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In this paper, we solve the gap equation of the Yang-Mills-Gribov-Zwanziger-Chern-Simons theory
by considering the first order in the Chern-Simons topological mass term, M. As a result, we find three
possible solutions to the gap equation, i.e., three different Gribov parameters, two of which can be
eliminated by the regime of the theory. In addition, our conclusion about the regime of the theory is
different from the literature. We also show that, in our case, there is no weak-coupling regime.
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I. INTRODUCTION

It is well known that the nonperturbative non-Abelian
gauge field theory is plagued by gauge copies—the famous
Gribov copies [1]. Gribov noticed that the standard gauge
fixing procedure by Faddeev-Popov is not sufficient to
remove all equivalent gauge field inside of the Gribov
region, the Faddeev-Popov operator, Mab ¼ −∂μDab

μ , is
strictly positive, Ω ¼ fAa

μ; ∂μAa
μ;Mab > 0g. In 44 years, a

lot of research has been focused on the Gribov problem; see
Refs. [2–8] for examples. The pioneer work was done by
Zwanziger, who figured out how to implement the Gribov
region in the action; hence, a new formalism called Gribov-
Zwanziger formalism was created [9–11], which some
authors have used to understand and explain confinement/
deconfinement phase transition [12–15].
Another method to study confinement/deconfinement is

through three-dimensional (3D) Euclidean Yang-Mills-
Chern-Simons theory [16,17]. This method is interesting
because the topological Chern-Simons (CS) mass term
gives the gluon field an extra mass generating a confine-
ment/deconfinement transition phase in 3D Euclidean
Yang-Mills [12,13].
As Gribov-Zwanziger theory and Yang-Mills-Chern-

Simons theory give us features about the regime of the
theory, it is intriguing to assemble both theories and then to
solve the gap equation for the Gribov parameter [1,9–11]
and to analyze the confinement/deconfinement phase

transition in the presence of the CS topological mass M
at least in the first order.
In Sec. II, we introduce the Gribov-Zwanzinger formal-

ism and the idea of confinement/deconfinement in this
formalism to the reader. In Sec. III, we solve the gap
equation using Yang-Mills-Gribov-Chern-Simons theory.
In Sec. IV, we briefly review the gluon propagator calculus,
we analyze the regime of the theory by using the Gribov
parameters found in Sec. III, and we eliminate the Gribov
parameters without physical meaning. Finally, we present
our conclusions in Sec. V.

II. YANG-MILLS-GRIBOV-ZWANZIGER THEORY

In 1977, Gribov presented a new way to interpret quark
and gluon confinement [1]. He showed that the Faddeev-
Popov procedure is not enough to remove the gauge copies
present in the Yang-Mills path integral in strong interaction
at low temperature. He solved the problem by adding an
extra restriction. This new restriction modifies the gauge
sector by adding a masslike term, called Gribov mass. The
presence of this term revises the gauge propagator exhibit-
ing propagations of nonphysical excitations. This can be
interpreted as signals of confinement; i.e., perturbatively
physical excitations of the theory cannot be described in the
infrared regime. Throughout this section, we describe the
Gribov framework in more details.

A. Gribov restriction in Yang-Mills theories

It is well known from the literature that the Euclidean
Yang-Mills path integral reads

Z½J� ¼
Z

DAe−SSYM ; ð2:1Þ

where

*felix@cycu.edu.tw
†cwkao@cycu.edu.tw

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 094016 (2022)

2470-0010=2022=105(9)=094016(9) 094016-1 Published by the American Physical Society

https://orcid.org/0000-0003-0686-2376
https://orcid.org/0000-0003-1122-3288
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.094016&domain=pdf&date_stamp=2022-05-18
https://doi.org/10.1103/PhysRevD.105.094016
https://doi.org/10.1103/PhysRevD.105.094016
https://doi.org/10.1103/PhysRevD.105.094016
https://doi.org/10.1103/PhysRevD.105.094016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


