the matrix elements of the EMTare linked
to the second moment of GPDs,

AqðtÞ ¼
Z

dxxHqðx; 0; tÞ; BqðtÞ ¼
Z

dxxEqðx; 0; tÞ:

ð46Þ

The transverse impact-parameter-dependent GPDs are
obtained via the FT of the GPDs with respect to the
momentum transfer along the transverse direction Δ⃗⊥ [10],

Fðx; b⊥Þ ¼
Z

d2Δ⃗⊥
ð2πÞ2 e

−iΔ⃗⊥·b⃗⊥Fðx; 0; tÞ; ð47Þ

with F being the GPDs H, E, and H̃. The Hðx; b⊥Þ
provides the description of the density of unpolarized
quarks in the unpolarized proton, while Eðx; b⊥Þ is
responsible for a deformation of the density in the trans-
versely polarized proton. The transverse distortion can be
linked to Ji’s angular momentum relation. Ji has shown that
the TAM of quarks and gluons can be expressed in terms of
GPDs [11],

Jz ¼ 1

2

Z
dxx½Hðx; 0; 0Þ þ Eðx; 0; 0Þ�: ð48Þ

This sum rule is appropriate at the forward limit of the GPDs
and relates the z component of theTAMof the constituents in
a nucleon polarized in the z direction only. Again in the
impact-parameter space, the sum rule has a simple inter-
pretation for a transversely polarized nucleon [47]; further
clarification can be found in Ref. [48]. The term involving
Eðx; 0; 0Þ arises due to the transverse deformation of the
distribution in the center of the momentum frame, whereas
the term containing Hðx; 0; 0Þ is an overall transverse shift
when going from the transversely polarized nucleon in
instant form to the front form. Meanwhile, the helicity-
dependent GPD H̃ in the impact-parameter space reflects the
difference in the density of the parton with helicity equal or
opposite to the nucleon helicity [49–52]. This GPD has a
direct connection with the partonic spin contribution to the
TAM of the nucleon.
We can now rewrite the distributions defined in

Eqs. (28)–(36) using the impact-parameter-dependent
GPDs, where L̃ðb⊥Þ, J̃ðb⊥Þ, and G̃Aðb⊥Þ are given by

LIU, XU, MONDAL, ZHAO, and VARY PHYS. REV. D 105, 094018 (2022)

094018-6



L̃ðb⊥Þ ¼
1

2

Z
dxfx½Hðx; b⊥Þ þ Eðx; b⊥Þ� − H̃ðx; b⊥Þg;

ð49Þ

J̃ðb⊥Þ ¼
1

2

Z
dxx½Hðx; b⊥Þ þ Eðx; b⊥Þ�; ð50Þ

G̃Aðb⊥Þ ¼
Z

dxH̃ðx; b⊥Þ: ð51Þ

IV. NUMERICAL RESULTS AND DISCUSSIONS

The LFWFs of the valence quarks in the proton
have been solved in the BLFQ framework with the
basis truncation Nmax ¼ 10 and K ¼ 16.5 and the model
parameters fmq=KE; mq=OGE; κ; αsg ¼ f0.3 GeV; 0.2 GeV;
0.34 GeV; 1.1� 0.1g and the HO scale parameter
b ¼ 0.6 GeV. The parameters in our model are fixed to
fit the nucleon mass and the flavor Dirac form factors [31].
We estimate an uncertainty on the coupling that accounts
for the model selections and major fitting uncertainties.
The uncertainty for the αs decreases with increasing
basis cutoffs Nmax [32]. We employ the resulting wave
functions to investigate the GPDs for the proton. We
insert the valence wave functions given by Eq. (2) into
Eqs. (40)–(42) to compute the valence quark GPDs inside
the proton.
We show the unpolarized GPDs, Hq and Eq, and the

helicity-dependent GPD H̃q as functions of x and −t for the
proton in Fig. 1. The GPD E in the proton has its peak
located at a lower x than the peaks in H and H̃. In addition,
the GPD E falls faster than the other two GPDs at large x.
Meanwhile, the GPD H̃ exhibits the similar behavior as
manifested by the GPD H. This is due to the fact that E
involves the overlaps of the wave functions with different
orbital angular momentum Lz ¼ 0 and Lz ¼ �1 and the
other two GPDs entail the overlaps of the wave functions of
the same orbital angular momentum. The magnitudes of
distributions decrease and the peaks along x shift toward
larger values of x with increasing momentum transfer −t
similar to that observed in the other phenomenological
models for the nucleon [32,52–63] as well as for the light
mesons [63–66].
We illustrate the valence quark GPDs of the proton in the