SYM ¼ 1

4

Z
ddxFa

μνFa
μν; ð2:2Þ

with Fa
μν being the field strength tensor, which is defined by

the equation

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð2:3Þ

Equation (2.1) is plagued with gauge redundancy, the
famous gauge copies or Gribov copies. These gauge copies
are removed by the Faddeev-Popov (FP) procedure in weak
interactions and in strong interaction at high energies.
However, in the nonperturbative regime, these gauge copies
cannot be eliminated by the FP procedure.
By using the FP procedure, the path integral can be

written as

Z½J� ¼
Z

DADcDc̄e−SFP ; ð2:4Þ

where

SFP ¼ SYM þ Sgf ð2:5Þ

and

Sgf ¼
Z

ddxðba∂μAa
μ þ c̄a∂μDab

μ cbÞ: ð2:6Þ

In the above equations, ðc̄a; caÞ are the Faddeev-Popov
ghosts, ba is the Lagrange multiplier implementing the
Landau gauge, Dab

μ ¼ ðδab∂μ þ gfacbAc
μÞ is the covariant

derivative in the adjoint representation of SUðNÞ.
As we said previously, in Ref. [1], Gribov proved that the

FP procedure is not enough to remove the gauge redun-
dancy in (2.1); i.e., in (2.4), we are still overcounting gauge
field configurations. To solve this problem, Gribov dem-
onstrated that in the Landau gauge, ∂μAa

μ ¼ 0, we have to
restrict (2.4) to a region where the FP operator is positive
(Mab > 0). This region is called the Gribov region and is
defined as

Ω ¼ fAa
μ; ∂μAa

μ ¼ 0;Mab ¼ −ð∂2δab − gfabcAc
μ∂μÞ > 0g:

ð2:7Þ

The restricted path integral (2.4) reads

Z½J� ¼
Z
Ω
DADcDc̄e−SYM−Sgf

¼
Z

DADcDc̄VðΩÞe−SYM−Sgf : ð2:8Þ

After imposing the Gribov region on the path integral by
assuming a condition over the FP operator, we need to

analyze the ghost propagator in the presence of an external
gauge field,

Gðk; AÞ ¼ 1

N2 − 1
δabðM−1Þabðk; AÞ: ð2:9Þ

As Gribov pointed out in Ref. [1], due to the presence of the
external gauge field, the above ghost propagator can be
written as

Gðk; AÞ ¼ 1

k2
ð1þ σðk; AÞÞ; ð2:10Þ

where σðk; AÞ is the so-called ghost form factor. In the
absence of the gauge field, this factor goes to zero. As a
result, we obtain the free ghost propagator again. From
here, we can see that there is a relation between σðk; AÞ and
the restriction VðΩÞ in (2.8). At first order in the gauge
fields, the connected ghost two-point function reads

Gðk;AÞ¼ 1

k2

�
1þkμkν

k2
Ng2

VdðN2−1Þ
Z

ddp
ð2πÞ4

Aa
μðkÞAa

νð−kÞ
ðk−pÞ2

�

≈
1

k2
1

ð1−σðk;AÞÞ : ð2:11Þ

A condition called the no-pole condition is implemented,

σðk; AÞ < 1: ð2:12Þ

In the limit k → 0, the ghost form factor reads

σð0; AÞ ¼ 1

V
1

d
Ng2

N2 − 1

Z
ddp
ð2πÞ4

Aa
μðpÞAa

μð−pÞ
p2

: ð2:13Þ

The no-pole condition keeps the path integral (2.8) inside
the Gribov region: VðΩÞ ≠ 0. Thus, VðΩÞ ¼ θð1 −
σð0; AÞÞ implements the condition in the path integral by
means of a step function. The integral representation of it
reads

VðΩÞ ¼
Z þi∞þϵ

−i∞þϵ

dβ
2πiβ

eβð1−σð0;AÞÞ. ð2:14Þ

The Gribov region is obtained by inserting (2.14) into (2.8).
The final Gribov-Zwanziger action is obtained by assuming
the saddle-point approximation as it is shown in the next
section.

B. Gluon propagator

As a consequence of the restriction, the ghost form factor
introduces a gauge bilinear term in the action. Hence, the
gauge sector is modified. This can be observed in the gluon
propagator. By taking the quadratic part in the gauge field
and integrating it, we have that
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hAa
μðkÞAb

νðpÞi ¼ δðpþ kÞN
Z

dβ
2iπβ

efðβÞðKab
μνÞ−1

fðβÞ ¼ β − ln β −
d − 1

d
ðN2 − 1ÞV

Z
ddp
ð2πÞd ln

�
p2 þ βNg2

N2 − 1

2

dV
1

p2

�
; ð2:15Þ

where

Kab
μν ¼ δab

��
β
1

V
1

d
Ng2

N2 − 1

1

k2
þ k2

�
δμν þ

�
1

α
− 1

�
kμkν

�
:

ð2:16Þ

The saddle-point approximation is implemented in order to
solve the integral over β, (2.14),

Zquad ≈ efðβ0Þ; ð2:17Þ

where β0 is the minimum of the fðβÞ and Zquad is the
partition function (2.8) in the quadratic approximation.
From the minimum condition f0ðβ0Þ ¼ 0, we obtain the
following result:

1 ¼ d − 1

d
Ng2

Z
ddp

ð2πÞdÞ
1

p4 þ γ4
: ð2:18Þ

This is the so-called gap equation, where we have defined
γ4 ¼ β0N

N2−1
2
dV g

2 as the Gribov mass. This equation deter-
mines the value of γ4; i.e., the Gribov parameter is not a
loose parameter in our framework. It is a self-consistent
parameter determined by the gap equation (2.18). After

computing the inverse of (2.16), the gloun propagator
(2.15) becomes

hAa
μðkÞAb

νðpÞi ¼ δðpþ kÞδab k2

k4 þ γ4
PμνðkÞ: ð2:19Þ

A direct consequence of the presence of the Girbov
parameter in the gluon propagator is the fact that

1

k4 þ γ4
¼ 1

2iγ2

�
1

k2 þ iγ2
−

1

k2 − iγ2

�
: ð2:20Þ

This means that we have propagation of excitations with
complex masses; i.e., these are not physical excitations.
This is one way to interpret confinement where in the
strong coupled regime of the theory cannot describe
perturbatively physical excitations.
By restricting the path integral using the Gribov region,

we add a nonlocal mass term for the gauge field into the
action, accounting for nonperturbative effects. However,
such a nonlocal term can be rewritten as a local form [10].
This action is known as the Gribov-Zwanziger action; see
Ref. [4] for more detail about the calculus of this action. In
an arbitrary dimension and in general linear covariant
gauge, it is given by the equation

S ¼
Z

ddx
1

4
ðFa

μνÞ2 þ
Z

ddx

�
α

2
baba þ iba∂μAa

μ þ c̄a∂μDab
μ cb

�

þ
Z

ddx½φ̄ac
μ ∂νDab

ν φbc
μ − ω̄ac

μ ∂νðDab
ν ωbc

μ Þ − gð∂νω̄
an
μ ÞfabcDbm

ν cmφcn
μ �

− γ2g
Z

ddx

�
fabcAa

μφ
bc
μ þ fabcAa

μφ̄
bc
μ þ d

g
ðN2

c − 1Þγ2
�
; ð2:21Þ

with γ is the Gribov parameter; Fa
μν is the field

strength tensor, which is defined by (2.3); ðϕ; ϕ̄Þ is a
pair of complex-conjugate bosonic fields; ðω; ω̄Þ are
anticommuting complex-conjugate fields; the fields
ðc̄a; caÞ are the Faddeev-Popov ghosts; α is the gauge
parameter, which is zero for the Landau gauge, ∂μAμ ¼ 0;
ba accounts for the Lagrange multiplier implementing the
gauge condition; and Dab

μ ¼ ðδab∂μ þ gfacbAc
μÞ is the

covariant derivative in the adjoint representation of
SUðNÞ.

III. YANG-MILLS-GRIBOV-ZWANZIGER-CHERN-
SIMONS GLUON PROPAGATOR

The starting point of our investigation is the local
Gribov-Zwanziger action in linear covariant gauge in 3D
dimensions Euclidean space. Therefore, Eq. (2.21) became
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S ¼
Z

d3x
1

4
ðFa

μνÞ2 þ
Z

d3x

�
α

2
baba þ iba∂μAa

μ þ c̄a∂μDab
μ cb

�
þ
Z

d3x½φ̄ac
μ ∂νDab

ν φbc
μ

− ω̄ac
μ ∂νðDab

ν ωbc
μ Þ − gð∂νω̄

an
μ ÞfabcDbm

ν cmφcn
μ � − γ2g

Z
d3x

�
fabcAa

μφ
bc
μ þ fabcAa

μφ̄
bc
μ þ 3

g
ðN2

c − 1Þγ2
�
; ð3:1Þ

with, now, γ4 ¼ 2βNg2

3VðN2−1Þ.
Now, by coupling the Chern-Simons action,

SCS ¼ −
iM
2

ϵμνλ
Z

d3x

�
Aa
μ∂λAa

ν −
2

3!
gfabcAa

μAb
νAc

λ

�
; ð3:2Þ

to (3.1), we obtain the Yang-Mills-Gribov-Zwanziger-Chern-Simons (YMGZCS) action:

SYMGZCS ¼
Z

d3x
�
1

4
ðFa

μνÞ2 −
iM
2

ϵμνλ

�
Aa
ν∂λAa

μ −
2

3!
gfabcAa

μAb
νAc

λ

��
þ
Z

d3x
�
α

2
baba þ iba∂μAa

μ þ c̄a∂μDab
μ cb

�

þ
Z

d3x½φ̄ac
μ ∂νDab

ν φbc
μ − ω̄ac

μ ∂νðDab
ν ωbc

μ Þ − gð∂νω̄
an
μ ÞfabcDbm

ν cmφcn
μ �

− γ2g
Z

d3x

�
fabcAa

μφ
bc
μ þ fabcAa

μφ̄
bc
μ þ 3

g
ðN2

c − 1Þγ2
�
: ð3:3Þ

Thegluon propagator poles inYang-Milss-Chern-Simons
theory in the presence of Gribov ambiguity have already
been analyzed in the literature [12]. However, in Ref. [12],
the authors considered only the zero order of the gap
equation expansion in the CS mass term. Despite the zero
order being themost dominant term, wewill see that the first
order in the CS mass has notable physical implications.

A. Three solutions for the gap equation

In this section, we analyze the contribution of the Chern-
Simons mass term to the gap equation. The gap equation is
a self-consistent condition obtained through the saddle-
point approximation, see Sec. II B, which becomes exact in
the thermodynamic limit [1,9–11]. In other words, the gap
equation can be obtained by taking the first derivative of the
vacuum energy density, Ev, with respect to β, computed at
the specific value β� that minimizes Ev. The vacuum energy
density, Ev, is given by [12]

−VEv ¼ β − ln β −
1

2
Tr lnQab

μν : ð3:4Þ

Then, taking into account the saddle point in the thermo-

dynamic limit by holding γ4 ¼ 2βNg2

3VðN2−1Þ finite, we find

Z
d3k
ð2πÞ3

k4 þ γ4�
ðk4 þ γ4�Þ2 þ k6M2

¼ 3

2Ng2
: ð3:5Þ

The calculus of (3.5) is similar to what has been done in
Ref. [13]. By solving this integral (step-by-step calculation
is found in Appendix), we find the equation

γ3 −
Ng2

6
ffiffiffi
2

p
π
γ2 þ 5Ng2

192
ffiffiffi
2

p
π
M2 ¼ 0; ð3:6Þ

which is a cubic equation. As a result, there are three
solutions for this equations; i.e., there are three local
minimums for the vacuum energy density. By construction
of the Gribov-Zwanziger theory, in the perturbative regime,
the gap equation solution ensures that the functional
integral of the gauge fields is taken in the region where
the gauge field configurations are associated with the
smallest eigenvalues of the Fadeev-Popov operator [4,9].
Therefore, although there are three possible solutions for
the gap equation, we are guaranteeing that the gauge field
configurations belonging to the integration domain corre-
spond to those associated with the smallest eigenvalues of
the Fadeev-Popov operator at the leading order in g2 [18].
Also, remember that inside the Gribov region we still have
gauge copies, which means the Fadeev-Popov operator still
has zero modes. The only region free of copies is called the
fundamental modular region [4], but nobody knows how to
handle it. Consequently, we will not find a global minimum
for the vacuum energy density inside of the Gribov region.
Hence, it sounds reasonable to find more than one solution
for the gap equation; it means multiple local minima. In
Sec. IV, we find the physical Gribov parameter and
eliminate the others that are spurious.
The discriminant of (3.6) determines if these roots are

complex or real:
(i) If the discriminant of (3.6) is positive,

Δ ¼ −ð1215π2M2 − 16g4N2Þ > 0; ð3:7Þ
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there are three real roots, which means three real
values for the Gibov parameter, γ. On that account,
M has limited values to satisfy (3.7),