transverse impact-parameter space for zero skewness in
Fig. 2. We observe that, except for the fact that the
magnitude of Hðx; b⊥Þ for the up quark is larger than that
for the down quark, the overall nature of this distribution is
the same for both the quarks. After integrating over b⊥,
Hðx; b⊥Þ reduces to the ordinary unpolarized PDF f1ðxÞ
and satisfies the quark counting rule when we further
integrate over x. Meanwhile, Eðx; b⊥Þ for the up quark
emerges as a positive distribution, whereas it is negative for
the down quark. After integrating Eðx; b⊥Þ over x and b⊥,

we obtain the following values for the quark anomalous
magnetic moments: κu ¼ 1.481� 0.029 and κd ¼
−1.367� 0.025 corresponding to the nucleon anomalous
magnetic moments: κp ¼ 2

3
κu − 1

3
κd ¼ 1.443� 0.027 and

κn ¼ − 1
3
κu þ 2

3
κd ¼ −1.405� 0.026, which are close to

the recent results from lattice simulations: κlatp ¼ 1.43ð9Þ
and κlatn ¼ −1.54ð6Þ [67]. The experimental values are
κexpp ¼ 1.793 and κexpn ¼ −1.913.
We also observe in Fig. 2 that Eðx; b⊥Þ falls faster than

Hðx; b⊥Þ at x → 1 similar to what is found in other
phenomenological models [49,59,61,68]. The qualitative
behavior of H̃ðx; b⊥Þ in our approach is almost the same as
in Hðx; b⊥Þ but the magnitude of H̃ðx; b⊥Þ is relatively
lower than that for Hðx; b⊥Þ. Meanwhile, H̃ðx; b⊥Þ for the
down quark has the opposite sign to the up quark
distribution. Integrating H̃ðx; b⊥Þ over b⊥, we obtain the
helicity distribution g1ðxÞ, which in our BLFQ approach is
consistent with the experimental data [32].
We further notice in Fig. 2 that thewidth of all the GPDs in

the transverse impact-parameter space decreases as x
increases. This indicates that the distributions are more
concentrated and the quarks are more localized near the
center of momentum (b⊥ ¼ 0) when they are carrying a
higher longitudinal momentum fraction. Meanwhile, the
peaks of all the distributions shift toward to lower values
of x when b⊥ increases. This characteristic of the distribu-
tions in the b⊥ space is reassuring since the GPDs in the
momentum space become broader in−twith increasing x, as
can be seen from Fig. 1. On the light front, this can be
understood as the larger the momentum fraction, the smaller
the kinetic energy carried by the quarks. As the total kinetic
energy remains limited, the distribution in the transverse
momentumbroadens at higherx reflecting the trend to carry a
larger portion of the kinetic energy. As a consequence, these
general features should be nearlymodel-independent proper-
ties of the GPDs and, indeed, they are also observed in other
theoretical studies of the GPDs [10,52,59–62,68].
We employ these GPDs to compute the angular momen-

tum distributions defined in Eqs. (28)–(36) following
Eqs. (49)–(51). In Fig. 3, we illustrate different defini-
tions of the TAM densities summing over the up and the
down quark contributions. We display the distribution
b⊥hJziðb⊥Þ as a function of b⊥ and notice that the TAM
is positive over all b⊥. It has the peak near b⊥ ∼ 0.3 fm,
falls slowly with increasing b⊥, and becomes very small
near b⊥ ∼ 1.5 fm. The error bands in our distributions are
due to the 10% uncertainties in the coupling constant.
Figure 3(a) shows the kinetic TAM density hJziðb⊥Þ as

the sum of the spin hSziðb⊥Þ and the kinetic OAM
hLziðb⊥Þ contributions each multiplied by b⊥. Both the
contributions show positive distributions. In contrast to the
results in a quark-diquark model [12], where the OAM
component is larger than the spin component of the TAM
density, the spin distribution in our approach strongly
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dominates over the kinetic OAM density. The hLziðb⊥Þ is
mainly effective over the range 0.2 < b⊥ < 0.6 fm. It
should be noted that these results are obtained within
the valence Fock representation, while the higher Fock
components jqqqgi and jqqqqq̄i are anticipated to have
significant effects on the spin and OAM distributions. With
the inclusion of dynamical gluons and sea quarks, the quark
spin contribution may be suppressed, and the OAM can
play an enhanced role in the TAM density.