0 < M <
4g2N

9
ffiffiffiffiffi
15

p
π
: ð3:8Þ

Also, here, we have assumed positive values of
Chern-Simons mass M > 0.
By using the François Viète’s formula, we write

down all three real solutions for (3.6),

γt ¼
g2N

18
ffiffiffi
2

p
π
þ g2N

9
ffiffiffi
2

p
π
cos

�
2πt
3

−
1

3
arccos

�
1 −

1215π2M2

8g4N2

��
; ð3:9Þ

where t ¼ 0, 1, 2. Notice, if we take M ¼ 0, we
recover the result from Ref. [12]. From these three
solutions, only one of them has physical meaning.

(ii) If Δ ¼ 0, we obtain

M ¼ 4g2N

9
ffiffiffiffiffi
15

p
π
; ð3:10Þ

and the solutions of the gap equation are

γt ¼
g2N

18
ffiffiffi
2

p
π
þ g2N

9
ffiffiffi
2

p
π
sin

�
2πt
3

þ π

6

�
; ð3:11Þ

there are three roots, but two of them are similar
γ0 ¼ γ1. We see that the value of the topological
mass given by (3.10) is the maximum allowed value
of M to obtain real roots for the gap equation.

(iii) If Δ < 0, i.e.,

M >
4g2N

9
ffiffiffiffiffi
15

p
π
;

there are one real root G1, which is exactly equal the
real root γ2 from the case Δ > 0, and two complex
conjugate roots, G2 and G3. We do not show their
expression in this paper because they are complicated
expressions in function of g and M. Instead, we only
plot their imaginary part; see Fig. 1. Of course, the
imaginary part of G1 is null, since it is the real root.

Here, it is interesting to notice that the weak-coupling
constant regime is given by the condition without restric-
tion to Gribov horizon, that is

M >
Ng2

6π
;

please for more details about this equation see Ref. [12]. This
weak-coupling condition is bigger than the maximum value

of M given by (3.10), Ng2

6π > 4g2N
9
ffiffiffiffi
15

p
π
. Therefore, in the case of

real roots for the gap equation, the regime is always in the
strong-coupling regime, since M is always smaller than
Ng2=6π. This result is different from the one in Ref. [12].

FIG. 1. Plot of imaginary part of γ when Δ < 0, N ¼ 3.
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After we have found the solutions for the gap equation,
we can investigate the gluon propagator poles, analyze the
regime of theory for each Gribov parameter in the next
section, and find the physical Gribov parameter, i.e., the
one that describes nature.

IV. REGIME OF THE YANG-MILLS-GRIBOV-
ZWANZIGER-CHERN-SIMONS THEORY

To calculate the gluon propagator from this theory, it is
necessary to take only the quadratic part in the gauge field
of action (3.3) and integrate it out. Following these steps,
one should end up with

S ¼
Z

d3k
ð2πÞ3

�
−
1

2
Ãa
μðkÞQab

μν Ã
b
νð−kÞ

�
; ð4:1Þ

where

Qab
μν ¼δab

�
k4þγ4

k2
δμνþ

�
1

α
−1

�
kμkνþMϵμνλkλ

�
ð4:2Þ

and γ4 is the Gribov parameter. To obtain the propagator,
we have to compute the inverse of (4.2), which can be
obtained through the following expression:

Qab
μνðQbc

νδ Þ−1 ¼ δacδμδ: ð4:3Þ

The ansatz for the inverse of (4.2) reads

ðQbc
νδ Þ−1 ¼ δbc

�
FðkÞδνδ þ BðkÞ kνkδ

k2
þ CðkÞMϵδνα

kα
k2

�
;

ð4:4Þ

where the coefficients are dimensionless.
The Landau gauge is recovered in the limit α → 0, and

the propagator reads

hAa
μðkÞAb

νð−kÞi ¼ δabFðkÞ
��

δμν −
kμkν
k2

�

−
k4

ðk4 þ γ4ÞMϵμνα
kα
k2

�
: ð4:5Þ

The overall factor FðkÞ is given by

FðkÞ ¼ ðk4 þ γ4Þk2
ðk4 þ γ4Þ2 þ k6M2

: ð4:6Þ

As it is pointed out in Ref. [12], the poles of the
propagator (4.5) are found by determining the roots of
the polynomial

Pðk2Þ ¼ ðk4 þ γ4Þ2 þ k6M2

¼ ðk2 þm2
1Þðk2 þm2

2Þðk2 þm2
3Þðk2 þm2

4Þ; ð4:7Þ

where mi stands for the solutions of the polynomial Pðk2Þ.
The discriminant of Pðk2Þ is

Δp ¼ 256M4γ20 − 27M8γ16: ð4:8Þ

As a result, there are four complex roots for Pðk2Þ, if
Δp > 0 or γ >

ffiffiffiffiffi
274

p
M=4. It means that there is no physical

excitation. Then, we are in the confinement phase. There
are two complex and two real roots for Pðk2Þ, if Δp < 0 or

γ <
ffiffiffiffiffi
274

p
M=4. This time, there is physical excitation, since

there are two real roots. Hence, we found the deconfine-
ment phase.
In Ref. [12], the authors investigated the regime of the

theory comparingM and g, since, there, γ ∝ g2 and it is not
a function of M. Nonetheless, in Sec. III A, it has shown
that γ also depends on M; then, it must be taken into
account, too. To do so, we separately investigate all
solutions from (3.6) using WolframMathematica software.
Therefore, let us analyze the regime of the theory via the
discriminant of the polynomial Pðk2Þ (4.8) and study all
cases for γ from Sec. III A, i.e., γ¼fγ0;γ1;γ2;G1;G2;G3g.
By replacing each value of γ in (4.8), we get the
Tables I and II.
From Table I, we see that γ2 and G2 do not describe the

confinement phase. Therefore, gluons always behave as
free particles. At this point, γ2 can be discarded, since,
clearly, it does not describe the reality; it is well known that
gluons have a confinement phase. From the same table, we
also realize there is no physical excitation when the Gribov
parameter is given by γ0. It means gluons are always
confined. From here, it seems γ0 also does not describe
nature either. Then, it should not be considered as a
physical parameter of theory. From Table II, we notice
that the complex conjugate roots from the gap equation do
not contribute to establishing the regime of the theory.

TABLE I. The regime of the theory defined by the real roots from the gap equation. Δp is given by (4.8).

γ0 γ1 γ2 G1

Confinement Δp > 0 0 < M ≤ 4g2N
9
ffiffiffiffi
15

p
π

ð6 ffiffi
6

p
−5

ffiffi
2

p Þ
54

ffiffi
34

p
π

Ng2 < M ≤ 4g2N
9
ffiffiffiffi
15

p
π

False False

Deconfinement Δp < 0 False 0 < M < ð6 ffiffi
6

p
−5

ffiffi
2

p Þ
54

ffiffi
34

p
π

Ng2 0 < M ≤ 4g2N
9
ffiffiffiffi
15

p
π

M > 4g2N
9
ffiffiffiffi
15

p
π
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The only Gribov parameter that gives us both phases
(confinement and deconfinement) is γ1; see Table I.
However, by choosing the solution γ1, the CS mass term
assumes smaller values in the deconfinement phase than in
the confinement phase, leading to an alternative conclusion
than the one in Ref. [12]. Furthermore, in the confinement
defined by γ1, see Table I, we see that when g assumes large
values M also can assume large values. Therefore, all
excitations in the theory are confined for large values of g
and also for large values of M.
To visualize how the masses of the gluon propagator

change by considering the first order in M, we plot m2
1, the

first pole from the polynomial polynomial Pðk2Þ, at zero
order in M and at first order in M using γ1; see Fig. 2.
Clearly, they are very different from each other. Also, from
this figure, we show that the poles of the gluon propagator
are affected if the CS mass term is considered in the gap
equation.