Figure 3(b) compares the kinetic TAM hJziðb⊥Þ and the
naive distribution hJznaiveiðb⊥Þ. Their difference, attributed
to the correction term hJzcorriðb⊥Þ in Eq. (34), is also shown
in this plot. We find that hJznaiveiðb⊥Þ is close to hJziðb⊥Þ.
The hJzcorriðb⊥Þ exhibits a negative central region sur-

rounded by a ring of positive distribution, which is in
accord with the behavior observed in the quark-diquark
model [12].

(a) (b)

(c) (d)

(e) (f)

FIG. 1. The valence quark GPDs of the proton: (a)Hðx; 0; tÞ, (c) Eðx; 0; tÞ, and (e) H̃ðx; 0; tÞ are for the valence up quark; (b), (d), and
(f) are the same as (a), (c), and (e), respectively, but for the valence down quark as functions of x and −t. All the GPDs are presented at
our model scale μ20 ¼ 0.195 GeV2.
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We present the comparison between the kinetic TAM
hJziðb⊥Þ and the Belinfante-improved density hJzBeliðb⊥Þ
in Fig. 3(c). In the same plot, we also show their difference
given by the total divergence hMziðb⊥Þ term in Eq. (31).
The hJzBeliðb⊥Þ is smaller at b⊥ < 0.4 fm but larger at
b⊥ > 0.4 fm than the hJziðb⊥Þ. The Belinfante-improved
density falls slower at higher b⊥ than the TAM density. We

also find that the peak of the Belinfante-improved distri-
bution is lower and appears at higher value of b⊥ compared
to that for the TAM density. Also, the Belinfante-improved
distribution is broader and falls more slowly in b⊥
compared with the kinetic TAM hJziðb⊥Þ. It can be noticed
that the hMziðb⊥Þ has a positive core and a negative tail.
hMziðb⊥Þ has a significant contribution to the TAM

(a) (b)

(c) (d)

(e) (f)

FIG. 2. The valence quark GPDs of the proton in the transverse impact-parameter space: (a) Hðx; b⊥Þ, (c) Eðx; b⊥Þ, and (e) H̃ðx; b⊥Þ
are for the valence up quark; (b), (d), and (f) are same as (a), (c), and (e), respectively, but for the valence down quark as functions of x
and b⊥. All the GPDs are presented at our model scale μ20 ¼ 0.195 GeV2.
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distribution and this can be ascribed to the fact that it is
related to the spin distribution, which in our model provides
the dominating contribution to the TAM density.
As another illustration of our results, the decomposition

of the Belinfante-improved TAM in term of its monopole

hJzðmonoÞ
Bel iðb⊥Þ and quadrupole hJzðquadÞBel iðb⊥Þ contributions

is presented in Fig. 3(d). One notices that the qualitative

behavior of hJBelzðmonoÞiðb⊥Þ and hJzðquadÞBel iðb⊥Þ distri-
butions is similar to hJznaiveiðb⊥Þ and hJzcorriðb⊥Þ, respec-
tively. Finally, we observe that the correction term
hJzcorriðb⊥Þ, the total divergence term hMziðb⊥Þ, and the

quadrupole contribution hJzðquadÞBel iðb⊥Þ integrate to zero.
However, at the density level, we need to take them into
account while comparing different definitions for the
angular momentum distribution. Note that these findings
in our BLFQ approach are also supported by the analysis
based on a light-front quark-diquark model [12].

In Fig. 4, we demonstrate the angularmomentumdensities
for quark flavors by considering all the different definitions
described above. In Figs. 4(a) and 4(b), we present the kinetic
TAM hJziqðb⊥Þ ¼ hSziqðb⊥Þ þ hLziqðb⊥Þ for the up and
the down quarks, respectively, multiplied by b⊥. In our
BLFQ approach, the contribution in hJziðb⊥Þ from hSziðb⊥Þ
is larger than that from hLziðb⊥Þ for the up quark, whereas
for the down quark, hSziðb⊥Þ dominates at lower b⊥ but
hLziðb⊥Þ is superior at large distance. For the up quark, the
spin and the OAM densities show positive and negative
distributions, respectively, while they are opposite for the
down quark. In essence, hJziðb⊥Þ for the down quark
exhibits a negative core near the center of momentum of
the proton and it has a positive tail at large distance.
Meanwhile, hJziðb⊥Þ is almost equivalent to hSziðb⊥Þ for
the up quark and they show positive distributions.
In Figs. 4(c) and Fig. 4(d), we compare the up and the

down quark kinetic TAM hJziðb⊥Þ with their naive density

(a) (b)