V. CONCLUSION

In this paper, three solutions for the gap equation
dependent on ðg;MÞ are presented, meaning that there
are three local minima for the vacuum energy density.
However, only one has physical meaning. In Ref. [12], M
can assume all possible positive values. In our cases, this is
not always true; M assumes all possible positive values if
and only if we are working with γ2 as shown in Table I.
However, if γ2 is chosen, the confinement phase is not
present, which means gluons are always free; in other
words, only the deconfinement phase is observed in this
case. Hence, γ2 does not describe nature. From Table I, we
can also conclude that gluons are always confined when the
Gribov parameter is given by γ0. And, yes, for g strong and
M small, there is confinement in agreement with the study
of Ref. [12], but there is no deconfinement phase in the case
of γ0. Again, it does not seem to represent nature.
Therefore, γ0 is not a physical parameter, and it may be
ignored. The only Gribov parameter that gives us both
phases (confinement and deconfinement) is γ1. In spite of
that, with γ1, the CS mass term assumes smaller values than
in the confinement phase, in contrast to the conclusion
in Ref. [12].
In addition, in our case, the coupling constant is not

small enough to get the weak-coupling regime, since M is

never bigger than Ng2

6π . It means that there are always Gribov
ambiguities and we are never in the perturbative regime.
The weak-coupling regime is only reached with the
solution given by G1—a solution for the gap equation that
only defines deconfinement phase, see Table I, which is
physically meaningless. Therefore, in this paper, we have
shown that the gap equation solutions and the regime of the
theory are evidently affected by considering the first order
in M in the gap equation.
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APPENDIX: SOLVING THE GAP EQUATION

The integral on the left side of (3.5) can be solved by the
residues theorem. However, the solutions for the gap
equation (3.5) are only given by graphic analysis. The
analysis of the equation will be done by comparing its left
side in Fig. 3 with its right side. In the nonperturbative
regime, i.e., in the infrared, g2 is strong, and the right side of
(3.5) is small. In Fig. 3, we can see that the left side from
(3.5) is also very small for γ4 large and M small. In the
perturbative regime, i.e., when g2 is small, the right side of
(3.5) is large. In the left side of the same equation, large
values are reached when M is big or γ4 is small, which is
consistent with theory, since γ ∝ expð−1=g2Þ. In Fig. 3, one

TABLE II. The regime of the theory defined by the complex
conjugate roots from the gap equation. Δp is given by (4.8).

G2 G3

Confinement Δp > 0 False False
Deconfinement Δp < 0 False False

FIG. 2. m2
1 in function of M and g, N ¼ 3.
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can observe that the left side of the gap equation (3.5) is not
defined by all values of the Chern-Simons mass M, for
M > 3 in the plot, the function is not defined.
As we are working with Gribov formalism, we are only

interested in the IR regime, where Gribov copies show up.
By the graphic analysis above, we see that the IR regime is
given by a small M. Then, we can expand the left side of
(3.5) in M2 using Taylor series. Hence, the gap equation
can be written as follows:

Z
d3k
ð2πÞ3

X∞
n¼0

ð−iÞ2nðk6nM2nÞ
ðγ4 þ k4Þ2nþ1

¼ 3

2Ng2
ðA1Þ

X∞
n¼0

ð−iÞ2n 4π

ð2πÞ3
Z

dk
k6nM2n

ðγ4 þ k4Þ2nþ1
k2 ¼ 3

2Ng2
: ðA2Þ

In this paper, we only consider the two first terms of (A2).
This equation has been solved in zero order in Ref. [12], as
was already said before.
To solve (A2), we used the residue theorem

Z
∞

0

fðxÞdx ¼ 1

2

Z
∞

−∞
fðxÞdx ¼ πiRes½fðzÞ�z¼z0

¼ −πiRes½fðzÞ�z¼−z0 ; ðA3Þ

where z0 is the pole of the function fðzÞ. In spherical
coordinates, the zero-order term from (A2) is

1

2π2

Z
∞

0

k2

k4 þ γ4
dk ¼ 1

4π
ffiffiffi
2

p
γ
; ðA4Þ

which is the result from Ref. [12]. The first-order term in
M2 of (A2) is

−
4π

ð2πÞ3
Z

∞

0

k8M2

ðk2 − iγ2Þ3ðk2 þ iγ2Þ3 dk ¼ −
5M2

128
ffiffiffi
2

p
πγ3

:

ðA5Þ

By replacing (A4) and (A5) in (A2), we obtain

γ3 −
Ng2

6
ffiffiffi
2

p
π
γ2 þ 5Ng2

192
ffiffiffi
2

p
π
M2 ¼ 0: ðA6Þ
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