(c) (d)

FIG. 3. Angular momentum distributions summing over the up and the down quark contributions multiplied by b⊥ as functions of b⊥:
(a) the kinetic TAM density hJziðb⊥Þ (black band) as the sum of the spin hSziðb⊥Þ in Eq. (22) (red band) and the kinetic OAM hLziðb⊥Þ
in Eq. (21) (blue band) contributions; (b) the kinetic TAM density hJziðb⊥Þ (black band) resulting from the sum of the naive TAM
density hJznaiveiðb⊥Þ in Eq. (33) (blue band) and the corresponding correction term hJzcorriðb⊥Þ in Eq. (34) (red band); (c) the kinetic TAM
density hJziðb⊥Þ (black band) expressed as the sum of the Belinfante-improved TAM hJzBeliðb⊥Þ density in Eq. (24) (blue band) and the
total divergence term hMziðb⊥Þ in Eq. (25) (red band); (d) the Belinfante-improved TAM hJzBeliðb⊥Þ density (black band) decomposed

into its monopole hJmono
Bel iðb⊥Þ in Eq. (35) (blue band) and quadrupole hJquadBel iðb⊥Þ in Eq. (36) (red band) contributions. The bands reflect

our αs uncertainty of 10%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Angular momentum densities of the up and the down quarks multiplied by b⊥ as functions of b⊥. (a), (c), (e), (g) are for the
down quark, while (b), (d), (f), (h) are for the up quark. The legends in (a), (c), (e), (g) or (b), (d), (f), (h) are the same as described in
Figs. 3(a)–3(d) but for quarks.
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hJznaiveiðb⊥Þ, respectively. The naive density hJznaiveiðb⊥Þ is
positive for the up quark, while for the down quark, it
is also positive at low b⊥ but negative at higher b⊥.
The difference between them is provided by the correction
term hJzcorriðb⊥Þ in Eq. (34). The correction term for the up
quark is small but for the down quark it is large and close
to hJziðb⊥Þ. Meanwhile, the comparison between the
kinetic TAM hJziðb⊥Þ and the Belinfante-improved
TAM hJzBeliðb⊥Þ for the up and the down quark is
illustrated in Figs. 4(e) and 4(f), respectively. The differ-
ence is described by the hMziðb⊥Þ term in Eq. (31). For the
down quark, the hJzBeliðb⊥Þ is very small compared to
hJziðb⊥Þ and the major contribution in the kinetic TAM is
coming from Mzðb⊥Þ. However, they are comparable for
the up quark. In our BLFQ approach the qualitative
behavior of the naive and the Belinfante-improved densities
is very similar for the down quark but different for the
up quark.
Finally, the monopole and quadrupole contributions to

the Belinfante-improved total density for the quarks are
shown in Figs. 4(g) and 4(h). The monopole contribution
dominates over the quadrupole contribution for both the
quarks. Note that the integrations of the correction term
hJzcorriðb⊥Þ, the total divergence term hMziðb⊥Þ, and the

quadrupole contribution hJzðquadÞBel iðb⊥Þ for the individual
quarks are also zero but all the terms need to be retained
while comparing results among different definitions at the
level of distributions.
Summing over the flavors, we have obtained the

total spin contributed by the quarks to the proton spin.
Within our model that incorporates only the valence Fock
sector, we have found that the quark spin at the model scale,
μ20 ¼ 0.195� 0.020 GeV2 [32], contributes ∼91% to the
proton spin, whereas the contribution of quark spin
captures only ∼40% as revealed from the experiment
[69]. This evident discrepancy suggests the need to extend
our model to append the higher Fock sectors, which have
significant effects on the proton spin. With dynamical
gluons and sea quarks, the quark spin contribution can be
reduced and the OAM can play a substantial role in
understanding the nucleon spin. Simultaneously, the gluon
and sea quark contributions to the total spin will emerge.
Meanwhile, the QCD scale evolution also needs to be taken
into account.
There is no gauge field in our model. As a con-

sequence, it is expected that the kinetic OAM should
coincide with the canonical OAM and the operator is then
written as [3]

L⃗q
z ¼

Z
d3yψ̄ðyÞγþ½y⃗ × ð−i∂⃗Þ�zψðyÞ: ð52Þ

The canonical OAM in the light-front gauge can be
expressed in terms of generalized transverse momentum
parton distributions (GTMDs) as [70–72]

Lq
z ¼

Z
dxLq

z ðxÞ ¼
Z

dxd2k⃗⊥
�
i

∂
∂Δ⃗⊥

× k⃗⊥
�

×Wq½γþ�ðΔ⃗⊥; k̄⊥; x; SzÞ
����
Δ⃗⊥¼0

ð53Þ

¼ −
Z

dxd2k̄⊥
k̄2⊥
M2

Fq
1;4ðx; 0; k̄2⊥; 0; 0Þ; ð54Þ

whereWq½γþ�ðΔ⃗⊥; k̄⊥; x; SzÞ is the correlation functions for
the unpolarized quark, and Fq

1;4ðx; ξ ¼ 0; k̄2⊥; k̄⊥ · Δ⃗⊥ ¼ 0;

Δ⃗2⊥ ¼ 0Þ is one of the GTMDs for the unpolarized quark,
and can be expressed in terms of LFWFs,

Fq
1;4ðx; ξ; k̄2⊥; k̄⊥ · Δ⃗⊥; Δ⃗2⊥Þ

¼
X
fλigΛ

Z
½dXdP⊥�

−iM2

2½k̄⊥ × Δ⃗⊥�
ΛΨΛ�

fxi;k⃗0i⊥;λig
ΨΛ

fxi;k⃗i⊥;λig

× δ2
�
k̄⊥ −

k⃗0⊥ þ k⃗⊥
2

�
δðx − x1Þ: ð55Þ

Meanwhile, the kinetic OAM of the quark appearing in
the Ji sum rule is defined in terms of quark GPDs as

Lq
z ¼

Z
dxLq

z ðxÞ ¼ 1

2

Z
dx½xðHqðx; 0; 0Þ þ Eqðx; 0; 0ÞÞ

− H̃qðx; 0; 0Þ�: ð56Þ

The values of the canonical OAM and kinetic OAM are
given in Table I. As expected, we obtain that the sum of
kinetic OAM of up and down quarks is the same as total
canonical OAM of the up and down quarks.

V. SUMMARY

Using a recently proposed light-front model for the
proton based on a Hamiltonian formalism, we studied its
valence quark GPDs. The effective Hamiltonian incorpo-
rates light-front holography, longitudinal confinement, and
the one-gluon exchange interaction for the valence quarks
suitable for low-resolution properties. We obtained the
proton LFWFs as the eigenvectors of this Hamiltonian by
solving its mass eigenstates using BLFQ as a relativistic
three-quark problem. The parameters in this BLFQ model
have previously been adjusted by fitting the nucleon mass
and the flavor Dirac form factors. We then employed the
LFWFs to compute the valence quark unpolarized and

TABLE I. In our BLFQ approach, the values of canonical OAM
Lq
z and the kinetic OAM Lq

z for u, d quark, and their sum.

Quark OAM Up Down Upþ down

Kinetic Lq
z −0.045 0.107 0.062

Canonical Lq
z 0.082 −0.020 0.062
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helicity-dependent GPDs of the proton. We presented
results for the GPDs in both momentum space and position
space for zero skewness and we found that the qualitative
behavior of the GPDs in our BLFQ approach bears
similarities to other phenomenological models.
We have employed these GPDs to study the various

definitions of angular momentum at the density level.
Within our model that includes only the leading Fock
sector, we have found that the spin contribution to the TAM
strongly dominates over the OAM distribution in contrast
to the results in a quark-diquark model [12]. On the other
hand, the naive angular momentum density is found to be
close to the TAM distribution. Meanwhile, we have
observed that the Belinfante-improved angular momentum
density is distinctly different from the TAM distributions,
whereas the difference between them given by the total
divergence term has a positive core surrounded by a
negative tail. When we decomposed the Belinfante-
improved angular momentum density into its monopole
and quadrupole components, we noticed that the dominat-
ing contribution comes from the monopole density. In our
approach, we have illustrated explicitly that no discrepan-
cies were found between different definitions of angular
momentum when all the terms integrating to zero are
included in the expressions. These findings in our BLFQ
approach are consistent with the analysis based on a light-
front quark-diquark model [12].
We have subsequently presented the up and the down

quarks’ TAM densities and found that the up quark
contribution to the TAM distribution is much larger than
that for the down quark. The spin and OAM densities are

comparable but opposite in sign for the down quark, while
for the up quark, the spin distribution is much stronger than
the OAM density. The naive distributions for both the
quarks were found to be similar to their TAM densities.
Although the Belinfante-improved and TAM distributions
are similar for the down quark, they are different from each
other for the up quark in our current approach.
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